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Abstract

Background: Transcription factor binding to the regulatory region of a gene induces or represses its gene

expression. Transcription factors share their binding sites with other factors, co-factors and/or DNA-binding proteins.

These proteins form complexes which bind to the DNA as one-units. The binding of two factors to a shared site does

not always lead to a functional interaction.

Results: We propose a method to predict the combined functions of two factors using comparable binding and

expression data (target). We based this method on binding and expression target analysis (BETA), which we

re-implemented in R and extended for this purpose. target ranks the factor’s targets by importance and predicts the

dominant type of interaction between two transcription factors. We applied the method to simulated and real

datasets of transcription factor-binding sites and gene expression under perturbation of factors. We found that Yin

Yang 1 transcription factor (YY1) and YY2 have antagonistic and independent regulatory targets in HeLa cells, but they

may cooperate on a few shared targets.

Conclusion: We developed an R package and a web application to integrate binding (ChIP-seq) and expression

(microarrays or RNA-seq) data to determine the cooperative or competitive combined function of two transcription

factors.
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Background
Motivation

The binding of a transcription factor to the regulatory

region (e.g. gene promoter or enhancer) of a particu-

lar gene induces or represses its gene expression [1].

High-throughput chromatin immunoprecipitation (ChIP)

experiments identify hundreds or thousands of bind-

ing sites for most factors [2]. Therefore, methods are

needed to determine which of these sites are true tar-

gets and whether they are functional [3]. Perturbing
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the transcription factor coding gene by overexpres-

sion or knockdown and measuring the effects on cel-

lular gene expression provides useful information on

the function of the factor [4]. Methods exist to inte-

grate binding and gene expression data of the fac-

tor perturbation to predict the direct target regions

(e.g. genes) [5, 6].

Transcription factors share their binding sites with

other factors, co-factors and/or DNA-binding proteins

[7, 8]. These transcriptional proteins form one-unit com-

plexes which bind to the regulatory regions. Moreover,

the binding of a protein to a specific region of the

DNA can modulate the binding of other proteins else-

where [7]. In the former case, the binding site of two

or more factors can be determined by pulling down the

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-020-06977-1&domain=pdf
http://orcid.org/0000-0002-3288-8257
mailto: drkim@gnu.ac.kr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Ahmed et al. BMC Genomics          (2020) 21:610 Page 2 of 9

areas of the chromatin bound to the factors individu-

ally and calculating the overlapping ChIP peaks (binding

sites). Alternatively, re-ChIP experiments can be used

to the same effect [9]. Perturbing the factors individ-

ually in comparable experiments by overexpression or

knockdown helps identify their functional effects on gene

expression.

Methods for data integration and target prediction

Methods for predicting direct gene targets vary depending

on the type of data they use. Some methods use a sin-

gle data source such as regulatory sequences, chromatin

accessibility, ChIP peaks or transcriptomics data [10, 11].

coTRaCTE uses DNase I hypersensitive site (DHS-Seq)

data to identify co-binding of pairs of transcription factors

[12]. Methods that combine more than one type of data

also exist. ChIP-Array considers the binding-enrichment

of a factor fromChIP and the differential expression under

factor perturbation [13]. EMBER uses a machine learn-

ing algorithm to detect targets from the same types of

data [14].

By making simple assumptions about transcription fac-

tor binding and effects on gene expression, the combined

functions of two or more factors can be inferred. Ouyang

et al. constructed an association signal matrix for multi-

ple transcription factors based on the distances between

their binding sites and the transcription start sites (TSS)

[15]. The matrix is normalized and scaled then subjected

to principal component analysis which is used to predict

the log-transformed gene expression under factor pertur-

bation. The explanatory components are used as weights

to approximate interactions between the different factors.

Binding and expression target analysis (BETA) integrates

the binding and expression data to predict direct tar-

gets [6]. Genes with binding peaks and whose expression

is changed by factor perturbation are ranked higher in

importance.

Several R/Bioconductor packages exist for the pur-

pose of identifying transcription factor gene targets and

for integrating binding and expression data in general.

Although these packages do not always have the same

goal, they attempt to integrate ChIP and expression

data. rTRM attempts to identify the transcriptional reg-

ulatory modules (TRMs), which are complexes of tran-

scription factors and co-factors by integrating ChIP-seq,

gene expression and protein-protein interaction data [16].

