
University of Wisconsin Milwaukee

UWM Digital Commons

Theses and Dissertations

8-1-2012

Integrating "Code Smells" Detection with
Refactoring Tool Support
Kwankamol Nongpong
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations

by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Nongpong, Kwankamol, "Integrating "Code Smells" Detection with Refactoring Tool Support" (2012). Theses and Dissertations. 13.
https://dc.uwm.edu/etd/13

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.uwm.edu%2Fetd%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/13?utm_source=dc.uwm.edu%2Fetd%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

Integrating “Code Smells” Detection with

Refactoring Tool Support

by

Kwankamol Nongpong

A Dissertation Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in Engineering

at

The University of Wisconsin-Milwaukee

August 2012

ABSTRACT

Integrating “Code Smells” Detection with

Refactoring Tool Support

by

Kwankamol Nongpong

The University of Wisconsin-Milwaukee, 2012
Under the Supervision of Professor John Tang Boyland

Refactoring is a form of program transformation which preserves the semantics of the

program. Refactoring frameworks for object-oriented programs were first introduced

in 1992 by William Opdyke [73]. Few people apply refactoring in mainstream software

development because it is time consuming and error-prone if done by hand. Since

then, many refactoring tools have been developed but most of them do not have the

capability of analyzing the program code and suggesting which and where refactorings

should be applied. Previous work [49, 91, 19, 25] discusses many ways to detect

refactoring candidates but such approaches are applied to a separate module. This

work proposes an approach to integrate a “code smells” detector with a refactoring

tool.

To the best of our knowledge, no work has established connections between refac-

toring and finding code smells in terms of program analysis. This work identifies

some common analyses required in these two processes. Determining which analyses

ii

are used in common allows us to reuse analysis information and avoid unnecessary

recomputation which makes the approach more efficient. However, some code smells

cannot be detected by using program analysis alone. In such cases, software metrics

are adopted to help identify code smells. This work also introduces a novel metric

for detecting “feature envy”. It demonstrates that program analysis and software

metrics can work well together.

A tool for Java programs called JCodeCanine has been developed using the dis-

cussed approach. JCodeCanine detects code smells within a program and proposes

a list of refactorings that would help improve the internal software qualities. The

programmer has an option whether to apply the suggested refactorings through a

“quick fix”. It supports the complete process allowing the programmer to maintain

the structure of his software system as it evolves over time.

Our results show that restructuring the program while trying to preserve its be-

havior is feasible but is not easy to achieve without programmer’s declared design

intents. Code smells, in general, are hard to detect and false positives could be

generated in our approach. Hence, every detected smell must be reviewed by the pro-

grammer. This finding confirms that the tool should not be completely automated.

An semi-automated tool is best suited for this purpose.

iii

c© Copyright by Kwankamol Nongpong, 2012
All Rights Reserved

iv

ACKNOWLEDGMENTS

I would like to thank my major professor, Professor John Tang Boyland, for his

insights and supports throughout the program. Professor Boyland has been so un-

derstanding and supportive through my ups and downs. Without his time and dedi-

cation, this work would not have been complete, concise and comprehensive.

I am thankful to the dissertation committee, Professor Ethan Munson, Dr. Adam

Webber, Professor Mariam Zahedi and Professor Yi Ming Zou. Their valuable com-

ments help cultivate this dissertation.

I thank William Retert who helped develop an analysis. I am also grateful to all

members of the UWM’s SLAP group for fruitful discussions on the research. Our

weekly meetings have broadened my view to different research areas. I would also

like to thank all undergraduate students who willingly donated their code to be used

in testing and evaluating this work. Special thanks go to Songsak Channarukul and

Tapanan Yeophantong for their encouraging words and suggestions.

Last but not least, I would like to thank my parents and relatives for their endless

supports and encouragements. I also thank my sister who always takes my phone

calls despite the time zone differences.

v

Contents

1 Introduction 1

1.1 The Problem . 1

1.2 Proposed Solution . 4

1.3 Contributions . 5

1.4 Outline of the Thesis . 6

2 Related Work 7

2.1 Refactoring Tools . 8

2.2 Finding Refactoring Candidates or Code Smells 11

2.3 Code Smell Detection Tools . 15

2.4 Refactoring and Type Constraints . 17

3 Refactoring Complexities 19

3.1 Opdyke’s Behavior Preservation Properties 20

3.2 Low-Level Refactorings . 22

3.2.1 Rename . 22

vi

3.2.2 Extract Method . 24

3.2.3 Reverse Conditional . 29

3.2.4 Consolidate Duplicated Conditional Fragments 30

3.2.5 Swap Statements . 31

3.3 High-Level Refactorings . 36

3.3.1 Inline Method . 36

3.3.2 Move Method . 40

3.3.3 Convert Inheritance into Aggregation 43

3.3.4 Move Members between Aggregate and Component Class . . . 45

3.3.5 Create Abstract Superclass . 49

3.4 Discussion and Summary . 51

3.5 Summary . 53

4 Code Smells 54

4.1 Duplicated Code . 54

4.1.1 Detecting Duplicated Code . 55

4.1.2 Refactorings for Duplicated Code 56

4.2 Feature Envy . 57

4.2.1 Detecting Feature Envy . 57

4.2.2 Refactorings for Feature Envy 58

4.3 Data Class . 60

4.3.1 Detecting Data Class . 60

vii

4.3.2 Refactorings for Data Class 63

4.4 Switch Statement . 64

4.4.1 Detecting a Switch Statement 65

4.4.2 Refactorings for Switch Statement 67

4.5 Summary . 68

5 Metric for Feature Envy Detection 70

5.1 Coupling Measures . 70

5.2 Cohesion Measures . 72

5.3 Feature Envy Metric . 74

5.3.1 Internal Process . 77

5.3.2 Choosing w and x . 81

5.3.3 Incorporating an Analysis . 81

5.3.4 Metric Validation . 83

5.4 Summary . 85

6 The Framework 87

6.1 Existing Components . 87

6.1.1 Fluid . 88

6.1.2 Eclipse . 89

6.1.3 Incompatibilities between Fluid and Eclipse 89

6.2 Implementation . 90

6.2.1 The Architecture . 90

viii

6.2.2 Refactoring Manager . 94

6.2.3 Code Smells Detector . 95

6.2.4 Code Smells Resolution . 95

6.2.5 Annotation Suggester . 96

6.3 JCodeCanine’s Key Features . 96

6.3.1 Code Smells Detection and Resolution 97

6.3.2 Stand Alone Refactoring . 97

6.3.3 Annotation Suggestions . 100

6.4 Summary . 101

7 Empirical Results 103

7.1 Code Smells . 105

7.2 Refactorings . 107

7.3 Code Qualities . 109

7.4 Discussion . 111

7.4.1 Duplicated Code . 114

7.4.2 Feature Envy . 114

7.4.3 Data Class . 114

7.4.4 Switch Statement . 115

7.5 Summary . 116

8 Conclusion 117

ix

A Software Metrics 121

B Case Studies 123

B.1 Definitely a Feature Envy . 123

B.2 Calls on Objects of the Interface Type 124

B.3 Calls on Objects of Library Types . 125

B.4 May-be a Feature Envy . 126

B.5 Exception Class . 127

B.6 Switch Statement . 128

x

List of Figures

3.1 Rename Method Refactoring . 24

3.2 Careless Method Renaming . 25

3.3 Extract Method . 26

3.4 Method Extraction that Requires a Return Statement 27

3.5 Method Extraction inside a Loop . 28

3.6 Reverse Conditional . 29

3.7 Consolidate Duplicate Conditional Fragments 31

3.8 Bad Statement Swap . 32

3.9 Careless Inline Method . 38

3.10 Class Hiearchy Analysis . 39

3.11 Move Method . 42

3.12 Aggregate/Component Relationship 45

3.13 Nonexclusive Components (1) . 47

3.14 Nonexclusive Components (2) . 47

3.15 Moving members . 48

xi

3.16 Create Abstract Superclass . 50

4.1 Feature envy . 57

4.2 Remove Feature Envy by Refactorings 59

4.3 Data Class . 61

4.4 Special Method Patterns . 62

4.5 Algorithm to detect data class . 63

4.6 Poor Use of Switch Statement . 65

4.7 False Positive for Switch Statement 66

4.8 Algorithm to detect switch statement 66

4.9 Remove Switch Statement . 68

4.10 A More Desirable Result . 69

5.1 Feature Envy Candidate . 80

5.2 Non Feature Envy Instance . 82

5.3 Maybe Feature Envy . 83

6.1 Architecture of JCodeCanine . 92

6.2 Process Cycle in JCodeCanine . 93

6.3 A Snapshot of Feature Envy Detected 98

6.4 A Snapshot of Data Class Detected 98

6.5 Apply Refactoring through Quick Fix 99

6.6 Semantic Conditions Violated if bought() is Renamed to updateStock()100

xii

6.7 Scenario where Annotation Suggester is Invoked 101

B.1 Feature Envy Instance . 124

B.2 Feature Envy on Objects of Library Type 126

B.3 Indirect Usage of Library Class . 126

B.4 May-be a Feature Envy . 127

B.5 Exception Subclass Detected as a Data Class 128

xiii

List of Tables

3.1 Refactorings and Analyses . 41

5.1 Cohesion Measurements on Instructor’s Code 75

5.2 Variables in the Metric . 80

6.1 Fluid and Eclipse Incompatibilities 90

7.1 Numbers of Code Smells Detected, False Positives and Accuracy . . . 106

7.2 Number of Suggested Refactorings . 108

7.3 Objectives for Different Metrics . 111

7.4 Comparison of Software Metric Measurements: Low (1) 111

7.5 Comparison of Software Metric Measurements: Low (2) 112

7.6 Comparison of Software Metric Measurements: Trade-off 112

7.7 Impacts on Software Quality (+ Positive, - Negative, = No impact) . 112

xiv

1

Chapter 1

Introduction

This chapter states the current problem in software development process as well as the

motivation of this work. It further introduces the idea of this work and describes why

the problem is not trivial and how we tackle the problem. The main contributions

are also discussed in this chapter.

1.1 The Problem

A software system becomes harder to maintain as it evolves over a period of time. Its

design becomes more complicated and difficult to understand; hence it is necessary

to reorganize the code once in a while. The most important thing when reorganizing

code is to make sure that the program behaves the same way as it did before the

reorganization has taken place. Semantic preserving program transformations are

known as refactorings. The idea of refactoring is first introduced by William Opdyke

2

in 1992 [73]. The behavior preservation criterion is also discussed in his work.

In the past, refactorings were not taken into the mainstream development pro-

cess because applying refactorings by hand is error-prone and time consuming. The

benefits of refactorings are not obvious to many developers because refactoring nei-

ther adds new features to the software nor improves any external software qualities.

Therefore, many system developers give refactorings low priority. They are afraid

that doing so would slow down the process and/or break their working code. Though

refactoring does not help improve external software qualities, it helps improve internal

software qualities such as reusability, maintainability and readability. It is inarguable

that software design changes frequently during the development. Performing refactor-

ing introduces a good coding discipline as it encourages reuse of existing code rather

than rewriting new code from scratch.

Refactoring is usually initiated/invoked by the developer. Most software develop-

ers only refactor their code when it is really necessary because this process requires

in-depth knowledge of the software system. While many experienced developers can

recognize the pattern and know when to refactor, novice programmers may find this

process very difficult.

Even with the knowledge of refactorings, it is not easy for the developer to de-

termine which part of their code can benefit from refactorings. Many programmers

learn from their experience. New generation programmers are more fortunate since

Martin Fowler and Kent Beck address this issue in their book on Refactoring [33].

3

They provide a list of troubled code patterns which could be alleviated by refactor-

ings. Such patterns are widely known as code smells or bad smells. Recent work by

Mantyla and others [58] attempts to make Fowler’s long monotonous list of smells

more understandable. In their work, smells are classified into 7 different categories.

The taxonomy helps recognize relationships between smells and make them more

comprehensible to the developer.

Despite the presence of such guidelines, finding code smells is not trivial. First

and foremost, the developer has to recognize those patterns. The problem is, even if

he can recognize them, he may not realize it when he finds one. Such a task becomes

much more difficult for a large scale software system.

The process of detecting and removing code smells with refactorings can be over-

whelming. Without experience and knowledge of the design of the particular software,

the risks of breaking the code and making the design worse are high. Applying refac-

toring carelessly can inadvertently change program behavior. When refactoring is

carefully applied, we not only preserve the program behavior but also avoid introduc-

ing new bugs.

Many refactoring tools have been developed [44, 2, 86, 43, 24]. There are also a

number of works on finding refactoring candidates [49, 81, 19]. Nonetheless, these two

frameworks usually work separately. It is unfortunate to see two related frameworks

work on their own and not utilize the benefits to their maximum potentials. The

relationship between code smells and refactorings are obvious but not many people

have put them together.

4

1.2 Proposed Solution

Code smells detection and refactoring are connected. While code smells represent de-

sign flaws in the software, refactoring is the process which restructures and transforms

the software. In other words, code smells tell what the problems are and refactoring

can then be used to correct such problems. Integrating these two processes would

provide the complete process of locating the design flaws and improving software

design. The integrated framework also provides other benefits which include:

1. Clearer Connection between Smells and Refactorings : It is evident that code

smells and refactorings are related. However, the connections are abstract and

usually obscured by their complexities. Putting them in the same framework

presents their relationships in a more concrete way.

2. Analysis Information Reuse: Checking conditions before refactoring and de-

tecting code smells require similar analyses (as discussed further in chapters 3

and 4). It is unnecessary to perform an analysis for information that we al-

ready have. Reusing analysis information makes the framework more efficient.

However, to be able to correctly reuse the information, we have to keep track

the parts of the program that change. Then, we must determine which analysis

needs to be rerun to address those changes. The overhead of this framework will

be keeping tracks of changes made on the code. I believe that such overhead is

a small sacrifice for improved efficiency.

3. Continuous Programming Flow : With the combined framework, the developer

5

can check for code smells and remove them without disrupting the flow of their

coding. It encourages the developer to make changes incrementally.

Some code smells introduce design change and require the developer’s assistance.

Not all code smells can be automatically detected. Hence, this work focuses only

on those that can be detected automatically. A set of code smell detection analyses

developed in this research is discussed in chapter 4.

1.3 Contributions

The major contributions of this research are:

1. It defines conditions that must be checked to ensure behavior preservation before

refactoring.

2. It identifies analyses required for the condition check.

3. It identifies analyses required to detect code smells.

4. It shows relationships between code smells and refactorings (in terms of analysis

used).

5. It introduces metrics to detect code smells.

Though this work implements a tool for Java programs, the theoretical ideas can be

adapted not only to other object-oriented languages, but also to other programming

language paradigms.

6

1.4 Outline of the Thesis

Related work is discussed in Chapter 2. In this chapter, we provide observations

on current refactoring tools. Existing techniques for finding refactoring candidates

are reviewed. Other analyses that could be used to ensure semantic preservation are

mentioned in this chapter.

Chapter 3 discusses low-level and high-level refactorings, their complexities and

their semantic preserving conditions. It explains the importance of semantic checks

and shows examples of how careless refactoring could affect the observable behavior.

Chapter 4 describes each code smell and the approach that this work uses for smells

detection. Refactorings that can be applied to remove smells are also discussed in

this chapter.

In Chapter 5, we discuss some existing cohesion and coupling metrics and why

they are unsuitable for feature envy detection. A novel metric to detect feature envy

is introduced in this chapter.

Chapter 6 describes the overall framework of our implementation, JCodeCanine

which is a tool that analyzes Java source code. It detects code smells discussed in

chapter 4 and suggests a list of refactorings that could address the design flaws.

Chapter 7 provides discussion on empirical results. It looks at JCodeCanine’s

efficiency in various aspects including the comparison of code quality before and after

smells detection and refactoring application.

Chapter 8 concludes the present work and some open problems for future work.

Appendix B presents a few case studies for code smells detection.

7

Chapter 2

Related Work

According to Opdyke [73], each refactoring basically consists of preconditions, me-

chanics and postconditions. All preconditions must be satisfied before applying refac-

toring. Likewise, all postconditions must be met after refactoring is applied1. These

conditions ensure that the program behavior is preserved. Opdyke also categorizes

refactorings into low-level and high-level refactorings. Low-level refactorings are re-

lated to changing a program entity (e.g., create, move, delete). High-level refactorings

are usually sequences of low-level refactorings. He also provides proofs of behavior

preservation for many refactorings. The behavior preservation proofs of some low-

level refactorings are trivial but implementing them is not as trivial. This issue will

be discussed in Chapter 3.

1The use of term “postcondition” in this research is different from the standard use of postcon-
ditions. Here we have postconditions apply to perform checks that are difficult to do before the
transformation takes place.

8

2.1 Refactoring Tools

In early 1990s, Don Roberts and his colleagues developed a refactoring tool called the

Smalltalk Refactoring Browser [76]. This refactoring browser allows the user to per-

form many interesting refactorings automatically (e.g., Rename, Extract/Inline

Method, Add/Remove Parameter). However, this early tool was not popular

because it was a stand-alone tool separate from the integrated development environ-

ment (IDE). Developers found it inconvenient to switch back and forth between the

IDE (develop code) and Refactoring Browser (refactor code). Thus later refactoring

tools have been integrated in the IDEs. The following are refactoring tools for Java.

IntelliJ IDEA [44] This is an expensive commercial IDE. This tool also supports

Rename and Move Program Entities (e.g., package, class, method, field),

Change Method Signature, Extract Method, Inline Method, In-

troduce Variable, Introduce Field, Inline Local Variable, Ex-

tract Interface, Extract Superclass, Encapsulate Fields, Pull

Up Members, Push Down Members and Replace Inheritance with

Delegation.

RefactorIt RefactorIt is a commercial software that supports many automatic refac-

torings [2]. It can cooperate with Sun ONE Studio, Oracle 9i JDeveloper and

Borland JBuilder. The supported refactorings are: Rename, Move Class,

Move Method, Encapsulate Field, Create Factory Method, Ex-

tract Method, Extract Superclass/Interface, Minimize Access

9

Rights, Clean Imports, Create Constructor, Pull Up/Push Down

Members.

JRefactory [86] JRefactory is a tool that is first developed by Chris Seguin. How-

ever, Mike Atkinson has taken over the leadership role since late 2002. This

tool allows easy application of refactorings by providing user interface based on

UML diagrams as visualization of Java classes. It can cooperate with JBuilder

and Elixir IDEs. JRefactory supports the following refactorings: Move Class,

Rename Class, Add an Abstract Superclass, Remove Class, Push

Up Field, Pull Down Field, Move Method.

jFactor [43] jFactor for VisualAge Java is a commercial product that provide a

set of refactorings. Extract Method, Rename Method Variables, In-

troduce Explaining Variable, Inline Temp, Inline Method, Re-

name Method, Pull Up/Push Down Method, Rename Field, Pull

Up/Push Down Field, Encapsulate Field, Extract Superclass/Interface.

Transmogrify [85] Transmogrify is a Java source analysis and manipulation tool.

This tool is under development and currently is focused on the refactoring tool.

It is available as a plug-in for JBuilder and Forte4Java. It supports a limited set

of refactorings such as Extract Method, Replace Temp with Query,

Inline Temp, Pull Up Field.

10

Eclipse [24] Eclipse is a generic development environment by IBM. It also has refac-

toring support and some analysis. This project is open source. The current ver-

sion of Eclipse (Helio version 3.6.1) supports many types of refactorings which

include Move Method, Rename Method, Encapsulate Fields and etc.

Microsoft Visual Studio Microsoft Visual Studio is an integrated development en-

vironment. It supports many primitive refactorings.

Generally, refactoring tools provide a list of refactorings in which the user can

choose from the menu. Once the user chooses which refactoring to apply, the tool

performs analyses in the background checking the required conditions. If those con-

ditions are met, then refactoring can be performed. A few tools, like the refactoring

support in Eclipse, allow the user to preview the resulting code before committing

changes to the code. The preview feature gives the user a better idea of which part

of his code will be affected by such a refactoring and whether it corresponds with his

intention.

