
Integrating Code Generation and Optimizationt

Christopher W. Fraser

Alan L. Wendt

Department of Computer Science, University of Arisona
Tucson, Arizona 85721

Abstract

This paper describes a compiler with a code gener-

ator and machine-directed peephole optimiser that

are tightly integrated. Both functions are per-

formed by a single rule-based rewriting system that

matches and replaces patterns. This organization

helps make the compiler simple, fast, and retar-

getable. It alao corrects certain phase-ordering

problems.

Introduction

Many code generation and optimisation phases are

simply pattern matchers: code generators match

patterns in intermediate code and replace them

with object code; common subexpression elimina-

tors seek repeated expressions and replace them

with register references; peephole optimizers match

patterns in object code and replace them with more

efficient object code.

A compiler exploiting these observations is being

built. The code generation and peephole optimira-

tion phases have been subsumed by a single, more

general rewriting system that is driven by rules that

match and replace patterns. One set of rules gener-

ates naive code, and another - which is generally

generated automatically at compile-compile time -

optimizes this code as soon as it is generated.

Most compilers implement these phases sepa-

rately, but integrating them has made this compiler

simpler, faster, and better able to yield good code.

It is simpler because one general-purpose phase re-

places two special-purpose phases. It can yield bet-

ter code because certain phase-ordering problems

disappear. Phase-ordering problems occur when

tThis work wae supported in part by the National Science
Foundation under Grant DCR-8S20257.

permission to copy without fee all or part of this material is granted provided

that the topics are not made or distributed for direct commercial advantage.

the ACM copyright notice and the title of the publication and its date appear.

and notice is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise. or to republish. requires a fee and/

or specific permission.

@ 1986 ACM 0-89791-197-O/i36/0600-0242 75c

one phase generates an inefficiency of a kind that

is only corrected by an earlier phase. They sim-

ply cannot occur when the two phases are tightly

integrated.

The compiler is faster because it no longer has

one phase dismantle its structures and output them

only to have another phase read and create an often

similar structure. These particular phases - code

generation and peephole optimiaation - can spend

a large fraction of their time doing i/o and build-

ing and dismantling their structures, so shareable

structures turn out to be particularly important.

This project began with a rule-directed peephole

optimiser and generalized it to assume responsibil-

ity for code generation as weU In many cases, gen-

eralizing a program slows it down, but this par-
ticular generabation improved performance. For

example, the version of the new program that was

most comparable with the original rule-directed op-

timicer took no longer than that optimizer alone, so

code generation was ufree”. This apparent anomaly

is explained by the fact that the original optimizer

spent much more time reading its input and build-

ing ita structures than it did matching and replacing

patterns. The generaliied optimizer reads a shorter,

more regular input, so it can appIy more rules in the

same amount of time.

The compiler is retargetable. Nearly all of its

machine-dependencies are isolated in a largely non-

procedural machine description and rule database,

not code. The code generation rules are written by
hand, but this task is simplified by the absence of

case analysis. The necessity of writing these rules is

offset by the fact that the required machine descrip

tions are short enough - generally 2-4 pages - to

make the method described herein competitive with

other current methods for retargeting compilers [l,

3, 4, S], while also implementing both code gener-

ation and peephole optimiration as special cases of

one more general process.

242

cwfraser
Note
© ACM, 1986. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 1986 SIGPLAN Symposium on Compiler Construction, {0362-1340, (1986)} http://doi.acm.org/10.1145/12276.13335

Figure 1

source code

I lexical, syntactic, and semantic analysis]

1 ~ ~~~~
abstract machine code

I

1
code generation

1
register transfers

1

[
common subexpression elimination

1
1

register transfers
1

peephole optimization I

1
register transfers

register assignment

1
assembly code

Background

Modern machine-directed peephole optimizers [g, 9,

11, 121 are based on a process similar to symbolic

simulation. They represent instructions using ‘reg-

ister transfers”, which are simple expressions and
assignments involving the machine’s operators and

cells. For example, one of these optimizers, PO, rep

resents an instruction that loads the address of x

into register 1 as

rc11 = x

and an instruction that loads register 1 with the

word at which it had pointed as

rCl1 = mIrCll1

On most machines, this pair of instructions can be

usefully replaced with one. Symbolic simulation is

used to compute their combined effect

rCl1 - mlxl

and then a machine description is searched to de-

termine if the combined register transfers represent

a valid instruction on the given machine. Differ-

ent machine-directed optimizers differ on whether

to perform simulation at compile time or compile-

compile time; on what juxtapositions are considered

for combination; and on whether to seek the output
instructions equivalent to some given input instruc-

tions or vice versa. All, however, use register trans-

fers and a process similar to symbolic simulation.

