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Abstract. We propose PiCO, a calculus integrating concurrent objects and constraints, as a base for music

composition tools. In contrast with calculi such as [5], [9] or TyCO [16], both constraints and objects are primitive

notions in PiCO. In PiCO a base object model is extended with constraints by orthogonally adding the notion of

constraint system found in the ρ-calculus [12]. Concurrent processes make use of a constraint store to synchronize

communications either via the ask and tell operations of the constraint model or the standard message-passing

mechanism of the object model. A message delegation mechanism built into the calculus allows encoding of

general forms of inheritance. This paper includes encodings in PiCO of the concepts of class and sub-class.

These allow us to represent complex partially defined objects such as musical structures in a compact way. We

illustrate the transparent interaction of constraints and objects by a musical example involving harmonic and

temporal relations. The relationship between Cordial, a visual language for music composition applications, and

its underlying model PiCO is described.

Keywords: concurrent programming, constraint programming, concurrent constraint objects, TyCO, PiCO, for-

mal calculi, mobile processes, visual language, computer aided music composition

1. Introduction

– Why do we want Concurrent Objects with Constraints ?

* This work is supported in part by grant 1251-14-041-95 from Colciencias-BID.
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Our objective is to develop computational models suitable for constructing music compo-

sition tools. Musical objects can take a wide variety of forms depending on the particular

dimensions they belong to. In a harmonic (vertical) dimension, objects such as chords

contain notes that can be constrained to lay within defined zones (or registers), to belong

to defined textures (e.g. patterns of harmonic intervals), etc. In a temporal (horizontal)

dimension, sequences of chords or notes can be defined to be positioned in such a way

that they form selected rhythmic patterns. There exists also “diagonal” dimensions such

as dynamics, where notes of chords can follow complex amplitude evolutions or such as

melody, where patterns of distances relate chord notes in distinct temporal positions. Re-

lationships among sets of objects in several dimensions define musical structures. These

in turn can be regarded as higher level objects which are also amenable to different kinds

of musical transformations. Being able to express the whole complexity of constructing a

network of structures satisfying the musical intentions of a composer is a big challenge for

any computer programming model.

In recently proposed computer aided musical composition systems such as Situation

[3] constraints and Common Lisp objects can be used to define complex musical struc-

tures. In the same spirit, but more closely integrated to the underlying Smalltalk language,

Backtalk [7] provides a framework for handling constraint satisfaction within an object en-

vironment. Both systems have been successfully used in practical musical settings. In both

applications, however, the constraint engine is a black box barely accessible to the user.

Moreover, communicating data structures back and forth between the constraint and object

models is often awkward. In fact, objects containing partial information and “standard”

instantiated objects are not really amenable to the same kind of computational treatment.

In musical applications this lack of communication potential can be specially troublesome

since the approach of the composer involves for the most part constant refinement and mod-

ification of compositional models based on the acoustical result of partial implementations.

We think that the development of computational models and of tools for computer aided

music composition should go hand in hand to benefit from insights at the user level while

maintaining a coherent formal base. Defining a uniform model integrating constraints and

objects can be of great help to construct higher level musical applications that provide

the musician with flexible ways of interaction. In [15] the π -calculus was extended with

the notion of constraint. In this paper we consider the addition of objects and messages

synchronized by constraints.

Several concurrent objects calculi have been proposed recently [17], [16], [1]. In these

models the interactions of concurrent processes (or objects) are synchronized essentially

through one of two mechanisms: the “use of a channel” and “message-passing”. In TyCO,

for instance, an object a ⊲ [l : (ỹ)P] can be seen as a process P which is suspended

until some message selecting a method labeled l is sent to an object located at a or, more

generally, located at some x such that x = a is provable.

On the other hand, constraints can also be used to define a rich set of possible concurrent

processes interactions, as has been shown in the cc model [11]. The basic operations ask

and tell allow processes to define complex synchronization schemes through the use of

common process variables. In the cc language Oz [5], first-class procedures and first-class

cells are used to simulate objects within a concurrent constraint setting. Objects are thus
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not primitive. In fact, the constraint paradigm is the only underlying model of interaction.

The powerful constraints calculus of Oz allows other programming models (functional,

objects) to coexist through suitable syntactic encodings. More recently, the MCC calculus

[10] considers extensions of the cc model to account for reliable communication of agents

having their own local constraints store and shows how to encode process mobility through

a mechanism of “abstract” constraint messaging.