There are many refactoring tools for other programming languages like C++.

For instance, Xrefactory also known as xref [95] is a refactoring browser for Emacs,

XEmacs and jEdit. CppRefactory [84] is another open source refactoring tool that

automates the refactoring process in a C++ project. Though the refactoring frame-

work was originally proposed for the object-oriented programming language, many

researchers apply the idea of refactoring to other language paradigms as well. Li and

his colleagues propose refactoring tool support for functional languages [56]. Saadeh

and Kourie [79] developed a refactoring tool for Prolog. The general idea is similar

11

to that of object-oriented languages but the conditions and mechanics are different.

Although most tools discussed in this research apply refactorings by directly ma-

nipulating the source code, many software designers think about refactorings at the

design level. Researchers who are interested in design-level transformations include

Griswold and Bowdidge [40]. They state that it is rather difficult to conceptualize

program structure by just observing the program text. Instead of using program text,

a graphical representation of program structure is used as it permits direct manipu-

lation of the program structure at design level. Gorp et al. [37], Enckevort [26] and

Saadeh et al. [78] and propose techniques to apply refactorings to UML diagrams.

We omit further discussion regarding design-level transformations, since our work

uses source code manipulation approach.

Like Opdyke and Fowler, we believe that refactoring tool cannot be completely

automated. A good refactoring tool should give the developers the final authority.

It must interact with the developer because inferring design intent is difficult. Some

refactorings may introduce a design change which requires software developer’s in-

sights because he has the best knowledge of the program context. A tool can facilitate

the process by suggesting a set of refactorings and helps ensure that each refactoring

is applied correctly.

2.2 Finding Refactoring Candidates or Code Smells

Kataoka et al. [49] propose that program invariants can be used to find refactoring

candidates. First, they define patterns of invariants that identify a potential candidate

12

for each refactoring. If the program invariant match the pattern, it is considered a

refactoring candidate. For instance, a parameter can be removed, if it is not used, it

is a constant, or its value can be computed from other source. The invariant patterns

p for Remove Parameter refactoring are:

• p = constant

• p = f(a, b, . . .)

Their approach is independent of the technique to find invariants. Either dy-

namic or static analysis techniques can be used. The static approach requires the

programmer to explicitly annotate his program with his design intent and most pro-

grammers consider it troublesome to carry out this task. Sometimes invariants are

implicit. An alternative to expecting programmers to annotate code is to automat-

ically infer invariants. Invariant inference can be done by performing statically [29]

or dynamically [27]. With the dynamic approach, the program is instrumented to

trace variables of interest. However, the results from dynamic approach depend on

the quality of test suites. They are, in general, true only for a set of some program

inputs. On the contrary, static analyses are sound with respect to all possible execu-

tions. Hence, it is desirable to combine static with dynamic approach but so far, no

one has succeeded. A detailed evaluation of static and dynamic invariant inference

tools is given by Nimmer and Ernst [70].

Kataoka’s approach is applicable to a limited number of refactorings. Not all

refactoring candidates are discoverable from invariants. Determining other refactoring

13

candidates requires other techniques. Generally, semantic analysis of the program is

required.

Melton and Tempero [64] suggest an approach that identifies refactoring oppor-

tunities using dependency graphs. According to their statement, long cycles are hard

to understand, test and reuse. If someone wants to understand a class in a cycle, he

is required to understand every other class in the dependency cycle as well. Hence,

cycles should be detected and removed. If a class is involved in many cycles, it is

desirable to break the cycle by extracting an interface from such a class.

Many researchers use metrics to identify refactoring candidates [9, 81, 42, 80,

63, 82]. Bieman and Kang define cohesion as a degree to which modules belong to-

gether [9]. Simon and others [81] propose a distance cohesion metric which represents

how close two or more program entities are. They use program visualization as an

aid in interpretation of the results. The distance cohesion metric can be applied to a

limited set of refactorings such as Move Method, Inline/Extract Class. Singh

and Kahlon [82] propose metrics model to identify code smells which include cohe-

sion and encapsulation metrics. They argue that encapsulation should be measured

from the unity and the visibility of class members and introduce two new metrics for

information hiding and encapsulation. In this work, a statistical analysis is applied

on a set of software metrics which is then grouped by Mantyla’s bad smell catego-

rization [59]. The results show that their new encapsulation and information hiding

metrics play a big role in identifying smelly classes.

14

Tourwè and Mens [91] introduce an approach that is independent of language

syntax by using logic meta-programming. Similar to any logic programming, the key

components of this approach are facts and rules. Each program has its own set

of facts. Facts (e.g., inheritance hierarchy) can be derived automatically from the

code. Rules for finding refactoring candidates, on the other hand, must be defined

manually. However, they are true and can be used for any program. This approach

can be applied to any language; nonetheless, the results from this approach are in an

intermediate form. They must be converted to another form so that they can be used

easily in the successive steps. Such a conversion causes some overhead (mapping from

program representation to facts and vice versa). The accuracy of results depends

on the quality and the completeness of defined rules. Moreover, the intermediate

representation may not map well back to the source. For instance, comments may be

lost during the mapping.

While many works focus on detection algorithms for specific smells, Moha et

al. propose a technique to detect design defects using high-level abstraction through

UML class diagrams [65, 66]. They define a meta-model for defects’ specification

and algorithms to detect design defects from the meta-model. Their defect correction

technique is based on a rule-based language.

A number of researches aim to achieve better accuracy in detecting code smells

and/or finding refactoring candidates by performing both structural and semantic

analyses [23, 21, 15, 72]. Conceptual relation or semantic information are extracted

by information retrieval techniques (Shingles, Latent Semantic Indexing) and natural

15

language processing techniques. However, some semantic information can only be

retrieved at run-time which makes semantic analysis (especially through dynamic

metric) a lot more expensive than syntactic or structural-based analysis.

Unlike any previously discussed approaches that consider only the current version

of the source code, a number of research works consider code history through change

metrics [19, 80]. Demeyer et al. [19] focus on the reverse engineering effort by

determining where the implementation has changed. They study the history of the

software and find refactorings between successive versions of software based on change

metrics. Three categories of metrics are considered: 1) method size, 2) class size and

3) inheritance. After deriving the metrics for each version of the software, numbers

from those metrics are then compared. Any substantial differences imply that there

were major changes between versions and that refactorings may have been applied.

The cons to this approach is that software logs must be available; hence, unversioned

software will not benefit from this approach. However, for versioned software, it helps

understand design changes in a software system and learn how it evolves.

2.3 Code Smell Detection Tools

There are a number of tools that support automatic code inspection. The well-known

C analyzer LINT [47] and its Java variant JLINT [3] can check for type violations,

null references, array bounds errors, etc. These tools focus on improving code quality

from a technical perspective. JDeodorant [93, 31] is another code smell detection

tool which specifically identifies type-checking bad smells in Java source code. Code

16

smells that the early version of JDeodorant can detectReplace Conditional with

Polymorphism and Replace Type Code with State/Strategy. JDeodorant,

however, only identifies code smells. It does not provide any suggestions or recom-

mendations on how such smells should be removed. Recent version of JDeodorant [31]

also identifies God Classes, suggests where to apply Extract Class refactoring and

allows the programmer to perform class extraction in the process.

The work by Eva van Emden and Leon Moonen [25] and RevJava [30] are more

closely related to this work as they focus on improving code quality from a program

design and programming practice perspective. RevJava is a Java analysis tool that

performs design review and and architectural conformance checking. Based on prede-

fined and user-defined design rules, the system analyzes Java bytecode, checks if any

rules are violated and reports them to the user. However, RevJava is not suitable for

large software systems because it has no support for visualization of rule violations.

Emden and Moonen [25] categorize code smells into two kinds of aspects: primitive

smell aspects and derived smell aspects. Primitive smell aspects can be observed

directly from the code. Derived smell aspects, on the other hand, are inferred from

other aspects according to a set of inference rules. In this architecture, the detection

of primitive smell aspects and the inference of derived smell aspects are treated as

separate units, and consequently, they are extendable. The programmer can add new

code smells by extending the inference rules.

Unlike RevJava, Emden’s work analyzes Java source code because some coding

standards cannot be checked on bytecode, since the bytecode contains less information

17

than the original source code. The code smells detection process is: 1) find entities

of interest, 2) inspect them for primitive smells, 3) store information in a repository

and 4) infer derived smells from the repository. After the smells have been detected,

they are presented to the user by visualizing the source model using graphs.

2.4 Refactoring and Type Constraints

Type constraints are usually used to type check the program. Some researchers adopt

this idea and add type constraints to the condition check in order to ensure behavior

preservation in refactoring.

Tip et al. [90, 89] use type constraints for a set of refactorings that is related

to generalization, e.g., Pull Up Members and Extract Interface. The type

constraints are used to verify the refactoring’s preconditions.

Research work by Balaban et al. uses type constraints for library class migra-

tion [6]. All methods in legacy classes (e.g., Hashtable and Vector) have been super-

seded by classes (HashMap and ArrayList respectively) which provide similar func-

tionalities except they allow unsynchronized access to their elements. When replacing

legacy classes with unsynchronized, synchronization wrapper. In their research, a set

of type constraint rules to migrate program that uses legacy class are defined. The

programmer must define a set of migration specifications. Type constraint rules are

generated from the given program and migration specifications. The runtime of the

analysis is exponential. They also provide an algorithm for Escape Analysis that is

used to check for thread safety.

18

It is inarguable that type constraints is useful for many refactorings. However, its

usage restricts to only refactorings that involve types and those that could introduce

type violation if applied carelessly.

19

Chapter 3

Refactoring Complexities

Refactorings are structural changes made to a program that preserve program se-

mantics. While many works [33, 88, 10] look at how refactoring could improve the

structure and design of a program, this work focuses on the latter issue i.e., how to

check that the change is semantics preserving. Behavior preservation is important

because if it is not assured, the program could produce different results after the

changes. Refactoring, if applied correctly, is ideal for software evolution, since it is

guaranteed that no new bugs are introduced.

This chapter presents and analyzes a number of refactorings. While the refactor-

ings have been discusssed elsewhere, this work appears to be the first to discuss the

analyses necessary to automate the refactorings.

Most refactorings discussed in this chapter are from the refactoring book by Mar-

tin Fowler [33]. Two additional simple low-level refactorings were noticed while we

were examining an actual case of software evolution: Reverse Conditional and

20

Consolidate Duplicated Conditional Fragments. This chapter categorizes

refactorings as low-level (Section 3.2) and high-level (Section 3.3).

Fowler provides the definition of each refactoring but does not discuss the com-

plexities with respect to behavior preservation. His suggestion is to test the code

and compare the output after each refactoring. This is an ad-hoc approach. Such an

approach is not fool-proof because it relies solely on test cases. Moreover, it could put

programmers in a situation where changes have been made but the refactored code

produces different results. Testing code after refactoring is necessary but insufficient.

This chapter starts with seven properties defined by Opdyke that must be used

to ensure behavior preservation. It describes characteristics and complexities of each

refactoring. Refactoring complexities will be discussed based on properties identified

by Opdyke (Section 3.1). An explanation of why and which analysis is required for

each refactoring in order to keep semantics unchanged (Opdyke’s 7th property) is also

presented in this chapter. Most code examples are from real world projects. Some

are from the Fluid Framework and some are CS552 students and instructors who

generously donated their code.

3.1 Opdyke’s Behavior Preservation Properties

Opdyke [73] has determined a set of properties of programs that must be checked to

ensure behavior preservation. Such properties are:

1. Unique Superclass

21

2. Distinct Class Names

3. Distinct Member Names

4. Inherited Member Variables Not Redefined

5. Compatible Signatures in Member Function Redefinition

6. Type-Safe Assignments

7. Semantically Equivalent References and Operations

The first six properties are syntactic while the seventh property is semantic. The

compiler can usually detect any violations of syntactic properties but not the semantic

property. Checking syntax errors after refactoring is necessary but insufficient to

guarantee behavior preservation. In order to ensure that a program after refactoring

is semantically equivalent to the program before refactoring, the preconditions for

each refactoring must be carefully defined.

One of the most well-known refactoring tools in the market is refactoring support

in Eclipse IDE. Unfortunately Eclipse’s refactoring support only checks the syntax

of the code after applying refactoring. It does not check the conditions related to

program semantics. It employs only the first six properties which do not fully ensure

behavior preservation. Therefore, using Eclipse’s refactoring tool is unsafe because

it may change the semantics of the program. It is conceivable that Eclipse will

integrate code smell detection with the refactoring tool in the future. In this case,

this dissertation still has a positive contribution in the semantic analyses. Such

22

semantic conditions can be used in addition to the syntactic checks. Furthermore, the

contributions from this work are also applicable to other object-oriented languages

and can also be used as a guideline for those who want to implement code smell

warnings for other types of refactorings.

3.2 Low-Level Refactorings

The definition of low-level refactoring in this work is somewhat different from that of

Opdyke’s. While Opdyke defines low-level refactorings as those that for which it is

trivial to show that they are behavior preserving, this work considers a refactoring to

be low-level if it does not involve complicated program analyses to ensure behavior

preservation.

3.2.1 Rename

Renaming is the most frequently used refactoring. It usually takes place when we

find that the name of a program entity does not represent its purpose. It is common

that programmers do not the name right the first time.

Complexities

Renaming may sound simple but implementing such a refactoring while trying to

preserve semantics is not trivial. Suppose a programmer wants to rename a method.

Putting behavior preservation aside, one of the complexities involves updating all

references to use the new name. With behavior preservation in mind, it is necessary

23

to check if the class already has a method with that name before renaming. If such

a method exists, two things could happen, 1) if it has the same signature as the one

to be renamed, a compile error occurs. 2) if they have different signatures, there may

be no compile error but this renaming causes design change, because it introduces

overloading which may cause overloading resolution to give a different result. More

complexities arise since inheritance must also be taken into consideration. In the

object-oriented programming world, looking at the class that defines the method

alone is not sufficient. Though it may look like everything works the same way

within one class, other classes in the same hierarchy may be affected by that change.

We have to go up and down the inheritance hierarchy because renaming without such

information can create overriding. Introducing an overloading/overriding method

may change semantics of the program.

Figure 3.2 demonstrates careless method renaming. Though renaming print

method to display in the class FarewellMessage does not introduce compile er-

rors. Method displayAndExtra in figure 3.2b behaves differently. Unlike the former

code, it shows message Hello instead of Good Bye.

Required Analysis

None.

24

private void updateWarehouse() {
...

writeWarehouse();

}

private void exitWarehouse() {
...

writeWarehouse();

System.exit(0);

}

private void writeWarehouse() {
...

}

(a) before

private void updateWarehouse() {
...

saveWarehouse();

}

private void exitWarehouse() {
...

saveWarehouse();

System.exit(0);

}

private void saveWarehouse() {
...

}

(b) after

Figure 3.1: Rename Method Refactoring

3.2.2 Extract Method

When a method is too long or is doing too much, we can extract a region of code and

make a new method for it. Not only does extracting method make the code more

readable, but it also promotes code reuse. An indirect result of extracting a method

is improving the code maintainability. Sometimes a method is extracted when the

programmer foresees substantial future changes such as adding more responsibilities

to a method.

Complexities

Extract Method is done within a class so it is less complicated than refactorings

that involve more than one classes. The newly extracted method must have access to

all local variables it uses. Therefore, such variables must be passed into the extracted

method as parameters. Fields are exceptions, since they are accessible through out the

class. Figure 3.3 shows how a method is extracted. The programmer wants to extract

25

public class Message {
void display() {
System.out.println(‘‘Hello’’);

}
}

public class FarewellMessage extends Message {
void print() {
System.out.println(‘‘Good Bye’’);

}

void displayAndExtra() {
display(); //print Hello

...

print(); //print Good Bye

}
}

(a) before

public class Message {
void display() {
System.out.println(‘‘Hello’’);

}
}

public class FarewellMessage extends Message {
void display() {
System.out.println(‘‘Good Bye’’);

}

void displayAndExtra() {
display(); //print Good Bye

...

display(); //print Good Bye

}
}

(b) after

Figure 3.2: Careless Method Renaming

26

public void init() {
JTextField textField = _itemPrice;

int iCol = 5;

textField.setColumns(iCol);

textField.setFont(new Font(textField.getFont().getFontName(),

Font.BOLD,

textField.getFont().getSize()));

textField.setBackground(pricePanel.getBackground());

textField.setEditable(false);

textField.setBorder(BorderFactory.createEmptyBorder());

pricePanel.add(textField);

}

(a) before

public void init() {
JTextField textField = itemPrice;

int iCol = 5;

setLabel(pricePanel, textField, iCol);

pricePanel.add(textField);

}

private void setLabel(JPanel pricePanel,

JTextField textField,

int iCol) {
textField.setColumns(iCol);

textField.setFont(new Font(textField.getFont().getFontName(),

Font.BOLD,

textField.getFont().getSize()));

textField.setBackground(pricePanel.getBackground());

textField.setEditable(false);

textField.setBorder(BorderFactory.createEmptyBorder());

}

(b) after

Figure 3.3: Extract Method

a portion of code where several properties of textField are set. Since the extracted

code refers to local variables: pricePanel, textField, iCol, they are added to the

setLabel method signature.

More complexity arises if the extracted code contains an assignment to a local

variable. If that local variable is not used after the extracted code, no other steps

are required. If it is used, the extracted method must return the value of that local

27

static void shipment(Warehouse w, BufferedReader br) {
System.out.println("Please enter order");

Order o = new Order();

o.read(br);

Order l = o.ship(w);

System.out.println("Back-ordered: ");

l.write(System.out);

}

(a) before

static void shipment(Warehouse w, BufferedReader br) {
Order o = readOrder(br);

Order l = o.ship(w);

System.out.println("Back-ordered: ");

l.write(System.out);

}

static Order readOrder(BufferredReader br) {
System.out.println("Please enter order");

Order o = new Order();

o.read(br);

return o;

}

(b) after

Figure 3.4: Method Extraction that Requires a Return Statement

variable. This requirement is established to ensure that the original method still

has access to the same object after the extraction. However, extracting code that

has more than one assignment cannot be done because a method can only return

one value. Consequently, it is necessary to check if there is any assignment to local

variables in that region of code and if so, we have to further check the number of

assignments. If there is only one assignment, we can proceed with the extraction

process. If there is more than one assignment, the code cannot be extracted to a new

method. Assignments to fields do not have this problem and do not require special

treatments, since all methods have access to the class fields. Figure 3.4 illustrates the

situation when a “return” statement has to be added to the extracted method.

28

int currentYear = 2012;

int totalCost = 0;

for (int i = 0; i < employeeList.size(); ++i) {
Employee e = employeeList.get(i);

int cost = e.getManMonth() * e.getStandardRate(currentYear); //to be extracted

totalCost = totalCost + cost;

}

(a) before

int currentYear = 2012;

int totalCost = 0;

for (int i = 0; i < employeeList.size(); ++i) {
Employee e = employeeList.get(i);

totalCost = totalCost + e.getManMonthCost(currentYear);

}

// A newly extracted method in Employee class

public int getManMonthCost(int year) {
return e.getManMonth() * e.getStandardRate(year);

}

(b) after

Figure 3.5: Method Extraction inside a Loop

Required Analysis

Live Variable Analysis: Live variable analysis [69] is used to determine useless vari-

ables. It determines whether a variable will be used in the future. If the variable is

not used, it is considered “dead” and can be removed. For method extraction, live

variable analysis is used in a different aspect. We use the analysis to identify a set of

variables that are used in the extracted code. The result of the analysis represents all

live variables that must be passed as parameters into the newly extracted method.