This organization makes machine-directed opti-
mizers thorough. When PO, for example, is fin-

ished, no one-, twe, or three-instruction sequence

can be replaced with a cheaper singleton. This

thoroughness allows code generators to emit naive

code, because the peephole optimizer can automat-

ically perform much case analysis. For example,

one compiler based on PO (71 is organized as shown

in Figure 1. The front end emits naive abstract

machine code, which the code generator translates

into naive target machine code, represented as reg-

ister transfers. The code generator assumes an in-

finite register set, which simplifies code generation

and postpones register assignment until optimiza-

tion has reduced the requirements for registers. The

third phase eliminates common subexpressions and

performs dataflow analysis for the fourth phase, PO.

The last phase maps the registers still used in the

optimized code down onto the actual registers, in-

troducing spills and reloads as necessary. It also

uses the machine description to map the register

transfers to the equivalent assembly code.

This compiler has been retargeted to at least 10

different architectures, some in as few as three man-

days. It emits code comparable to target-specific
compilers, but it is slower: it takes about 4 times as

long as PCC [lo], partly because PO performs sym-

bolic simulation at compile time.

To speed up the compiler, PO has been aug-

mented to generate rules that describe the optimiza-

tions that it has made (61. A fixed set of rules is

generated at compile-compile time and loaded into

a fast, rule-directed, compile-time optimizer called

HOP. This procedure reduces the time for peephole
optimization by about 80%, and it reduces overall

compile time by about one third.

HOP runs fast by avoiding much of the string scan-

ning traditionally associated with pattern match-

ing. Its rules are encoded as text, with embedded

pattern variables of the form Xn to denote context-

sensitive operands. For example, the rule

rCX11 = X2
rtXl3 = mtrCXl33

:cx13 = mCX21

describes the optimization above. Rules are gener-

ated automatically by replacing each distinct con-

stant in an optimization trace with a unique pat-
tern variable. For example, the rule above was au-

tomatically generated by generalizing the optimiza-

tion trace that began this section.

243
‘: :: __

., ’ -,,:‘I _

HOP also represents instructions using patterns.
For example, it represents the instruction

rCl1 = x

with the pattern

rCXl1 = X2

plus a record that %l denotes 1 and X2 denotes

x. That is, when it reads the instruction above,

it immediately “patternises” it and henceforth rep-

resents it with the tuple

rCXl1 - X2, 1, x

This representation gives HOP two important ways

to achieve speed. First, HOP uses a hash table to

store exactly one copy of any given string. Thus the

representation for instructions above allows HOP to

compare instructions with patterns by simply com-

paring two hash addresses. Second, HOP stores rules

in another hash table keyed by the patterns to which

the rule applies. Thus when HOP is presented with

some instructions to combine, it merely adds up the

(unique) addresses of the instruction patterns, dis-

cards the high-order bits, and uses the result to in-

dex the rule table. If the rule table is large enough

to make collisions rare, this mechanism identifies

any applicable rule quickly. HOP thus locates and

applies optimizations in nearly constant time, with-

out character scanning or recursive tree traversaL

Combining Phases

HOP’s speed and generality make it natural to try to

use the same techniques to improve other phases as

well This observation is being exploited in a new

compiler.

The front end of the new compiler is from PCC,

the front end of which was adapted to yield code

for a RISC-lie stack machine that is tailored to C

but is machine-independent. The code is little more

than a postfix encoding of the front end’s syntax

tree, so it is easy to generate. The postfix code

requires neither allocation of registers nor packing

of operands into instructions, and the RISC design

makes case analysis moot.