The TFEA.ChIP package curates large quantities of data

from different sources and uses this data to build a

model or a database to query for targets [17]. Finally,

transcriptR integrates ChIP- and RNA-Seq data for an

entirely different purpose [18]. It uses the ChIP data

to denovo identify transcripts which are then used to

map the reads from the RNA-Seq data to quantify gene

expression.

Implementation
Proposing target analysis

To determine the functional interaction of two transcrip-

tion factors, we first identify their shared binding sites and

the effects on gene expression of perturbing each sepa-

rately. Two factors work cooperatively when they share

a binding site and when they both induce or repress the

gene [7]. By contrast, two factors compete on a specific

site when the binding of either has opposite effects on

the target gene expression [19]. Figure 1 summarizes the

proposed method. One advantage of our approach is that

it assigns numerical values to each target which can be

used to obtain ranked predictions. Another is that the pre-

dicted combined function (interaction) of the two factors

is easily interpreted as compared to classification trees or

amounts of variance proposed by other methods.

Here, we summarize the formulation of BETA [6]. Then,

we describe extending this method for the purpose of inte-

grating comparable datasets on two factors to predict their

combined function. We provide a fast and flexible imple-

mentation of this approach in an R package called target

and an accompanying Shiny interactive application [20,

21]. Finally, we introduce examples from simulated and

real data to evaluate the new method.

Binding and expression target analysis (BETA)

The BETA algorithm is composed of five steps [6]:

1. Select the peaks (p) within a specified range in a

region of interest (g) which could be a promoter

region.

2. Calculate the distance (�) between the center of each

peak and the start of the region expressed relative to

the range in kb.

3. Calculate the score of each peak
(

Sp
)

as the

transformed exponential of the distance, �. These

parameters were chosen to derive a monotonically

decreasing function that approximates the empirical

data [22], as follows:

Sp = e−(0.5+4�) (1)

4. Calculate the region’s regulatory potential
(

Sg
)

as the

sum of all peaks scores
(

Sp
)

[22], as follows:

Sg =

k
∑

i=1

Spi (2)

where p is {1, ..., k} peaks within the region of interest.

5. Rank all regions based on their regulatory potential,

Sg , to give
(

Rgb

)

and based on their differential

expression (fold-change or t-statistics) from the

factor perturbation experiment to give
(

Rge

)

. The

products of the two ranks
(

RPg
)

predict direct targets.
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Fig. 1 Integrating binding and expression data to predict the combined function of two transcription factors. The binding peaks from ChIP

experiments of two factors are used to find their shared binding sites in the regions of interest. The distances between the peaks and the regions are

used to calculate peak scores. The sum of the scores of all peaks assigned to a region is its regulatory potential. The product of signed statistics from

gene expression profiling of the factors perturbation is used to determine the magnitude and the direction of their regulatory interactions. The

products of the ranks of the regulatory potential and the regulatory interactions are used to rank the regions of interest

RPg =
Rgb × Rge

n2
(3)

where n is the number of regions g.

Regulatory interaction (RI) term for predicting combined

functions

To determine the relationship of two factors x and y on

a region of interest where they have common peaks, we

define a new term, the regulatory interaction (RI), as the

product of two signed statistics from comparable pertur-

bation experiments. The ranks of the new term
(

RIge
)

and

the previously defined regulatory potential
(

Rgb

)

are then

multiplied.

RIg = xge × yge and RPg =
Rgb × RIge

n2
(4)

This term would represent the interaction magnitude

assuming a linear relation between the two factors. The

sign of the term would define the direction of the inter-

action where positive means cooperative and negative

means competitive. To determine the combined function

of two factors, the targets are first divided into groups

based on the regulatory interactions cutoffs or quantiles.

For example, regions with positive interaction would rep-

resent regions of cooperation and vice versa. Then the

empirical cumulative distribution function (ECDF) of the

regulatory potentials of the regions is calculated sepa-

rately for each group. The ECDFs approximate the aggre-

gate potentials of the groups, which are compared to each

other. If the curve of one group lies above that of the

other, the regions in the first group have higher regulatory

potentials and hence represent the dominant interaction

type.

Testing the difference between the aggregate functions

The curves of the aggregate functions in each group can be

visually inspected for differences. To formalize the com-

parison, the Kolmogorov-Smirnov (KS) test is used, as

suggested in the original BETA paper [5]. Two samples

KS tests whether the distribution of the functions of two

groups were drawn from the same distribution. In partic-

ular, the differences in shape and location between two

curves are tested. The larger the distance or the side-shift

between the two functions, the larger the difference in

the factor aggregate functions. This test is applied using

ks.test from R base [23].

