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Abstract 

This paper describes a compiler with a code gener- 

ator and machine-directed peephole optimiser that 

are tightly integrated. Both functions are per- 

formed by a single rule-based rewriting system that 

matches and replaces patterns. This organization 

helps make the compiler simple, fast, and retar- 

getable. It alao corrects certain phase-ordering 

problems. 

Introduction 

Many code generation and optimisation phases are 

simply pattern matchers: code generators match 

patterns in intermediate code and replace them 

with object code; common subexpression elimina- 

tors seek repeated expressions and replace them 

with register references; peephole optimizers match 

patterns in object code and replace them with more 

efficient object code. 

A compiler exploiting these observations is being 

built. The code generation and peephole optimira- 

tion phases have been subsumed by a single, more 

general rewriting system that is driven by rules that 

match and replace patterns. One set of rules gener- 

ates naive code, and another - which is generally 

generated automatically at compile-compile time - 

optimizes this code as soon as it is generated. 

Most compilers implement these phases sepa- 

rately, but integrating them has made this compiler 

simpler, faster, and better able to yield good code. 

It is simpler because one general-purpose phase re- 

places two special-purpose phases. It can yield bet- 

ter code because certain phase-ordering problems 

disappear. Phase-ordering problems occur when 
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one phase generates an inefficiency of a kind that 

is only corrected by an earlier phase. They sim- 

ply cannot occur when the two phases are tightly 

integrated. 

The compiler is faster because it no longer has 

one phase dismantle its structures and output them 

only to have another phase read and create an often 

similar structure. These particular phases - code 

generation and peephole optimiaation - can spend 

a large fraction of their time doing i/o and build- 

ing and dismantling their structures, so shareable 

structures turn out to be particularly important. 

This project began with a rule-directed peephole 

optimiser and generalized it to assume responsibil- 

ity for code generation as weU In many cases, gen- 

eralizing a program slows it down, but this par- 
ticular generabation improved performance. For 

example, the version of the new program that was 

most comparable with the original rule-directed op- 

timicer took no longer than that optimizer alone, so 

code generation was ufree”. This apparent anomaly 

is explained by the fact that the original optimizer 

spent much more time reading its input and build- 

ing ita structures than it did matching and replacing 

patterns. The generaliied optimizer reads a shorter, 

more regular input, so it can appIy more rules in the 

same amount of time. 

The compiler is retargetable. Nearly all of its 

machine-dependencies are isolated in a largely non- 

procedural machine description and rule database, 

not code. The code generation rules are written by 
hand, but this task is simplified by the absence of 

case analysis. The necessity of writing these rules is 

offset by the fact that the required machine descrip 

tions are short enough - generally 2-4 pages - to 

make the method described herein competitive with 

other current methods for retargeting compilers [l, 

3, 4, S], while also implementing both code gener- 

ation and peephole optimiration as special cases of 

one more general process. 
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Background 

Modern machine-directed peephole optimizers [g, 9, 

11, 121 are based on a process similar to symbolic 

simulation. They represent instructions using ‘reg- 

ister transfers”, which are simple expressions and 
assignments involving the machine’s operators and 

cells. For example, one of these optimizers, PO, rep 

resents an instruction that loads the address of x 

into register 1 as 

rc11 = x 

and an instruction that loads register 1 with the 

word at which it had pointed as 

rCl1 = mIrCll1 

On most machines, this pair of instructions can be 

usefully replaced with one. Symbolic simulation is 

used to compute their combined effect 

rCl1 - mlxl 

and then a machine description is searched to de- 

termine if the combined register transfers represent 

a valid instruction on the given machine. Differ- 

ent machine-directed optimizers differ on whether 

to perform simulation at compile time or compile- 

compile time; on what juxtapositions are considered 

for combination; and on whether to seek the output 
instructions equivalent to some given input instruc- 

tions or vice versa. All, however, use register trans- 

fers and a process similar to symbolic simulation. 

This organization makes machine-directed opti- 
mizers thorough. When PO, for example, is fin- 

ished, no one-, twe, or three-instruction sequence 

can be replaced with a cheaper singleton. This 

thoroughness allows code generators to emit naive 

code, because the peephole optimizer can automat- 

ically perform much case analysis. For example, 

one compiler based on PO (71 is organized as shown 

in Figure 1. The front end emits naive abstract 

machine code, which the code generator translates 

into naive target machine code, represented as reg- 

ister transfers. The code generator assumes an in- 

finite register set, which simplifies code generation 

and postpones register assignment until optimiza- 

tion has reduced the requirements for registers. The 

third phase eliminates common subexpressions and 

performs dataflow analysis for the fourth phase, PO. 

