
Integrating Compiler and System Toolkit Flow for

Embedded VLIW DSP Processors

Chi Wu Kun-Yuan Hsieh Yung-Chia Lin Chung-Ju Wu Wen-Li Shih

S. C. Chen Chung-Kai Chen Chien-Ching Huang Yi-Ping You Jenq Kuen Lee

Department of Computer Science

National Tsing-Hua University

Hsinchu 300, Taiwan

Email: {wuchi, kyhsieh, yclin, jasonwu, wlshih, scchen, ckchen, cchuang, ypyou}@pllab.cs.nthu.edu.tw

Email: {jklee}@cs.nthu.edu.tw

Abstract

To support high-performance and low-power for multi-

media applications and for hand-held devices, embedded

VLIW DSP processors are of research focus. With the tight

resource constraints, distributed register files, variable-

length encodings for instructions, and special data paths

are frequently adopted. This creates challenges to deploy

software toolkits for new embedded DSP processors. This

article presents our methods and experiences to develop

software and toolkit flows for PAC (Parallel Architecture

Core) VLIW DSP processors. Our toolkits include compil-

ers, assemblers, debugger, and DSP micro-kernels. We first

retarget Open Research Compiler (ORC) and toolkit chains

for PAC VLIW DSP processor and address the issues to

support distributed register files and ping-pong data paths

for embedded VLIW DSP processors. Second, the linker

and assembler are able to support variable length encod-

ing schemes for DSP instructions. In addition, the debug-

ger and DSP micro-kernel were designed to handle dual-

core environments. The footprint of micro-kernel is also

around 10K to address the code-size issues for embedded

devices. We also present the experimental result in the com-

piler framework by incorporating software pipeline (SWP)

policies for distributed register files in PAC architecture.

Results indicated that our compiler framework gains per-

formance improvement around 2.5 times against the code

generated without our proposed optimizations.

1. Introduction

With the fast growth of consumer electronic products,

the demand on digital signal processings related to the mul-

timedia, such as image and video processing, is also in-

creased significantly. To meet the performance challenges,

high-end embedded processor and DSP processors are mov-

ing towards exploiting intensively instruction level paral-

lelism (ILP). In addition, the tight resources in embedded

systems also have DSP processors to adopt architecture fea-

tures such as distributed register files to reduce the amount

of read and write ports in registers to reduce power con-

sumptions [1], special data path to exploit the characteris-

tics of DSP applications, variable length encoding schemes

for instructions to reduce code size, the sub-word instruc-

tions for video applications, etc. The appearance of these

new features create challenges to deploy software toolkits

for new embedded DSP processors.

This article presents our methods and experiences to de-

velop software and toolkit flows for PAC (Parallel Archi-

tecture Core) VLIW DSP processors. Parallel Architecture

Core (PAC) is a five-way VLIW DSP processors with dis-

tributed register cluster files and multi-bank register archi-

tectures (known as ping-pong architectures) [2] [3] [4]. Our

toolkits include compilers, assemblers, debugger, and DSP

micro-kernels. We first retarget Open Research Compiler

(ORC) [5] and toolkit chains for PAC VLIW DSP proces-

sor and address the issues to support distributed register files

and ping-pong data paths for embedded VLIW DSP proces-

sors. We also deploy software pipelining techniques with

the considerations of distributed register file architectures.

The linker and assembler of our toolkits are able to support

variable length encoding schemes for DSP instructions. In

addition, the debuggers were designed to handle dual-core

environments. The debugger is also integrated with Eclipse

IDE. The footprint of micro-kernel is also around 10K to

address the code-size issues for embedded devices. We also

present the experimental result in the compiler framework

by incorporating software pipeline policies for distributed

register files in PAC architecture. Results indicated that



our compiler framework gains performance improvement

around 2.5 times against the code generated without our

proposed advanced optimizations. In-depth technical ex-

periences in deploying system toolkits for new embedded

VLIW DSP processors are reported.

The remainder of this paper is organized as follows.

