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Abstract

In the paper, we present an efficient method to solve the piecewise constant Mumford-Shah (M-S) model for

two-phase image segmentation within the level set framework. A clustering algorithm is used to find approximately

the intensity means of foreground and background in the image, and so the M-S functional is reduced to the functional

of a single variable (level set function), which avoids using complicated alternating optimization to minimize the

reduced M-S functional. Experimental results demonstrated some advantages of the proposed method over the

well-known Chan-Vese method using alternating optimization, such as robustness to the locations of initial contour

and the high computation efficiency.

Keywords: Image segmentation; Mumford-Shah model; Alternating optimization; Level set method; Clustering

algorithm

1 Introduction
Image segmentation is one of the most important and crit-

ical tasks towards high-level vision modelling and analysis.

The segmentation problem can be formulated as follows:

given an image I ∈ L2(Ω) on a two-dimensional domain Ω

(assumed to be bounded, smooth, and open), one seeks

out a closed ‘edge set’ C and all the connected compo-

nents Ω1,…, Ωk of Ω\C so that by certain suitable visual

measure, the image I is discontinuous along C while

smooth or homogeneous on each segment Ωi(i = 1,…, k).

Until now, a wide variety of techniques including vari-

ational methods [1,2] have been proposed for image

segmentation.

Variational methods for image segmentation have had

great success, which are characterized by deriving an en-

ergy functional from some a priori mathematical model

and minimizing this energy functional over all possible

partitions. Among them, the Mumford-Shah (M-S)

model [3] is one of the most widely studied mathemat-

ical models for image analysis. The M-S functional con-

tains a data fidelity term and two/a regularity terms

imposing a piecewise smooth/constant representation of

an image and penalizing the Hausdorff measure of the set

of discontinuities, resulting in simultaneous restoration

and segmentation. Minimizing the M-S functional in-

volves determining both a function and a contour across

which smoothness is not.

The M-S functional has been extensively used in image

segmentation [4-7]; however, the numerical method for

solving the model is difficult to implement when direct

implementations are performed. Therefore, in practice, one

of the major challenges is to develop efficient algorithms to

compute high-quality minimizes of this functional.

One of the earliest attempts is based on so-called con-

tinuation methods, such as simulated annealing [8] and

the graduated non-convexity procedure [9]. The idea is

to minimize the original energy by gradually decreasing

a continuation parameter. However, the performances of

these methods largely depend on the dynamics of the

continuation parameter and therefore tend to get stuck

in bad local minima.

Based on the level set method [10,11], a very success-

ful method is first introduced by Chan and Vese [12,13]

to solve the piecewise constant M-S model. After the

Chan and Vese's work, different models based on the M-S

functional with level set methods have been developed

and widely adopted in various image applications [14-17].

Chan and Vese [12] primarily solve a special case of the

M-S model where the binary case of two regions was con-

sidered and develop the widely used ‘active contours

without edges’ model. For piecewise constant M-S model,
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Shen [18] uses gamma convergence formulation to the

piecewise constant M-S model; it can be regarded as a dif-

fuse interface method in which the ‘edges’ in the segmen-

tation are represented as thin transition layers, and

implementation is completed by the iterated integration of

a linear Poisson equation. Esedoĝlu and Tsai [19] propose

a very efficient minimization method based on the thresh-

old dynamics, by alternating the solution of a linear para-

bolic partial differential equation and simple thresholding.

In [20], Bresson et al. propose a global minimization of

the active contour model based on the piecewise constant

M-S model, in which the dual formulation is to be applied

in minimization of the model and present a fast algorithm.

These methods allow to compute high-quality solutions of

the piecewise constant M-S functional. However, these

methods solving the M-S functional involve alternating

optimization [21,22] of the reconstruction function and

the contour.

In this paper, following the Chan-Vese (C-V) method,

we propose an efficient method for minimizing the piece-

wise constant M-S functional. Unlike the existing methods

above, our method to minimize the M-S functional avoids

the use of complicated alternating optimization.

The remainder of this paper is organized as follows. In

Section 2, we describe the M-S model, the C-V method

and c-means clustering algorithm. Section 3 presents the

proposed method. In Section 4, the proposed method is

validated by some experiments on synthetic and real im-

ages. This paper is summarized in Section 5.

2 Related works
2.1 The M-S model

The M-S model [3] is a variational problem for approxi-

mating an image by a piecewise smooth image of min-

imal complexity. Let I: Ω ⊂ℝ × ℝ→ℝ be a given image,

the M-S functional is defined as

FMS u;Cð Þ ¼

Z

Ω

u x; yð Þ−I x; yð Þj j2dxdy

þ μ

Z

Ω=C
∇u x; yð Þj j2dxdyþ v Cj j ð1Þ

where u is a piecewise smooth approximation to the

image I, μ and v are two positive constants to balance

the terms; and C is the union of a finite number of

curves, |C| is the length of C, and Ω\C is the domain ex-

cluding the curve C.

The solution image obtained by minimizing the func-

tional (1) is formed by smooth regions Ωi (i = 1, …, k)

and with sharp boundaries C.