The last phase maps the registers still used in the 

optimized code down onto the actual registers, in- 

troducing spills and reloads as necessary. It also 

uses the machine description to map the register 

transfers to the equivalent assembly code. 

This compiler has been retargeted to at least 10 

different architectures, some in as few as three man- 

days. It emits code comparable to target-specific 
compilers, but it is slower: it takes about 4 times as 

long as PCC [lo], partly because PO performs sym- 

bolic simulation at compile time. 

To speed up the compiler, PO has been aug- 

mented to generate rules that describe the optimiza- 

tions that it has made (61. A fixed set of rules is 

generated at compile-compile time and loaded into 

a fast, rule-directed, compile-time optimizer called 

HOP. This procedure reduces the time for peephole 
optimization by about 80%, and it reduces overall 

compile time by about one third. 

HOP runs fast by avoiding much of the string scan- 

ning traditionally associated with pattern match- 

ing. Its rules are encoded as text, with embedded 

pattern variables of the form Xn to denote context- 

sensitive operands. For example, the rule 

rCX11 = X2 
rtXl3 = mtrCXl33 

:cx13 = mCX21 

describes the optimization above. Rules are gener- 

ated automatically by replacing each distinct con- 

stant in an optimization trace with a unique pat- 
tern variable. For example, the rule above was au- 

tomatically generated by generalizing the optimiza- 

tion trace that began this section. 
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HOP also represents instructions using patterns. 
For example, it represents the instruction 

rCl1 = x 

with the pattern 

rCXl1 = X2 

plus a record that %l denotes 1 and X2 denotes 

x. That is, when it reads the instruction above, 

it immediately “patternises” it and henceforth rep- 

resents it with the tuple 

rCXl1 - X2, 1, x 

This representation gives HOP two important ways 

to achieve speed. First, HOP uses a hash table to 

store exactly one copy of any given string. Thus the 

representation for instructions above allows HOP to 

compare instructions with patterns by simply com- 

paring two hash addresses. Second, HOP stores rules 

in another hash table keyed by the patterns to which 

the rule applies. Thus when HOP is presented with 

some instructions to combine, it merely adds up the 

(unique) addresses of the instruction patterns, dis- 

cards the high-order bits, and uses the result to in- 

dex the rule table. If the rule table is large enough 

to make collisions rare, this mechanism identifies 

any applicable rule quickly. HOP thus locates and 

applies optimizations in nearly constant time, with- 

out character scanning or recursive tree traversaL 

Combining Phases 

HOP’s speed and generality make it natural to try to 

use the same techniques to improve other phases as 

well This observation is being exploited in a new 

compiler. 

The front end of the new compiler is from PCC, 

the front end of which was adapted to yield code 

for a RISC-lie stack machine that is tailored to C 

but is machine-independent. The code is little more 

than a postfix encoding of the front end’s syntax 

tree, so it is easy to generate. The postfix code 

requires neither allocation of registers nor packing 

of operands into instructions, and the RISC design 

makes case analysis moot. 

The combined code generator and optimizer is 

a general rule-based rewriting system that matches 

patterns and substitutes new text for them. Some 

rules implement code generation by replacing in- 

termediate code with machine instructions repre- 

sented as register transfers; other rules implement 

peephole optimization by replacing juxtaposed in- 

structions with one; still other rules translate the 

optimized register transfers to assembly code. 

Logically, the back end creates a tree from its 
postfix input and applies rules that rewrite pieces 

of the tree. The hand-written code generation rules 

generate naive code, so few need much context and 

most need only match a single input node. The 

automatically-generated optimization rules, how- 

ever, match pairs of instructions, so they match 

nodes on linear paths down through the tree. For 

example, consider the rule 

it 

= 

C 

Since code appears in 

tern applies this rule 

post-order, the rewriting sys- 

at a node b if b has a child 

equal to a. If it finds a match, it deletes a, replaces 

b with c, reattaches all the other children of the 

input nodes as children of the new node, and then 

iterates to test for further optimizations. The rules 

can only descend along a single path, so a simple, 

non-recursive tree-matching algorithm suffices. 