Section 2 introduces the PAC VLIW DSP architecture and

presents our software flow for this embedded DSP proces-

sor. Next, Section 3 presents compiler overview and our

experiences in deploying software pipeline schemes for par-

titioned register files of PAC architectures. Section 4 briefly

describes our experiences in the development of toolkit

chains. Section 5 introduces an operating system called

pCore which is designed to provide a minimal but sufficient

OS services with a small kernel under the dual-core/multi-

core environment on PAC architecture. The experimental

results of our evaluation are provided in Section 6. Finally,

Section 7 concludes this paper.

2. PAC architecture and Software Flow

The novel 32 bits embedded PAC DSP processor is de-

signed for high-performance and low power. We briefly de-

scribe PAC’s architecture in this section. In addition, we

also present the software flow in our design for PAC plat-

forms.

2.1. PAC architecture

PAC VLIW DSP processor is being developed by SOC

Technology Center at Industrial Technology Research Insti-

tute with joint efforts from academic research teams [7] [8].

This high-performance processor with SIMD ISA is a five-

way issue VLIW DSP processor which is constructed by

two clusters and one scalar unit (B-unit). Each cluster con-

tains one arithmetic unit (I-unit) and one load/store unit (M-

unit) with associated register files as shown in Figure 1.

Such architecture design is logically appropriate for data

stream processing.

��������������

�	
���

� ���������


	
���

� ���������

�	
���

�� ���������

� ���������


�����	����������
�����
�
�

��������������


	
���

� ���������

�	
���

�� ���������

� ���������

�
�

��������

�
�

��������

����������������������������

�	
���

� ���������

�	
���

� ���������


	
���

� ���������

�	
���

�� ���������

� ���������


	
���

� ���������


	
���

� ���������

�	
���

�� ���������

�	
���

�� ���������

� ���������


�����	����������
�����
�
�

��������������


	
���

� ���������

�	
���

�� ���������

� ���������

����������������������������


	
���

� ���������

�	
���

�� ���������

� ���������


	
���

� ���������


	
���

� ���������

�	
���

�� ���������

�	
���

�� ���������

� ���������

�
�

��������

�
�

��������

Figure 1. PAC VLIW DSP architecture

Only B and M-unit can do memory access through mem-

ory interface unit. A pair of M and I units form a cluster

with their register files, and B-unit has its own local register

file. There are several distinct register files in the architec-

ture. They are five local register files, two global register

files, and two constant register files. All three types of reg-

ister files in the PAC DSP architecture have different access

capabilities. Each local register file can only be accessed by

its dedicated unit and each global register file is shared by a

pair of M and I units but the access is limited by ping-pong

switch constraints. Furthermore, constant register file in one

cluster is also shared by a pair of M and I-units. However, it

only be used as one read-only operand source for each unit

and its value only setup by M-unit.

The ping-pong bank switches are the major features used

by the PAC DSP architecture to reduce the number of ports

but remain data-sharing capability for the global register

files. Each global register file is divided into two banks, and

each bank can only be accessed by one unit with one state

of the ping-pong bank switch in a single cycle, ping state or

pong state. The state of the ping-pong bank switches can be

changed in each cycle. The data-transfer between M-unit

and I-unit in same cluster is performed by ping-pong bank

switch, shown as Figure 2.

Figure 2. Behavior of global register files

The register file communication used by the PAC DSP

architecture also features the reduction of port connections.

Setting ping-pong bank switch on the global register file can

make an intra-cluster communicate operation. For inter-

cluster communication, unlike TIs cross-cluster port con-

nections, PAC DSP reutilizes the existing Memory Interface

Unit (MIU) routing path to benefit load/store instructions.

Programmers need to issue special pair instructions one in-

struction implies sending and the other implies receiving.

This pair of instructions should be located in the same cy-

cle. The purpose to reuse MIU routing path is to avoid ad-

ditional circuit costs and ports to register files. However,

this design result in complex restrictions because the pair

instructions would occupy two slots in one cycle and only

be available for B-unit and M-units. Data transfer between

two local register files of I-units will be a long path. More-

over, restricted by bypassing in this design, the inter-cluster



communication will consume additional 2-cycle latency.

2.2. Software Flow

We integrate compiler, binutils, debugger, and simula-

tor on Eclipse which was an integrated development envi-

ronment (IDE) platform and used to provide a convenient

development environment for application developers. The

integrated software solution is shown in Figure 3.