The full M-S model poses a formidable optimization

problem; it is very difficult to directly minimize the func-

tional (1) due to different dimensions of u and C, and

the non-convexity of the functional. Many methods have

been proposed for its solution. For example, Ambrosio

and Tortorelli [23] show how to approximate the M-S

functional, in the sense of gamma convergence, with a

class of the functionals that are much more tractable

numerically and can be subsequently minimized via

gradient descent. Aiming at this point, Aubert et al.

[24] proposed the gamma convergence of a family of

improved discrete functionals to approximate the

Mumford and Shah functional. This is one of the best-

known ways to deal with the M-S functional in its full

generality. Recently, Yu et al. [25] proposed a discrete

M-S piecewise smooth model on lattice; they discretize

objective functional, as well as find the solution by

greedy algorithm.

However, solving the M-S functional in its full general-

ity is an overkill in many vision applications. For ex-

ample, an image is not smoothly varying, but is actually

an approximate constant in greyscale intensity. An ex-

ample of such an application is medical imaging, where

one might for instance be interested in segmenting brain

MR images into background, gray matter, and white

matter, or we are interested in segmentations that only

have two regions (foreground and background). In such

cases, it makes sense to work with a simplified version

of the M-S functional that is easier to minimize.

The piecewise constant M-S model is a very useful

simplified version of the M-S functional (1), in which the

objective functional is minimized over functions that

take a finite number of values. In this paper, we are con-

cerned especially with the case where the solution takes

only two (unknown) values. In detail, for an observed

image I: Ω→ℝ, we find two disjoint regions Ω1 and Ω2

(foreground and background), such that the binary step

function u = ci in Ωi(i = 1,2) is a minimizer of the piece-

wise constant M-S functional:

FMS c1; c2;Cð Þ ¼

Z

Ω1

I x; yð Þ−c1j j2dxdy

þ

Z

Ω2

I x; yð Þ−c2j j2dxdyþ v Cj j ð2Þ

where Ω1 ∪ Ω2 ∪ C =Ω, and v > 0 is a scale parameter.

In practice, it is still a non-trivial task to minimize the

functional (2) due to the different nature of the un-

knowns and the non-convexity of the functional. The

functional (2) was considered previously by Chan and

Vese [12] within the level set framework; we will de-

scribe the method in detail in Section 2.2.

2.2 The C-V method

In [12], Chan and Vese proposed a technique that imple-

ments efficiently the piecewise constant M-S model (2)

via level set methods [10,11] for two-phase image. Let I:
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Ω→ℝ be an input image and C be a closed curve, the

functional (2) is written as

FCV c1; c2;Cð Þ ¼

Z

inside Cð Þ

I x; yð Þ−c1j j2dxdy

þ

Z

outside Cð Þ

I x; yð Þ−c2j j2dxdyþ v Cj j

ð3Þ

where inside(C)and outside(C) represent the regions out-

side and inside the contour C, respectively, and c1 and c2
are the two constant that approximate the image inten-

sities inside and outside the contour C (i.e. foreground

and background), respectively.

To allow curve splitting and merging naturally (i.e. a

change of topology), the functional (3) is incorporated into

a variational level set formulation. According to level set

methods [10,11], a closed curve C is represented implicitly

by the zero level set of a Lipschitz function ϕ : Ω→ℝ,

called a level set function, with the following properties:

ϕ x; y; tð Þ > 0; x; yð Þ ∈ inside Cð Þ
ϕ x; y; tð Þ ¼ 0; x; yð Þ ∈ C

ϕ x; y; tð Þ < 0; x; yð Þ ∈ outside Cð Þ
:

8

<

:

ð4Þ

Thus, the energy functional FCV(c1,c2,C) can be reformu-

lated in terms of the level set function ϕ(x, y) as follows:

FCV c1; c2;ϕð Þ ¼

Z

Ω

I x; yð Þ−c1j j2Hε ϕ x; yð Þð Þdxdy

þ

Z

Ω

I x; yð Þ−c2j j2 1−Hε ϕ x; yð Þð Þð Þdxdy

þ v

Z

Ω

δε ϕ x; yð Þð Þ ∇ϕ x; yð Þj jdxdy

ð5Þ

where Hε(z) and δε(z) are, respectively, the regularized

approximations of the Heaviside function H(z) and the

Dirac delta function δ(z) as follows:

H zð Þ ¼
1; z ≥ 0
0; z < 0

; δ zð Þ ¼
d

dz
H zð Þ

�

ð6Þ

Note that the term ∫ Ωδε(ϕ(x, y))|∇ϕ(x, y)|dxdy com-

putes approximately the length of the contour C (the zero

level set of ϕ(x, y), which can be derived from the integral

∫ Ω|∇Hε(ϕ(x, y))|dxdy with the regularized Heaviside func-

tion Hε(z).