The rewriting system extends HOP. Formerly, HOP 

could miss optimisations when a new program used 

a juxtaposition of instructions that had not been 

seen when the rules were generated at compile- 

compile time. The new compiler corrects this dif- 

ficulty by integrating HOP and PO. Now HOP’s rule 

cache is extended incrementally by calling on PO to 

generate rules that replace or reject previously un- 

seen juxtapositions. The rules are now generated 

at compile time, but no rule generated earlier need 

ever be regenerated, so the effect is nearly that of 

generation at compile-compile time, Thus the inte- 

grated system optimizes code as thoroughly as PO, 

but it is not appreciably slower than HOP. 

The rewriting system’s rules are like HOP’s, but 

now they may call “built-in” routines to perform op- 

erations that cannot be conveniently implemented 

as pattern matching and substitution [13]. For ex- 

ample, the rule 

rfXl1 = r[%ll * %2 
LOG x2 x3 

: [Xl3 = rCX11 << X3 

calls the routine LOG to bind x3 to the log2 of the 

number that is bound to %2. If X2 does not denote 

a number, or if that number is not a power of two, 

then LOG “fails”, which causes the rule to fail just as 

if a pattern had failed to match. Rules can call any 

routine that has been link-edited into the rewriting 

system. 
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Built-in routines are used extensively by the rules 

that control code generation. For example, the rule 

that generates the naive code to add two integers is 

logically equivalent to 

IntegerAdd 

BIINOP r CXOI = rlXl1 + r[X23 

BINOP is a built-in routine that replaces the op 

code in the current node (IntegerAdd) with the 

given register transfer pattern (r[%O] = r[Xl] + 

r[X21), and binds X0 and Xl to the result regis- 

ter from the node’s 6rst child and X2 to the result 

register from the node’s second child. 

This is naive code: the code generation rules use 

only register-teregister addition, because the auto- 

matically generated optimization rules are respon- 

sible for combining these instructions with their 

neighbors to better exploit the instruction set. The 

compiler generates naive code temporarily but og 

timizes it as much as possible before moving on to 

another point in the tree. Once a code generation 

rule has been applied, the node holds register trans- 

fers and not intermediate code, and thus optimiza- 

tion rules and not the code generation rules will be 
the ones that will happen to apply. 

Consider the compilation of the source language 

statement 

i = i + 1; 

for the VAX. The front end produces the syntax tree 

below, where indentation displays the tree struc- 

ture. 

IntegerStore 

Addrees i 

IntegerAdd 

IntegerFetch 
Addreze i 

IntegerConetant 1 

The rewriting system does a post-order traversal. 

The first three rules that apply are merely code gen- 

eration rules that rewrite one node each. They yield 

the tree below, in which register transfer patterns 

have been instantiated to simplify reading. 

IntegerStore 

r[21 = i 
IntegerAdd 

r[31 = mtr1311 
rC31 = i 

IntegerConstant 1 

Next, the first optimization rule fires, combining the 

load-indirect with its child and yielding 

IntegerStore 
rC21 = i 
IntegerAdd 

rC31 = m[il 
IntegerConetant I 

The next two rules generate code for the opcodes 

IntegerConstant and IntegerAdd, yielding 

IntegerStore 
rC23 = i 
rC31 = rC31 + rC41 

rE31 = mbl 
r[41 = 1 

Now one optimization rule combines the two in- 

structions that set r[31, using one of the VAX’s 

three-operand instructions, and yielding 

IntegerStore 
rC21 = i 

rC31 - m[il + r[4] 
rC41 = 1 

and another combines the result with the instruc- 

tion that loaded r [4], yielding 

IntegerStore 
rC21 = i 
rC31 = m[il + 1 

Next, the code generation rule for IntegerStore 

fires, yielding 

mCrC213 = r131 
rC21 = i 
r[33 = m[il + 1 

Then optimization rules yield 

m[il = rC3J 
r[3] = m[i] + 1 

and finally 

m[il = m[i] + 1 

The examples above accurately trace the com- 

piler’s sequence of tree replacements, but for clar- 

ity they omit one implementation detail: the code 

generation rules, in addition to their functions dis- 

played above, also construct the tree from the post- 

llx input as they go. For example, the actual rule 

that generates VAX code for integer adds is: 

IntegerAdd 

;oP 2 
PUSH r[%O] - r[Xi] + rI%2] 
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The built-in routines PUSH and POP maintain a stack 
to recreate a tree similar to the one created by the 
front end. The front and back ends are normally 
tightly coupled as one program, but using a postfix 
encoding of the trees - rather than the actual tree 
structures themselves - for inter-module commu- 
nication allows separating the front and back ends 
into two separate programs, which is occasionally 
helpful during development. Ultimately, this step 
will no longer be needed, and the back end will use 
tree structures created by the front end. 