The combined code generator and optimizer is

a general rule-based rewriting system that matches

patterns and substitutes new text for them. Some

rules implement code generation by replacing in-

termediate code with machine instructions repre-

sented as register transfers; other rules implement

peephole optimization by replacing juxtaposed in-

structions with one; still other rules translate the

optimized register transfers to assembly code.

Logically, the back end creates a tree from its
postfix input and applies rules that rewrite pieces

of the tree. The hand-written code generation rules

generate naive code, so few need much context and

most need only match a single input node. The

automatically-generated optimization rules, how-

ever, match pairs of instructions, so they match

nodes on linear paths down through the tree. For

example, consider the rule

it

=

C

Since code appears in

tern applies this rule

post-order, the rewriting sys-

at a node b if b has a child

equal to a. If it finds a match, it deletes a, replaces

b with c, reattaches all the other children of the

input nodes as children of the new node, and then

iterates to test for further optimizations. The rules

can only descend along a single path, so a simple,

non-recursive tree-matching algorithm suffices.

The rewriting system extends HOP. Formerly, HOP

could miss optimisations when a new program used

a juxtaposition of instructions that had not been

seen when the rules were generated at compile-

compile time. The new compiler corrects this dif-

ficulty by integrating HOP and PO. Now HOP’s rule

cache is extended incrementally by calling on PO to

generate rules that replace or reject previously un-

seen juxtapositions. The rules are now generated

at compile time, but no rule generated earlier need

ever be regenerated, so the effect is nearly that of

generation at compile-compile time, Thus the inte-

grated system optimizes code as thoroughly as PO,

but it is not appreciably slower than HOP.

The rewriting system’s rules are like HOP’s, but

now they may call “built-in” routines to perform op-

erations that cannot be conveniently implemented

as pattern matching and substitution [13]. For ex-

ample, the rule

rfXl1 = r[%ll * %2
LOG x2 x3

: [Xl3 = rCX11 << X3

calls the routine LOG to bind x3 to the log2 of the

number that is bound to %2. If X2 does not denote

a number, or if that number is not a power of two,

then LOG “fails”, which causes the rule to fail just as

if a pattern had failed to match. Rules can call any

routine that has been link-edited into the rewriting

system.

244

Built-in routines are used extensively by the rules

that control code generation. For example, the rule

that generates the naive code to add two integers is

logically equivalent to

IntegerAdd

BIINOP r CXOI = rlXl1 + r[X23

BINOP is a built-in routine that replaces the op

code in the current node (IntegerAdd) with the

given register transfer pattern (r[%O] = r[Xl] +

r[X21), and binds X0 and Xl to the result regis-

ter from the node’s 6rst child and X2 to the result

register from the node’s second child.

This is naive code: the code generation rules use

only register-teregister addition, because the auto-

matically generated optimization rules are respon-

sible for combining these instructions with their

neighbors to better exploit the instruction set. The

compiler generates naive code temporarily but og

timizes it as much as possible before moving on to

another point in the tree. Once a code generation

rule has been applied, the node holds register trans-

fers and not intermediate code, and thus optimiza-

tion rules and not the code generation rules will be
the ones that will happen to apply.

Consider the compilation of the source language

statement

i = i + 1;

for the VAX. The front end produces the syntax tree

below, where indentation displays the tree struc-

ture.

IntegerStore

Addrees i

IntegerAdd

IntegerFetch
Addreze i

IntegerConetant 1

The rewriting system does a post-order traversal.

The first three rules that apply are merely code gen-

eration rules that rewrite one node each. They yield

the tree below, in which register transfer patterns

have been instantiated to simplify reading.