Keeping ϕ fixed, then minimizing the functional (5)

with respect to the constants c1 and c2, yields the follow-

ing expressions for c1 and c2, function of ϕ:

c1 ϕð Þ ¼

Z

Ω

I x; yð ÞHε ϕ x; yð Þð Þdxdy
Z

Ω

Hε ϕ x; yð Þð Þdxdy
;

c2 ϕð Þ ¼

Z

Ω

I x; yð Þ 1−H ε ϕ x; yð Þð Þð Þdxdy
Z

Ω

1−Hε ϕ x; yð Þð Þð Þdxdy
ð7Þ

Note that c1(ϕ) and c2(ϕ) are approximately the averages

of the image intensities in {ϕ > 0} and {ϕ < 0}, respectively.

Keeping c1 and c2 fixed, minimizing the functional (5)

with respect to ϕ by the gradient descent method, yields

the associated Euler-Lagrange equation for ϕ as follows:

∂ϕ

∂t
¼ δε ϕð Þ − I−c1ð Þ2 þ I−c2ð Þ2 þ v div

∇ϕ

∇ϕj j

� �� �

ð8Þ

in Ω and with the zero Neumann boundary condition.

2.3 C-means clustering algorithm

Data analysis is considered as a very important science

in the real world. Cluster analysis [26,27] is found to be

one of the useful tools for data analysis. The main goal

of cluster analysis is to find the data structure and clus-

ters from given data, which means that the data in the

same cluster are cohesive and the data in different clus-

ters are separated. Over the years, there have been many

methods developed to perform cluster analysis. In these

clustering methods, we will only focus on partitional c-

means algorithm in this paper.

(a)           (b)          (c)

Figure 1 Results of the C-V method (v = 0.008 × 2552) at the same outer loop, but different inner loop. (a) Original image and initial

contour. (b) Iteration number for the inner loop is 1 (CPU time 124.69 s). (c) Iteration number for the inner loop is 10 (CPU time 177.24 s).
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The most frequently used examples for these c-means

clustering categories the k-means or hard c-means

(HCM) [28], fuzzy c-means (FCM) [29] and possibilistic

c-means (PCM) [30] algorithms. All these three algo-

rithms have their merits and drawbacks, and none of

these are generally suitable for every kind of clustering

problems. In this paper, we choose the HCM clustering

algorithm.

Let X = {x1,…, xn} be a data set in an s-dimensional Eu-

clidean space ℝ
s with norm ‖ ⋅ ‖, the HCM clustering

optimizes the objective function given by

JHCM ¼
X

c

i¼1

X

n

k¼1

hik xk−mik k2 ð9Þ

(a)      (b)               (c)

Figure 2 Evolution process of the C-V method (v = 0.015 × 2552). (a) Initial contour (red curves) with c1(ϕ
0) = 158.59 and c2 (ϕ

0) = 73.32.

(b) Intermediate segmentation result at 240th iterations (c1 (ϕ
240) = 161.11, c2 (ϕ

240) = 73.74). (c) Final segmentation result at 480th iterations

(c1(ϕ
480) = 162.54, c2(ϕ

480) = 73.95).

(a)           (b)           (c)           (d)           (e)

(f)           (g)           (h)           (i)           (j)

(k)           (l)           (m)           (n)           (o)

Figure 3 Segmentation results of both methods for a vascular biopsy image. The first row (a to e): original images and initial contours. The

second row (f to j): final results of the C-V method (left to right: 4,000, 2,000, 2,300, 600, and 95 iterations). The third row (k to o): final results of

our method (14 iterations).
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where c is a number of clusters greater than one, {m1,…,

mc} denotes the cluster centres of the data set X, and hik
∈ {0, 1} is established using the nearest neighbour rule,

being constrained by
Xc

i¼1
hik ¼ 1.

The HCM algorithm is carried out via an iterative

optimization of the objective function JHCM with the fol-

lowing update equations:

mi ¼
X

n

k¼1

hik xk=
X

n

k¼1

hik ; i ¼ 1; 2;…; c ð10Þ

hik ¼
1; i ¼ lk
0; else

; i ¼ 1; 2;…; c; k ¼ 1; 2;…; n

�

ð11Þ

For fixed xk (k = 1, 2,…, n), the lk denotes the subscript

of mi that the first mi makes

xk−mik k2 ¼ Min xk−m1k k2; ::; xk−mck k2
� �

;

k ¼ 1; 2;…; n:

ð12Þ

Based on a sequence of execution for stage s using

stage s-1 according to the update (10) and (11), the pro-

cedure of the HCM is described as follows:

1. Set the initial cluster centre M0 ¼ m0
1;m

0
2;…;m0

c

	 


and the termination limit ε > 0, the maximum

iteration step T. Set s = 1.

2. Update the membership function hsik by (11) withMs− 1.

3. Update the cluster centres Ms with hik
s by (10).

4. If Maxi ms
i−m

s−1
i

�

�

�

�≤ ε or s >T, then stop; else s = s +1

and go to step 2.