�
�

�
��

��
�
	


�

�


�

�
��

��
�

�
��

��
��

�
��

����������
���
���

�����������
�����

����������
���

����������������������

�� �
���
���

!����

�������
�

�������

�
"�

�������

�
"�

����

��������

�#������

"
���
����"�

���
������
���

�������������
����

����
������������
�����

�
���

��	������


�����
�
���

�
$�"����

��%��

�
$�"����

������

����
���

��������� %
�&��

�� 
���

����

'
���
�� �
����������

����
��"

��������"

%��"�"

Figure 3. Software flow for PAC platforms

A graphical user interface (GUI) integrates the repre-

sentation of variables, disassembly, registers, and break-

points/watchpoints information. Users can develop pro-

grams through IDE on PAC platforms. With the support

of C development tools (CDT) plug-in, Eclipse [6] inte-

grates compiler, binutils, debugger, and simulator/emulator

in a user interface. The compiler invokes the assembler and

linker to produce the final ELF executable file which can run

on PAC. Programmers can also fetch information, such as

variables and registers, from the debugger to identify bugs

of programs.

3. Compiler

The compiler for PAC DSP is developed based on ORC

which is an open-source compiler infrastructure released

from Intel and incorporates most of the optimization tech-

niques of industry strength so far. This compiler is capable

of generating codes with good performance on its original

IA-64 target by utilizing numbers of EPIC/VLIW architec-

tural advantages. The preliminary employment from orig-

inal IA-64 to PAC DSP includes the new implementation

of machine description tables and the essential supports for

PAC DSP code generation. Some optimization phases, such

as copy propagations for irregular register files, code gen-

erators for PAC assemblies, SA-style instruction scheduler

and PALF scheduler, are published into papers [7–9]. Till

now, our development of compiler with software pipeline

optimization support for PAC DSP is available. In this sec-

tion, we focus on the studies of supporting basic VLIW

compiler infrastructures for PAC DSP processors in SWP

optimization.

3.1. Overview of PAC DSP complier

The compilation starts with processing by the front-

ends, generating an intermediate representation (IR) of the

source program, and feeding it in the back-end. The IR ,

called WHIRL, is a part of the Pro64 compiler released by

SGI [10]. It includes five representation levels from “very

high” to “very low”. Each level is invoked at the back-end

to perform a series of lowering processes and optimizations

on the WHIRL IR. In practice, the optimization phases are

organized as a dynamically-shared library, loaded and ex-

ecuted on demand by the back-end. The ones who use

PAC DSP compiler can turn on/off different optimization

phases. These optimizations in levels are inter-procedural

analysis/optimizer, loop nest optimizer, global optimizer,

and code generator.

The code generator would take over the progress after the

lowering and optimization phases, translating the WHIRL

IR into CGIR (Code Generation Intermediate Representa-

tion), which is a low level IR reflecting the instruction set ar-

chitecture of PAC DSP processor. Global and local register

allocation, and final assembly codes emitting are performed

here. Moreover, the code generator also performs many tar-

get dependent optimization phases, including control flow

optimization, extended block (peephole) optimizer, inte-

grated global/local scheduling (IGLS), hyperblock forma-

tion, CG loop analysis and transformation, and software

pipelining.

3.2. SWP optimization for PAC

Compiler techniques, such as SWP and global instruc-

tion scheduling, have been proven to be necessary and ef-

fective methods to increase the degree of ILP in programs.

The original implemented software pipeline follows these

papers which wrote by Richard Huff and B. R. Rau [11,12].

Unfortunately, they did not mention about how to deal with

such highly-partitioned register file architecture.

Provided software pipeline optimization to PAC DSP ar-

chitecture includes many works to do. The architecture fea-

tures different between IA-64 and PAC listed in Table 1.

Each of them will be described separately.

PAC DSP is cluster architecture but IA-64 is not. Thus

the cluster assignment phase and inter-cluster communica-

tion instruction insertion needs to be implemented into com-

piler. The goal of cluster assignment phase is partition loop

into two sets to execute on different cluster without increas-

ing minimal initial interval (MII) which produced by rela-



Table 1. IA-64/PAC architecture comparison

Hardware

features

IA-64 PAC

Multiple

Clusters

no yes Cluster assignment and

Intercluster communi-

cation

Distributed

Register

Files

no yes Register bank assign-

ment

Ping-Pong

Architec-

ture

no yes Ping-pong constraint

Rotating

Register

Files

yes no Modulo variable expan-

sion

Predication

Support

yes yes Reuse the methods in

ORC

tionship of dependence and utilization of functional unit.