Furthermore, we need live variable analysis to determine variable definition inside

a loop. If a variable is redefined inside the loop, the extracted method must return

the value for that variable as demonstrated in Figure 3.5

29

if (!isStronger(a, b)) {
winner = b;

} else {
winner = a;

}

(a) before

if (isStronger(a, b)) {
winner = a;

} else {
winner = b;

}

(b) after

Figure 3.6: Reverse Conditional

3.2.3 Reverse Conditional

Reverse conditional refactoring is one of the refactorings that we identified during the

early stages of this research. At that time, we looked at the history of two classes

written in Java, studied changes made in 35 versions over 3 years of development. We

then determined which changes could be done using refactoring. The code is written

and modified by three different people and the final length of the code is XXX lines

so it is a non-trivial project.

It is noteworthy to remark that the name Reverse Conditional is defined by

Bill Murphy and Martin Fowler. Not long after we discovered this refactoring, they

found such a refactoring and gave it an official name on www.refactoring.com.

Reverse Conditional is a very simple refactoring since it does not require

any analysis. Proving that this refactoring preserves program behavior is trivial. It

is simple to perform and is useful, since it can improve the readability of the code.

Both Figure 3.6(a) and Figure 3.6(b) give the same results, the latter code makes

more sense than the former code.

Complexities

None.

30

Required Analysis

None.

3.2.4 Consolidate Duplicated Conditional Fragments

This is another refactoring we discovered that is not in Fowler’s book. It is rec-

ommended when similar fragments of code exist in every branch of a conditional

statement. It is an instance of code hoisting. Code hoisting is an optimization to

reduce code size by eliminating statements that occur in multiple code paths from a

single common point in the CFG. Though performing code hoisting on conditional

statements does not improve code speed as it does for loop invariants, it simplifies

the code and makes the code more manageable. Figure 3.7 shows how statements are

consolidated.

Complexities

In order to safely move the duplicated code fragment out of a conditional statement,

we must be certain that such fragment is not affected by the code nor have effects on

the code inside the branches. In other words, the code inside the branches and the

duplicated code fragment must be independent of each other. The code in Figure 3.7

requires no analysis and can be moved out because the statement is at the end of each

branch. Hence, there is no statement to check for conflicts in effects. If the statement

to be moved is at other locations, it is a general case of statement reordering which

requires Effects Analysis. The complexity of statement reordering will be further

31

depth = 0;

if (first < second) {
...

depth = depth + 1;

} else {
...

depth = depth + 1;

}

(a) before

depth = 0;

if (first < second) {
...

} else {
...

}
depth = depth + 1;

(b) after

Figure 3.7: Consolidate Duplicate Conditional Fragments

described in Section 3.2.5.

Required Analysis

Effects Analysis.

3.2.5 Swap Statements

Swapping statements is primarily changing the order of statements. Figure 3.8 demon-

strates a careless swap. Swapping two statements inside the while loop without check-

ing dependencies causes method factorial to act differently. Using the code in our

example to compute factorial(3), Figure 3.8(a) returns 6 whereas Figure 3.8(b)

returns 2.

32

// factorial(3) = 6

int factorial(int x) {
int fact = 1;

int y = x;

while (y > 0) {
fact = fact * y;

y = y - 1;

}
return fact;

}

(a) before

// factorial(3) = 2

int factorial(int x) {
int fact = 1;

int y = x;

while (y > 0) {
y = y - 1;

fact = fact * y;

}
return fact;

}

(b) after

Figure 3.8: Bad Statement Swap

Complexities

Swapping two statements sounds straightforward but when semantic preservation

must be taken into account, it is no longer trivial. Analysis is needed because two

statements can be swapped only if they do not “interfere” with each other.

Behavior preservation cannot be guaranteed if a statement does not terminate

or throws an exception. The semantic conditions in this research are based on an

assumption that both statements terminate normally in all cases.

33

Required Analysis

Effects Analysis: Boyland and Greenhouse introduce an effects system for object-

oriented programming [39]. They define two kinds of effects: read effects and write

effects. Read effects are those that may read the contents of a mutable state. Write

effects are those that may change or read the contents of a mutable state. Statements

interfere with each other if they are flow dependent (write, read), output dependent

(write, write) or anti-dependent (read, write). In other words, two effects conflict if

at least one is a write effect and they involve targets that may overlap. A target is a

mutable variable or a mutable state of an instance of a class.

Let s1 and s2 be two consecutive statements, x be an arbitrary variable or a

mutable object. Statements s1 and s2 do not interfere with each other if:

∀x : s1 and s2 that have an overlapped target x

Effect(s1) 6∋ (write, x) ∧ Effect(s2) 6∋ (write, x)

Let’s revisit Figure 3.8 and see how effects analysis plays a crucial role in this

refactoring. According to the condition discussed previously, if statements fact =

fact - 1 and y = y - 1 have effects on a target variable, both statements must not

write it. However, when we compute the read/write effects of the two statements, we

get the following results:

[5] : fact = fact ∗ y

Effect([5]) = {(read, fact), (read, y), (write, fact)}

34

[6] : y = y− 1

Effect([6]) = {(read, y), (write, y)}

As seen above, statement [6] writes y while statement [5] reads it which violates

the semantic preservation condition. Hence, these two statements cannot be swapped

without affecting program behavior.

Our condition is not too restrictive. Though the condition requires two statements

to be consecutive, it is generalized and can be applied to non-consecutive statements.

Swapping non-consecutive statements is literally performing a series of swaps on two

consecutive statements. Suppose there is a series of statements (s1; s2; . . . si;) and

we want to swap statements si with s1. There will be 2i − 3 swaps i.e., i − 1 swaps

from moving si in front of s1 and i − 2 swaps from moving s1 after si−1. If the

statement is being moved downward in the CFG, we have to compute the effects of

such a statement and those below it. Similarly, if it is being moved up the CFG, we

have to check its effects against the effects of all statements above it. Below exhibits

steps taken when swapping si with s1.

35

s1; s2; . . . si−1; si; si+1; . . . sn−1; sn;

s1; s2; . . . si; si−1; si+1; . . . sn−1; sn;

...

s1; si; s2; . . . si−1; si+1; . . . sn−1; sn;

si; s1; s2; . . . si−1; si+1; . . . sn−1; sn;

si; s2; s1; . . . si−1; si+1; . . . sn−1; sn;

...

si; s2; . . . s1; si−1; si+1; . . . sn−1; sn;

si; s2; . . . si−1; s1; si+1; . . . sn−1; sn;

It is worth noting that the implementation does not have to perform the interme-

diate swaps. It only has to check the effects 2i−3 times. After all effects are checked,

we can change the order of s1 and si in one swap.

Special case: If the statement is inside a loop (for, while) and we want to move it

up (outside), we must check all effects against itself and their conditions. Moreover,

Reaching Definition Analysis [69] is needed to determine loop invariant. However,

if a statement is being moved outside an if statement, an extra check is needed

i.e., it must occur in every branch. See Consolidate Conditional Fragment in

Section 3.2.4.

36

3.3 High-Level Refactorings

High-level refactorings are those that are difficult to implement and require program

analysis to ensure behavior preservation. Since the definition of high-level refactoring

in this work is different than Opdyke’s, many may refer some refactorings in this

section as low-level.

3.3.1 Inline Method

Method inlining is basically an inverse of method extraction. This particular refac-

toring inlines all invocations of a method and remove its declaration. Sometimes a

programmer considers inlining a method if he finds that such a method does not have

a lot of responsibilities. There are no apparent rules as to when to extract or inline

a method. The decision is made based on each individual’s preference.

Complexities

Inline method involves an opposite issue of that of Extract Method. It is

normal that a method to be inlined has a number of local variable definitions. When

inlining, such variables will be introduced to the target method. Hence, our behavior

preserving task involves checking if the target has already defined variables with the

same names. If the variable names conflict, they have to be renamed. Otherwise, it

will introduce variable re-definitions and cause compile errors (if in the same scope)

or cause the program to behave differently (if in a different scope).

Though method inlining involves changing the code in a single class, it could affect

37

other parts of the program depending on the type of the methods. No further checks

are required for private method because it is invisible to other classes. Hence, the

changes have no effects on them. The same issue applies to final methods. When

a method is declared final, no other classes can override it so it is safe to perform

inlining.

However, if a method could be overridden, there is a high risk in changing the

behavior. If the subclasses override the method that is being inlined, their behav-

ior will definitely be affected. Consider Figure 3.9 which shows an instance of the

problems. Suppose the programmer wants to inline method restockItem in class

Merchant. It is obvious that there is no behavioral change for class Merchant. How-

ever, Retailer, a subclass of Merchant redefines (overrides) restockItem method.

Inlining restockItem into checkStock affects Retailer’s behavior. Retailer.checkStock

puts 5 items on the shelves before inlining but it puts 20 items after the change.

Required Analysis

None, if the method to be inlined is final or private i.e., the method cannot be

overridden. If it is neither final nor private, an approach similar to devirtualization

is needed. Devirtualization is an optimization technique to reduce the overhead of

virtual (dynamic) method call by replacing a virtual method call with a particular

method of a class. Though Inline Method refactoring does not focus on optimiza-

tion, their mechanics and complexities are the same.

Class Hierarchy Analysis (CHA) [17] is one of the most well-known techniques for

38

// Merchant.checkStock - restock 20 items if no item is in stock

class Merchant {
void checkStock(Item item) {
if (getQuantity(item) == 0)

restockItem(Item item);

}

void restockItem(Item item) {
_shelves.put(item, 20);

}
}

// Retailer.checkStock - restock 5 items if no item is in stock

class Retailer extends Merchant {
void restockItem(Item item) {
_shelves.put(item, 5);

}
}

(a) before

// Merchant.checkStock - restock 20 items

class Merchant {
void checkStock(Item item) {
if (getQuantity(item) == 0)

_shelves.put(item, 20);

}
}

// Retailer.checkStock - now restocks 20 item!!

class Retailer extends Merchant {
void restockItem(Item item) {

shelves.put(item, 5);

}
}

(b) after

Figure 3.9: Careless Inline Method

39

Figure 3.10: Class Hiearchy Analysis

devirtualization. It is a static analysis that determines a set of possible targets of a

dynamic method call with the class hierarchy of the whole program. If it is possible

to determine that there is no overridden method, the dynamic method call can be

replaced with inlined code. CHA can be performed without programmer intervention.

Ishizaki et al. claim the accuracy of class hierarchy analysis can be improved by adding

type analysis and preexistence analysis [45].

Figure 3.10 illustrates a result of class hierarchy analysis for Merchant and Retailer

code. Let’s consider the situation where a programmer wants to inline method

restockItem into checkStock. Using CHA, we are able to determine that class

Retailer overrides method checkStock which reveals that the inlining should not

take place.

A thorough discussion on method inlining can be found in the work by Detlefs

and Agesen [20]. Sometimes the system’s performance gets worse because type casts

40

are usually inserted to preserve typability. Glew and Palsberg [35] discuss type-safe

inlining. There are many techniques for devirtualization not discussed here.

3.3.2 Move Method

Move Method is used to move a method to a different class than the one it is defined

in. A method is usually moved when the programmer finds that such a method does

not belong in the class in which it is defined. It is collaborating too much with other

classes. Such collaboration includes using or being used by more features of other

classes than the class it lives in. Consequently, classes become too highly coupled

which is poor design.

Moving a method to the superclass/subclass is also known as Pull Up Method/

Push Down Method. An example of a method move between unrelated classes is

depicted in Figure 3.11.

Complexities

One of the issues when moving a method is to avoid name conflict. Similar to renam-

ing, it is necessary to check that the target class does not have a method with the

same name. Checking for name conflicts must also be done on the entire inheritance

hierarchy to ensure behavior preservation. The reasons behind this issue are already

discussed in Section 3.2.1.

The other issue involves the possibility that the method being moved overrides

that of its superclass. If it is overridden, any subclasses that override the method will

41

Refactoring Analysis
Rename None

Move Method None
Extract Method Live Variable Analysis

Inline Method Class Hierarchy Analysis
Reverse Conditional None

Consolidate Duplicated Conditional Fragments Effects Analysis
Swap Statements Effects Analysis

Move Field to Component Class Uniqueness Analysis
Move Method to Component Class Uniqueness Analysis

Move Field to Aggregate Class Uniqueness Analysis

Table 3.1: Refactorings and Analyses

be disturbed. A more detailed discussion was provided in Section 3.3.1. To ensure

behavior preservation, our work will not allow the move if it is an overriding method.

After a method is moved, it must still be accessible from its callers. To avoid any

compile errors, the modifier of the moved method must be changed accordingly. For

simplicity, this work always makes the moved method public.

Maruyama and Takayuki also describe the complexities and security issues con-

cerning Pull Up Method and Push Down Method [61]. Their concern is mainly

on preventing unauthorized external code to access sensitive data. The degree of con-

fidentiality or access level are measured and if the access level of the modified source

code is decreased or downgraded, they consider the modified code to be vulnerable

to attackers.

Required Analysis

None.

42

public class Driver {
...

private static void writeWarehouse(String strFileName) throws IOException {
File objFile = new File(strFileName);

Warehouse objWh = Warehouse.getInstance();

if (objFile.exists() && objFile.canWrite()) {
PrintStream psWrite = new PrintStream(new FileOutputStream(objFile));

objWh.write(psWrite);

} else {
objWh.write(System.out);

}
}

}

(a) before

public class Driver {
...

public void init() {
...

Warehouse.writeWarehouse(‘‘warehouse.dat’’);

}
}

public class Warehouse {
public static void writeWarehouse(String strFileName) throws IOException {
File objFile = new File(strFileName);

if (objFile.exists() && objFile.canWrite()) {
PrintStream psWrite = new PrintStream(new FileOutputStream(objFile));

this.write(psWrite);

} else {
this.write(System.out);

}
}

}

(b) after

Figure 3.11: Move Method

43

3.3.3 Convert Inheritance into Aggregation

Inheritance represents “is-a” relationship while aggregation/components represents

“has-a” or “whole/part” relationship. According to Foote and Opdyke [32], Con-

vert Inheritance into Aggregation refactoring supports software evolution

and reuse. Changing inheritance into aggregation offers many benefits. Such benefits

include “part” encapsulation where Gamma et al. call it “black-box reuse” [34]. The

term black-box is derived from the fact that the internal structure of objects is invis-

ible to the clients. The implementation of a subclass may become so dependent with

its superclass that changes in the superclass will cause the subclass to change. With

aggregation, there are fewer implementation dependencies. Moreover, an aggregate

could have more than one instance of a component class. While inherited parts are

static, aggregation allows a class to change their components at runtime.

Each programmer has different viewpoints and they do not always choose the

correct mechanism for modeling a particular relationship [73, 46]. However, as a

program evolves, the relationships between classes become more evident. Convert

Inheritance into Aggregation refactoring allows the programmer to convert

a subclass/superclass relationship into an aggregation. Every behavior inherited by

the subclass from its superclass before this refactoring will be delegated to a new

component, which is an instance of the old superclass.

Consider a class TwoDimensionalArray that defines a field elements and methods

to access and manage its elements and a class Matrix that implements matrix opera-

tions. The original design is that the Matrix class inherits the TwoDimensionalArray

44

class. It is later realized that not all matrices should be conveyed in two-dimensional

array, for instance using other kinds of representation for a sparse matrix would be

more efficient. A matrix is not a representation. It “has” a representation. Hence, it

is advisable to convert the original design from inheritance to aggregation.

Complexities

Converting inheritance into aggregation is complicated because it involves changing

an inheritance hierarchy. The first thing to consider when inheritance changes is the

accessibility to inherited methods and fields as they must still be accessible from the

aggregate class when the changes occur. Method and field references must be updated

not only in the aggregate class, but also in its clients.

Updating references to inherited fields and methods can be tricky. There is a

possibility that the aggregate class has a subclass that overrides a method of the

component. Consider a situation where a class UpperTriangularMatrix which is

a subclass of Matrix overrides the method putElement so that it prevents putting

values other than 0 below the diagonal. The scope of reference updates must be

expanded to cover all subclasses of the aggregate. Opdyke does not mention this

issue in his work.

Required Analysis

None.

45

public class Automobile {
Engine autoEngine;

int numOfPassenger;

Tire leftFrontTire;

Tire rightFrontTire;

Tire leftRearTire;

Tire rightRearTire;

...

}

Figure 3.12: Aggregate/Component Relationship

3.3.4 Move Members between Aggregate and Component

Class

As discussed in the previous section, aggregation/components represents “has-a” or

“whole-part” relationship. The idea of the Whole-Part pattern is to introduce a

component (the whole) that encapsulates smaller objects (the parts) which prevents

clients from accessing these parts directly.

For instance, an automobile is composed of a body, four tires, a steering wheel

and an engine. The car itself is an aggregate component while the tires, steering

wheel and engine are parts (components) of the car. Figure 3.12 shows aggregate

and component classes. Automobile is an aggregate class, while Engine and Tire are

component classes.

It is sometimes necessary to move class members between aggregate and compo-

nent classes. The original design may be improper or unsuitable with the current

requirements. It may grant or restrict too much client’s access. Moving members

to a component class restricts access from other clients. On the contrary, moving

members to an aggregate class removes permits direct access from clients.

46

Moving members between aggregate and component classes is not easy to accom-

plish without error. It is a special case of Move Method so it inherits all complex-

ities that were discussed in Section 3.3.2. Typically, the part can only belong to one

whole at a time (Figure 3.13). In addition, each part in one whole must be unique

(Figure 3.14). Checking these conditions requires uniqueness analysis. Performing

these changes automatically with precondition checks eliminates the possibility of

inadvertently changing behavior.

• Move Field to Component requires uniqueness analysis on the component

field, not the field being moved before moving members from an aggregate to a

component class. It is required to determine whether a variable qualifies as a

component member variable i.e., every object assigned to it is not also assigned

to another component variable.

• Move Method to Component does not require a component to be an ex-

clusive component of an aggregate class. Methods are different from fields as

they are considered as services. However, it does require that a reference to the

component class must be reachable whenever a method is called. In addition,

the method must still be able to refer to an instance of the aggregate after the

move. They are the same requirements as Move Method discussed in Sec-

tion 3.3.2. The reference in the latter case could be carried out by adding an

extra parameter to the method which creates delegation.

• Move Field into Aggregate is an inverse operation of Move Field to

47

public class AutomobileFactory {
Automobile car = new Automobile();

Tire temp = new Tire();

car.leftFrontTire = temp;

car.rightFrontTire = temp;

}

Figure 3.13: Nonexclusive Components (1)

public class AutomobileFactory {
Automobile car1 = new Automobile();

Automobile car2 = new Automobile();

Tire temp = new Tire();

car1.leftFrontTire = temp;

car2.leftFrontTire = temp;

}

Figure 3.14: Nonexclusive Components (2)

Component which also requires uniqueness analysis. For the same reason,

variables from the component class can be moved to an aggregate class only

if the component is exclusive. If an aggregate has more than one instance of

a component, moving a field to an aggregate will require adding a variable for

each instance.

Complexities

Moving members between aggregate and component classes is a variant of Move

Method and Move Field. In addition to complexities discussed in Section 3.3.2,

it requires further analysis. It is more complicated than a normal move because it

is required that such a component be exclusive. If a component is nonexclusive, the

member cannot be moved because doing so will change program behavior.

Consider the code shown in Figure 3.15(a), the Automobile class contains 4 tires

and one warranty expiration for each tire. For design reasons, the programmer wants

48

public class Automobile {
Engine autoEngine;

int numOfPassenger;

Tire leftFrontTire;

Tire rightFrontTire;

Tire leftRearTire;

Tire rightRearTire;

WarrantyInfo warrantyExpirationLeftFrontTire;

WarrantyInfo warrantyExpirationRightFrontTire;

WarrantyInfo warrantyExpirationLeftRearTire;

WarrantyInfo warrantyExpirationRightRearTire;

...

}

public class Tire {
...

}

(a) before

public class Automobile {
Engine autoEngine;

int numOfPassenger;

Tire leftFrontTire;

Tire rightFrontTire;

Tire leftRearTire;

Tire rightRearTire

...

}

public class Tire {
...