3 The proposed method
3.1 Analysis on the C-V method

For the two-phase image segmentation, Chan and Vese

[12] indeed utilized an alternating optimization to solve

the following minimization problem:

Min
c1;c2;ϕ

�

FCV c1; c2;ϕð Þ ¼

Z

Ω

I x; yð Þ−c1j j2Hε ϕ x; yð Þð Þdxdy

þ

Z

Ω

I x; yð Þ−c2j j2 1−Hε ϕ x; yð Þð Þð Þdxdy

þv

Z

Ω

δε ϕ x; yð Þð Þ ∇ϕ x; yð Þj jdxdy

�

ð13Þ

The alternating optimization is an iterative proced-

ure for minimizing the function f(X) = f(X1, X2,.., Xn)

jointly over all variables by alternating restricted mini-

mizations over the individual subsets of variables X1,

X2,…, Xn [21,22].

In detail, the principal steps of the C-V method [12] for

the minimization problem (13) can be listed as follows:

1. Initialize the level set function ϕ0(x, y) = ϕ0(x, y),

and set n = 0.

(a)    (b)     (c)     (d)     (e)

(f)      (g)    (h)      (i)    (j)

(k)   (l)      (m)       (n)    (o)

Figure 4 Applications of both methods for an aerial image. The first row (a to e): original images and initial contours. The second row

(f to j): final segmentation results of the C-V method (left to right: 3,300, 1,500, 1,500, 260, 70 iterations); the third row (k to o): final segmentation

results of our method (one iteration).

Chen and He EURASIP Journal on Image and Video Processing 2014, 2014:1 Page 5 of 14

http://jivp.eurasipjournals.com/content/2014/1/1



2. Compute c1(ϕ
n) and c2(ϕ

n):

c1 ϕ
nð Þ ¼

Z

Ω

I x; yð ÞHε ϕ
n x; yð Þð Þdxdy

Z

Ω

H ε ϕ
n x; yð Þð Þdxdy

c2 ϕ
nð Þ ¼

Z

Ω

I x; yð Þ 1−Hε ϕ
n x; yð Þð Þð Þdxdy

Z

Ω

1−Hε ϕ
n x; yð Þð Þð Þdxdy

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

ð14Þ

3. Obtain ϕn+1(x, y) by solving the following equation

to steady state:

∂ϕ

∂t
¼ δε ϕð Þ − I−c1 ϕ

nð Þð Þ2 þ I−c2 ϕ
nð Þð Þ2 þ v div

∇ϕ

∇ϕj j

� �� �

ð15Þ

with the initial condition ϕ(0, x, y) = ϕn(x, y) and the zero

Neumann boundary condition.

(a)      (b)         (c) (d)

(e)              (f)              (g)     (h)

Figure 6 Segmentation results of our method for four synthetic images added additive Gaussian noise. Top row (a to d): original images

and initial contours. Bottom row (e to h): final results.

(a)       (b)       (c)     (d)     (e)

(f)    (g)        (h)     (i)     (j)

(k)    (l)      (m)   (n)     (o)

Figure 5 Segmentation results of both methods for a real image with low contrast and multiple objects. The first row (a to e): original

images and initial contours. The second row (f to j): final results of the C-V method (left to right: 7,900, 5,000, 2,500, 320, and 80 iterations). The

third row (k to o): final results of our method (three iterations).
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4. If the zero level set of ϕn+1(x, y) is exactly on the

object boundary, then stop; otherwise,

let n = n + 1, then return to step 2.

Note that in step 3, an iterative algorithm needs be used

to numerically solve the Equation (15) for ϕn+1(x, y).

Therefore, there is an extra loop (called the inner loop in

this paper) for this inner iterative process for the above al-

gorithm. If k is taken as the iteration number for this inner

loop, then we will perform k iterations of the inner loop of

the algorithm; that is, we will update the ϕ function k

times for each updating of the values c1(ϕ
n) and c2(ϕ

n).

In the above algorithm, the energy minimization ap-

proach by alternating optimization brings in some in-

trinsic limitations:

� Firstly, due to the inner loop of the algorithm, one is

naturally led to the question of how to choose the

optimal number of iterations for the inner loop. One

can of course set a predefined number of iterations

large enough for the inner loop, but the optimal speed

certainly cannot be obtained. Usually, one takes as 1

the iteration number as done in the C-V method [12],

but the optimal results cannot be obtained for some

images. This can be seen clearly from a simple

experiment for an infrared image (233 × 233) shown

in Figure 1. Figure 1b,c shows the segmentation

results of the C-V method at the same iteration

numbers for the outer loop (the CPU times are given

in the figure caption), in which the iteration numbers

for the inner loop are taken as 1 and 10, respectively.

We observe from Figure 1b that the plane in the

upper right corner is not extracted perfectly.