Each communication instruction insertion causes 3 cycles

delay and one for instruction issues and two for additional

instruction latency. To avoid increasing MII, these com-

munication instructions should not be arranged in the criti-

cal path. In the other word, the instructions of critical path

which causes recurrence MII (RecMII) should be arranged

into one cluster.

To deal with PAC′s hardware features on distributed reg-

ister files, the register bank assignment is necessary. Con-

sidering these different types of register file, global and

local, in one cluster, what kind of register file should be

assigned to instructions is a problem. If data transfer be-

tween two instructions which executed by different func-

tional unit, M-unit and I-unit, in one cluster is needed,

then global register file will be assigned to them. How-

ever, such arrangement induced new problem by global reg-

ister, i.e. ping-pong constraint. According to the ping-pong

constraint, additional phase to insure that instruction sched-

uler will not arrange instructions into the worst case, such

as following example, is constructed by investigators. The

motivating example illustrates how the ping-pong constraint

damages performance.

�

�

�
�

�

���	


���	


���	


���	


����


����
�������



������

������

����


�

�

�
�

�

���	


���	


���	


���	


����


����
�������



������

������

����
�������



������

������

����


Figure 4. Motivating example

Figure 4 is a data dependence graph (DDG) built by our

compiler. The orange nodes in Figure 4 executed by I-unit

and the blue nodes executed by M-unit. Delay indicates

how many cycles should wait for data ready and Omega

represents dependence between different iterations. Due to

the special register file organization, the data-transfer be-

tween M-unit and I-unit is performed by ping-pong bank

switch. In this motivating example, the result of instruction

A is used by instruction B, such that register allocator allo-

cates global register to instruction A. In this case, instruc-

tion B and E should be schedule into one cycle without any

constraint. However, ping-pong constraint restricts such ar-

rangement because of M-unit and I-unit can not access the

same register file in single cycle. The code generator in

compiler could get MII when it performed software pipeline

optimization. MII of this DDG is dominated by RecMII and

its value is 4 without any constraint. Since ping-pong con-

straint existed, instruction B and E could not be arranged

into the same cycle. The worst case is that instruction E be

arranged in first place, then instruction B. Now, MII calcu-

lated by compiler is 5 which is showed in Figure 5. The

result of this example indicates that ping-pong constraint

might damage the overall performance.

Figure 5. Scheduling result for motivating ex-
ample

Our new decision phase is built into SWP to solve this

problem. This decision phase identify which node should

be arranged first when the ping-pone constraint occurred. In

this example, ping-pong constraint occurs between instruc-

tion B and E, therefore the decision phase makes sure that

instruction B would be arrange before instruction E. Unfor-

tunately, in some situation increasing MII is necessary with

ping-pong constraint, shown as Figure 6.

�

�

�
�

�

���	


���	


���	


���	


����

����


���
���������


������

������
�

�

�
�

�

���	


���	


���	


���	


����

����


���
���������


������

������

���
���������


������

������

Figure 6. Situation for increasing MII

Again, the result of instruction A is used by instruction

B which belong to different execution functional unit, such



that register allocator allocates global register to instruction

A. In this situation, no matter which instruction, B or E, be

scheduled first, then the MII will be increased.

Moreover, IA-64 has hardware support with rotating reg-

ister files for performance improvement on SWP but PAC

has not. Therefore, modulo variable expansion also needs

to build in compiler. The rotating register files solve the life-

time overlap problem of variables. So far PAC DSP does not

provide such hardware support; hence unrolling and renam-

ing are used to handle this problem.

4. Toolkits development for PAC

In this section, we will briefly describe our experiences

on development toolkit chains to this specific architecture.

4.1. Assembler/Linker

The PAC DSP Binary Utility is the collection of bi-

nary/object file tools for users who would like to build or

manipulate PAC DSP executables. The collection contains

assembler, linker, disassembler, and other object file ma-

nipulation tools. The compiler invokes the assembler and

linker to produce the desired ELF (Executable and Linking

Format) execution files.