IntegerStore

r[21 = i
IntegerAdd

r[31 = mtr1311
rC31 = i

IntegerConstant 1

Next, the first optimization rule fires, combining the

load-indirect with its child and yielding

IntegerStore
rC21 = i
IntegerAdd

rC31 = m[il
IntegerConetant I

The next two rules generate code for the opcodes

IntegerConstant and IntegerAdd, yielding

IntegerStore
rC23 = i
rC31 = rC31 + rC41

rE31 = mbl
r[41 = 1

Now one optimization rule combines the two in-

structions that set r[31, using one of the VAX’s

three-operand instructions, and yielding

IntegerStore
rC21 = i

rC31 - m[il + r[4]
rC41 = 1

and another combines the result with the instruc-

tion that loaded r [4], yielding

IntegerStore
rC21 = i
rC31 = m[il + 1

Next, the code generation rule for IntegerStore

fires, yielding

mCrC213 = r131
rC21 = i
r[33 = m[il + 1

Then optimization rules yield

m[il = rC3J
r[3] = m[i] + 1

and finally

m[il = m[i] + 1

The examples above accurately trace the com-

piler’s sequence of tree replacements, but for clar-

ity they omit one implementation detail: the code

generation rules, in addition to their functions dis-

played above, also construct the tree from the post-

llx input as they go. For example, the actual rule

that generates VAX code for integer adds is:

IntegerAdd

;oP 2
PUSH r[%O] - r[Xi] + rI%2]

245

The built-in routines PUSH and POP maintain a stack
to recreate a tree similar to the one created by the
front end. The front and back ends are normally
tightly coupled as one program, but using a postfix
encoding of the trees - rather than the actual tree
structures themselves - for inter-module commu-
nication allows separating the front and back ends
into two separate programs, which is occasionally
helpful during development. Ultimately, this step
will no longer be needed, and the back end will use
tree structures created by the front end.

Because code generation and optimization have
been integrated, it is no longer necessary to assume
an infinite set of pseudo-registers. At present, each
new node tries to take the result register of one of its
children as its own. (This policy is likely to change
when the rewriting system is extended to subsume
common subexpression elimination as well,) If this
is not possible - and it never is for leaves because
they have no children - the built-in procedure gets
its result register from a list of free registers. In
the presence of separate register classes, the built-
in would accept an extra argument to define the
type of register that is required by the instruction
that is now the only argument to the built-in.

A mechanism for handling spills has been de-
signed. Consistent with the policy of emitting naive
code and then improving it automatically, the reg-
ister allocator generates more spills than may be
needed, but automatically removes those that sub-
sequent optimization exposes as unnecessary. When
the built-in needs a register and none is available
(perhaps because it is a leaf), it effectively spills the
most distantly used register. The busy registers are
the result registers of the trees on the stack. The
deeper a result register is in the stack, the longer it
will be before it is needed again, so the built-in spills
the result register from the deepest stack entry that
has not already been spilled.

Because subsequent optimisation may eliminate
the need for this register, the spill is not emitted im-
mediately. Instead, the built-in merely increments
a Qpill count’ in the node whose result register
is to be spilled. Optimisation rules that remove
a register definition (such as an optimisation that
replaces a load-store sequence with a memory-to-
memory move) decrement the spill count for the
last node that defined that register. This procedure
effectively deletes spills that were needed in naive
code but not in optimised code. But if POP ever
pops a node whose spill count still exceeds rero, it

attaches the node beneath a store instruction, opti-
mises the pair together, and emits the resulting tree.
POP then substitutes a reload for the node that it

had originally popped. Both of the new instructions
- the store and the reload - are optimized with
their neighbors, so they may combine with other
instructions on machines with memory-to-memory
arithmetic. A phase-ordering problem prevented
the previous compiler from making such optimiza-
tions: spills and reloads were introduced during reg-
ister assignment and thus could not be optimized
because register assignment followed peephole opti-
mization. Combining these phases has eliminated
this phase-ordering problem.

The integration of code generation and peephole
optimization reduces much of the character pro-
cessing in the back end, but additional steps were
needed to minimize it. First, the front and back
ends, though separable, are generally connected di-
rectly, and the front end does not actually emit in-
termediate code. If it did, its last step for each
instruction would use a routine for formatted print-
ing to assemble the opcode and any operands into
a postfix instruction for output. For example, it
would combine the opcode IntegerConstant and
the operand 1 to yield the postfix instruction

IntegerConstant 1

The first step of the back end, however, would read
and patter&e this instruction, producing the tuple

IntegerConstant Xl, 1

and effectively reversing the effect of the format-
ting and printing. To avoid these expensive, self-
cancelling operations, the front end passes tuples
like the one above directly to the back end. The
strings are even already hashed for the HOP-style
address comparisons - the opcodes being hashed
at compile-compile time because they are constant
- so the back end need not touch individual input
characters.