� Secondly, the above alternating optimization

algorithm may be very time consuming. On the one

hand, the constants c1(ϕ) and c2(ϕ) have to be

updated by (14) at each iteration of the outer loop

for the function ϕ. On the other hand, even if c1(ϕ
0),

c2(ϕ
0) are chosen as the approximately optimal

constants, the iteration numbers needed from the

initial contour to the final segmentation could still

be very large when Equation (15) is solved

numerically. This can be demonstrated by a simple

experiment for a real image (276 × 254), as shown in

Figure 2. Figure 2a shows the initial contour (red

curves) with c1(ϕ
0) = 158.59 and c2(ϕ

0) = 72.32. The

final segmentation result at 480th iterations is

shown in Figure 2c, where c1(ϕ
480) = 162.54 and c2

(ϕ480) = 73.95. Although the initial constants c1(ϕ
0)

and c2(ϕ
0) are very close to the optimal values

(162.54, 73.95), it still needs more than 400

iterations to obtain the final segmentation result.

� Thirdly, Equation (15) itself depends on ϕn(x, y) due

to c1(ϕ
n) and c2 (ϕ

n); thus, the solutions of Equation

(15) with the initial condition ϕ(0, x, y) = ϕn(x, y)

are more dependent on ϕn(x, y). This implies that

(a)       (b)          (c)          (d)      (e)

(f)           (g)          (h)          (i)          (j)

(k)           (l)          (m)          (n)          (o)

Figure 7 Segmentation results of both methods for five synthetic images. Top row (a to e): original images and initial contours.

Middle row (f to j): final results of the C-V method (left to right: 15, 30, 24, 7, and 14 iterations). Bottom row (k to o): final results of our

method (one iteration).

Table 1 DSC values of our method for the images in

Figure 6

Image ID a b c d

DSC 1 1 1 1
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the C-V method may be sensitive to contour

initialization to some extent. In order to test the

sensitivity of the C-V method to contour

initialization, we demonstrate the case of three real

images with five different initial contours, as shown

in Figures 3, 4, 5. For the detailed description, we

will give more in Section 4.

3.2 The proposed method

We present a new method that implements the piece-

wise constant M-S functional (2) for two-phase image

segmentation, which completely avoids the need of alter-

nating optimization procedure.

The two-phase piecewise constant M-S model (2) is a

variational problem for approximating a given two-phase

image by a piecewise constant image building up two

class of constant regions. This actually tries to find the

best ‘cartoon-like’ (i.e. piecewise constant) approxima-

tion of minimal complexity for a given image. Once such

an approximation is constructed, the homogeneous

regions and their boundaries become obvious. Based on

the above facts, we present a two-step algorithm for the

two-phase piecewise constant M-S model.

Firstly, we consider a two-phase image to be seg-

mented as a data set X. According to the definition of

two-phase, the data set X can be separated into two

groups by the HCM algorithm; let m1 and m2 be the av-

erages of the two groups, respectively. The values m1

and m2 equal approximately to the intensity means of

foreground and background in the image, respectively.

Secondly, similar to the piecewise constant M-S func-

tional (2), we define the following energy functional:

F Cð Þ ¼

Z

Ω1

I x; yð Þ−m1j j2dxdyþ

Z

Ω2

I x; yð Þ−m2j j2dxdyþ v Cj j

ð16Þ

where Ω1 and Ω2 is the interior and the exterior regions

of C, respectively. Note that the energy F(C) is only the

functional with respect to C.

To handle topological changes, the energy F(C) is then

incorporated into a variational level set formulation with

an extra internal energy. In other word, the contour C is

represented by a level set function, and the minimization

of the energy over level set functions is performed by

solving a level set evolution equation.

According to the level set method [10,11], the curve C

is represented implicitly by the zero level set of a level

set function ϕ : Ω→ ℝ that is positive in the interior

and negative in the exterior of the contour C. Let H(z)

(a)             (b)             (c)             (d)

(e)             (f)             (g)             (h)

(i)             (j)             (k)             (l)

Figure 8 Applications of the proposed and Bresson et al.'s methods to four infrared images. The first row (a to d): original images. The second

row (e to h): final segmentation results of the Bresson et al.'s method. The third row (i to l): final segmentation results of the proposed method.

Table 2 Iterations, CPU times (in seconds) and DSC values

for the images in Figure 7

C-V Proposed

Image ID Image size Iterations Time Iterations Time DSC

a 147 × 144 15 2.37 1 0.52 1

b 95 × 92 30 2.41 1 0.22 0.9999

c 102 × 106 24 1.95 1 0.18 1

d 84 × 84 7 1.32 1 0.23 0.9998

e 128 × 128 14 1.49 1 0.24 1
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be the Heaviside function, and then the functional (16)

can be expressed as

F ϕð Þ ¼
X

2

i¼1

Z

Ω

I x; yð Þ−mij j2Mi ϕ x; yð Þð Þdxdy

þ v

Z

Ω

∇H ϕ x; yð Þð Þj jdxdy ð17Þ

where M1(ϕ) = H(ϕ), M2(ϕ) = 1−H(ϕ). Because the func-

tional (17) only contains an unknown variable ϕ, we can

simply minimize F(ϕ) with respect to ϕ.

To preserve the regularity of the level set function, we

add an extra internal energy [31]:

P ϕð Þ ¼

Z

Ω

1

2
∇ϕ x; yð Þ−1j jð Þ2dxdy ð18Þ

to the energy F(ϕ) in (17). The level set regularization

term P(ϕ) penalizes the deviation of the level set func-

tion ϕ from a signed distance function to avoid the re-

initialization procedure [31].