The binary format of PAC DSP instructions adopt vari-

able length encoding, which is an efficient strategy to build

compact binary representation corresponding to different

assembly code. The variable length encoding tends to en-

code operators, registers, immediate values, and any other

meaningful data into bit fields with minimum bytes. The

code size would be saved by using shorter encoding length.

Therefore, we prefer to encode instructions according to

their frequencies of appearance; the more frequent instruc-

tions use the shorter encoding length, and vice versa.

In addition to support variable length encoding in PAC

DSP Binary Utility, we also develop some schemes to make

more improvement on reducing code size. The major idea

of our scheme is to compress immediate value in binary for-

mat. Consider that even if we reserve a 32-bit field in binary

format for an immediate value, it is not necessary to encode

immediate value with complete 32 bits. The basic com-

pressing concept is presented as Figure 7.

Since PAC DSP hardware is able to fetch the immedi-

ate value and automatically manages signed extension to a

32-bit data, PAC DSP Binary Utility would try to rebuild

the original machine encoding by compressing the immedi-

ate value with less bytes. Each machine encoding in object

file is rescaned to find out if there is possibility to compress

immediate value. If the immediate value in the machine en-

coding can be compressed, PAC DSP Binary Utility could

compress the encoding length to be a shorter one. There are

several steps that help us to do compressing. First, taking

���������	
��� ����� �� �
������

���� ���

���������	
��� ����
������

���� ���

���������	
��� �
������

��� �	

���������	
�

�
�������� ���������

�	��

�
���� ���������

������
�� ��������

���������	
��� ����� �� �
������

���� ���

���������	
��� ����� �� �
������

���� ���

���������	
��� ����
������

���� ���

���������	
��� ����
������

���� ���

���������	
��� �
������

��� �	

���������	
��� �
������

��� �	

���������	
�

�
�������� ���������

�	��

�
���� ���������

������
�� ��������

Figure 7. Compressing immediate value

the most significant bit of immediate value as consideration

to identify whether it is signed or unsigned value. Second,

we count the number of signed/unsigned bit in the origi-

nal value encoding and discard extra bits to form a shorter

binary representation for the immediate value. Next, de-

termining the minimum bytes which could represent the

value in terms of revised immediate value length and orig-

inal signed/unsigned expression, taking notice of that the

hardware is signed-extension. Finally, the basic encoding

of instruction and the new immediate binary representation

would be recombined into one single binary machine en-

coding. Following the steps above, it is natural to examine

all compressible value of machine encodings in object file

and entirely reduce code size of a application.

Another scheme to make variable length encoding better

is ignoring the predicate bit field. According to PAC DSP

instruction set architecture, almost all instructions are pred-

icatable. It implies that the predicate information should

be encoded into machine code. However, within a practi-

cal application, not every instruction needs to be marked as

predicated. For those instructions which will be certainly

executed, we can even discard their predicate information.

This also saves a little code size.

To summarize our works on PAC DSP Binary Utility, not

only do we deal with the complicated encoding introduced

by PAC DSP architecture, but also provide more advanced

code size reducing strategies.

4.2. Debugger

To provide an efficient support for application developers

of PAC DSP in finding and reducing bugs or defects inside

programs, GNU debugger (GDB) is employed as a basis

for the debugging environment. In general, GDB consists

of three major subsystems: user interface, symbol handling

(the symbol side), and target system handling (the target

side) [16]. The target side is an architecture-related compo-

nent, which provides GDB with the common functions to

access targets.

As illustrated in Figure 8, the PAC DSP GDB handles de-

bug information of object files generated by the PAC DSP

compiler in the symbol side, and communicates with in-



struction set simulator (ISS) or in-circuit emulator (ICE)

via GDB Remote Serial Protocol (GDB RSP) [17]. The

GDB RSP defines the rules governing the communication

between debuggers and targets. In the PAC DSP GDB, a

reduced and integrated GDB RSP for both ISS and ICE is

proposed to control targets. For instance, we define that the

memory address should be aligned in one word while ac-

cessing memory. Various protocols to set breakpoints and

watchpoints in the debugging programs are also defined.

The modifications in our PAC GDB RSP decrease the com-

plexity of designing the remote stub for both PAC DSP ICE

and PAC DSP ISS. Beside physical registers, the PAC GDB

RSP defines pseudo registers to transfer system information

such as interrupts, timers, and control registers. By using

pseudo registers, users can inspect sufficient information of

the system in run time.