Because code generation and optimization have 
been integrated, it is no longer necessary to assume 
an infinite set of pseudo-registers. At present, each 
new node tries to take the result register of one of its 
children as its own. (This policy is likely to change 
when the rewriting system is extended to subsume 
common subexpression elimination as well,) If this 
is not possible - and it never is for leaves because 
they have no children - the built-in procedure gets 
its result register from a list of free registers. In 
the presence of separate register classes, the built- 
in would accept an extra argument to define the 
type of register that is required by the instruction 
that is now the only argument to the built-in. 

A mechanism for handling spills has been de- 
signed. Consistent with the policy of emitting naive 
code and then improving it automatically, the reg- 
ister allocator generates more spills than may be 
needed, but automatically removes those that sub- 
sequent optimization exposes as unnecessary. When 
the built-in needs a register and none is available 
(perhaps because it is a leaf), it effectively spills the 
most distantly used register. The busy registers are 
the result registers of the trees on the stack. The 
deeper a result register is in the stack, the longer it 
will be before it is needed again, so the built-in spills 
the result register from the deepest stack entry that 
has not already been spilled. 

Because subsequent optimisation may eliminate 
the need for this register, the spill is not emitted im- 
mediately. Instead, the built-in merely increments 
a Qpill count’ in the node whose result register 
is to be spilled. Optimisation rules that remove 
a register definition (such as an optimisation that 
replaces a load-store sequence with a memory-to- 
memory move) decrement the spill count for the 
last node that defined that register. This procedure 
effectively deletes spills that were needed in naive 
code but not in optimised code. But if POP ever 
pops a node whose spill count still exceeds rero, it 

attaches the node beneath a store instruction, opti- 
mises the pair together, and emits the resulting tree. 
POP then substitutes a reload for the node that it 

had originally popped. Both of the new instructions 
- the store and the reload - are optimized with 
their neighbors, so they may combine with other 
instructions on machines with memory-to-memory 
arithmetic. A phase-ordering problem prevented 
the previous compiler from making such optimiza- 
tions: spills and reloads were introduced during reg- 
ister assignment and thus could not be optimized 
because register assignment followed peephole opti- 
mization. Combining these phases has eliminated 
this phase-ordering problem. 

The integration of code generation and peephole 
optimization reduces much of the character pro- 
cessing in the back end, but additional steps were 
needed to minimize it. First, the front and back 
ends, though separable, are generally connected di- 
rectly, and the front end does not actually emit in- 
termediate code. If it did, its last step for each 
instruction would use a routine for formatted print- 
ing to assemble the opcode and any operands into 
a postfix instruction for output. For example, it 
would combine the opcode IntegerConstant and 
the operand 1 to yield the postfix instruction 

IntegerConstant 1 

The first step of the back end, however, would read 
and patter&e this instruction, producing the tuple 

IntegerConstant Xl, 1 

and effectively reversing the effect of the format- 
ting and printing. To avoid these expensive, self- 
cancelling operations, the front end passes tuples 
like the one above directly to the back end. The 
strings are even already hashed for the HOP-style 
address comparisons - the opcodes being hashed 
at compile-compile time because they are constant 
- so the back end need not touch individual input 
characters. 

At the other end, the translation from optimized 
register transfers to assembly language for output 
is also designed to minimize character handling, by 
automatically generating rules that translate reg- 
ister transfers to assembly code. Whenever the 
machine description is used to translate a register 
transfer to assembly language, the input and output 
strings are patternised to form a rule that hence- 
forth implements the same translation without US- 

ing the machine description. Ultimately, even this 
step could be avoided by using assembly language 
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throughout: code generation rules and optimization 

rules could be specified in assembly code, and PO 

could use the machine description to translate the 

assembly language to and from register transfers [5] 

on those rare occasions when a rule needs to be 

generated. But even now, the back end rewriting 

system avoids character handling entirely until it 

needs to form strings for output or it needs to fall 

back on the machine description to generate a rule 

for a previously unseen juxtaposition or output in- 

struction. 

Discussion 

The rewriting system is about 1700 lines of code, 

and it calls upon another 1799 lines borrowed (with 

a few adaptations) from the old compiler to infer 

new optimization and assembly rules. It uses about 

100 code generation rules, which cover most of C ex- 

cept for floating point. It is generally primed with 

about 509 optimization rules from previous compi- 

lations, because experiments on the VAX - which 

requires about as many optimization rules as any 

machine - found hit rates over 95% for typical sys- 

tems programs once about 599 optimization rules 

were generated. 