We take a different approach. We want to maintain as much as possible the independence

of the object and constraint models at the calculus level. Firstly, we think each of them

accurately models an approach composers usually follow in constructing musical structures.

Secondly, we would like our tool to be easily adaptable to different notions of object and

different constraint systems.

In addition to including both constraints and concurrent objects as primitive notions at the

calculus level, we propose two features that, to our knowledge, have not been considered

before. One is the notion of objects guarded by or “located” in a constraint. The other is the

concept of message delegation. We borrow the insight in [11] of considering constraints as

defining (polyadic) types to explain these features.

In the π -calculus a communication can take place between a reader and a writer process

just when they agree on a communication channel (denoted by a name). We may regard each

name as a distinct type and say that processes communicate just when sender and receiver are

of exactly the same (singleton) communication type. Similarly, in the ρ-calculus [12] and

other cc calculi, sender and receiver agents are “located” in variables. They communicate

just when it can be inferred from constraints information that the two variables are equal.

That is, just when they have exactly the same (not necessarily singleton-set) communication

type.

In PiCO each receiver object defines explicitly its communication type by “locating”

itself in a constraint. This constraint (let us call it φ(sender)) is parameterized in a sender

location. As a type this constraint defines the set of possible requesters of services from

the receiver. Given a constraint store S, the type of a receiver object located at a constraint

φ(sender) is the set of all sender locations v such that every valuation consistent with S is

also consistent with φ(v). Asserting constraints increases the set of such v’s.

Message senders “locate” themselves in a variable (or a name). Constraints on this

variable define possible values for it. The communication type of the sender is the set

of these values. Now, communication can take place just when it can be inferred from

the information supplied by asserted constraints that the sender communication type is a

subtype of the receiver communication type. Thus a sender can increase the set of potential

destinations of a message by “moving” to a subtype (i.e. asserting extra constraints on its

location), whereas a receiver can also increase the set of accepted requesters of its services by

moving to a supertype (i.e. asserting constraints on the variables of its constraint location).

Singleton type receivers communicate as π -calculus reader processes. Senders constraining

their type to that of their intended receivers communicate as ρ-calculus abstractions.

A PiCO receiver object may determine a delegation communication type for those mes-

sages coming from senders of an acceptable type but requesting services the object cannot

provide. This delegation type is also defined by a constraint. Delegated types must be in

the complement of the original sender type since otherwise the delegated service could very
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well have been provided directly by some other receiver object. Delegation means moving

the type of the original message sender to the delegated type. This mechanism can be used

to define different object inheritance schemes.

Consider an example. Let us suppose that we want to define some conditions for the

location of an object. For instance sender ∈ {a, b, c} ⊲ [l : (ỹ)P] can be seen as a

process P which is suspended until a message to a, b or c is sent. This can also be

interpreted as an object guarded by a constraint to ensure reception of messages only from

the three given locations. Of course, for this simple example, the π -calculus [6] process

a?[̃y].P + b?[̃y].P + c?[̃y].P , could very well be used for this. Here a non determinate

choice (the + symbol) of the same process P reading through a, b or c simulates the

“same” occurrence of P receiving from the three locations. However, when we wish to

define arbitrary conditions to execute P , to send messages to objects, or to locate objects,

we need better ways to express communication. These arbitrary conditions can be naturally

expressed by means of constraints.

In fact, object interactions can naturally be modeled in at least two ways. First, by means

of concurrent objects whose synchronized execution simulates changes on real objects

[6] and second, by using constraints to “change” the object state by refining the partial

knowledge one has about the attributes of the object.

These views are complementary. In a musical setting both are typically used. Composers

may very well conceive musical processes as evolving according to explicitly defined tra-

jectories or to particular compositional rules, or both. In the former, object attributes can

naturally be seen as being bound to values whereas in the latter attributes express only their

degree of consistency with the partial information implied by the rules.

In sections 2.2 and 2.3 we present the syntax and semantics of PiCO. The syntax of PiCO

adds constraint processes to the standard processes in calculi such as T yC O . Additionally,

objects include information to identify where they have to delegate those messages they

are not able to answer. Constraint processes perform the standard Ask and Tell operations

of CCP languages. The semantics is defined operationally following the transition system

for the cc-model used in [11]. Section 3 shows how classes and mutable objects carrying

partial information on their attributes can be conveniently represented in PiCO. The notions

of high-order attributes and sub-classing as a form of inheritance by behavior reuse and

method overriding are also shown in that section. Section 4 shows briefly how the semantics

for a concurrent constraint visual language can be expressed using PiCO. In section 5 we

show a somewhat elaborate musical example. We discuss the relation between each of π, ρ

and MCC calculi and PiCO in section 6. Section 7 gives some conclusions.