For source level debugging, a translation from the regis-

ter numbering used by the PAC DSP compiler to the num-

bering defined in the PAC GDB RSP is provided in the tar-

get system handling subsystem. The translation bridges the

gap between the debug information and the PAC GDB RSP

to guarantee the correctness of the collected information.

����������	
��

�
������
���������
����������

�
������
������
���������
����������

����������� �����������

�������� ��

�!"�	���
����

#�$����"��������%����"����

���

���&����

Figure 8. The PAC GDB setup

5. OS support

pCore (passive/compact runtime environment) microker-

nel operating system is designed for PAC VLIW DSP pro-

cessors under the dual-core/multi-core scenario which tries

to provide a minimal but sufficient OS services with a small

kernel. It is a preemptive, multitasking and static micro-

kernel which cooperates with the embedded OS that runs

on the main processor in a dual-core/multi-core platform

that allows application developers to build the software in-

frastructure of PAC DSP processors. Figure 9 shows the

architecture overview of pCore microkernel which is basi-

cally composed of resource management, synchronization

modules, inter-process communication and some kernel ser-

vices.

The kernel structure defines a task as a running program

on pCore which is managed by the kernel. The kernel main-

tains the runtime information for each task by building the

task control block, TCB, to keep the necessary informa-

tion. The data structure of TCB in pCore contains no in-

direct pointers to make the access to the data fields more

�����������	
��������
����
��

�������

��	������

����������������

���

��
�����

����

	
�����
���
��

�����	���

����������

 ������������������	������

��!���������������� ������

�������	���
��

"��
���"�
���

"�����
�
��
#��
��

�����$�����

"���%

����&����
�����

�������

��������

�
�
�
���
�
����

�
��
���

���

��
�
�
�
�

��
�
�
�
��
��
��
��
��

"
��

����

Figure 9. pCore architecture overview

efficiently. Furthermore, the size of memory required for

TCBs is configurable when the running applications are de-

termined. pCore adopts a priority-based scheduling algo-

rithm to make the whole system deterministic and allow

the master processor to have a better control on it under

the master-slave programming model. The communica-

tion between tasks in pCore bases on the message-passing

scheme which constructs a message as a simple data struc-

ture that contains an identifier of the sender and receiver, a

pointer to a data, a field of data and some useful informa-

tion. Two basic mechanisms, PIPE and MAILBOX based

on the message-passing scenario are provided for the pro-

grammer to perform interprocess communication.

In a multi-tasking system like pCore, the synchroniza-

tion between tasks is required in order to ensure the cor-

rectness of concurrent access to data. pCore supports a

mechanism for creating critical sections by using counting

semaphores which are implemented by disabling the inter-

rupts. As the target processor, PAC DSP processors are

intended to be employed in the dual-core/multi-core plat-

form. pCore provides a friendly and efficient system calls

for the programmer to register their own service routines.

This system calls allow the programmer easily migrating to

any customized dual-core/multi-core communication proto-

col on it.

pCore is a tiny microkernel based OS which is designed

for PAC DSP processors with a very small kernel size,

nevertheless, it implements only a minimal set of services

such as inter-process communication, scheduler and some

other kernel services. Furthermore, it supports the dual-

core/multi-core programming model by providing neces-

sary system calls for the users to port any customized dual-

core/multi-core communication protocol on it.



6. Results

Preliminary experiments were done by running the DSP-

stone benchmark suite [20] on the PAC DSP. Since the PAC

DSP compiler is still in progress, we only evaluated opti-

mizations in O1 level for the early-stage performance evalu-

ations of our designs. Some programs of DSP-stone bench-

mark suite will not be processed by SWP optimization be-

cause their trip counts of loops are too small to gain benefit.

Table 2 shows the cycle counts for some programs of DSP-

stone benchmark suite estimation on PAC ISS. The better

results are always produced by code generation with SWP.