At the other end, the translation from optimized
register transfers to assembly language for output
is also designed to minimize character handling, by
automatically generating rules that translate reg-
ister transfers to assembly code. Whenever the
machine description is used to translate a register
transfer to assembly language, the input and output
strings are patternised to form a rule that hence-
forth implements the same translation without US-

ing the machine description. Ultimately, even this
step could be avoided by using assembly language

246

throughout: code generation rules and optimization

rules could be specified in assembly code, and PO

could use the machine description to translate the

assembly language to and from register transfers [5]

on those rare occasions when a rule needs to be

generated. But even now, the back end rewriting

system avoids character handling entirely until it

needs to form strings for output or it needs to fall

back on the machine description to generate a rule

for a previously unseen juxtaposition or output in-

struction.

Discussion

The rewriting system is about 1700 lines of code,

and it calls upon another 1799 lines borrowed (with

a few adaptations) from the old compiler to infer

new optimization and assembly rules. It uses about

100 code generation rules, which cover most of C ex-

cept for floating point. It is generally primed with

about 509 optimization rules from previous compi-

lations, because experiments on the VAX - which

requires about as many optimization rules as any

machine - found hit rates over 95% for typical sys-

tems programs once about 599 optimization rules

were generated.

The new compiler runs as fast as PCC in typical

compilations, which start with the needed optimize

tion rules. Pathological cases - starting without

any optimization rules whatsoever, and compiling

input files too short to build up many optimiea-

tions on their own - can take over three times as

long as PCC, but the compiler is always primed, and

hit rates are so high that this figure is mainly of

theoretical interest. This compiler thus may be the

6rst to rely on a machine-directed optimizer for its

machine-specific case analysis and still run as fast as

existing production compilers. The implementation

can probably be made faster still

At this writing, the new compiler generates code

for only the VAX. Its code generation rules are,

however, simply rule-based implementations of PO’s

code generators, and its optimization rules are gen-

erated using PO. Therefore, the new system is just

as retargetable as the older compiler based on PO.

The original compiler’s code was about as good

as PCC’s, but the new compiler is not yet to quite

the same level. The main omission is common-

subexpression elimination, which is simply not im-

plemented yet. The planned implementation will
create temporary rules that substitute register ref-

erences for computations that develop values al-

ready in registers.

The only other significant omission is the gener-

ation of VAX addressing modes that shift an index

register before adding it to a base address. This

problem can be traced to a problem with rule or-

dering. The post&t opcode that should, after opti-

mization, result in these addressing modes is one of

the few that expand into more than one instruction:

one to multiply an index by a constant, and another

to add the result to the base address. The mul-

tiplication is generated first; when optimized with

its child, it generally becomes a memory-to-register

multiply that is too complex to combine with the

subsequent addition. This code is optimal for most

multiplicative factors, but for small powers of two, it

would be better to postpone the optimization of the

multiplication to allow it combine with the addition.

These cases can be caught with a few special-case

rules that pre-empt the generation of the multiplica-

tion. This solution is effective but inconsistent with

naive case analysis. Ultimately, it may be neces-

sary to consider a less greedy optimization strategy,

but since there has only been this one rule-ordering

problem, this general solution is not yet justified.

Many other optimizations - constant folding,

elimination of unary complement operators, execu-

tion ordering - can be cast as pattern substitu-

tion on trees, so it may be appropriate to include

them as code or, better yet, rules in the current

system. The current pattern-matching model would

need generalization to allow arbitrary tree patterns,

not just those that reach down along one path at a

time. New kinds of rules may increase rule-ordering
problems and require some mechanism for choosing

between competing rules.

Related Work

Code generators that rely on modern peephole op-

timizers for their case analysis had been develop-

ing separately from code generators based on tree-

matching [l, 2, 141 or parsing [3, 81. The rewriting

system above suggests a way in which these devel-

opments may converge.

Code generators based on tree-matching gener-

ally match a subtree corresponding to an instruc-

tion, emit that instruction, and replace the subtree

with a single node identifying where that ingtruc-

tion left its result. The instruction does not nor-

mally participate in subsequent matching. Code

generators based on parsing might also be viewed as

performing a similar matching operation on a lin-
earized tree. Both of these kinds of code generators

generally benefit from some peephole optimization.