The target R package

We developed an open source R package (target) to

implement BETA and extend it to apply to factor combi-

nations (https://bioconductor.org/packages/target/). The

package leverages the Bioconductor data structures such

as GRanges and DataFrame to provide fast and flex-

ible computation [24]. Similar to the original python

https://bioconductor.org/packages/target/
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implementation, the input data are the identified peaks

from the ChIP-Seq experiments and the expression data

from RNA-Seq or microarray perturbation experiments.

The final outputs are associated peaks and direct targets.

The first is the filtered peaks each assigned to one of the

specified regions. The second is the predicted targets of

the factors ranked by importance.

We use the term peaks to refer to the GRanges object

that contains the coordinates of the peaks. Similarly, we

use the term regions to refer to a similar object that

contains information on the regions of interest: genes,

transcripts, promoter regions, etc. In both cases, addi-

tional information on the ranges can be added to the

object as metadata. Table 1 lists the functions in the R

package along with each ones’s specific description, input

and output. The first five functions correspond to the five

steps of the algorithm presented earlier (not intended to

be used directly). The rest of the functions corresponds to

the final outputs.

The web interface

The target package comes with an interactive user inter-

face that can be used to perform the same predictions.

The interface is also available as a web application (https://

mahshaaban.shinyapps.io/target-app/). The inputs to the

web application are slightly different. Instead of GRanges

objects, users provide the input in text format. The bind-

ing data can be in standard bed format. The expression

data can be in a tab separated text file with at least three

columns (region names and statistics columns for each

factor). Finally, the user has the option to choose a ref-

erence genome from the built-in database or upload a

custom genome file in standard bed format. One column

in this file should be identical to the names column in the

expression data, since the two are merged at some point

to select the peaks belonging to each region. The output

from the web application is similar to that of the pack-

age. The tables of associated peaks and direct targets are

calculated automatically. The predictions can be summa-

rized using plots and tested for statistical significance. The

output can be downloaded for further analysis.

Availability

target is available as an open source R/Bioconductor

package (https://bioconductor.org/packages/target/). The

accompanying interactive application can be invoked

locally through R or accessed directly on the web (https://

mahshaaban.shinyapps.io/target-app/). The source code

for the package and the interactive application is avail-

able at (https://github.com/MahShaaban/target) under

the GPL-3 license.

Results
Simulation of cooperative and competitive binding factors

The target package contains two simulated datasets.

sim_peaks contains randomly generated peaks with

random distances from the transcription start sites

(TSS) on chromosome 1 of the mm10 mouse genome.

sim_transcripts is random values to simulate statistics on

transcript expression as a consequence of perturbing two

factors. To illustrate how the proposed method detects

cooperative or competitive binding conditions, we intro-

duced a bias to the singed statistics of a 1000 transcripts.

In the case of cooperative factors, we multiplied the val-

ues corresponding to one of the two factors by 3. This

magnified the effect of the factor perturbation in the same

direction (Fig. 2). Multiplying the signed statistics of one

of the two factors by -3, on the other hand, reversed the

sign and gave a pattern of functionally competing factors

(Fig. 3).

Before making any changes, the statistics of the two

factors are completely random (Fig. 2a). Multiplying

Table 1 Functions in the target R package

Function Description Input Output

merge_ranges Merge overlapping peaks & regions. peaks & regions Merged ranges

find_distance Calculate the distance between the centers of
peaks & regions.

peaks & regions Distances

score_peaks Calculate regulatory scores for peaks in relation to
regions.

Distances Peak scores

score_regions Calculate regulatory scores for regions. Peak scores & region IDs Regions scores

rank_product Rank regions based on the regulatory potential &
expression statistics.

Regions scores, expression statistics & region IDs Regions rank products

associated_peaks Select overlapping peaks & regions & calculate a
score for each peak in relation to a region.

peaks & regions Assigned peaks

direct_target Select & rank regions with overlapping peaks. peaks & regions Assigned targets

plot_predictions Plot the ECDF of the regions’ ranks by group. Ranks & group factor ECDF plot

test_predictions Test the ECDF of the ranks in the regions in each
group are from different distribution.