Therefore, the overall energy functional in level set

framework is given by

F ϕð Þ ¼

Z

Ω

I x; yð Þ−m1j j2H ϕ x; yð Þð Þdxdy

þ

Z

Ω

I x; yð Þ−m2j j2 1−H ϕ x; yð Þð Þð Þdxdy

þ v

Z

Ω

∇Hε ϕ x; yð Þð Þj jdxdy

þλ

Z

Ω

1

2
∇ϕ x; yð Þ−1j jð Þ2dxdy

ð19Þ

where λ > 0 is a parameter. For practical and feasible im-

plementation, the Heaviside function H(z) has to be ap-

proximated by a smooth function Hε(z) given typically by

Hε zð Þ ¼
1

2
1þ

2

π
arctan

z

ε


 �

� �

ð20Þ

So, the overall energy functional (19) can then be re-

written as

F ϕð Þ ¼

Z

Ω

I x; yð Þ−m1j j2Hε ϕ x; yð Þð Þdxdy

þ

Z

Ω

I x; yð Þ−m2j j2 1−Hε ϕ x; yð Þð Þð Þdxdy

þv

Z

Ω

∇Hε ϕ x; yð Þð Þj jdxdy

þλ

Z

Ω

1

2
∇ϕ x; yð Þ−1j jð Þ2dxdy:

ð21Þ

Table 3 Iterations and CPU times (seconds) by proposed

and Bresson et al.'s methods for Figure 8

Bresson et al. Proposed

Image ID Image size Iterations Time Iterations Time

a 158 × 158 20 2.06 2 0.42

b 190 × 162 18 1.72 4 0.60

c 180 × 190 20 3.43 1 0.34

d 243 × 137 88 9.64 3 0.64

(a)       (b)    (c)    (d)

(e)              (f)            (g)          (h)

(i)              (j)            (k)          (l)

Figure 9 Segmentation results of the proposed and Bresson et al.'s methods for four real images. Top row (a to d): original images.

Middle row (e to h): final results of the Bresson et al.'s method. Bottom row (i to l): final results of the proposed method.
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Minimizing the energy functional (21) by the gradient

decent method, we obtain the partial differential equa-

tion for ϕ as follows:

∂ϕ

∂t
¼ δε ϕð Þ − I−m1ð Þ2 þ I−m2ð Þ2 þ v div

∇ϕ

∇ϕj j

� �� �

þλ ∇2ϕ− div
∇ϕ

∇ϕj j

� �� �

ð22Þ

with the initial condition ϕ(0, x, y) = ϕ(x, y) and the zero

Neumann boundary condition, where δε zð Þ ¼ H ′
ε
zð Þ ¼ ε=

π ε
2 þ z2ð Þ is a smooth Dirac function.

4 Implementation and experimental results
The level set evolution in Equation (22) is implemented

using a simple finite differencing (forward-time central-

space finite difference scheme). All the spatial partial

derivatives ∂ϕ/∂x and ∂ϕ/∂y are approximated by the cen-

tral difference, and the temporal partial derivative ∂ϕ/∂t

is discretized as the forward difference. The approximation

of Equation (22) can be simply written as

ϕkþ1
i:j ¼ ϕk

i:j þ ∇t⋅L ϕk
i:j


 �

ð23Þ

where ϕk
i:j ¼ ϕ i∇x; j∇y; k∇tð Þ with k ≥ 0 and L ϕk

i:j


 �

is

the approximation of the right-hand side in Equation (22)

by the above spatial difference scheme. For pixels on the

(a)              (b)              (c)          (d)

(e)              (f)              (g)         (h)

(i)              (j)              (k)         (l)

(m)              (n)              (o)         (p)

Figure 10 Segmentation results of proposed, C-V and Bresson et al.'s methods on four real medical images. First row (a to d): original

images. Second row (e to h): final results of the C-V method. Third row (i to l): final results of the Bresson et al.'s method. Fourth row (m to p):

final results of the proposed method.

Table 4 Iterations and CPU times (seconds) by proposed

and Bresson et al.'s methods for Figure 9

Bresson et al. Proposed

Image ID Image size Iterations Time Iterations Time

a 213 × 139 85 9.43 2 0.59

b 183 × 127 15 1.71 1 0.28

c 275 × 203 90 10.68 3 0.53

d 222 × 222 120 18.36 1 0.42
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borders of the test images, we take a mirror reflection in all

experiments.

To make a fair comparison for the C-V method, we

added the internal energy (18) into the functional (5) to

avoid the re-initialization step. In our implementation,

for the C-V method and proposed method, the initial

level set function ϕ0(x, y) is simply chosen as a binary

step function as in [31], which takes a positive constant

value ρ inside a region ω ⊂Ω and a negative constant

value − ρ outside ω. We choose ρ = 2 for the experiments

in this paper.