WarrantyInfo warrantyExpiration;

}

(b) after

Figure 3.15: Moving members

49

to move warranty expiration to the Tire class. Since Tire is a component class of Au-

tomobile class, we have to check if all instances of rightFrontTire, leftFrontTire,

rightRearTire and leftRearTire are unique. If they pass uniqueness analysis, war-

ranty information can be moved to the Tire class safely as seen in Figure 3.15(b).

Figure 3.13 and Figure 3.14 illustrate two scenarios of nonexclusive components. In

Figure 3.13, the same tire is assigned as the left front tire and right front tire. In

this case, both leftFrontTire and rightFrontTire are not exclusive components.

Let’s look at Figure 3.14. This time the same tire is assigned as the left front tire of

two different cars. car1.leftFrontTire and car2.leftFrontTire are not unique.

Therefore, leftFrontTire of class Automobile cannot be designated as an exclusive

component.

Required Analysis

Uniqueness analysis is an analysis that determines whether a variable or an object is

unique at a specific program point [5, 11].

3.3.5 Create Abstract Superclass

Using an abstract superclass is a classic design pattern [34]. An abstract superclass is

desirable when two sibling classes implement and use common features. An abstract

superclass supports code reuse and indirectly reduces a number of duplicated code.

Opdyke and Johnson [74] have shown that it is feasible to create abstract super-

class by a series of atomic refactorings: Move Method and Move Field which

50

public class Car {
int mpg;

double fuelInTank;

public Car() {
mpg = 35;

fuelInTank = 6.056;

}
public void pumpGas(double g) {
fuelInTank = fuelInTank + g;

}
public void drive(double miles) {
double used = miles / mpg;

fuelInTank = fuelInTank - used;

}
}

public class Truck {
int mpg;

double fuelInTank;

public Truck() {
mpg = 25;

fuelInTank = 11.355;

}
public void pumpGas(double g) {
fuelInTank = fuelInTank + g;

}
public void drive(double miles) {
double used = miles / mpg;

fuelInTank = fuelInTank - used;

}
}

(a) before

abstract class Automobile {
int mpg;

double fuelInTank;

public void pumpGas(double g) {
fuelInTank = fuelInTank + g;

}

public void drive(double miles) {
double used = miles / mpg;

fuelInTank = fuelInTank - used;

}
}

class Car extends Automobile {
public Car() {
mpg = 35;

fuelInTank = 6.056;

}
}

class Truck extends Automobile {
public Truck() {
mpg = 25;

fuelInTank = 11.355;

}
}

(b) after

Figure 3.16: Create Abstract Superclass

could be done after a new class with a unique name is created.

Complexities

One of the complexities of Create Abstract Superclass is finding common code

that can be migrated to the abstract superclass.

Another complexity relates to how we deal with common abstractions. Since it

51

involves moving common methods to the abstract superclass, it inherits some com-

plexities of Move Method which have been discussed in Section 3.3.2. However,

some of the condition checks could be skipped because the newly created abstract

class is empty and has no members defined. There are no name conflicts in fields and

methods. In addition to Move Method, fields that are referenced by the common

code must also be moved to the superclass.

Figure 3.16(a) shows that class Car and Truck implement similar sets of meth-

ods. This situation is an instance of duplicated code. Introducing an abstract class

Automobile which centralizes the responsibilities obviously yields a better design.

The changes that had to be done in two places formerly, can be taken care of in just

one place.

Required Analysis

Duplicated Code Analysis. Furthermore, they must already have a common super-

class or no other superclass than java.lang.Object.

3.4 Discussion and Summary

In this chapter, we provide the descriptions and complexities of each refactoring as

well as the analyses that it requires to ensure behavior preservation. For some refac-

torings, the behavior preservation condition check is more complicated than applying

52

refactoring itself to the code. Semantic properties for some refactorings require exten-

sive program analysis. For instance, Swap Statements and Consolidate Con-

ditional Fragments require effects analysis. Moving fields between aggregate and

component requires uniqueness analysis.

In general, the following conditions must be considered when refactoring.

Redefinitions When a new entity is created, it is necessary to determine if the name

conflicts with the existing declarations to avoid redefinitions.

• local variables: could cause compile errors and semantic change depending

of the scope.

• fields: could cause compile errors and hiding

• methods: could introduce overriding and overloading.

Effects of the changes We need to take into consideration how the changes affect

other parts of the program. In object-oriented programming, it is inadequate

to analyze only the class that is being changed because it could be inherited.

For instance, inlining a method that could be overridden requires some devir-

tualization analysis such as class hierarchy analysis.

For many refactorings, the complexities come from ensuring reachability and up-

dating references.

53

3.5 Summary

This chapter has shown that a simple refactoring could change the program semantics.

Program behavior is sensitive to changes even small ones. Every change made to the

program should not be taken for granted.

54

Chapter 4

Code Smells

Code smells are design flaws that can be solved by refactorings. They are considered

as flags to the developer that some parts of the design may be inappropriate and that

it can be improved. For the purpose of this work, we discuss a few representative

code smells. There are a lot of code smells not mentioned nor developed in this work.

A thorough catalog of code smells can be found in Fowler’s refactoring book [33].

As this work focuses on program analysis, code smells discussed in this work include

those that require analyses. Though this work develops only a subset of the code

smells, it provides some grounds which can be adapted to other types of code smells.

4.1 Duplicated Code

Duplicated code (code clone) is one of the most common problems in software

development. Previous work [55, 4] suggests that about 5-10% of the source of large

55

scale programs is duplicated code. A number of recent studies show that many well-

known open source systems have substantial duplicated code problems. The Java

JDK (2002) is 21-29% duplicated [48]. The Linux kernel (2002) is estimated at 15-

25% duplicated [1]. The GNU compiler (1999) is about 19% duplicated [22].

Duplicated code is usually caused by copy-and-paste action with an intent to

reuse the code. This technique is easy and cheap during software development but it

is considered bad practice. It makes software maintenance more complicated in many

ways: 1) If there exist bugs or errors in the original code, they will be propagated

with every duplication. 2) More generally, when an instance of duplicated code needs

to be changed, all other duplicated instances must also be modified. 3) Furthermore,

duplicated code makes performing code auditing more difficult. Code auditing is an

analysis of source code with attempts to reduce software vulnerabilities.

4.1.1 Detecting Duplicated Code

Researchers have developed a number of approaches for so called “clone detection”

[8, 22, 52, 48]. These approaches are:

• text-based [22]. This approach is language independent but it can only detect

exact textual matches. Similar code with different variable names is considered

different.

• graph-based [52, 54]. This approach uses program dependence graphs (PDGs).

Krinke [54] finds similar code based on identifying maximal similar subgraphs.

56

Komondoor and Horwitz [52] use program slicing which allows non-contiguous

clones to be detected.

• token-based [48]. Token-based approach lies somewhere in between the text-

based and syntax-based. The source code are tokenized using a lexer. It is

able to detect non-exact matches. It is one of the most effective aproach that

balances soundness and speed.

• syntax-based [8]. Baxter and others use abstract syntax trees to detect exact

match or near-miss clones. This approach can be applied to arbitrary program

fragments. However, it cannot detect a clone where statements are arranged in

different order.

Each of the discussed approaches has its pros and cons. This work chooses to

use the syntax-based method because it is simple to implement in our AST-based

analysis framework.

4.1.2 Refactorings for Duplicated Code

Duplicated code can be removed by different types of refactorings depending on where

duplicates are found.

1. If they are in different methods of the same class, duplicated code can be re-

moved by Extract Method.

2. If they are in two sibling classes, use Extract Method and/or Pull Up

Method.

57

private void updateItemPanel() {
Item item = getItem();

int q = getQuantity();

if (item == null) {
itemPanel.clear();

} else {
itemPanel.setItem(item);

int inStock = Warehouse.getInstance().getQuantity(item);

itemPanel.setInstock(q <= inStock && 0 < inStock);

}
}

Figure 4.1: Feature envy

3. If they are in two unrelated classes, use Extract Class and/or Extract

Method.

4.2 Feature Envy

Feature Envy occurs when a method seems to be more interested in some other

class than the one it is defined in. It designates improper coupling between classes.

An instance of Feature Envy is shown in Figure 4.1. Method updateItemPanel

is defined in class OrderItemPanel. However, it is mostly interested in ItemPanel,

since it invokes ItemPanel’s methods on the field itemPanel several times. Such in-

vocations could be moved to the ItemPanel class in order to centralizes manipulations

to the defining class.

4.2.1 Detecting Feature Envy

Feature Envy is a sign of improper coupling and cohesion. With this knowledge,

cohesion and coupling measures seem to be the best candidates in finding feature envy

in a class. We have done experiments on a number of cohesion and coupling metrics.

58

Unfortunately, none of them performed well when it comes to detecting feature envy.

The results from cohesion and coupling measures are too broad as they can only tell

which class is not cohesive and/or highly coupled with other classes. They do not

tell which method has feature envy. Therefore, we developed a new metric to detect

feature envy. The new metric will be discussed in more details in chapter 5.

4.2.2 Refactorings for Feature Envy

Move Method is required for all instances of feature envy. The purpose of this

refactoring is to put a method in a class that is more suitable. The pre-condition

for Move Method and its complexities are discussed in section 3.3.2. In addition

to Move Method, Extract Method is needed if the problematic code does not

cover the entire method. It is used as an intermediate step before the actual move.

Let’s revisit an example in Figure 4.1. Method updateItemPanel has a portion

of code that seems to be more interested in ItemPanel. It calls clear, setItem and

setInstock on the field itemPanel. Since those calls are inside an if statement,

the if that covers method invocations on itemPanel could be extracted as shown

in Figure 4.2(a) and moved to ItemPanel class as showned in Figure 4.2(b). In this

particular example, ItemPanel is a component of OrderItemPanel. Hence, a special

case of Move Method that is Move Method to Component is used.

59

private void updateItemPanel() {
Item item = getItem();

int q = getQuantity();

doUpdate(item, q);

}

private void doUpdate(Item item, int quantity) {
if (item == null) {

itemPanel.clear();

} else {
itemPanel.setItem(item);

int inStock = Warehouse.getInstance().getQuantity(item);

itemPanel.setInstock(q <= inStock && 0 < inStock);

}
}

(a) Extract Method doUpdate

public class OrderItemPanel {
...

private void updateItemPanel() {
Item item = getItem();

int q = getQuantity();

itemPanel.doUpdate(item, q);

}
}

public class ItemPanel {
public void doUpdate(Item item, int quantity) {
if (item == null) {
clear();

} else {
setItem(item);

int inStock = Warehouse.getInstance().getQuantity(item);

setInstock(q <= inStock && 0 < inStock);

}
}

}

(b) Move Method doUpdate to Component ItemPanel

Figure 4.2: Remove Feature Envy by Refactorings

60

4.3 Data Class

A class that contains nothing but fields and get/set methods is called data class.

When a class has no responsibility other than handing its data to the outsiders, it

implies that its data is being manipulated by other classes. In practice, data should

be encapsulated and not be exposed to others. Consider Figure 4.3(a), class ItemList

only defines a constructor and a getItemList method which their only references are

in OrderItemWindow class. OrderItemWindow solely controls itemList after creating

an instance and obtaining the data (objItemList.getItemList). The whole class

can be moved to OrderItemWindow and deleted as seen in Figure 4.3(b).

4.3.1 Detecting Data Class

Figure 4.5 describes an algorithm that this research uses to detect a data class. Each

class is evaluated by its members. If a class only has fields and “special” methods,

it is considered to be a data class. Special methods include constructors and set/get

methods. The tree structures of set/get methods are established as a benchmark

in Figure 4.4. A method is determined by comparing its AST with the pre-defined

patterns. If they match, it is marked as a special method. Fields and constructors do

not need special treatments because they can be detected firsthanded by their node

types.

61

abstract public class OrderItemWindow {
...

protected static JList itemList;

public OrderItemWindow(JFrame objParentFrame,

Order objOrder,

OrderItem objOrderItem) {
...

ItemList objItemList = new ItemList();

itemList = objItemList.getItemList();

}
}

public class ItemList extends JList {
private JList itemList;

DefaultListModel listModel = new DefaultListModel();

public ItemList() {
Iterator iter = Catalog.getInstance().getIterator();

while(iter.hasNext())

listModel.addElement((Item)iter.next());

itemList = new JList(listModel);

}

public JList getItemList() {
return itemList;

}
}

(a) before

abstract public class OrderItemWindow {
...

protected static JList itemList;

public OrderItemWindow(JFrame objParentFrame,

Order objOrder,

OrderItem objOrderItem) {
...

Iterator iter = Catalog.getInstance().getIterator();

DefaultListModel listModel = new DefaultListModel();

while (iter.hasNext())

listModel.addElement((Item) iter.next());

itemList = new JList(listModel);

}
}

(b) after

Figure 4.3: Data Class

62

(a) set method

(b) get method

Figure 4.4: Special Method Patterns

63

methods = {a method defined in a class}
for each method ∈ methods do {

if method’s structure matches special method’s patterns
return false

}
return true

Figure 4.5: Algorithm to detect data class

4.3.2 Refactorings for Data Class

There are two options to handle a data class. We could delete it after moving its class

members to other class or assign more responsibilities to it.

Delete Data Class - For all fields and methods declared in the data class, we ap-

ply Move Field and Move Method to relocate the data class’s members

to other classes that uses them. Then, the data class is deleted after the move

is complete. However, the target classes could be in the same inheritance hi-

erarchy. Adding features to every class will introduce field redefinitions and

method overriding. To conservatively prevent any syntactic and semantic prob-

lems, features should be added to only one class. Determining which class in

the hierarchy is the most suitable can be very complicated.

Keep Data Class - Adding more responsibilities to the data class is one other al-

ternative. Move Method that uses members of the data class from other

classes.

Nonetheless, a data class could be a growing class whose features have yet to

be implemented. The tool implemented in this research does not take that into

64

consideration. It is left up to the developer to make the final decision whether the

suspected class is indeed a data class.

4.4 Switch Statement

A switch statement is basically another syntactic form of if-else statement. It makes

the code more readable. In imperative programming, programmers usually use a

switch statement to make polymorphic calls. However, it is different in object-oriented

programming as polymorphism is handled automatically by the compiler also using

dynamic dispatch. In object-oriented programming, a switch statement should not be

used in place of polymorphism.

It is believed that replacing conditionals with polymorphism could cause the per-

formance to degrade. Polymorphism resolution introduces extra processor time to

consult the method lookup table (Java) or virtual function table (C++). There-

fore, programmers usually argue that the cost of refactoring is too high. Demeyer

determines the performance cost in replacing a conditional with polymorphism [18].

According to his experiments on C++ programs using the best possible optimization,

virtual functions and switch statements have similar overhead. He also concludes that

refactorings that move behavior close to data improve maintainability without sacri-

ficing performance.

65

class Student {
public static int UNDERGRAD = 1;

public static int GRADUATE = 2;

public static int DISSERTATOR = 3;

static double segregated_fee = 300;

private int num_credits;

private int classification;

public Student(int c, int cls) {
num_credits = c;

classification = cls;

}

public double getTuition() {
switch (getClassification()) {
case UNDERGRAD:

return segregated_fee + 300 * num_credits;

case GRADUATE:

return segregated_fee + 350 * num_credits;

case DISSERTATOR:

return segregated_fee + 200 * num_credits;

}
}

public int getClassification() {
return classification;

}
}

Figure 4.6: Poor Use of Switch Statement

4.4.1 Detecting a Switch Statement

For most code smells, the most difficult part is determining how to locate them and

the easier part is the removal. Unlike other code smells, removing a switch statement

is not as easy as locating it. Finding a switch statement in general is not difficult.

We can perform a tree walk on the AST. Then, each switch statement found is added

to a set of smells. However, reporting all switch statements found in the code is not

desirable. There will be a lot of false positives. A false positive, in this case, is a switch

statement that is not used to represent polymorphism. For instance, using a switch

statement in an abstract factory method is appropriate. An abstract factory is one

66

public Student newStudent(int classification) {
switch (classification) {
case UNDERGRAD:

return new Undergraduate();

case GRADUATE:

return new Graduate();

case DISSERTATOR:

return new Dissertator();

}
}

Figure 4.7: False Positive for Switch Statement

badSwitch = ∅
for each node in the AST
node is a switch statement
for each case in switch

if a new expression is not a child node of statements’ case
badSwitch = badSwitch ∩ node

Figure 4.8: Algorithm to detect switch statement

of design patterns defined by the Gang of Four [34]. As shown in Figure 4.7, method

newStudent creates a new instance of Student based on the given classification which

is perfectly legitimate.

Our goal here is to reduce the number of false positives. Determining which switch

statement is bad is challenging. To avoid mistakenly detecting an abstract factory as

bad use of a switch statement, this work ignores those that contain new expressions.

An algorithm to detect a switch statement is trivial but is shown in Figure 4.8 for

completeness.

67

4.4.2 Refactorings for Switch Statement

Fowler has defined two composite refactorings called Replace Conditional with

Polymorphism and Replace Type Code with Subclasses. Such refactorings

are to be used to remove bad switch statements. For Replace Conditional with

Polymorphism, a list of statements in each case are extracted to create an overriding

method in the corresponding subclass. A switch statement is removed and the original

method is made abstract. Nonetheless, it may be necessary to first apply Replace

Type Code with Subclasses, if no subclasses are defined. This refactoring creates

a subclass for each case in switch statement. Figure 4.9 illustrates the code after

applying both refactoring in attempts to remove a switch statement from Figure 4.6.

It is worth noting that the design may not be optimal after the switch state-

ment is removed. More transformations may be necessary depending on the body

of each case in the switch statement. For instance, the code in Figure 4.9 can be

further improved by adding a new field fee per credit which leads to duplicates

in getTuition method. Such methods can be move to class Student as discussed

in Section 4.1. The final code after the transformations is depicted in Figure 4.10.

This research only attempts to remove a switch statement that is used in place of

polymorphism. We do not intend to provide the algorithm that will yield an optimal

design. Further improvements on the code’s structure are left to the developer to

carry out himself.

68

abstract class Student {
static double segregated_fee = 300;

private int num_credits;

abstract public static double getTuition();

}

class Undergraduate extends Student {
...

public static double getTuition() {
return segregated_fee + 300 * num_credits;

}
}

class Graduate extends Student {
...

public static double getTuition() {
return segregated_fee + 350 * num_credits;

}
}

class Dissertator extends Student {
...

public static double getTuition() {
return segregated_fee + 200 * num_credits;

}
}

Figure 4.9: Remove Switch Statement

4.5 Summary

This chapter has described the code smells studied for this dissertation as well as the

sequence of refactorings that can be applied to remove each code smell. We also pro-

vide algorithms for detecting each smell. In particular, this work uses an AST-based

algorithm to detect duplicated code which cannot detect clones created by statement

reordering. Data class and switch statement detections are also performed on the

AST. As data classes contains only the fields, accessors and mutators, the detection

algorithm is rather straightforward. Detecting wrong use of switch statements, on the

other hand, is very complicated and difficult. The approach for feature envy detection

69

abstract class Student {
static double segregated_fee = 300;

private int num_credits;

private double fee_per_credit;

public static double getTuition() {
return segregated_fee + fee_per_credit * num_credits;

}
}

class Undergraduate extends Student {
public Undergraduate(int c) {
fee_per_credit = 300;

num_credits = c;

}
}

class Graduate extends Student {
public Graduate(int c) {
fee_per_credit = 350;

num_credits = c;

}
}

class Dissertator extends Student {
public Dissertator(int c) {
fee_per_credit = 200;

num_credits = c;

}
}

Figure 4.10: A More Desirable Result

is discussed in the next chapter.

As we mentioned in the beginning of this chapter that this work focuses on a

partial set of code smells. Many researchers work on detection algorithms for other

smells. For instance, a number of research works [96, 63] discuss how to identify

fragments of code in the long method needed to be extracted. Their approach does

not just detect the code smell but also scope down the region of problematic code such

which is more useful to the developer. It does not only identify where the problem is

but it also provides suggestions on how to fix it.