The new compiler runs as fast as PCC in typical 

compilations, which start with the needed optimize 

tion rules. Pathological cases - starting without 

any optimization rules whatsoever, and compiling 

input files too short to build up many optimiea- 

tions on their own - can take over three times as 

long as PCC, but the compiler is always primed, and 

hit rates are so high that this figure is mainly of 

theoretical interest. This compiler thus may be the 

6rst to rely on a machine-directed optimizer for its 

machine-specific case analysis and still run as fast as 

existing production compilers. The implementation 

can probably be made faster still 

At this writing, the new compiler generates code 

for only the VAX. Its code generation rules are, 

however, simply rule-based implementations of PO’s 

code generators, and its optimization rules are gen- 

erated using PO. Therefore, the new system is just 

as retargetable as the older compiler based on PO. 

The original compiler’s code was about as good 

as PCC’s, but the new compiler is not yet to quite 

the same level. The main omission is common- 

subexpression elimination, which is simply not im- 

plemented yet. The planned implementation will 
create temporary rules that substitute register ref- 

erences for computations that develop values al- 

ready in registers. 

The only other significant omission is the gener- 

ation of VAX addressing modes that shift an index 

register before adding it to a base address. This 

problem can be traced to a problem with rule or- 

dering. The post&t opcode that should, after opti- 

mization, result in these addressing modes is one of 

the few that expand into more than one instruction: 

one to multiply an index by a constant, and another 

to add the result to the base address. The mul- 

tiplication is generated first; when optimized with 

its child, it generally becomes a memory-to-register 

multiply that is too complex to combine with the 

subsequent addition. This code is optimal for most 

multiplicative factors, but for small powers of two, it 

would be better to postpone the optimization of the 

multiplication to allow it combine with the addition. 

These cases can be caught with a few special-case 

rules that pre-empt the generation of the multiplica- 

tion. This solution is effective but inconsistent with 

naive case analysis. Ultimately, it may be neces- 

sary to consider a less greedy optimization strategy, 

but since there has only been this one rule-ordering 

problem, this general solution is not yet justified. 

Many other optimizations - constant folding, 

elimination of unary complement operators, execu- 

tion ordering - can be cast as pattern substitu- 

tion on trees, so it may be appropriate to include 

them as code or, better yet, rules in the current 

system. The current pattern-matching model would 

need generalization to allow arbitrary tree patterns, 

not just those that reach down along one path at a 

time. New kinds of rules may increase rule-ordering 
problems and require some mechanism for choosing 

between competing rules. 

Related Work 

Code generators that rely on modern peephole op- 

timizers for their case analysis had been develop- 

ing separately from code generators based on tree- 

matching [l, 2, 141 or parsing [3, 81. The rewriting 

system above suggests a way in which these devel- 

opments may converge. 

Code generators based on tree-matching gener- 

ally match a subtree corresponding to an instruc- 

tion, emit that instruction, and replace the subtree 

with a single node identifying where that ingtruc- 

tion left its result. The instruction does not nor- 

mally participate in subsequent matching. Code 

generators based on parsing might also be viewed as 

performing a similar matching operation on a lin- 
earized tree. Both of these kinds of code generators 

generally benefit from some peephole optimization. 
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The rewriting system presented here is also based 
on tree-matching, but it recycles its output. That 

is, it normally applies one rule to generate an in- 

struction and then other rules to improve it. Re- 

cycling helps make one algorithm perform peephole 

optimization as well as code generation. 

This difference results in different styles of use. 

The code generators based on tree-matching or 

parsing are normally used to match larger subtrees 

than are typical in the current system. For ex- 

ample, there are VAX instructions that take three 

operands involving two registers and one constant 

each. Given an instruction like this, the code gener- 

ators based in tree-matching or parsing will match a 

much larger subtree than any of the code generation 

rules in the current system, in which code genera- 

tion rules generally match one node each but opti- 

mization rules simulate the effect of a larger match. 

However, the code generators based on tree- 

rewriting or parsing could be confined fo smaller 

trees by leaving more to the peephole optimizer, and 

the current rewriting system could be used on larger 

trees by extending it to match arbitrary subtrees in- 

stead of just linear paths. Thus the techniques may 

be seen to be similar, but differing in the implemen- 

tation of the tree-matching, in the size of the typical 

tree pattern, and the support of recycling. 
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