Unless otherwise specified, we use the following default

parameter values for our method: ∆t = 0.1 (time step),

∆x =∆y = 1 (space step), ε = 1 for the smooth Dirac func-

tion, λ = 0.04 for the level set regularization parameter. Be-

sides, for the sake of simplicity, we set v = 0.002 × 2552 for

the length parameter. Generally, if v is too small, the ro-

bustness to noise may be reduced; if v is too large, the ex-

cessive segmentation boundaries may be generated in final

segmentation results. Here, we fix v = 0.002 × 2552 since

the good segmentation results are obtained for most of

the experiments in this paper. In applications, the v value

should be selected according to the noise level.

For all experiments, the initial contours are chosen as

squares with side length of five pixels, located at the

centre of image domain (excluding Figures 2, 3, 4, 5).

For the C-V method, the parameters are referred to [12].

We record the iteration number and the CPU time from

our experiments with Matlab codes run on an PC, with

AMD Athlon (tm) 2.70 GHz CPU, 2.00 GB memory,

and Matlab 7.4 on Windows 7.

We will use the dice similarity coefficient (DSC)

metric [32] to evaluate quantitatively the performances

of both methods. S1 and S2 represent a given baseline

foreground region (e.g. true object) and the foreground

region found by the model, respectively, then the DSC

metric is defined as

DSC ¼
2N S1∩S2ð Þ

N S1ð Þ þ N S2ð Þ

where N(⋅) indicates the number of pixels in the enclosed

region. The closer the DSC value to 1, the better the seg-

mentation; a perfect segmentation will give DSC = 1.

First, we evaluate quantitatively the proposed method

according the DSC metric. We test on four synthetic im-

ages with additive Gaussian noise, which are shown in

Figure 6; the four synthetic images are originally noise-

free, which contain only two distinct gray levels. The

true objects can be immediately obtained from the ori-

ginal images by a thresholding algorithm. As shown in

the second row of Figure 6, the proposed method

(a)              (b)              (c)          (d)

(e)              (f)              (g)         (h)

(i)              (j)              (k)         (l)

Figure 11 Segmentation results of proposed, C-V and Bresson et al.'s methods on three real-world pictures. First column (a,e,i): original

pictures. Second column (b,f,j): final results of the C-V method. Third column (c,j,k): final results of the Bresson et al.'s method. Fourth column

(d,h,l): final results of the proposed method.
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obtains satisfactory results visually. By quantitative com-

parison we can show that the proposed method really

produces the perfect results for four images with noise

(see Table 1).

Second, we show the segmentation results of both the

proposed and C-V methods for some synthetic images

(see Figure 7) and real images (see Figures 3, 4, 5).

In Figure 7, the proposed method is applied to seg-

ment five synthetic images and compares with the C-V

method visually and quantitatively. It is clearly seen from

Figure 7 that the proposed method obtains the satisfac-

tory segmentation results for five synthetic images,

which are almost the same as the C-V method visually.

The quantitative comparison of both methods is given

in Table 2, in which the results of the C-V method are

regarded as baseline foreground regions (we take ten it-

erations (for the inner loop) to obtain the optimal results

of the C-V method; but we still take one iteration (just

as done in [12]) to achieve the optimal speed of the C-V

method). By quantitative comparison, the proposed

method achieves the same results as the C-V method for

the three images and almost the same results for the

other two images. Moreover, Table 2 demonstrates that

the proposed method provides the faster converging

speed than the C-V method.

In Figures 3, 4, 5, we test the sensitivity of both

methods to the locations of initial contours, where the

initial contour is chosen as a square. Test images are a

vascular biopsy image (94 × 123), an aerial image (250 ×

250) and a real image with low contrast and multiple ob-

jects (184 × 184). Figure 3 shows the segmentation re-

sults of a vascular biopsy image for five different

initializations (same size but different location). The ori-

ginal image along with five distinct initial contours is

listed in the first row of Figure 3. From Figure 3f,g,h,i,j,

we observe that the C-V method fails to segment the

vascular biopsy image for the first two initial contours;

by contrast, the proposed method segment correctly the

vascular biopsy image after the same iterations for the five

initial contours. Besides, although the C-V method cap-

tures all objects for other three locations (see Figure 3h,i,

j), the iteration numbers vary greatly from 95 to 2,300 for

the vascular biopsy image.

Figure 4 shows the results of both methods for an aer-

ial image. The initial contours have different location, as

shown in Figure 4a,b,c,d,e. It can be seen from Figure 4f,

g,h,i,j that the C-V method cannot segment correctly the

aerial image for first three initial contours although it pro-

duces satisfactory results for the last two contours (which

also need different iterations). As shown in Figure 4k,l,m,

n,o, the proposed method has obtained the satisfactory

segmentation result after single iteration for each of the

five initial locations.

In Figure 5, we demonstrate the segmentation results

of both methods for an image with low contrast and

multiple objects. The initial contours over the original

image are shown in Figure 5a,b,c,d,e. From Figure 5f,g,h,

i,j, we observe that the C-V method fails to segment the

real image for the first three initial contours while it cap-

tures better the object for the last two initial contours

(Figure 5i,j). The proposed method has successfully ex-

tracted all objects of interest after the same iterations for

the five initial contours (see Figure 5k,l,m,n,o). Experi-

ments in Figures 3, 4, 5 show that the proposed method

really allows for more flexible initialization than the ori-

ginal C-V method.