Ranks & group factor t-statistics & p-values

https://mahshaaban.shinyapps.io/target-app/
https://mahshaaban.shinyapps.io/target-app/
https://bioconductor.org/packages/target/
https://mahshaaban.shinyapps.io/target-app/
https://mahshaaban.shinyapps.io/target-app/
https://github.com/MahShaaban/target


Ahmed et al. BMC Genomics          (2020) 21:610 Page 5 of 9

Fig. 2 Simulation of cooperative binding of two factors. a Scatter plot of the two randomly simulated statistics. b Scatter plot of the two simulated

statistics after introducing parallel (positive) changes to the second factor. c Plot of the peak scores vs their distance from the overlapping regions. d

Predicted function of factor one. e Predicted function of factor two. f Predicted combined function of the two factors. Empirical cumulative

distribution functions (ECDF) of the regulatory potential/interactions are calculated separately for the groups of regulated regions

the statistics of the second factor by 3 in transcripts

with nearby peaks skewed the scatter of the two fac-

tors in the positive direction (Fig. 2b). As expected, the

peak score was an exponentially decreasing function of

the distance between the peaks and the TSSs (Fig. 2c).

Applying the standard target analysis to the two factors

individually showed a higher proportion of induced/up-

regulated targets with higher regulatory potential (Fig. 2d

& e). When including the statistics of the two factors

in the calculations, the regulatory interaction (RI) was

used to rank the targets. As expected, the curve of

the targets with positive regulatory interaction shifted

upwards (Fig. 2f ).

By contrast, the induced negative change to the statistics

of factor two skewed the scatter to the bottom quadrants

as compared with a random distribution (Fig. 3a )
¯
. The

target analysis of the individual factors showed opposite

patterns, factor one was inducing/up-regulating targets

and factor two was repressing/down-regulating targets

(Fig. 3d & e). Finally, the combined function of the two fac-

tors was competitive in nature as they exerted opposing

effects on their common targets (Fig. 3f ).

YY1 and YY2 cooperate on their shared gene targets in

HeLa cells

Yin Yang 1 transcription factor (YY1) and YY2 belong to

the GLI-Kruppel family of zinc finger transcription fac-

tors, which are involved in repressing and activating a

diverse set of genes [25, 26]. We used binding and expres-

sion data on YY1 and YY2 in HeLa cells to predict the

effects of the two factors on specific and shared gene

targets. Two ChIP-Seq datasets were prepared using a

ChIP antibody against either YY1 (GSE31417) or YY2

(GSE96878) in HeLa cells [27, 28]. Raw reads were

mapped to the human genome (hg19) using BOWTIE2 and

peaks were called using MACS2 [29, 30]. The processed

data was obtained in the form of narrow peaks from

the ChIP-Atlas database [31]. Expression profiling using

microarrays of the transcription factors knockdown was

performed in HeLa cells (GSE14964) [32]. Probe intensi-

ties were log2 transformed and the fold-changes of knock-

down vs. control were calculated using LIMMA [33]. The

processed data was obtained in the form of differential

expression in the factor knockdown condition vs control

from the KnockTF database [34].
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Fig. 3 Simulation of competitive binding of two factors. a Scatter plot of the two randomly simulated statistics. b Scatter plot of the two simulated

statistics after introducing opposing (negative) changes to the second factor. c Plot of the peak scores vs their distance from the overlapping

regions. d Predicted function of factor one. e Predicted function of factor two. f Predicted combined function of the two factor. Empirical

cumulative distribution functions (ECDF) of the regulatory potential/interactions are calculated separately for the groups of regulated regions

Knockdown of YY1 in HeLa cells had a larger effect on

the gene expression than did knockdown of YY2 (Fig. 4a).

This was also reflected in the larger number of binding

peaks of YY1 near the TSSs. Specifically, YY1 knock-

down resulted in the down-regulation of a large number

of genes while the YY2 knockdown had the opposite effect

but on a smaller number of genes. However, the overall

fold-change in the knockdown of either factors was well

correlated (Fig. 4b), suggesting that the effects of the two

factors on the shared targets may be different than the

effects of each on its specific targets. Indeed, the number

of potential targets of each factor exceeded the number of

shared targets (Fig. 4c).

Individually, the two factors had overall opposing func-

tions on a larger number of targets. However, on the

shared set of targets, the two transcription factors may

cooperate. YY1 knockdown down-regulated many tar-

gets, and these had higher regulatory potentials (Fig. 5a &

Table 2). Conversely, the overall effect of the YY2 knock-

down was positive on the highly-ranked targets (Fig. 5b

& Table 2). Considering only the shared targets of both

factors, the combined effect of the knockdown of the

two factors was positive. That is, binding of the two fac-

tors on a shared target site may cooperatively induced or

repressed gene expression, with a few but strong excep-

tions (Fig. 5c & Table 2).