Table 2. Cycle counts of DSP-stone bench-

mark suite

Without

SWP

With SWP

fir 2672 1208

lms 3343 1865

fir2dim 14042 10636

matrix1 71467 36739

matrix2 68671 34363

mit1x3 681 480

n-real updates 3292 2153

n-complex updates 6792 3145

convolution 1524 773

dot of product 258 178

�

���

�

���

�

���

�

��
	


�
�

��
	�

�
�

�
��
	��
�

�
��
	��
�

�
��
��
�

��
	�
�

��
�

��
��

��
��
�
�

��
��
�

��
��

��
��
�

��
��
�


�
��
�	
�

��
�

��

��

�����

������

Figure 10. Performance result

Experimental results of the DSP-stone benchmark suite

running on the PAC DSP are normalized and presented in

Figure 10. Blue bar showed the performance generated

from the compiler without any optimization and purple bar

showed the performance generated from the compiler with

some optimization in O1, such as EBO and WOPT. Yellow

bar showed the performance got from our previous works on

register allocation which uses the simulated annealing (SA)

method to improve local instruction scheduling. Green bar

showed the performance got from the compiler with SWP

optimization. These results indicated that our SWP policies

gain performance improvement around 2.5 times against to

the code generated without any optimization. Clearly, soft-

ware pipelining is also an effective method to attain per-

formance on highly partitioned register files of PAC archi-

tecture. However, we noticed that utilization of resources

on the PAC architecture is low when we investigated the

code which was scheduled by SWP optimization. In the

other word, most of the instructions will be arranged into

one cluster. Due to the characteristic of DSP-stone bench-

marks, while performing SWP optimization on these pro-

grams, most of the MII were dominated by their RecMIIs.

Therefore, such instruction arrangement was done by clus-

ter assignment phase with the goal to minimize the initial

interval. Hence, in our future works we will try to boost the

utilization rate of resources. The high-level loop transfor-

mations should also be used to enhance partitioning scheme

and improve the performance.

In addition to the significant improvement of SWP op-

timization, the current implementation of pCore for PAC

DSP processor is proved to be very tiny with the size less

than 10K Bytes. The kernel is impressively small com-

paring with many existing embedded microkernel OS or

real-time kernels. Moreover, by configuring the kernel be-

fore runtime when the applications running on it are deter-

mined, the memory requirement of pCore could be shrank

even more. Figure 11 shows the module size distribution

Figure 11. Module size distribution of pCore

of pCore which presents the result of implementation. The

task management module which is the key feature of multi-

tasking turns out to have a large memory requirement. If

the DSP is employed to run one application at a time, the

kernel can be configured to be single-tasking mode which

can reduce the memory requirement of the kernel in about

50%.

Furthermore, those toolkits we developed , such as com-

piler, assembler/linker and debugger, are integrated into

Eclipse to provide a convenient environment for application

developers. As shown in Figure 12, the graphical user in-

terface (GUI) of our PAC DSP debugger could offer the vi-

sual representation of variables, disassembly, registers, and



breakpoints/watchpoints information in an integrated style.

Figure 12. A snapshot of Eclipse for PAC DSP

7. Conclusion

This article attempted to describe our experiences on de-

velopment OS and toolkit chains on PAC architecture with

strict constrains on register files access. We developed a

tiny microkernel based OS which is designed for PAC DSP

processors with a very small kernel size. This OS im-

plements a minimal set of services and supports the dual-

core/multi-core programming model by providing neces-

sary system calls for the users to port any customized dual-

core/multi-core communication protocol on it. We also built

assembler/linker to do the basic machine encoding and pro-

vide more advanced code size reducing strategies on PAC.

Besides, we provided a debugging environment and inte-

grated software solutions for application developers of PAC

DSP. Furthermore, we introduced our experiences on retar-

get software pipeline optimization from IA-64 to PAC DSP.

The experimental evaluation using DSP-stone benchmark

indicates significant improvement of cycle time. These ex-

periences might benefit the architecture designers and com-

piler developers who are interested in similar heterogeneous

clustered VLIW architectures with port-restricted, distinct

partitioned register file structures.

8. Acknowledgements

This work was supported in part by Ministry of Eco-

nomic Affairs under grant no. 95-EC-17-A-01-S1-034, by

National Science Council under grant no. NSC 94-2220-E-

007-019, NSC 94-2220-E-007-020, NSC 94-2213-E-007-

074 and NSC 95-2752-E-007-004-PAE in Taiwan.