2. PiCO Definition

We start by giving a general definition of a constraint system [11].

2.1. Constraint System

PiCO is parameterized in a Constraint System. For our purposes it will suffice to base the

notion of constraint system on first-order Predicative Logic, as it was done in [13], [12].1
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A Constraint System consists of [13], [12]:

– A signature. That is, a set of functions, constants and predicate symbols with equality,

including a distinguished infinite set, N , of constants called names denoted a, b, . . . , u.

Other constants, called values, are written v1, v2,.. . . They are regarded as primitive

objects in the calculus that can be used as message locations.

– A consistent theory 1 (a set of sentences over the signature having a model) satisfying

the condition:

• if a, b are distinct names, then it can be inferred that a = b does not hold. Similarly

for distinct values.

Often 1 will be given as the set of all sentences valid in a certain structure (e.g. the

structure of finite trees, integers, or rational numbers). Given a constraint system, let

symbols φ, ψ, . . . denote first-order formulae in the signature, henceforth called constraints.

A fundamental notion of constraint systems is entailment. We say that formula φ entails

formula ψ in a theory 1, written φ ⊢1 ψ , just when the implication φ → ψ is true in all

models of 1. Entailment is important because it adds the capability of handling disjunctive

information. We say that φ is equivalent to ψ in 1, written φ |=|1ψ , iff φ ⊢1 ψ and

ψ ⊢1 φ. We say that φ is satisfiable in 1 iff φ 6⊢1⊥ . We use ⊥ for the constraint that

is always false and ⊤ for the constraint that is always true. A particular constraint system

must, of course, have a decidable entailment relation. When no confusion arises we drop

the subscript from ⊢1.

As is usual, we will use infinitely many x, y, . . . ∈ V to denote logical variables des-

ignating some fixed but unknown element in the domain under consideration. The sets

f v(φ) ⊂ V and bv(φ) ⊂ V denote the sets of free and bound variables in φ, respectively.

Finally, f n(φ) ⊂ N is the set of names appearing in φ.

As we said before, most processes act relative to a store. A store is defined in terms

of the underlying constraint system. It is simply a formula representing the accumulated

information supplied by asserted constraints. For our purposes it will suffice to consider

the store as a conjunction of constraints. We write S = ⊤ for the “empty” store. A store S

is said unsatisfiable when it entails false (i.e. when S ⊢1⊥).

2.2. Syntax

The syntax of PiCO is given in Table 1. There are three basic processes: Messages, Objects

and Constraints.

We describe next the calculus informally. In what follows, t̃ denotes a sequence t1, . . . tk,

of length |̃t | = k whose elements belong to some given syntactic category.

The null process 0 is the process doing nothing. A process (φsender, δforward)⊲M represents

an object. The purpose of an object is to respond to messages sent by other processes.

The object answers a message by replacing itself with another process, or method. The

message contains information to single out the replacement process from those available

in the object method collection M . Messages are sent to objects from other processes.
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Table 1. PiCO syntax.

Normal Processes: N ::= O Inaction or null process

| I ⊳ m then P Message sent by I

| (φsender, δforward) ⊲ M Object with

delegation condition

δforward guarded by

constraint φ

Constraint processes: R ::= tell φ then P tell process

| ask φ then P ask process

Processes: P, Q ::= local x in P New variables x in P

| local a in P New name a in P

| N Normal process

| P | Q Composition

| clone P Replicated process

| R Constraint process

Object identifiers: I, J, K ::= a, l Names

| v Value

| x Variable

Collection of Methods M ::= [l1: (x̃1)P1&

. . . &lm : (x̃m)Pm ]

Messages m ::= l: [̃I ]