Third, the next two experiments show the segmenta-

tion results of the proposed and Bresson et al.'s methods

[20] for some real images (see Figures 8 and 9). To make

a fair comparison, we experimentally choose the best pa-

rameters for the Bresson et al.'s method.

Figure 8 shows the detective results of the proposed

and Bresson et al.'s methods for four infrared images.

Because of the limitation in thermal imaging and the

Table 6 Iterations and CPU times (in seconds) by three methods for Figure 11

C-V Bresson et al. Proposed

Image ID Image size Iterations Time Iterations Time Iterations Time

a 148 × 131 180 5.78 65 4.18 8 0.99

e 271 × 253 120 14.55 75 10.10 15 2.46

i 256 × 256 130 14.85 80 9.25 18 3.11

Table 5 Iterations and CPU times (in seconds) by three methods for Figure 10

C-V Bresson et al. Proposed

Image ID Image size Iterations Time Iterations Time Iterations Time

a 160 × 160 310 13.06 60 4.23 6 0.92

b 190 × 150 250 13.49 18 1.98 5 0.81

c 238 × 241 130 9.58 25 3.12 2 0.59

d 232 × 137 60 3.21 25 2.41 1 0.34
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actual surroundings' conflicts, infrared images always suf-

fer from low contrast and complex (noisy) background. In

the proposed method, we use v = 0.015 × 2552 for the sec-

ond and third images. Figure 8a,b,c,d is the original image.

As shown in Figure 8i,j,k,l, the proposed method success-

fully detects the objects for all these images. By compari-

son, the proposed method achieves almost the same

results as the Bresson et al.'s method (see Figure 8e,f,g,h);

however, we observe from Table 3 that the iteration num-

bers and CPU times of the proposed model are less than

the Bresson et al.'s method.

In Figure 9, we apply the proposed and Bresson et al.'s

methods to the four real images with complex back-

ground or multiple objects. The four images, which are

plotted in Figure 9a,b,c,d, are two real images with com-

plex background, a DNA channel image with blurry

edges and multiple objects, and an aerial image with low

contrast and multiple objects. It can be seen from the

second and third rows of Figure 9 that both methods

successfully extract the object boundaries with similar

results. Besides, the proposed method provides the faster

converging speed compared to the Bresson et al.'s method,

as shown in Table 4.

The last experiment shows the segmentation results

using C-V method, Bresson et al.'s method and the pro-

posed method for four medical images (see Figure 10)

and three real-world pictures (see Figure 11). Figure 10a,

b,c,d shows a breast cyst image with imaging artifacts, a

skin lesion image contaminated by texture tissue, a MR

heart image with clutter noise and a cell image with

multiple objects. It is seen from Figure 10m,n,o,p that

the proposed method obtains the satisfactory segmenta-

tion results for four medical images, which are similar to

the C-V method (Figure 10e,f,g,h) and Bresson et al.'s

method (Figure 10i,j,k,l). The iterations and CPU times

by the three methods are given in Table 5, which shows

that the Bresson et al.'s method has less iterations and

CPU times than the C-V method; furthermore, the pro-

posed method, only through a few iterations, can achieve

satisfactory segmentation results for these images.

Here, we also provided more experiments on the three

different types of real-world pictures to further demon-

strate the performance of three methods, as shown in

Figure 11. The three pictures, which are plotted in

Figure 11a,e,i, are a real lotus picture, a real garden pic-

ture and a cameraman picture. In the proposed method,

we use v = 0.08 × 2552 for the first two pictures and v =

0.03 × 2552 for the third picture. The lotus picture has

complex background and object shapes. The garden pic-

ture has complex background; the segmentation process

may be influenced by the existences of wall, gate and

grass. The cameraman picture is a well-known picture

and has been used in the Bresson et al.'s method. From

the fourth column of Figure 11, we can see that the

proposed method obtains the satisfactory segmentation

results for three real-world pictures. The results using

our method are similar to those of the C-V and Bresson

et al.'s methods (see the second and third columns of

Figure 11); however, the proposed method has less itera-

tions and CPU times than the other two methods for

the three pictures (see Table 6). It is clear that the pro-

posed method is more efficient than the C-V method

and Bresson et al.'s method.

5 Conclusions
In this paper, we present a very efficient method to solve

the two-phase piecewise constant M-S model for image

segmentation within the level set framework. Unlike the

well-known C-V method using alternating optimization,

we first use a clustering algorithm to obtain a ‘cartoon-

like’ approximation of minimal complexity to a given

image. From the cartoon-like image, we can approxi-

mately obtain the intensity means of foreground and

background in the image. The M-S functional is reduced

to the function of single variable (level set function) and

so does not need to use alternating optimization. Nu-

merical results demonstrated some advantages of the

proposed method over the C-V method, such as robust-

ness to the locations of initial contour and the high

computation efficiency.
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