70

Chapter 5

Metric for Feature Envy Detection

In object-oriented systems, classes group data and related operations within a spe-

cific domain concept, and support object-oriented features such as data abstraction,

encapsulation and inheritance. Many researchers have proposed metrics to measure

object-oriented software qualities. Such qualities include but are not limited to cou-

pling and cohesion. This work focuses on code smells that indicate poor OO designs

with respect to coupling and cohesion therefore only measurements of coupling and

cohesion will be discussed here. Du Bois and his colleagues [10] provide discussions

on how refactoring can improve coupling and cohesion in software systems.

5.1 Coupling Measures

Low coupling between objects is desirable for modular programming. A measure of

coupling is useful in identifying an improper relationship between objects. In order

to improve modularity and promote encapsulation, the relationship between classes

71

should be kept to a minimum. The higher the coupling, the higher the sensitivity

to changes in other parts of the system. A small premeditated change in a highly

coupled system could progress into a long series of unanticipated changes which makes

it more difficult to maintain the system.

Previously, coupling is defined subjectively which make it difficult to use in prac-

tice. Chidamber and Kemerer [14] was among the first who defined a metric to mea-

sure the coupling between objects. Specifically, their metric are called CBO (coupling

between objects). According to their definition, two classes are coupled when methods

declared in one class use methods or instance variables defined by the other classes.

CBO is well known and is widely used in many software industries.

Myer introduced a much more complicated metric. Coupling is defined in six lev-

els. Such coupling levels are used to measure the interdependence of two modules [68].

Page-Jones extends Myer’s work by ordering the coupling levels based on their effects

on maintainability, understandability and reusability [75]. If two modules are coupled

in more than one way, they are strongly connected and are considered to be coupled

at the highest level. In addition to the Myer’s six coupling levels, Offutt et al. added

the zeroth level of coupling for modules that are independent [71]. There are many

other approaches to measure coupling not discussed in this work.

Many metrics discussed here can be automated but their computations are done

on the source code and require the code to be written beforehand. Some metrics can

be computed from the design of the software which allow the software qualities to be

measured before starting the implementation [51, 87, 50].

72

5.2 Cohesion Measures

The concept of cohesion is the practice of keeping things that are related together. A

good software design should obey the principle of high cohesion. A highly cohesive

module is easy to maintain and reuse. Cohesiveness of methods within a class is

desirable because it promotes encapsulation. The measurement of disparateness of

methods helps identify design flaws. Lack of cohesion in a class implies that it should

probably be split into two or more subclasses.

One of the well-known cohesion metrics is introduced by Chidamber and Ke-

merer [14]. They proposed a metric called lack of cohesion in methods (LCOM).

LCOM evaluates the internal cohesion based on method similarity. The method

similarity is measured by considering the number of disjoint sets of instance vari-

ables used by methods in a given class (access relationship). Let M be a set of

methods Mi, i = 1..n and Ii be a set of instance variables used by method Mi. If

P = {(Ii, Ij)|Ii ∩ Ij = ∅} and Q = {(Ii, Ij)|Ii ∩ Ij 6= ∅}, then

LCOM =

|P | − |Q| if |P | > |Q|

0 otherwise

There are several concerns with LCOM. The most serious problem is LCOM mea-

surement is not very discriminating. If a class has LCOM = 0, it could be interpreted

in many ways: 1) it is a highly cohesive class, 2) it is not a very cohesive class, or 3)

it is a class with no cohesion.

73

Many researchers define variants of LCOM to overcome the problems in the Chi-

damber and Kermerer’s LCOM [41]. We only discuss one variant suggested by

Henderson-Sellers [41] because this metric will be used in the evaluation of our ap-

proach. Henderson-Sellers’ definition of LCOM is called LCOM*. Perfect cohesion

in LCOM* is when all methods access all attributes. Let M = {Mi=1
m} be a set of

methods in a class, A = {Aa
j=1}, be a set of attributes, and µ(Aj) be the number of

methods accessing each attribute Aj.

LCOM∗ =

(

1

a

∑a
j=1 µ (Aj)

)

−m

1−m

Not only does LCOM* address the interpretation issues in its predecessor i.e., LCOM,

but it is also easier to calculate.

Briand’s RCI used DD-interactions (flow dependence) and DM-interactions (read

dependence) to depict relationships among the class members [13]. Cohesion is then

computed by dividing the number of actual DD- and DM-interactions by the number

of all possible DD- and DM-interactions of the given class.

Zhou proposed a novel graph representation, class member dependence graph or

CDMG, to describe the data and control flow relationships among the members of

a class [98]. Unlike other approaches, CMDG describes more types of relationships:

read access relationships, write access relationship, call relationship and flow relation-

ship. Zhou proposed the cohesion measure DRC using CMDG which he claims can

measure the cohesiveness objectively.

74

Zhou’s recent work [97] emphasizes that special methods such as access methods,

delegation methods, constructors and destructors have no influence on the cohesion

of a class. Hence, they should be excluded from the abstract of a class. The cohesion

measures will be masked if special methods are not excluded from the consideration.

LCOM and their variants do not take into account the effects that the special

methods may have on the values of cohesion measures. RCI does exclude some but

not all special methods i.e., it excludes only constructors and access methods from

the calculations. Only CBMC and DRC considers all types of special methods. While

LCOM uses method similarity and RCI uses type and attribute reference, DRC uses

dependence relationships. Both LCOM and RCI consider attribute reference and/or

method invocation but only DRC considers flow dependences. DRC uses depen-

dence relationships. It considers the direction of dependences between methods and

attributes (read/write) as well as potential dependences.

5.3 Feature Envy Metric

As discussed in Section 5.1 and Section 5.2, many software quality metrics have been

developed but it is not an easy task to decide which one is suitable and can efficiently

detect code smells. Despite a large number of existing software metrics, most of them

are designed for software quality measurement and are not appropriate for code smell

detection.

At first, we intended to use both cohesion and coupling metrics to detect feature

envy. The idea is to first calculate cohesiveness of a class. Then, if the cohesion is low,

75

Package Class DRC Cohesion (1) LCOM*
default Driver 0.15625 0.2

Driver.Controller 0 0
Driver.AbstractDataAccess 0.04082 0
Driver.FileAccess 0.08000 0
Driver.DirectAccess 0 0.5

inventory AbstractOrderController 0.06250 0
Catalog 0.03571 0
Item 0.14063 0.10600
Order 0.03360 0
OrderItem 0.13889 0.3000
Warehouse 0.09375 0

inventory.gui ItemPanel 0.16327 0.33300
OrderItemDialog 0.20661 0.50000
OrderItemPanel 0.19008 0.56200
OrderView 0.10185 0.80400
OrderView.OrderListModel 0 0
OrderView.CellRenderer 0.07813 0.77800

Table 5.1: Cohesion Measurements on Instructor’s Code

the coupling metric for that class is computed to determine which class it is coupled

with. Based on this idea, we have implemented Zhou’s DRC cohesion measure [98]

because DRC collects and uses more information from a class. Considering that DRC

uses such fine-grained information, we believe it will give more precise measures.

However, our experiments have shown that DRC cohesion measure cannot handle

inheritance very well. The cohesiveness of a class is very low if it uses most features

from its superclasses. According to Briand’s unified framework [12], there are two

approaches to compute metrics when inheritance is involved. We can either 1) ignore

inheritance by excluding inherited members from the analysis, or 2) include inherited

members in the analysis. Both approaches have been implemented and tested.

The main problem is that DRC computes class cohesion based on the number

76

of members in the class. This overgeneralizes the problem. In a way, DRC is too

pessimistic when involving inheritance. It favors classes that use features internally

while penalizing classes that use inherited features. This metric indirectly discourages

code reuse through inheritance which is one of the key features of object-oriented

programming.

Table 5.1 shows that many classes are not cohesive based on DRC measurements

i.e., cohesion equals 0. All classes whose DRC cohesion are zero were further inves-

tigated and it is found that most classes only use features from their superclasses.

For instance, OrderListModel is a subclass of java.swingx.AbstractListModel. It

does not define any new fields and defines 3 methods: two of which are get methods

and one method make a call to a method defined in its superclass.

Preliminary results have also shown that it is not sufficient to look solely at the

value of a class cohesiveness as it may be misleading. A high value is good but a low

value does not necessarily means poor design.

In addition to the cohesion measure, the CBO coupling measure by Chidamber

and Kermerer was also implemented. Unfortunately, coupling measures, in general,

can give you a rough idea about which classes are tightly coupled but they do not tell

which part of the code causes the improper coupling. They do not pinpoint where

feature envy occurs.

Since cohesion and coupling metrics failed to locate feature envy, we found it

necessary to develop a new metric. One of the reasons they are not suitable for the

job could be because coupling and cohesion are computed at class level while feature

77

envy happens at method level. Even though we did not choose to adopt any discussed

metrics in the implementation, many metrics are useful and used as a foundation for

the new metric. Ideas we apply to the new metric are:

1. exclude special methods i.e., access methods and constructors. It has been

reported by many that special methods would mask the real result [98].

2. exclude inherited members from the analysis. The reason we opt to exclude

inherited members is because inherited members are considered parts of the

class. Including inherited members will needlessly complicate the analysis.

5.3.1 Internal Process

The granularity of the current cohesion metrics is at the class level while Feature

Envy needs a metric whose granularity is at the method level. The new metric is

developed based on this nature. Feature envy happens when a method of a class

make a lot of method calls to another class, which implies that it is more interested

in the other class than the one it belongs to. With such characteristics, we find that

in order to locate feature envy:

1. metric must be computed on every method of a class,

2. in each method, information about method calls must be collected

The next step is to locate the source of the problem by finding which outside

methods are called and which class they belong to. Calls are then grouped by object

in order to determine which objects are called more often than others. Once we

78

identify the most frequently used object, we know where feature envy occurs. Such

information is critical because removing feature envy requires moving the problematic

code to its new home.

For all named objects (i.e., fields, parameters and local variables) in each method,

the number of method calls on such objects are counted. That number is then plugged

into the formula in order to be normalized into a range of [0,1]. Normalization makes

it easy to determine the severity of feature envy. We learned from existing metrics

that the computed values can be vary and it is difficult to compare metric values if

they are unbounded. In this formula, weight is given based on how many calls are

made on that particular object.

Let m be the number of calls on obj inside the method mtd, n be the total number

of calls (on any object defined or visible) in the method mtd, w be the weight and x be

the base where w, x ∈ (0, 1). The implementation in this work uses w = 0.7, x = 0.3.

The discussion on the values chosen for w and x is provided in section ??.

FeatureEnvy(obj,mtd) = w
m

n
+ (1− w)(1− xm)

The above formula consists of two parts. The first part of the formula computes

the percentage of calls which represents how frequent obj ’s methods is used comparing

to other objects. In other words, the first part calculates the severity of feature envy

within the method. The higher the percentage the greater the value of the first term.

The second part represents the significance of such an envy relative to those in other

79

methods. The higher the value of m, the less the value of xm which makes the second

term higher. In other words, the second term is introduced to favor objects that are

called on more frequently. For instance, consider m = n = 2 and m = n = 4. In

both cases, 100% of calls in the method are on one receiver. However, the latter

case should be given more attention because features of such an object are used more

frequently. The weight w in this formula serve as how much magnitude you want to

give the internal correlation against external correlation. This work uses w = 0.5,

which means they are given equal significance. x serves as an exponent that maps

the value into a [0,1] range. This work uses x = 0.5.

After the values of w and x are chosen, we have to set the threshold or cut-off value

for feature envy candidates that would be presented to the developer. The purpose of

specifying the cut-off value is to show only feature envy that is considered “serious”.

Each developer may have different opinions or views on the severity of a feature envy.

More importantly, the value of the threshold is subjective. This tool uses 0.5 which

means an object that were called on a lot i.e., at least one half of total number of

calls outside the class will be reported to the users. Table 5.2 shows representative

values for feature envy with respect to the number of method calls made inside a

given method.

Consider the code in Figure 5.1 which is a real example of students’ and instruc-

tor’s code from a UWM CS course. Two objects item and itemPanel are used in

method updateItemPanel. After the feature envy metric is computed, we have the

following results.

80

w x m n Feature Envy
0.5 0.5 0 1 0

1 1 0.75
0.5 0.5 0 2 0

1 2 0.5000
2 2 0.8750

0.5 0.5 0 3 0
1 3 0.4167
2 3 0.7083
3 3 0.9375

0.5 0.5 0 4 0
1 4 0.3750
2 4 0.6250
3 4 0.8125
4 4 0.9688

Table 5.2: Variables in the Metric

private void updateItemPanel() {
Item item = getItem();

int q = getQuantity();

if (item == null) {
itemPanel.clear();

} else {
itemPanel.setItem(item);

int inStock = Warehouse.getInstance().getQuantity(item);

itemPanel.setInstock(q <= inStock && 0 < inStock);

}
}

Figure 5.1: Feature Envy Candidate

CallSet(item, updateItemPanel) = {}

CallSet(itemPanel, updateItemPanel) = {clear, setItem, setInStock}

n = 6

FeatureEnvy(item, updateItemPanel) = 0

FeatureEnvy(itemPanel, updateItemPanel) = 0.5(3/6) + 0.5(1− 0.53) = 0.6875

81

5.3.2 Choosing w and x

We perform a number of experiments on the values of w and x. At first, we started

with w = x = 0.5. One obvious problem we found with this set of values is for the case

of m = n = 1 which represents delegation. In such a case, the computed metric value

is 0.75 which is considerably high. However, delegation is a legit method of sending

messages between objects and should not be considered as feature envy. Delegation

is one of the main contribution to the number of false positives. Therefore, the values

of w and x need to be adjusted. Upon thorough investigations, we found that we

gave too much significance on the external correlation.

Each time the values of w and x are adjusted, the number of false positives is

recorded. We choose those values by looking at the case when the least number of

false positives is produced. After updating the values, the number of false reports

is reduced by almost 80%. However, the values that we use in this work may not

perform well with other sets of source code. We believe that the results may be

better if we apply machine learning techniques in adjusting the values of w and x.

5.3.3 Incorporating an Analysis

Unfortunately, looking at the computed value alone is insufficient. We have to de-

termine if an object in question is written within a block of code. It is necessary

to determine if an object is written within a block of code because if it is so, the

object could be different at different points in the program which means that it is not

really a feature envy. If the object is different than the last occurrence(s), we cannot

82

1: public void setOrder(Order o) {
2: if (order != null) {
3: order.deleteObserver(this);

4: }
5: order = o;

6: order.addObserver(this);

7: update(o, o);

8: }

Figure 5.2: Non Feature Envy Instance

move the code because it is semantically wrong to combine activities on two different

objects and make them a uniform operation for an arbitrary object. Doing so will

cause the program to behave differently. Since the metric gathers information based

on names not the pointer (or reference), it could not tell whether the object has been

redefined. Further analysis is required to reduce the number of false positives.

Let’s look at the code in Figure 5.2. The feature envy metric value of 0.7083 for

order which seems like a good candidate for feature envy. However, if we look at the

code, we will see that order is written on line 5. order before line 5 and order

at and after line 5 are in fact different objects. Since they are different, they are not

feature envy.

CallSet(order, setOrder) = {deleteObserver, addObserver}

n = 3

FeatureEnvy(order, setOrder) = 0.7083

A less obvious example is previously discussed and shown in Figure 5.1. In this

example, the metric gives 0.6875 which is considered significant (above the threshold).

However, it cannot be assured if itemPanel remains the same objects throughout

83

class Inventory {
public ItemPanel itemPanel;

private void updateItemPanel() {
Item item = getItem();

int q = getQuantity();

if (item == null) {
itemPanel.clear();

} else {
itemPanel.setItem(item);

int inStock = Warehouse.getInstance().getQuantity(item);

itemPanel.setInstock(q <= inStock && 0 < inStock);

}
...

}

class ItemPanel {
public Inventory i;

public ItemPanel(Inventory j) {
i = j;

}
public clear() {
i. itemPanel = new ItemPanel(i); // itemPanel is reassigned!!

}
...

}

Figure 5.3: Maybe Feature Envy

the entire method by just looking at the code in class Inventory. Methods clear,

setItem and setInstock could be changing itemPanel. Therefore, it is insufficient

to perform just intraprocedural analysis. We need to expand our scope and perform

further analysis on methods in questions. For instance, method ItemPanel.clear()

could be assigning a new object to itemPanel as illustrated in Figure 5.3.

5.3.4 Metric Validation

Many researchers have proposed desirable properties of software metrics. Particularly,

for a metric to be useful, it must be valid, reliable, robust and practical. Our metric

84

will be discussed according to properties summarized by Henderson-Sellers [41].

Validity

Henderson-Sellers defines two types of validity: internal and external. Internal valid-

ity addresses how well a measure captures the “meaning” of things that we want to

measure. Furthermore, a new measure should correlate with the old one. It is evident

that our measure relates to other existing measures. A class with many instances of

feature envy implies that it is highly coupled with other classes. External validity

relates to generalization issues. In other words, the metric must be generalized be-

yond the samples that have been measured. Generally, external validity cannot be

experimentally determined and it can hardly be achieved. Our metric is originally

designed for Java. It is not applicable to other programming language paradigms but

it can be adapted for use in other object-oriented programming languages.

Reliability

A metric is reliable if it produces consistent results. Consistency involves stability

and equivalence. Stability means it is deterministic, in other words produces the same

results given the same input. In our case, provided that the same w and the same

x are used on the same input, the metric will produce the same results. Moreover,

two feature envy instances have equivalent level of severity, if the computed values

are the same.

85

Robustness

Tsai et al. [92] define robustness as the ability to tolerate incomplete information.

Furthermore, the robustness is determined based on how well it can handle incorrect

input. In this case, the information required for the metric is the source code. The

only requirement is that the given source code must not have any compile errors. Our

metric does not require the whole program so it is robust to some degree.

Practicality

The metric must be informative. Jones believes a useful metric should be language

independent and applicable during the early stages of the development process. How-

ever, due to the nature of feature envy which happens after the implementation,

it is impossible to come up with a metric that determines feature envy during the

design phase. Feature envy can only be revealed after the code has been written.

Furthermore, the metric should have the capability of prediction. Our metric also

provide the flexibility of adjusting w and x depending on the nature of the applica-

tions. It provides a guideline from the semantic viewpoint rather than a mere count

of something.

5.4 Summary

A new metric for feature envy is discussed in this chapter. The values of our metric

can be uniquely interpreted in terms of the severity of the problem. Since the values

86

computed by our metric are in the range of [0, 1], it is easy to compare a particular

value with other values. We also explained that an analysis can be combined with

the metric to improve the accuracy of the results.

It is worthnoting that other research works on feature envy detection [94, 72].

Oliveto et al. introduces the concept of method friendships [72] which analyzes both

structural and conceptual relationships between methods. Other works, though not

related to feature envy detection, also attempt to retrieve semantic information from

the source code. Some researchers use information retrieval technique called La-

tent Semantic Indexing to extract identifiers and comments [60]. Others use natural

language processing techniques and introduce the LORM metric [28]. A work by

Bavota et al. proposes a technique to extract class [7] but we believe that their ap-

proach can be modified and applied to detect feature envy, since their approach also

includes cohesion metric.

87

Chapter 6

The Framework

This chapter discusses the overall framework and the architecture of JCodeCanine.

Some parts of the framework have already been developed by the Fluid1group. We

start the chapter by discussing the existing components, the architecture of the sys-

tem, subcomponents of the system and the details of each module.

6.1 Existing Components

There are two main components in this work: Fluid and Eclipse. The Fluid infras-

tructure is used mainly for program analysis and code transformations. The Eclipse

framework is used as a front-end that interacts with the user.

1Fluid is a project in collaboration of Carnegie Mellon University and University of Wisconsin-
Milwaukee. It provides a tool to assure that the program follows the design intent.

88

6.1.1 Fluid

Fluid provides a tool to assure that the program follows the programmer’s design

intent. The developers can run different analyses on their programs. There are a

number of analyses that this work uses which include Effects Analysis and Uniqueness

Analysis. The analysis framework is set up in a way that a new analysis can be added

easily and without too much hassle.