Message-sending processes are located. An object determines by means of constraints

which message-sending processes it is willing to service. Constraint φsender, the guard,

must be satisfied by any location (represented by the special variable sender) attempting to

send messages to the object. For example, object (sender ∈ {a, b}, forward ∈ {b, c}) ⊲ M

accepts messages from a ⊳ m[ ] then Q since a ∈ {a, b} is true. Constraint δforward, the

delegation condition, represents the guard of the process the messages should be delegated

to when appropriate methods for them do not exist in M . Delegation involves creating

a new location, say J , and forwarding the same message m from this location. In the

above example, delegation would mean that the original process a ⊳m[ ] then Q is replaced

by the same process located at J , i.e. J ⊳ m[ ] then Q. Before delegation, location J is

enforced to satisfy the delegation constraint δ so that the delegated object has a chance to

accept message m. That is, constraint J ∈ {b, c} is asserted before replacing the original

sender a ⊳ m[ ] then Q by J ⊳ m[ ] then Q. Form M in objects represents a collection

of methods. Methods (x̃1)P1 . . . (x̃m)Pm are labeled by a set of pairwise distinct labels

(names) Labels(M) = {l1, . . . , lm}.
Processes of the form (φsender, φforward) ⊲ M represent objects not allowing delegation.2

For simplicity, they will be abbreviated as φsender ⊲ M . We also write (I, J ) ⊲ M , an object

“located” at I delegating to an object “located” at J , as a shorthand for (sender = I,

forward = J ) ⊲ M . Similarly, I ⊲ M is a shorthand for (sender = I, forward = I ) ⊲ M

and can be thought as an object located at I . This equational guard encodes the usual notion

of objects referenced by identifiers.
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In a method l : (̃x)P , x̃ represents the formal parameters and P the body of the method.

Names, variables and primitive values can be used as object identifiers.

A process X⊳l : [ J̃ ] then P can thus be thought of as a message to a target object accepting

X with contents or information J̃ . We also allow messages to have a continuation P . Label

l is used to select the corresponding method in the target object. Intuitively, the result of

the interaction between a message and the target object is the body of the selected method

with the formal arguments replaced by the respective actual arguments in the contents of

the message, if the requested method exists (i.e. if there exists a method labeled by l and

the number of actual and formal arguments match). Otherwise the message is delegated,

as explained above.

The process local a in P restricts the use of the name a to P. Another way to describe

this is that local a in P declares a new unique name a, distinct from all external names,

to be used in P . Similarly, local x in P (new process) declares a new (logical) variable x ,

distinct from all external variables in P.

Process composition P | Q denotes the concurrent execution of processes P and Q.

Process clone P (replication) means P | P · · · (as many copies as needed). A common

instance of replication is clone (I, J ) ⊲ M , an object which can be reproduced when a

requester communicates via I. Replication is often used for encoding recursive process

definitions (see [6]).

Finally, the behavior of constraint processes depends on a global store. A store contains

information supplied by constraints. The store is used in PiCO to control all potential

communications. The tell process tell φ then P means “Add φ to the store and then

activate P .” Thus, tell processes are used to influence the behavior of other processes. The

ask process ask φ then P means “Activate P if constraint φ is a logical consequence of the

information in the store or destroy P if ¬φ is a logical consequence of the information in

the store. Otherwise, suspend ask φ then P until the store contains enough information to

run it.”

In what follows, we write local v I1, v I2, . . . , v In (v Ii name or variable) instead of

local v I1 in local v I2 in . . . local v In and we omit then O when no confusion arises.

2.3. Operational Semantics

Binding operators in PiCO are as in [6]: The binding operator for names, local a in P ,

declares a new local name a in process P. There are only two binding operators for variables:

local x in P that binds x in P and (x1 . . . xn)P that declares formal parameters x1, . . . , xn in

P. A special binding exists for the variable sender in (φsender, δforward) ⊲ M . Here sender

is a variable bound by the “guard” constraint of the object and used in the guard φ and

(possibly) in the methods of M . Variable sender can only be used in objects. Similarly,

variable forward is bound in constraint δforward and can only be used there. So we can define

free names f n(P), bound names bn(P), free variables f v(P), bound variables bn(P) of

a process P in the usual way. The set of variables appearing in P , v(P), is f v(P)∪ bv(P)

and similarly the set of names appearing in P , n(P), is f n(P) ∪ bn(P).



28 C. RUEDA ET AL.

2.3.1. Structural Congruence and Equivalence Relation

We define structural congruence for PiCO much in the same way as is done for the π -calculus

in [6].

Definition 2.1 (Structural Congruence). Let structural congruence, ≡, be the smallest

congruence relation over processes satisfying the following axioms:

– Processes are identical if they only differ by a change of bound variables or bound

names (α − conversion).

– (P/ ≡, |, O) is a symmetric monoid, where P is the set of processes.