References

[1] S. Rixner, W. J. Dally, B. Khailany, P. Mattson, U. J. Kapasi, and J. D. Owens

Register organization for media processing. International Symposium on High

Performance Computer Architecture (HPCA), pp.375-386, 2000.

[2] David Chang and Max Baron: Taiwan’s Roadmap to Leader-

ship in Design. Microprocessor Report, In-Stat/MDR, Dec. 2004.

http://www.mdronline.com/mpr/archive/mpr 2004.html

[3] T.-J. Lin, C.-C. Chang. C.-C. Lee, and C.-W. Jen An Efficient VLIW DSP

Architecture for Baseband Processing. In Proceedings of the 21th International

Conference on Computer Design, 2003.

[4] Tay-Jyi Lin, Chie-Min Chao, Chia-Hsien Liu, Pi-Chen Hsiao, Shin-Kai Chen,

Li-Chun Lin, Chih-Wei Liu, Chein-Wei Jen Computer architecture: A unified

processor architecture for RISC & VLIW DSP. In Proceedings of the 15th ACM

Great Lakes symposium on VLSI, April 2005.

[5] Roy Ju, Sun Chan, and Cheng yong Wu, ”Open Research Compiler for

the Itanium Family”, Tutorial at the 34th Annual Intl Symposium on Micro-

architecture, Dec, 2001.

[6] Eclipse Platform Technical Overview, International Business Machines

Corp., 2001. http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-

platform-whitepaper.pdf

[7] Yung-Chia Lin, Chung-Lin Tang, Chung-Ju Wu, Ming-Yu Hung, Yi-Ping You,

Ya-Chiao Moo, Sheng-Yuan Chen, Jenq-Kuen Lee. ”Compiler Supports and

Optimizations for PAC VLIW DSP Processors”, LCPC, 2005.

[8] Yung-Chia Lin, Yi-Ping You, Jenq-Kuen Lee. ”Register Allocation for VLIW

DSP Processors with Irregular Register Files”, CPC, 2006.

[9] Cheng-Wei Chen, Yung-Chia Lin, Chung-Ling Tang, Jenq-Kuen Lee.

”ORC2DSP: Compiler Infrastructure Supports for VLIW DSP Processors”,

IEEE VLSI TSA, April 27-29, 2005.

[10] SGI - Developer Central Open Source - Pro64

http://oss.sgi.com/projects/Pro64/

[11] Richard Huff, ”Lifetime-Sensitive Modulo Scheduling”, PLDI SIGPLAN,

1993.

[12] B. R. Rau, M. Lee, P. P. Tirumalai, M. S. Schlansker, ”Register Allocation for

Software Pipelined Loops”, ACM SIGPLAN, 1992.

[13] A. Capitanio, N. Dutt, and A. Nicolau, ”Partitioned register files for VLIWs:

A preliminary analysis of tradeoffs”, Proceedings of the 25th Annual Interna-

tional Symposium on Microarchitecture (MICRO-25),Portland, December 1V4,

1992; pages 292V300.

[14] Texas Instruments: TMS320C64x Technical Overview. Texas Instruments, Feb

2000.

[15] The open research compiler official page. http://ipf-orc.sourceforge.net/.

[16] John Gilmore and Sten Shebs, ”GDB Internals: A guide to the internals of the

GNU debugger” Free Software Foundation, Inc, 2006.

[17] Bill Gatliff, ”Embedding with GNU: the gdb Remote Serial Protocol” Embed-

ded System Programming, pp.108-113, November, 1999.

[18] Tay-Jyi Lin, Chen-Chia Lee, Chih-Wei Liu, and Chein-Wei Jen ”A Novel Reg-

ister Organization for VLIW Digital Signal Processors”, Proceedings of 2005

IEEE International Symposium on VLSI Design, Automation, and Test, 2005,

pages 335 V338.

[19] R. Leupers ”Instruction scheduling for clustered VLIW DSPs”, Proc. Intl

Conference on Parallel Architecture and Compilation Techniques, Oct. 2000,

pages 291V300.

[20] V. Zivojnovic, J. Martinez, C. Schlager and H. Meyr ”DSPstone: A DSP-

Oriented Benchmarking Methodology”, Proc. of ICSPAT, Dallas, 1994.