247

The rewriting system presented here is also based
on tree-matching, but it recycles its output. That

is, it normally applies one rule to generate an in-

struction and then other rules to improve it. Re-

cycling helps make one algorithm perform peephole

optimization as well as code generation.

This difference results in different styles of use.

The code generators based on tree-matching or

parsing are normally used to match larger subtrees

than are typical in the current system. For ex-

ample, there are VAX instructions that take three

operands involving two registers and one constant

each. Given an instruction like this, the code gener-

ators based in tree-matching or parsing will match a

much larger subtree than any of the code generation

rules in the current system, in which code genera-

tion rules generally match one node each but opti-

mization rules simulate the effect of a larger match.

However, the code generators based on tree-

rewriting or parsing could be confined fo smaller

trees by leaving more to the peephole optimizer, and

the current rewriting system could be used on larger

trees by extending it to match arbitrary subtrees in-

stead of just linear paths. Thus the techniques may

be seen to be similar, but differing in the implemen-

tation of the tree-matching, in the size of the typical

tree pattern, and the support of recycling.

Acknowledgments

Gregg Townsend and Mike Brown adapted PCC to

serve as a front end to the rewriting system. Dave

Hanson and Bill Waite helped clarify several issues.

References

1. A. V. Aho and M. Ganapathi, Efficient Tree Pat-
tern Matching: An Aid to Code Generation, Conf.
Rec. 12th ACMSymp. on Prin. of Programming Lon-
guagcb, Jan. 1985, 334-340.

2. A. V. Aho, M Ganapathi, and S. W. K. Tjiang,
Code Generation Using nee Matching and Dy-
namic Programming, Technical report, Bell Labo-
ratories, 1986.

3. P. Aigrain, S. L. Graham, R. R Henry, M. K.
McKusick, and E. Pelegri-Llopart, Experience with

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

a Graham-Glanville Code Generator, Proceedings
of the SIGPLAN ‘84 Symposium on Compiler Con-
struction, June 1984, 13-24.

R. G. G. Cattell, Automatic Derivation of Code
Generatorz from Machine Descriptions, ACM Trans.
Prog. Lang. and Systems 2, 2 (Apr. 1980) 173-190.

J. W. Davidson and C. W. Fraser, The Design and
Application of a Retargetable Peephole Optimizer,
ACM Trans. Prog. Lang. and Systems 2, 2 (Apr.
1980) 191-202.

J. W. Davidson and C. W. Fraser, Automatic Gen-
eration of Peephole Optimizationa, Proceedings of
the SIGPLAN ‘84 Symposium on Compiler Con-
struction, SIGPLAN Notices 19, 6 (June 1984) lll-
116.

J. W. Davidson and C. W. Fraser, Code Selection
Through Object Code Optimization, ACM Trans.
Prog. Lang. and Syatcrrw 6, 4 (Oct. 1984) 505-526.

M. Ganapathi and C. N. Fischer, Affix Grammar
Driven Code Generation, ACM !lkuns. Prog. Lang.
and Systema 7, 4 (Oct. 1985) 560-599.

R Giegerich, A Formal Framework for the Deriva-
tion of Machine-Specific Optimizers, ACM Z’rons.
Prog. Lang. and Systems 5, 3 (July 1983) 478-498.

S. C. Johnson, A Portable Compiler: Theory and
Practice, Conf. Rec. 5th ACM Sump. on Prin. of
Programming Languages, Jan. 1978, 97-104.

R R. Kessler, Peep - An Architectural Description
Driven Peephole Optimizer, SIGPLAN ‘84 Sympo-
sium on Compiler Construction, SIGPLAN Notices,
June 1984, 106-110.

P. B. Kessler, Automafcd Diacoucry of Machine-
Specific Code Improuemente, PhD dissertation, Uni-
versity of California, Berkeley (UCB/Computer Sci-
ence Dept. 84/214, Computer Science Division -
EELS), Dec. 1984.

D. A. Lamb, Construction of a Peephole Optimizer,
Software-Practice El Ezpericnce 11, (1981) 638-
647.

.4. S. W. Weingart, An Eficient and Systematic Method
of Compiler Code Generation, PhD dissertation,
Yaie University, June 1973.

248