Program analysis is usually done on an intermediate form that represents the

program’s structure. The representations that are commonly used are graph and

tree. Fluid provides tree-based analyses. The internal representation (IR) which

used in Fluid consists of nodes and slots. A node can be used to represent many

kinds of objects but this work refers to a node in an abstract syntax tree (AST). A

slot can store a value or a reference to a node. A slot can be attached to a node by

using an “attribute” or can be collected into a ”container”. For instance, a method

declaration node has an attribute “name” that holds the name of the method and is

associated with a container that holds references to other nodes (its children) in the

AST e.g., a list of parameters, a return type and a method body.

Every analysis in Fluid will be perform on the IR. However, since Fluid IR is an

internal representation that the developers do not usually understand, we need a way

to obtain the source code back from the IR. This process is called unparsing. After

the transformations are performed on the IR i.e., refactorings, the unparser is used

to obtain the source code which is then displayed to the user.

89

6.1.2 Eclipse

Our requirement is to develop a tool that works inside an IDE. We choose Eclipse

because it is one of the most popular IDEs for Java. It is also easy to extend via a

plug-in which eliminates the need to develop the whole user interface from scratch.

6.1.3 Incompatibilities between Fluid and Eclipse

There are a number of incompatibilities between Fluid and Eclipse which make the

implementation difficult. One issue involves different representations of the Fluid

Abstract Syntax Tree (FAST) and Eclipse Abstract Syntax Tree (EAST). The FAST

is more fine-grained than the EAST. On the Fluid’s side, the Java source adapter has

been implemented to address such a conflict. The Java source adapter, as its name

implies, adapts the EAST into the FAST. It basically converts the abstract syntax tree

obtained from Eclipse into a different abstract syntax tree with Fluid IR. The adapter

allows us to perform different analyses on the Fluid side, since all analyses expect the

FAST. The other and more serious issue is concerned with versioning. While Fluid

is versioned, Eclipse is not. In other words, Fluid keeps track of changes made in

different versions but there is no versioning system in Eclipse. To make them work

together we need a mapping mechanism from non-version to version space and vice

versa. Eclipse has no knowledge of which system’s version (under the Fluid’s context)

it is working on. Hence, we need a bridge to administer the communication between

Eclipse and Fluid. The bridge handles everything that involves Fluid versioning

system. Its main duty is to keep Fluid and Eclipse synchronized on resource changes.

90

Fluid Eclipse
Versioned Unversioned
Fluid AST Eclipse AST

Table 6.1: Fluid and Eclipse Incompatibilities

6.2 Implementation

Section 6.1 describes several attributes of Fluid and Eclipse that pre-exist and serve as

foundations of the current work. This section provides description of newly developed

components and how they fit in the existing framework.

We developed a tool called JCodeCanine which is an Eclipse plug-in. The main

features of JCodeCanine is detecting code smells on Java programs, suggesting differ-

ent refactorings to the developers and allowing them to apply the suggested refactor-

ings that will remove such smells. Though the implemented tool is for Java programs,

the ideas behind this work can be adapted for other object-oriented programming lan-

guages.

6.2.1 The Architecture

JCodeCanine’s components can be divided into three groups depending on where the

activities are taken place. The Eclipse group is the front-end which provides the

user interface, interacts with the users and handles all user actions. The Fluid group

contains back-end components that involve with IR nodes, versioning and analysis.

The last group, the in-betweener, consists of those that provide the interconnections

between Eclipse and Fluid.

91

• Eclipse’s side: Editor, User Action Handler

• Fluid’s side: Code Smells Detector, Refactoring Manager, Annotation Sug-

gester

• In-betweener: Java Source Adapter, Bridge, Promise Parser, Unparser

Figure 6.1 shows the architecture of JCodeCanine. The process starts when the

developer invokes code smells detection through Eclipse. Eclipse parses the Java

source file into the EAST. The EAST then gets adapted into the FAST by the Java

source adapter. After the FAST is obtained, a new version is created. The code smell

detector performs analysis on the FAST, marks the region of problematic code and

returns the information in the form of Eclipse’s warning markers. Each marker is

linked with the resolution for the problem i.e., refactorings. If the developer chooses

to fix the code smell, the responsibility is shifted to the refactoring manager which

performs the semantic check and takes care of the code transformations. Since the

analyses and the transformations are done on the Fluid IR, we need the unparser to

translate the IR nodes back to Java source code. Currently, the code smells detector

is executed whenever a resource is changed which could be a double-edged sword.

On one hand, it is automatic and convenient since it shows immediate results to the

programmers. On the other hand, this approach may not be applicable for large

software systems considering our resource consuming implementation.

If the developer doesn’t change anything since the last time the detector is run,

there is no need to re-compute analysis information.

92

Figure 6.1: Architecture of JCodeCanine

93

Figure 6.2: Process Cycle in JCodeCanine

94

6.2.2 Refactoring Manager

In JCodeCanine, the programmer can refactor his code either through a quick fix

after code smells are detected, or through the menu directly without checking for

code smells. After a refactoring request is invoked, the source code is adapted into

Fluid IR by the Java source adapter. The semantic preconditions for that particular

refactoring are checked. If one of such conditions is not satisfied, the code will not

be refactored. One distinction between this work and Eclipse’s refactoring is that

semantics check are taken into consideration before attempting any refactoring. Using

refactoring support in our tool will not introduce compile errors. Hence, we consider

our approach to be true behavior preservation. Eclipse refactors the code first and

lets the compiler catch any errors that may occur. In a way, Eclipse’s refactoring

support is not behavior preserving.

Each refactoring has an inverse operation e.g., Extract Method and Inline

Method. In general, refactoring can be undone by applying its inverse refactoring.

In contrast to other approaches, our refactoring tool utilizes versioning in Fluid for

undoing/redoing refactoring. When a refactoring is applied, the program snapshot is

captured as a version in Fluid. Hence, undoing/redoing is as easy as switching back

and forth between versions or traversing up and down the version tree. The bridge

then informs Eclipse of the current version that it is working on. One benefit gained

from using a versioning model for undo/redo is that the semantic condition check

that needs to be performed before any refactoring can be skipped. Unfortunately, the

Fluid framework is not small. Capturing a version whenever the code is refactored

95

can be space intensive. The trade-offs between time and space will have to be weighed

out by the developer.

6.2.3 Code Smells Detector

Code smells detector acts as a sniffing dog. It checks and determines which part of

the code is stinky using analyses discussed in Chapter 4. In this implementation,

one detector is developed for each code smell. Basically, the detectors are invoked in

a sequence. Each detector analyzes the IR nodes and when it detects a code smell,

the problematic nodes are marked. The detector keeps track of those marked nodes.

When all code smells are detected, the IR is unparsed into Java source code. The

region of source code that is from the marked IR nodes is then highlighted with a

“marker”.

6.2.4 Code Smells Resolution

As discussed in Chapter 4, each code smell is resolvable using one refactoring or a

series of refactorings. The implementation follows that same idea i.e., each code

smell is linked with a resolution. Basically, the code smells resolution is the process

that attempts to remove the detected code smells by means of refactorings. The

refactoring process is then taken care of by the refactoring manager as usual.

96

6.2.5 Annotation Suggester

The Fluid analysis framework requires the program to be annotated and such a pro-

cess can be overwhelming to any developer. The annotation suggester relieves some

burden off the programmer by giving an advice of what kind of annotations is re-

quired. Our annotation suggester is preliminary. It only considers a portion of code

in question and suggests annotations that allow a specific analysis to be executed. For

instance, if uniqueness analysis is being executed, it will only suggest those that are re-

lated to uniqueness analysis. If effects analysis is later executed on the same method,

the programmer is required to add effect annotations. This on-demand approach

could be unpleasant since the programmer may spend most of their time annotating

the code or worse, they could end up annotating the whole program. Specifically,

if a message chain exists, it is necessary that all methods in the chain are checked

which means that they must be annotated. To avoid this nuisance, we only check the

immediate message and assume that other methods in the chain do not violate the

conditions. We are aware that it would be beneficial to adopt “annotation inference”

where annotations are automatically derived from the code. However, annotation

inference is beyond the scope of this research.

6.3 JCodeCanine’s Key Features

This section demonstrates various scenarios when using JCodeCanine. First, we show

various code smells detected by JCodeCanine and how to automatically remove code

97

smells with suggested refactorings. Then, we exhibit the situation when refactoring

is invoked by the developer.

6.3.1 Code Smells Detection and Resolution

Code smell detectors are executed when a resource changes. Each code smell detected

is shown as a warning message. The tool provides the following information for each

smell:

• type of code smell,

• file name, and

• location of code smell in the source (line number).

Figure 6.3 demonstrates how the tool displays the detected code smells to the

user. Each marker links to the source location. The problematic code is highlighted

with a yellow line which acts as a warning sign to the developer.

In addition to the general information about the code smell, each smell marker

is linked to an automatic resolution. The user has an option to remove the detected

code smell through a quick fix (see Figure 6.5). By invoking a quick fix, the suggested

refactorings are automatically applied to the code.

6.3.2 Stand Alone Refactoring

Apart from an automated code smells resolution, developers also have an option to

initiate and perform refactoring through the menu.

98

Figure 6.3: A Snapshot of Feature Envy Detected

Figure 6.4: A Snapshot of Data Class Detected

99

Figure 6.5: Apply Refactoring through Quick Fix

After a refactoring request is initiated, the tool checks the semantic conditions

behind the scene. Figure 6.6 shows the situation when the chosen refactoring cannot

be applied because it violates our behavior preserving conditions. Particularly, the

programmer wants to apply rename the bought() method in the IPhone class to

updateStock(). However, apply such a refactoring will create an overloading method

and change the behavior of the updateStock() method from increasing the quantity

by one to decreasing it by one. JCodeCanine catches that this serious side effect and

report the issue to the programmer.

100

public class Product {
void updateStock() {
++quantity;

}

private int quantity;

}

public class IPhone extends Product {
void bought() {
--quantity;

}
}

Figure 6.6: Semantic Conditions Violated if bought() is Renamed to updateStock()

6.3.3 Annotation Suggestions

While the Fluid analysis framework requires programs to be annotated, JCodeCanine

will try its best in performing the analysis with available information. If it does

not have enough information, it will ask the programmer to annotate their code.

JCodeCanine does have the ability to suggest annotations but it may not comply

with the design intent. The developer is responsible for providing correct annotations

in order to obtain the intended results.

Figure 6.7 shows the portion of code that annotation suggester will be activated

when the developer wants to move a field warrantyExpirationLeftFrontTire to a

component class Tire. Since this particular refactoring requires uniqueness analy-

sis and no annotation has been declared, JCodeCanine advices the developer to add

an annotation @unshared to the field which indicates that such a field is unique and

cannot be shared among objects. After the expected annotation is added, the se-

mantic condition check is resumed by performing a uniqueness analysis. If it passes

101

public class Automobile {
Engine autoEngine;

int numOfPassenger;

Tire leftFrontTire;

Tire rightFrontTire;

Tire leftRearTire;

Tire rightRearTire;

WarrantyInfo warrantyExpirationLeftFrontTire;

WarrantyInfo warrantyExpirationRightFrontTire;

WarrantyInfo warrantyExpirationLeftRearTire;

WarrantyInfo warrantyExpirationRightRearTire;

...

}

public class Tire {
...

}

Figure 6.7: Scenario where Annotation Suggester is Invoked

the uniqueness analysis i.e., the field warrantyExpirationLeftFrontTire is unique,

then the field will be moved to the destination class which is the T ire class.

6.4 Summary

The main framework of JCodeCanine is discussed in this chapter. JCodeCanine is

implemented based on existing components which are Fluid and Eclipse. The Fluid’s

infrastructure is used as the main component for back-end process and Eclipse is used

mainly for the user interface. Though Fluid and Eclipse are incompatible in various

aspects, the in-betweeners like the bridge and Java source adapter provide the harness

between the front and the back end. The key modules i.e., Code Smells Detector,

Refactoring Manager and related analysis are developed on the Fluid’s side to show

that our work is sound. The nature of our Fluid analysis framework is that it requires

102

the developers to annotate their design intents. JCodeCanine does have the ability

to suggest annotations but it currently is considered experimental. It is possible to

write a more sophisticated annotation suggester or to implement a mechanism for

annotation inference which could reduce the burden on the developers but such a

system is beyond the scope of this work.

103

Chapter 7

Empirical Results

Murphy-Hill and Black present seven habits that an effective smell detector should

possess [67]. Such seven habits include:

• Availability : A smell detector should not require much effort from the program-

mer. Smell information should be made available to the programmer as soon

as possible.

• Unobtrusiveness : A smell detection tool should perform its job without inter-

fering the programmer while he is coding.

• Context-Sensitivity : A smell detector should only point out smells that are

related to the current programming context.

• Scalability : A tool should not overwhlem the programmer with smell informa-

tion if a significant number of smells is identified.

104

• Relationality : A smell detector should show relationships between code frag-

ments that contribute to code smells.

• Expressiveness : A smell detection tool should provide explanation on why the

smell exists.

Since our approach is to develop and integrate code smell detection tool with

Eclipse IDE, JCodeCanine is context-sensitive, relational, and expressive. The smells

found by JCodeCanine are reported with details in the problem view. Each message

in the problem view is also linked to the code where the programmer can double click

and see the source of the problem in the editor. All code fragments that cause code

smells are also underlined in the editor view.

According to Murphy-Hill and Black’s definitions, JCodeCanine is not available

and obtrusive because the analysis will be performed only when the programmer

chooses to start the smell detector. When the smell detector is running, the program-

mer is not able to do any coding. Code editing is blocked during this process. In our

opinion, JCodeCanine is not so scalable because it shows all smells that it detects.

We believe that allowing the programmer to apply filter to the smells list will help

on the scalability issue. However, this issue is yet to be explored.

After we have developed code smells detection with refactoring support tool for

Java program, we evaluate our approach by determining the soundness of the code

smells detection. We also look at the number of suggested refactorings and determine

if they are sound both syntactically and semantically.

We perform tests on various sizes of code. Our test cases include:

105

• UWM CS552 homeworks written by students and the instructor which include

homework 4, 5, 6 and 7,

• java.util package (JDK 1.4.2),

• java.lang package, and

• fluid.util package.

The size of each CS552 homework is about 500 to 3K lines of code. Each homework

instance is tested separately. However, we aggregate the results by homework for

preciseness. The java.util package consists of 123 classes and 13K lines of code. The

java.lang package consists of 100 classes with 10K lines of code. The fluid.util

package contains 106 classes with 50K lines of code.

7.1 Code Smells

In order to determine how well the code smells detection component performs, we look

at the number of code smells detected. The number of false positives is also recorded

to further reflect the accuracy of our approach. False positives, in this context, are

the legitimate code that are detected as code smells. The comparison of these two

numbers give us an idea of how accurate our algorithms are. As shown in Table 7.1

that the average accuracy of detection all four code smells is at 54%.

The results from Table 7.1 show that our duplicated code detection cannot find any

code clones. We have investigated on why its performance is rather poor and found

106

Code Smell Detected False Positives Accuracy (%)
Duplicated Code 13 4 69%
Feature Envy 24 2 92%
Data Class 5 0 100%
Switch Statement 37 30 19%

Table 7.1: Numbers of Code Smells Detected, False Positives and Accuracy

out that the homework code instances do not contain any duplicated code. Regarding

java.lang and java.util packages, we cannot go through the code thoroughly due

to their sizes. However, based on our rough observation, both java packages are quite

well written and do not contain duplication structurally. We also performed tests

on our duplicated code detection by creating new packages with known duplicates

and our detector can correctly identify those clones. The limitation of our detection

algorithm is similar to any AST-based clone detections in such a way that it cannot

detect clones which are from statement reordering.

Regarding false positives for feature envy, data class, and switch statements, the

tool reports 46% overall false positives: 8% false positives for feature envy, no false

positives for data class and 81% false positives for switch statements.

We further determine the reason why the tool returns such high percentages of

false positives. This process has to be done manually. After looking at each and every

instance, we found that:

• Our work can successfully detect feature envy.

• Falsely detected data class can be categorized into: 1) a subclass of Excep-

tion and Error classes. 2) a real data class by the programmer’s intents e.g.

107

java.util.CurrencyData.

• Poor use of switch statements is very hard to detect in general. We need to find

a new heuristic algorithm that can correctly determine the poor use of switch

statements without introducing a lot of false positives.

The results, though not as satisfying as expected, are very informative. Currently,

the algorithms for data class and switch statements are syntax-based. We speculate

that program’s semantic analysis may be able to reduce the number of false positives.

However, such an idea has yet to be investigated in the future.

Another aspect for evaluating the accuracy is testing for false negatives. False

negatives in this context are real code smells that are left undetected by the system.

In order to test for false negatives, test programs with known code smells are created.

Then, we run our detectors on those test programs. The detectors performed really

well as it can locate all instances of code smells. No false negatives are found.

7.2 Refactorings

In this section, we are particularly interested in seeing the quality of refactorings

suggested by our system. Here, the number of suggested refactorings with respect

to syntactic correctness and semantic preservation is measured. By looking at these

numbers, we are able to determine whether behavior preservation can be realistically

achieved in the automated refactoring tool and what the difficulties are. The three

categories of refactorings we have measured are listed below.

108

Project Type 1 Type 2 Type 3
hw4 4 4 2
hw5 5 3 2
hw6 9 9 6
hw7 13 11 9
JCodeCanine 15 15 10
fluid-eclipse 20 16 9
fluid 58 51 34

Table 7.2: Number of Suggested Refactorings

1. total number of refactorings suggested by our code smells detector (Type 1)

2. refactorings from 1) that do not break compilation (Type 2)

3. refactorings from 2) that are semantics-preserving. (Type 3)

Type 2 refactorings are syntactically sound. They are refactorings that will not

cause compile errors in general. However, behavior preservation is not guaranteed if

applying type 2 refactorings as is. On the other hand, type 3 refactorings are both

syntactically and semantically sound. This type of refactoring are safe to be applied

and will neither break the code nor change the program’s behavior.

Table 7.2 shows the breakdown number of each type of refactorings that are sug-

gested by JCodeCanine. Out of total refactorings suggested by JCodeCanine, 92% are

safe syntactically and 28% are safe syntactically and semantically. Ideally, we would

want the number of type 1, type 2 and type 3 refactorings suggested by our system to

be equal. However, such figures are reasonable since not all code smell detection al-

gorithms include semantic analysis. After examining those suggested refactorings, we

also notice that one of the obstacles is the existing structure of the program especially

109

variable and method naming. The program may need to be restructured or refactored

first in order for the suggested refactoring to be applied correctly. Furthermore, a

number of suggested refactorings that are unsound or unsafe are attributed by the

existence of false positives in code smells detection.

7.3 Code Qualities

In this section, we analyzes the performance of our tool by comparing the quality

of the code before and after running our tools on each test package. In order to

make sure that the program semantics are well-preserved, we choose to apply only

type 3 refactorings (syntactically and semantically sound refactorings as discussed in

Section 7.2.

The metrics used to measure code qualities in this research are mostly from Chi-

damber and Kemerer’s work [14] as they are pioneers in software quality metrics.

They have proposed a set of static metrics that are designed to evaluate the quality

of an object-oriented design. Their metrics are widely known and used in software

development process. This work uses some of their metrics for measurements which

are:

1. Weighted Method per Class (WMC)

2. Depth of Inheritance Tree (DIT)

3. Number of Children (NOC)

4. Afferent Coupling (Ca)

110

5. Efferent Coupling (Ce)

6. Lack of Cohesion between Methods (LCOM*)

7. McCabe’s Cyclomatic Complexity (CCN)

A short description of each metric is provided in Appendix A.