The implication of these observations is that YY1 and

YY2, despite being members of the same family, each

has unique targets. Since the knockdown of a transcrip-

tion factor reverses its functional role, YY1 likely induces

more target genes than it represses. The opposite would

be true for YY2, albeit with fewer targets. Finally, on

the smaller set of common targets, for which the two

factors share binding sites, they are expected to posi-

tively cooperate in induction of target gene expression.

This may not be the case for a few strong shared targets

where the two factors have opposing effects. These find-

ings agree with previous studies in affirming the antag-

onistic roles of YY1 and YY2 [32]. On their strongest

targets the two factors may compete, but we also sug-

gest a less appreciated cooperative function of the two

factors.
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Fig. 4 Differential expression of YY1 and YY2 in knockdown vs control HeLa cells. Probe intensities from microarrays of YY1 or YY2 (n = 3)

knockdown and control cells (n = 3) were aggregated by gene and used to perform differential expression analysis (GSE14964). Gene expression in

the YY1- and YY2-knockdown samples was compared to that of the control samples individually. a Volcano plots show the fold-change (log2) and

p-values (-log10) in each comparison. b The fold-change (log2) of the YY1- and YY2-knockdown samples are shown as a scatter plot. c The count of

regulated (Up/Down) genes in by YY1 or YY2-knockdown and their intersections are shown as bars

Discussion
In this article, we provide a fast and flexible imple-

mentation of the BETA algorithm for predicting direct

targets of transcription factors and chromatin remod-

elers from binding and expression data. We extended

this method to determine the combined function of two

factors that bind to the same region. The overlapping

binding sites of the two factors are used to calculate

the regulatory potential of the factors on the regions of

interest. The signed statistics of the perturbation of the

factors in comparable experiments are used to calculate a

regulatory interaction which determines their combined

function; cooperative or competitive. We developed an

R package and a web application to apply these two

methods.

The proposed method requires experimental data with

a specific design. Comparable sets of data for the two

factors are required: binding data using ChIP and gene

expression data under factors perturbation (overexpres-

sion or knockdown). Therefore, the practical application

of this method is limited by the availability of certain types

of data. It is not possible to adapt the method to work

with predicted binding sites instead of ChIP peaks, since

the regulatory potential of a factor is a function of the

distances of its peaks from the regulatory region of the

targets. It is not clear whether binding sites predicted by

Fig. 5 Predicted functions of YY1 and YY2 on specific and shared targets in HeLa cells. The target analysis was applied using two sets of data from

the HeLa cells: expression data in YY1- and YY2-knockdown cells (GSE14964) and two sets of ChIP peaks using antibodies for YY1 (GSE31417) and

YY2 (GSE96878). Predicted targets were ranked based on the distance of their peaks to the transcription start sites (TSS) and their fold-change. The

empirical cumulative distribution function (ECDF) of the regulatory potential of each group of targets (Down, None or Up-regulated genes) of a YY1

and b YY2 was calculated. c The shared targets were ranked based on the distance of their peaks to the TSS in which they had overlapping peaks

and the product of the corresponding fold-changes. The ECDF of the regulatory potential of each group of targets (Competitively, None or

Cooperatively regulated genes) was calculated
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Table 2 Testing YY1 and YY2 combined functions

Factor Test Statistic P-Value

YY1 Down vs Up 0.79 0e+00

YY2 Up vs Down 0.41 5e-13

Two Factors Cooperate vs Compete 0.97 0e+00

other methods can be assigned numeric values that follow

the same function shape or distribution.

Several modes of regulatory interaction are not cap-

tured by the method, in particular non-linear interactions

and assisted binding. In the latter case, the binding of

one factor increases or decreases the binding affinity of

another at a different site. Since the starting point of this

method is identifying the overlapping binding peaks of the

two factors, this form of interaction would not be recog-

nized. Finally, it is not possible to distinguish the binding

of one protein to another from direct DNA binding. In

either cases, the interpretation of the regulatory interac-

tion would be identical since the binding peaks would be

predicted all the same.

Conclusion
In this article, we present a method for identifying the

combined functions of two transcription factors or DNA

binding proteins. This method integrates binding (ChIP-

seq) and expression (microarrays or RNA-seq) data to

determine the cooperative or competitive combined func-

tion of the factors. We implemented this method in an R

package and a web application.
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