Table 7.3 shows the objectives for each software metric according to Rosen-

berg [77]. For some metrics, the lower number the better; however, some metrics are

considered trade-offs between readability and complexity. We measured the software

quality before and after applying suggested refactorings using Chidamber and Ker-

merer object-oriented metrics and the comparisons are shown in Table 7.4, Table 7.5

and Table 7.6. Values presented in these tables are the average. The metric calcula-

tions are from several opensource Eclipse plug-ins i.e., metrics.sourceforge.net [83],

Google’s CodePro Analytix [36] and Analyst4j [16] which provide an extensive num-

bers of software quality metrics. Note that this work only considers and analyzes

metrics that are related to the code smells discussed in Chapter 4; hence, we do

not discuss all metrics here. We also summarize the impacts of refactorings on the

value of each metric where + means positive impact, - means negative impact and =

means no improvement after refactorings have been applied in Table 7.7. Our results

show that, in most cases, applying refactorings make positive impacts with respect to

object-oriented metrics. Refactorings that make negative impacts include Extract

Method as it increases the number of methods in a class; therefore, WMC is in-

creased after refactoring. Other metrics that receive negative impacts include DIT

111

Category Metric Granularity Objective
Complexity WMC Class Low
Size DIT Class Trade-Off
Size NOC Class Trade-Off
Coupling Ca Class Low
Coupling Ce Class Low
Cohesion LCOM* Class Low
Complexity CCN Method Low

Table 7.3: Objectives for Different Metrics

Project LOC WMC Ca Ce
Before After Before After Before After

hw4 558 14.500 14.500 1.333 1.000 0.500 1.000
hw5 1,167 12.941 12.801 2.000 1.667 1.667 1.333
hw6 1,870 9.914 9.080 4.800 4.600 4.400 4.200
hw7 2,632 10.022 9.984 5.333 5.000 4.000 3.750

JCodeCanine 9,729 10.830 10.992 8.000 7.677 6.500 6.000
fluid-eclipse 17,431 37.763 37.940 8.615 8.512 5.077 4.922

fluid 223,041 18.578 17.659 122.012 118.236 28.549 25.489

Table 7.4: Comparison of Software Metric Measurements: Low (1)

and NOC. As we have discussed earlier that the values of these two metrics are trade-

offs between readability and complexity. The higher values do not necessarily mean

poor quality. It depends on what the developers actually focus on.

7.4 Discussion

Our results concur with Du Bois et al. [10] that code smells with respect to improve

coupling and cohesion are sparse and difficult to find. In addition, we find that most

code smells are difficult to find in general. The fact that our metric can detect a

112

Project LOC LCOM* CCN
Before After Before After

hw4 558 0.214 0.210 2.000 2.000
hw5 1,167 0.271 0.271 1.583 1.583
hw6 1,870 0.204 0.204 1.684 1.684
hw7 2,632 0.224 0.224 1.733 1.667

JCodeCanine 9,729 0.161 0.153 1.880 1.760
fluid-eclipse 17,431 0.215 0.207 2.721 2.679

fluid 223,041 0.115 0.108 1.834 1.710

Table 7.5: Comparison of Software Metric Measurements: Low (2)

Project LOC DIT NOC
Before After Before After

hw4 558 3.250 3.250 0 0
hw5 1,167 2.941 2.941 0.118 0.118
hw6 1,870 3.029 3.029 0.371 0.371
hw7 2,632 3.022 3.022 0.5 0.5

JCodeCanine 9,729 2.415 2.502 0.279 0.289
fluid-eclipse 17,431 1.753 1.753 0.280 0.280

fluid 223,041 3.904 3.972 0.780 0.792

Table 7.6: Comparison of Software Metric Measurements: Trade-off

Project WMC DIT NOC Ca Ce LCOM* CCN
hw4 = = = +24.981% +50.000% +1.869% =
hw5 +1.082% = = +16.650% +20.036% = =
hw6 +8.412% = = +4.167% +4.545% = =
hw7 +0.379% = = +6.244% +6.250% = +3.808%

JCodeCanine -1.496% -3.602% -3.584% +4.038% +7.692% +4.969% +6.383%
fluid-eclipse -0.469% = = +1.196% +3.053% +3.721% +1.544%

fluid +4.947% -1.742% -1.538% +3.095% +10.718% +6.087% +6.761%

Table 7.7: Impacts on Software Quality (+ Positive, - Negative, = No impact)

113

number of real feature envy instances is very satisfactory.

While measurements are done in different aspects i.e., size, complexity, coupling

and cohesion, we focus on values of coupling and cohesion measures as they are the key

of object-oriented programming. Results show that coupling measurements decrease

while cohesion measurements increase after applying suggested refactorings. Even

though the improvements are insignificant, it proves that our approach works and is

not trivial. Furthermore, our work improves the design to some extents. Such a claim

is made based on tests and an in-depth investigation on our home-brewed application.

The reason that we take this approach is because reasoning a program is difficult and

time consuming. With an in-house project, the code’s intent is clear to us; hence, it

is easier to analyze the results.

Nonetheless, we found that, in some cases, the approximation for the analysis does

not perform well as our analysis tends to be restricted and too conservative. Any

changes that could change or modify the behavior of the program will be disregarded.

Further study needs to be done in order to provide more flexibility while preserving

the program’s behavior which is the main objective of this work. Balancing between

these two extremes is a challenge.

The following subsections discuss how each code smell affects the software metrics

according to our findings.

114

7.4.1 Duplicated Code

Intuitively, removing code clones will reduce the number of lines of source code.

As discussed in Chapter 4 that in object-oriented programming, clones at different

locations must be handled differently. Clones in the same class hierarchy can appear

in the same method or in sibling classes. Removing such clones will reduce LOC.

However, if the clones are found in two or more unrelated classes where an abstract

superclass is needed, LOC and NOC measurements will be increased. Removing

duplicated code affects the size-related measures. At this point, it is still obscure

whether duplicated code removal has effects on coupling and cohesion measures.

7.4.2 Feature Envy

It is known that feature envy is not desirable in object-oriented programs. Feature

envy removal is an attempt to reduce bad coupling. Theoretically, the Ca and Ce

metrics should be lower once feature envy instances are removed as they measure the

coupling. Our findings are indifferent as the measurements from both metrics are

decreased. Furthermore, we also found that remove a case of Feature Envy indirectly

increases the class cohesion since the value of LCOM* is lower.

7.4.3 Data Class

Since the number of data classes detected by our tool is not significant, we ran tests

on an ongoing software project with 57K lines of code and 375 classes. Our tool found

a number of data classes in this project. The result is then shared with the software

115

developers. They confirmed that some classes were incomplete and some classes were

no longer necessary. After applying refactorings on unwanted data classes, the number

of classes (NOC) decreased and in the case when the data class inherits from other

class, the depth of inheritance tree (DIT) was also reduced. We also noticed that

there was a slight improvement in terms of coupling and cohesion when removing a

data class.

7.4.4 Switch Statement

Removing switch statement does not have much improvements on the static software

quality metrics. On the contrary, the quality appears to be worse when using existing

measurements. Since a wrong use of switch statement is usually resolved by creating

an abstract superclass, removing a switch statement this way increases the number

of classes (NOC) as well as the depth of inheritance tree (DIT). There is no static

metric that provides measurements of polymorphism, since polymorphism by its na-

ture can only be observed and measured at run-time. Approaches to dynamically

measure polymorphism include 1) calculating the polymorphic behavior index which

analyzes internal and external reuse [15], or 2) calculating the number of potentially

polymorphic instructions, the number of receiver types (receiver polymorphism) and

the number of different target methods (target polymorphism) [23].

116

7.5 Summary

The evaluation is carried out with respect to the detection accuracy, behavior preser-

vation and the code qualities. In regards to the accuracy of code smell detection

algorithms, our system reports a number of false positives. We believe that it is

because our analyses are somewhat conservative. However, since this work concerns

about behavior preservation, a warning message does not hurt the code because the

developer will have a chance to inspect the detected code smells.

To further evaluate the accuracy of the system, programs with known instances of

code smells are also tested and there are no false negatives i.e., all known code smells

are detected by JCodeCanine. Our results show how semantic preservation should

be taken into consideration whenever changes are applied to the existing software

system. Though the change does not introduce any compile errors, the developers

cannot take any changes for granted. Unsafe refactoring is harmful because tracing for

semantic errors or behavioral changes is very difficult. Furthermore, the results also

show that our system helps improve internal code qualities to some extent. It could

detect code smells and suggest proper refactorings. Even though the improvements

are not significant, they are promising. We also found that some metrics are too vague

and could not provide clear quality measure for object-oriented programs. In fact,

applying some refactorings could make the quality worse according to some software

metrics.

117

Chapter 8

Conclusion

Previous work has introduced many approaches to find refactorings [49, 91, 19]. Some

work mentioned the thoughts of combining code smells detection with refactoring tool

but none has actually implemented it.

Many researchers rely on the metrics alone to detect code smells or find refactoring

opportunities. Our work has shown that an analysis can be used in addition to metrics

which results in a more precise result. Not only does this dissertation introduce a

metric for feature envy, it also proposes a novel approach by demonstrating how an

analysis can be integrated into a metric which allows us to obtain a measurement

from the semantic viewpoint.

This work proposes and develops a framework that combines the processes of iden-

tifying and applying refactorings. Such a framework allows information from analysis

to be reused and avoid recomputing any information we already know. Therefore, it

helps improve the efficiency of the overall system.

118

This work shows that integrating the two processes give us more satisfiable results.

It forces us to look at the problem in a big picture. Program analysis plays a crucial

part in this work. Even though JCanine only supports Java code, the idea of integrat-

ing refactorings with code smells detection can be applied to other object-oriented

programming languages.

Last but not least, this research has contributed:

• analyses required to check semantic preconditions for the chosen refactorings.

• analyses required to detect each code smell discussed in this thesis.

• relationships between code smells and refactorings (in terms of analysis used)

Our current implementation can be improved in many ways:

• Persistence: This work does not use persistence. However, Fluid has a mech-

anism where versioned information can be stored and re-loaded. Regenerating

versioning information is space intensive. The system would be more efficient

with persistence.

• Incremental Binding : With incremental binding, the binding information does

not need to be recomputed and can be derived between versions.

• Incremental IR Updates : Daniel Graves [38] implemented an incremental up-

dater which allows us to reuse some existing nodes. Unlike the traditional

method where the whole FAST is regenerated everytime the source is adapted

into IR nodes, an existing FAST is incrementally updated from an EAST. New

119

IR nodes are generated only when necessary. When comparing general updater’s

and incremental updater’s memory usage, differences of 72% - 78% are observed.

Incremental updater is significantly more efficient than general updater.

• Unparser : The unparser does not pretty print the code. It could be improved

so that the user’s code formatting is preserved. Preserving the original code

formatting after unparsing the internal representation is quite difficult in gen-

eral.

Other issues that are still open for future research include:

1. Adaptive Thresholds : Since different types of applications may require different

thresholds for the metric, it is plausible to adapt machine learning techniques

that could assist us in choosing a more suitable threshold values [53, 57].

2. Dynamic Measures for Semantic Information: Since our main concern is to

obtain quick analysis on the source code, analyses in this work are structural-

based. Using only structural analysis is found to be insufficient if accuracy is the

goal. We believe that incorporating our approach with dynamic semantic met-

rics will yield better results. However, the main challenge is how to balance the

accuracy with the overhead introduced by dynamic metrics or measurements.

3. Annotation Inference: Currently, the programmers are required to annotate

their programs which can be burdensome. It would be more user-friendly, if

annotations are automatically inferred from the source code.

120

4. Performance Evaluation for Refactored Programs : It would be interesting to

see how refactorings affect the program performance and whether better designs

comes with the sake of the performance.

121

Appendix A

Software Metrics

Depth of Inheritance Tree (DIT) is the maximum length from the node to the

root of the tree. Deeper trees constitute greater design complexity, since more

methods and classes are involved.

Number of Children (NOC) is number of immediate subclasses subordinated to

a class in the class hierarchy. The greater the number of children, the greater

the reuse. However, if a class has a large number of children, it may be a case

of misuse of subclassing.

Weighted Methods per Class (WMC) calculates the sum of cyclomatic com-

plexity of methods for a class. A low WMC indicates high polymorphism while

a high WMC signifies a complex class.

Afferent Coupling (Ca) computes the number of classes from other packages that

depend on classes in the analyzed package (incoming dependencies).

122

Efferent Coupling (Ce) counts the number of types of the analyzed package de-

pending types from other packages (outgoing dependencies).

Lack of Cohesion in Methods (LCOM*) measures the relative disparateness of

methods in the class. Cohesiveness of methods within a class is desirable be-

cause it promotes encapsulation. The measurement of disparateness of methods

helps identify design flaws. Furthermore, lack of cohesion implies classes should

probably be split into two or more subclasses. Many researchers define variants

of the original LCOM to overcome the problem with the original metric from

Chidamber and Kermerer. The measurements in this section is one variant of

LCOM by Henderson-sellers [41], also known as LCOM*.

McCabe’s Cyclomatic Complexity measures a number of linearly-independent

paths through a program module [62]. McCabe suggested that the cyclomatic

complexity should not be greater than 10.

123

Appendix B

Case Studies

The code used in this section is written by students and instructor in CS 552 class

for their homeworks. The tool is run on students’ code and following is our findings

in the early stage of testing.

B.1 Definitely a Feature Envy

This is the case when we can determine that the suspicious code is indeed feature

envy without looking at other parts of the code. Figure B.1 illustrates an instance of

feature envy where the programmer should consider moving index to the class that

the put method is defined in.

124

public Object put(Object key, Object value) {
if (!value instanceof Item) {
throw new IllegalArgumentException(‘‘...’’);

}
Object old super.put(key, value);

if (old != null)

index.remove(old);

index.add(value);

return old;

}

Figure B.1: Feature Envy Instance

B.2 Calls on Objects of the Interface Type

Calls on object of the interface type are complicated and difficult to handle. Though

an interface is a type just like a class is, they are different. Unlike a class, an interface

only defines and never implements methods. Classes that implement the interface are

responsible for implementing the methods defined by the interface. With this nature

of the interface, we cannot move the implementation into the interface. The approach

used in the previous section cannot be used here.

One way to handle this case is to convert the interface to an abstract superclass.

Since it has become a class, the implementation can be moved into it. However,

these steps cannot always be done because there could be more than one classes that

implement this interface. If every class that implements the interface is on the same

hierarchy, we are home free. We could find the least common superclass, then make

the interface an abstract class below it. Nonetheless, if the interface is implemented by

classes on different inheritance hierarchies. We can find the least common superclass

then create an abstract superclass below it. However, if the least common superclass

is Object, it may be a good idea to leave this feature envy alone. Trying to remove

125

this feature envy could make the design even worse.

B.3 Calls on Objects of Library Types

Generally, in order to make a feature envy disappear, a region of code should be moved

to a new home that is the class of the receiver. In other words, Move refactoring has

to be applied. If the results from the metric implicate that the feature is more coupled

to the library class, theoretically, such a feature needs to be moved. If most method

calls are on an object with type defined library, there is nothing that we can do. We

cannot change the library. According to feature envy metric discussed in section 5.3,

the code smells detector obtains FeatureEnvy(add, warehouse) = 0.851851 which

is considered a feature envy. In order to fix this feature envy, the add method has to

be moved to the HashMap class. However, we cannot move this method to HashMap

class, since HashMap is in java.util package which is not editable. Figure B.2

illustrates the discussed situation.

One way to work around this obstacle is to avoid direct use of library classes.

This can be done by creating a class that extends the library class and use the newly

defined class instead. This approach could help reduce the number of feature envy

because we have control over such a class. Unlike dealing with library classes, there

is no restriction with the user-defined class. Doing so allows us to move features

between classes freely. The workaround is shown in Figure B.3.

126

public class Warehouse {
HashMap warehouse = new HashMap();

void add(Item objItem, Integer objQuantity) {
assert (objItem != null);

if (warehouse.containsKey(objItem))

warehouse.put(objItem,

new Integer(objQuantity.intValue() +

((Integer) warehouse.get(objItem)).intValue()));

else

warehouse.put(objItem, objQuantity);

}
}

Figure B.2: Feature Envy on Objects of Library Type

public class WarehouseStorage extends HashMap {
public void addItem(Item objItem, Integer objQuantity) {
if (containsKey(objItem))

put(objItem, new Integer(objQuantity.intValue() +

((Integer)get(objItem)).intValue()));

else

put(objItem, objQuantity);

}
}

public class Warehouse {
WarehouseStorage warehouse = new WarehouseStorage();

void add(Item objItem, Integer objQuantity) {
assert (objItem != null);

warehouse.addItem(objItem, objQuantity);

}
}

Figure B.3: Indirect Usage of Library Class

B.4 May-be a Feature Envy

This case happens when we cannot really say if it is a feature envy without looking at

other parts of the code. This is when analysis comes into play. Consider the code in

Figure B.4. Line numbers 5, 7, and 9 are flagged for feature envy candidate because

itemPanel is called on three times (out of 5 total method calls). It seems to be a fea-

ture envy. However, with variable inStock defined on line 8, we cannot safely extract

and move this portion of code to the ItemPanel class unless we are certain that there

127

1: private void updateItemPanel() {
2: Item item = getItem();

3: int q = getQuantity();

4: if (item == null) {
5: itemPanel.clear();

6: } else {
7: itemPanel.setItem(item);

8: int inStock = Warehouse.getInstance().getQuantity(item);

9: itemPanel.setInstock(q <= inStock && 0 < inStock);

10: }
11: }

Figure B.4: May-be a Feature Envy

are no effects on itemPanel from Warehouse.getInstance().getQuantity(item).

Therefore, the effects analysis needs to be performed. If there are effects on itemPanel,

the code cannot be moved since itemPanel at line 7 and itemPanel at line 9 are

in fact, different objects. On the other hand, if there is no write effect, it is safe to

extract line 4-10 and move a newly extracted method to ItemPanel.

B.5 Exception Class

Many data classes that we found are exception classes. In fact, our earlier version

of Data Class Detector reported 82 data classes in the java.util package, all of

which are subclasses of the Exception class. It is reasonable that exceptions do not

perform many operations. Based on this reason, the tool ignores data classes that

extend Exception. An example of Exception subclass detected as a data class is

shown in Figure B.5.

128

public class ProjectException() extends Exception {
public ProjectException(String msg) {
super(msg);

}
}

Figure B.5: Exception Subclass Detected as a Data Class

B.6 Switch Statement

As discussed in Section 4.4, finding a switch statement in the code is not difficult.

The real challenge how to determine which switch statement is bad. Some switch

statements are legitimate and are not used in place of polymorphism.

BIBLIOGRAPHY 129

Bibliography

[1] Giuliano Antonioil, Umberto Villano, Ettore Merlo, and Massimiliano Di Penta.
Analyzing cloning evolution in the linux kernel. Information & Software Tech-
nology, 44(13):755–765, 2002.

[2] Aqris. RefactorIt. http://www.refactorit.com, 2001.

[3] Cyrille Artho and Armin Biere. Applying static analysis to large-scale multi-
threaded Java programs. In Proceedings of the 13th Australian Software Engi-
neering Conference (ASWEC 2001), pages 68–75. 2001.

[4] B. S. Baker. On finding duplication and near-duplication in large software sys-
tems. In WCRE ’95: Proceedings of the Second Working Conference on Reverse
Engineering, page 86. IEEE Computer Society, Washington, DC, USA, 1995.

[5] Henry G. Baker. ‘Use-once’ variables and linear objects—storage management,
reflection and multi-threading. ACM SIGPLAN Notices, 30(1):45–52, January
1995.

[6] Ittai Balaban, Frank Tip, and Robert Fuhrer. Refactoring support for class li-
brary migration. In OOPSLA’05 Conference Proceedings—Object-Oriented Pro-
gramming Systems, Languages and Applications, San Diego, California, USA,
October 16–20, ACM SIGPLAN Notices, 40(11):265–279, October 2005.

[7] Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco Oliveto. A two-
step technique for extract class refactoring. In Proceedings of the IEEE/ACM
international conference on Automated software engineering, ASE ’10, pages 151–
154. ACM, New York, NY, USA, 2010.

[8] Ira D. Baxter, Andrew Yahin, Leonado Moura, Marcelo Sant’Anna, and Lorraine
Bier. Clone detection using abstract syntax trees. In Proceedings of the Interna-
tional Conference on Software Maintenance (ICSM ’98), Bethesda, Maryland,
USA, November 16–20, pages 368–377. IEEE Computer Society, Los Alamitos,
California, November 1998.

BIBLIOGRAPHY 130

[9] James M. Bieman and Byung-Kyoo Kang. Measuring design-level cohesion. Soft-
ware Engineering, 24(2):111–124, 1998.

[10] Bart Du Bois, Serge Demeyer, and Jan Verelst. Refactoring improving coupling
and cohesion of existing code. In Eleventh Working Conference on Reverse En-
gineering, Delft, Netherlands, November 8–November12, pages 144–151. IEEE
Computer Society, November 2004.

[11] John Boyland. Alias burying: Unique variables without destructive reads. Soft-
ware Practice and Experience, 31(6):533–553, May 2001.

[12] Lionel C. Briand, John W. Daly, and Jürgen K. Wüst. A unified framework for
cohesion measurement in object-oriented systems. Empirical Software Engineer-
ing, 3(1):65–117, 1998.

[13] Lionel C. Briand, S. Morasca, and V. R. Basili. Defining and validating measures
for object-based high-level design. IEEE Transactions on Software Engineering,
25(5):722–743, 1999.

[14] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 20(6):476–493, 1994.

[15] Kelvin H. T. Choi and Ewan Tempero. Dynamic measurement of polymorphism.
In Proceedings of the thirtieth Australasian conference on Computer science -
Volume 62, ACSC ’07, pages 211–220. Australian Computer Society, Inc., Dar-
linghurst, Australia, Australia, 2007.

[16] CodeSWAT. Analyst4j. http://www.codeswat.com/cswat/index.php?

option=com_content&task=view&id=43&Itemid=63, 2012.

[17] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In ECOOP ’95: Proceedings of
the 9th European Conference on Object-Oriented Programming, pages 77–101.
Springer-Verlag, London, UK, 1995.

[18] Serge Demeyer. Refactor conditionals into polymorphism: What is the perfor-
mance cost of introducing virtual calls? In Proceedings of the International
Conference on Software Maintenance (ICSM ’05), pages 627–630. IEEE Press,
2005.

BIBLIOGRAPHY 131

[19] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding refactorings via
change metrics. In OOPSLA’00 Conference Proceedings—Object-Oriented Pro-
gramming Systems, Languages and Applications, Minneapolis, Minnesota, USA,
October 15–19, ACM SIGPLAN Notices, 35(10):166–178, October 2000.

[20] David Detlefs and Ole Agesen. Inlining of virtual methods. In ECOOP ’99:
Proceedings of the 13th European Conference on Object-Oriented Programming,
pages 258–278. Springer-Verlag, London, UK, 1999.

[21] Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. Automated
detection of refactorings in evolving components. In Proceedings of the 20th
European conference on Object-Oriented Programming, ECOOP’06, pages 404–
428. Springer-Verlag, Berlin, Heidelberg, 2006.

[22] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A language independent
approach for detecting duplicated code. In Proceedings of the International Con-
ference on Software Maintenance (ICSM ’99), Oxford, UK, August 30– Septem-
ber3, pages 109–118. IEEE Computer Society, Los Alamitos, California, August
1999.

[23] Bruno Dufour, Karel Driesen, Laurie Hendren, and Clark Verbrugge. Dynamic
metrics for Java. SIGPLAN Not., 38(11):149–168, October 2003.

[24] eclipse.org. Eclipse. http://www.eclipse.org, 2003.

[25] Eva Van Emden and Leon Moonen. Java quality assurance by detecting code
smells. In Ninth Working Conference on Reverse Engineering, Richmond, Vir-
ginia, USA, October 28–November5, pages 97–107. IEEE Computer Society, Oc-
tober 2002.

[26] Twan van Enckevort. Refactoring UML models: using openarchitectureware to
measure UML model quality and perform pattern matching on UML models with
OCL queries. In Proceeding of the 24th ACM SIGPLAN conference companion
on Object oriented programming systems languages and applications, OOPSLA
’09, pages 635–646. ACM, New York, NY, USA, 2009.

[27] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dy-
namically discovering likely program invariants to support program evolution. In
Proceedings of the 21st International Conference on Software Engineering, pages
213–224. IEEE Computer Society Press, 1999.

BIBLIOGRAPHY 132

[28] L. Etzkorn and H. Delugach. Towards a semantic metrics suite for object-oriented
design. In Technology of Object-Oriented Languages and Systems, 2000. TOOLS
34. Proceedings. 34th International Conference on, pages 71 –80. 2000.

[29] Cormac Flanagan and K. Rustan M. Leino. Houdini, an annotation assistant for
ESC/Java. Lecture Notes in Computer Science, 2021:500–517, 2001.

[30] Gern Florijn. RevJava – Design critiques and architectural conformance checking
for Java software, 2002.

[31] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander Chatzigeor-
giou. Jdeodorant: identification and application of extract class refactorings. In
Proceedings of the 33rd International Conference on Software Engineering, ICSE
’11, pages 1037–1039. ACM, New York, NY, USA, 2011.

[32] Brian Foote and William F. Opdyke. Lifecycle and refactoring patterns that
support evolution and reuse. In PLoP’94: Proceedings of the 1st Conference on
Pattern Languages of Programs, pages 239–257. Addison-Wesley, 1995.

[33] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison Wesley Longman,
Reading, Massachussetts, USA, 1999.

[34] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading,
Massachussetts, USA, 1995.

[35] Neal Glew and Jens Palsberg. Type-safe method inlining. Science of Computer
Programming, 52(1-3):281–306, 2004.

[36] Google. Codepro analytix. http://code.google.com/javadevtools/codepro/
doc/index.html, 2010.

[37] Pieter Van Gorp, Hans Stenten, Tom Mens, and Serge Demeyer. Towards au-
tomating source-consistent UML refactorings. In Proceedings of the Sixth Inter-
national Conference on the Unified Modeling Language. 2003.

[38] Daniel Graves. Incremental updating for the Fluid IR. Technical report, Depart-
ment of Electrical Engineering and Computer Science, University of Wisconsin-
Milwaukee, 2004.

BIBLIOGRAPHY 133

[39] Aaron Greenhouse and John Boyland. An object-oriented effects system. In
ECOOP’99: Proceedings of the 13th European Conference on Object-Oriented
Programming, Lisbon, Portugal, June 14–18, volume 1628 of Lecture Notes in
Computer Science, pages 205–229. Springer, Berlin, Heidelberg, New York, 1999.

[40] William G. Griswold and Robert W. Bowdidge. Program restructuring via
design-level manipulation. In Proceedings of the IEEE International Conference
on Software Engineering (ICSE ’93), Baltimore, Maryland, USA, pages 127–139.
ACM Press, New York, May 1993.

[41] Brian Henderson-Sellers. Object-Oriented Metrics: Measures of Complexity.
Prentice Hall, 1996.

[42] Yoshiki Higo, Shinji Kusumoto, and Katsuro Inoue. A metric-based approach to
identifying refactoring opportunities for merging code clones in a Java software
system. J. Softw. Maint. Evol., 20:435–461, November 2008.

[43] Instantiations. jFactor. http://www.instantiations.com/jfactor, 2002.

[44] IntelliJ. IDEA. http://www.intellij.com/idea, 2002.

[45] Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Hideaki Komatsu, and
Toshio Nakatani. A study of devirtualization techniques for a Java Just-In-
Time compiler. In OOPSLA ’00: Proceedings of the 15th ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages, and applications,
pages 294–310. ACM Press, New York, NY, USA, 2000.

[46] Ralph E. Johnson and William F. Opdyke. Refactoring and aggregation. In Ob-
ject Technologies for Advanced Software, First JSSST International Symposium,
volume 742, pages 264–278. Springer-Verlag, 1993.

[47] Stephen C. Johnson. Lint: a C program checker. In Unix Programming’s Manual,
pages 292–303. 1978.

[48] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: a multi-
linguistic token-based code clone detection system for large scale source code.
IEEE Transaction Software Engineering, 28(7):654–670, 2002.

[49] Yoshio Kataoka, Michael D. Ernst, William G. Griswold, and David Notkin.
Automated support for program refactoring using invariants. In Proceedings of
the International Conference on Software Maintenance (ICSM ’01), Florence,

BIBLIOGRAPHY 134

Italy, November 6–10, pages 736–743. IEEE Computer Society, Los Alamitos,
California, November 2001.

[50] Hyoseob Kim and Cornelia Boldyreff. Developing software metrics applicable to
UML models. Lecture Notes in Computer Science, 2374:–, 2002.

[51] R. Kollmann and M. Gogolla. Metric-based selective representation of UML
diagrams, 2002.

[52] Raghavan Komondoor and Susan Horwitz. Tool demonstration: Finding du-
plicated code using program dependences. Lecture Notes in Computer Science,
2028:383–386, 2001.

[53] Jochen Kreimer. Adaptive detection of design flaws. In Fifth Workshop on Lan-
guage Descriptions, Tools and Applications (LDTA ’05), pages 117–136. 2005.

[54] Jens Krinke. Identifying similar code with program dependence graphs. In Eighth
Working Conference on Reverse Engineering, Stuttgart, Germany, October 2–5,
pages 301–309. IEEE Computer Society, October 2001.

[55] Bruno Lague, Daniel Proulx, Jean Mayrand, Ettore M. Merlo, and John Hude-
pohl. Assessing the benefits of incorporating function clone detection in a de-
velopment process. In Proceedings of the International Conference on Software
Maintenance (ICSM ’97), page 314. IEEE Computer Society, Washington, DC,
USA, 1997.

[56] Huiqing Li, Claus Reinke, and Simon Thompson. Tool support for refactor-
ing functional programs. In Proceedings of the ACM SIGPLAN Workshop on
Haskell, pages 27–38. ACM Press, 2003.

[57] N. Maneerat and P. Muenchaisri. Bad-smell prediction from software design
model using machine learning techniques. In Computer Science and Software
Engineering (JCSSE), 2011 Eighth International Joint Conference on, pages 331
–336. may 2011.

[58] Mika Mantyla, Jari Vanhanen, and Casper Lassenius. A taxonomy and an initial
empirical study of bad smells in code. In Proceedings of the IEEE International
Conference on Software Engineering(ICSE ’03), pages 381–384. 2003.

BIBLIOGRAPHY 135

[59] Mika V. Mäntylä and Casper Lassenius. Subjective evaluation of software evolv-
ability using code smells: An empirical study. Empirical Softw. Engg., 11:395–
431, September 2006.

[60] Andrian Marcus and Denys Poshyvanyk. The conceptual cohesion of classes. In
Proceedings of the 21st IEEE International Conference on Software Maintenance,
ICSM ’05, pages 133–142. IEEE Computer Society, Washington, DC, USA, 2005.

[61] Katsuhisa Maruyama and Takayuki Omori. A security-aware refactoring tool for
Java programs. In Proceedings of the 4th Workshop on Refactoring Tools, WRT
’11, pages 22–28. ACM, New York, NY, USA, 2011.

[62] T.J. McCabe. A complexity measure. IEEE Transaction on Software Engineer-
ing, 2(4):308–320, 1976.

[63] P. Meananeatra, S. Rongviriyapanish, and T. Apiwattanapong. Using software
metrics to select refactoring for long method bad smell. In Electrical Engi-
neering/Electronics, Computer, Telecommunications and Information Technol-
ogy (ECTI-CON), 2011 8th International Conference on, pages 492 –495. may
2011.

[64] Hayden Melton and Ewan Tempero. Identifying refactoring opportunities by
identifying dependency cycles. In Proceedings of the 29th Austrasian Computer
Science Conference - Volume 48, ACSC ’06. 2006.

[65] Naouel Moha. Detection and correction of design defects in object-oriented de-
signs. In Companion to the 22nd ACM SIGPLAN conference on Object-Oriented
Programming Systems and Applications Companion, OOPSLA ’07, pages 949–
950. ACM, New York, NY, USA, 2007.

[66] Naouel Moha, Yann-Gael Gueheneuc, Laurence Duchien, and Anne-Francoise
Lemeur. Decor: A method for the specification and detection of code and design
smells. volume 36 of IEEE Transactions on Software Engineering, pages 20–36.
2010.

[67] Emerson Murphy-Hill and Andrew P. Black. Seven habits of a highly effective
smell detector. In Proceedings of the 2008 international workshop on Recom-
mendation systems for software engineering, RSSE ’08, pages 36–40. ACM, New
York, NY, USA, 2008.

BIBLIOGRAPHY 136

[68] Glenford J. Myers. Composite Structure Design. John Wiley & Sons, Inc., New
York, NY, USA, 1978.

[69] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag Berlin Heidelberg, New York, NY, USA, 1999.

[70] Jeremy W. Nimmer and Michael D. Ernst. Invariant inference for static checking:
An empirical evaluation. In Proceedings of the Tenth ACM SIGSOFT Symposium
on Foundations of Software Engineering, pages 11–20. ACM Press, 2002.

[71] A. Jefferson Offutt, Mary Jean Harrold, and Priyadarshan Kolte. A software met-
ric system for module coupling. The Journal of Systems and Software, 20(3):295–
308, March 1993.

[72] Rocco Oliveto, Malcom Gethers, Gabriele Bavota, Denys Poshyvanyk, and An-
drea De Lucia. Identifying method friendships to remove the feature envy bad
smell (nier track). In Proceedings of the 33rd International Conference on Soft-
ware Engineering, ICSE ’11, pages 820–823. ACM, New York, NY, USA, 2011.

[73] William Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Univer-
sity of Illinois, 1992.

[74] William F. Opdyke and Ralph E. Johnson. Creating abstract superclasses by
refactoring. In Proceedings of the 1993 ACM conference on Computer science,
pages 66–73. ACM Press, 1993.

[75] Meilir Page-Jones. The Practical Guide to Structured Systems Design: 2nd edi-
tion. Yourdon Press, Upper Saddle River, NJ, USA, 1988.

[76] Don Roberts, John Brant, and Ralph Johnson. A refactoring tool for smalltalk.
TAPOS ’97, Journal of Theory and Practice of Object Systems, 3(4):253–263,
1997.

[77] Linda H. Rosenberg. Applying and interpreting object oriented metrics. Object
Oriented Systems, 1998.

[78] Emmad Saadeh, Derrick Kourie, and Andrew Boake. Fine-grain transforma-
tions to refactor UML models. In Proceedings of the Warm Up Workshop for
ACM/IEEE ICSE 2010, WUP ’09, pages 45–51. ACM, New York, NY, USA,
2009.

BIBLIOGRAPHY 137

[79] Emmad Saadeh and Derrick G. Kourie. Composite refactoring using fine-grained
transformations. In Proceedings of the 2009 Annual Research Conference of the
South African Institute of Computer Scientists and Information Technologists
(SAICSIT ’09), pages 22–29. ACM, New York, NY, USA, 2009.

[80] Jean-Guy Schneider, Rajesh Vasa, and Leonard Hoon. Do metrics help to iden-
tify refactoring? In Proceedings of the Joint ERCIM Workshop on Software
Evolution (EVOL) and International Workshop on Principles of Software Evo-
lution (IWPSE), IWPSE-EVOL ’10, pages 3–7. ACM, New York, NY, USA,
2010.

[81] Frank Simon, Frank Steinbrückner, and Claus Lewerentz. Metrics based refac-
toring. In Proceedings of the 5th European Conference on Software Maintenance
and Reengineering (CSMR ’01), Lisbon, Portugal, March 14–16, pages 30–38.
IEEE Computer Society, Los Alamitos, California, March 2001.

[82] Satwinder Singh and K. S. Kahlon. Effectiveness of encapsulation and object-
oriented metrics to refactor code and identify error prone classes using bad smells.
SIGSOFT Softw. Eng. Notes, 36(5):1–10, September 2011.

[83] sourceforge.net. Metrics. http://metrics.sourceforge.net, 1998.

[84] sourceforge.net. CppRefactory. http://cpptool.sourceforge.net, 2001.

[85] sourceforge.net. Transmogrify. http://transmogrify.sourceforge.net, 2001.

[86] sourceforge.net. JRefactory. http://jrefactory.sourceforge.net, 2003.

[87] Cara Stein, Letha Etzkorn, and Dawn Utley. Computing software metrics from
design documents. In ACM-SE 42: Proceedings of the 42nd annual Southeast
regional conference, pages 146–151. ACM Press, New York, NY, USA, 2004.

[88] Eli Tilevich and Yannis Smaragdakis. Refactoring: Improving code behind the
scenes. In Proceedings of the IEEE International Conference on Software Engi-
neering (ICSE ’05), St. Louis, Missouri, May 15–21, pages 264–273. ACM Press,
New York, May 2005.

[89] Frank Tip, Robert M. Fuhrer, Adam Kieżun, Michael D. Ernst, Ittai Balaban,
and Bjorn De Sutter. Refactoring using type constraints. ACM Trans. Program.
Lang. Syst., 33(3):9:1–9:47, May 2011.

BIBLIOGRAPHY 138

[90] Frank Tip, Adam Kiezun, and Dirk Bäumer. Refactoring for generalization
using type constraints. In OOPSLA’03 Conference Proceedings—Object-Oriented
Programming Systems, Languages and Applications, Anaheim, California, USA,
October 26–30, pages 13–26. ACM Press, New York, 2003.

[91] Tom Tourwé and Tom Mens. Identifying refactoring opportunities using logic
meta programming. In Proceedings of the 7th European Conference on Soft-
ware Maintenance and Reengineering(CSMR ’03), Benevento, Italy, March 26–
28, pages 91–100. IEEE Computer Society, Los Alamitos, California, March 2003.

[92] W. T. Tsai, M. A. Lopex, V. Rodriguez, and D. Volovik. An approach measuring
data structure complexity. In Proceedings of the International Computer Software
and Applications Conference (COMPSAC ’86), pages 240–246. IEEE Computer
Society, 1986.

[93] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou. Jdeodorant: Identification
and removal of type-checking bad smells. In Software Maintenance and Reengi-
neering, 2008. CSMR 2008. 12th European Conference on, pages 329 –331. april
2008.

[94] N. Tsantalis and A. Chatzigeorgiou. Identification of move method refactoring
opportunities. Software Engineering, IEEE Transactions on, 35(3):347 –367,
may-june 2009.

[95] XRef-Tech. XRefactory. http://www.xref-tech.com/speller, 1998.

[96] Limei Yang, Hui Liu, and Zhendong Niu. Identifying fragments to be extracted
from long methods. In Proceedings of the 2009 16th Asia-Pacific Software En-
gineering Conference, APSEC ’09, pages 43–49. IEEE Computer Society, Wash-
ington, DC, USA, 2009.

[97] Yuming Zhou, Jiangtao Lu, and Hongmin Lu Baowen Xu. A comparative study
of graph theory-based class cohesion measure. Software Engineering Notes,
29(2):13–18, 2004.

[98] Yuming Zhou, Lijie Wen, Jianmin Wang, and Yujian Chen. DRC: A dependence
relationships based cohesion measure for classes. In Tenth Asia-Pacific Software
Engineering Conference, page 215. 2003.

139

CURRICULUM VITAE

Kwankamol Nongpong

Place of Birth: Nakhonnayok, THAILAND

Education
B.S., Assumption University of Thailand, October 1996
Major: Computer Science

M.S., University of Wisconsin-Milwaukee, May 2000
Major: Computer Science

Dissertation Title: Integrating “Code Smells” Detection with Refactoring Tool
Support

Awards and Scholarships:
2000-2004: Research Assistant, University of Wisconsin-Milwaukee.
2004-2005: Scholarship, Assumption University, Thailand.
2005-2006: Research Assistant, University of Wisconsin-Milwaukee.

	University of Wisconsin Milwaukee
	UWM Digital Commons
	8-1-2012

	Integrating "Code Smells" Detection with Refactoring Tool Support
	Kwankamol Nongpong
	Recommended Citation

	tmp.1347984724.pdf.lEl8n