– (φsender, δforward) ⊲ M ≡ (φsender, δforward) ⊲ M ′ if M ′ is a permutation of M.

– clone P ≡ P | clone P.

– local a in O ≡ O, local x in O ≡ O,

local a in local b in P ≡ local b in local a in P,

local x in local y in P ≡ local y in local x in P,

local a in local x in P ≡ local x in local a in P.

– If a 6∈ f n(P) then local a in (P | Q) ≡ P | local a in Q.

– If x 6∈ f v(P) then local x in (P | Q) ≡ P | local x in Q.

– If φ |=|1ψ and P ≡ Q then

tell φ then P ≡ tell ψ then Q and ask φ then P ≡ ask ψ then Q

Definition 2.2 (P-equivalence relation). We will say that 〈P1; S1〉 is P-equivalent to

〈P2; S2〉 , written 〈P1; S1〉 ≡P 〈P2; S2〉 , if P1 ≡ P2, S1 |=|1S2, f n(S1) = f n(S2) and

f v(S1) = f v(S2). ≡P is said to be the P-equivalence relation on configurations.

The behavior of a process P is defined by transitions from an initial configuration 〈P; ⊤〉.
A transition, 〈P; S〉 −→

〈
P ′; S′

〉
, means that 〈P; S〉 can be transformed into

〈
P ′; S′

〉
by

a single computational step. For simplicity, we assume that all variables and names are

declared in the initial configuration i.e., f v(P) = f n(P) = ∅. We define transitions on

configurations next.

2.3.2. Reduction Relation

The reduction relation ,−→, over configurations is the least relation satisfying the rules

appearing in Table 2:

Notice that in rules DECV and DECN the non membership condition can always be met

by α-conversion.

COMM describes the result of the interaction between message I ′ ⊳ l: [ J̃ ] then Q and

object (φsender, δforward) ⊲ [l : (̃x)P& . . .]. The store is used to decide whether the object

is indeed the target of the message. Process P{K̃/x̃ ′, I ′/sender} is obtained by first α-



INTEGRATING CONSTRAINTS 29

Table 2. Transition system.

COMM:
S⊢1φ[I ′/sender] |K̃ |=|̃x |

〈I ′⊳l: [K̃ ] then Q|(φsender,δforward)⊲[l: (̃x)P&...];S〉−→
〈
Q|P{K̃/x̃ ′,I ′/sender};S

〉

DEL:

S ⊢1 φ[I′/sender] S ⊔ δ[I′/forward] ⊢1 ⊥ l 6∈ Labels(M)

〈(
I ′ ⊳ l: [K̃ ] then Q |

(φsender, δforward) ⊲ M

)
; S

〉
−→

〈(
local J in tell δ[J/forward]

then(J ⊳ l: [K̃ ] then Q) |
(φsender, δforward) ⊲ M

)
; S

〉

TELL: 〈tell φ then P; S〉 −→ 〈P; S ∧ φ〉

ASK:
S⊢1φ

〈ask φ then P;S〉−→〈P;S〉
, S⊢1¬φ

〈ask φ then P;S〉−→〈O;S〉

PAR:
〈P;S〉−→〈P ′;S′〉

〈Q | P;S〉−→〈Q | P ′;S′〉

DEC-V:
x 6∈ f v(S), 〈P;S≫{x}〉−→〈P ′;S′〉
〈local x in P;S〉−→〈P ′;S′〉

DEC-N:
a 6∈ f n(S), 〈P;S≫{a}〉−→〈P ′;S′〉
〈local a in P;S〉−→〈P ′;S′〉

EQUIV:
〈P1;S1〉≡P〈P ′

1
;S′

1〉 〈P2;S2〉≡P〈P ′
2
;S′

2〉 〈P1;S1〉−→〈P2;S2〉

〈P ′
1
;S′

1〉−→〈P ′
2
;S′

2〉

converting (̃x)P to (x̃ ′)P ′ so that I ′ is not in the local variables x̃ ′ and then replacing, in

parallel, every free occurrence of variables from x̃ ′ by identifiers (i.e., values, names or

variables) from K̃ , respectively. If variable sender occurs free in P ′ it is also replaced by

I ′. Notice that message continuation Q is activated when the message is received.

DEL describes message delegation. Let I ⊳ l : [K̃ ] then Q be a message sent to object

(φsender, δforward) ⊲ M and let us suppose that label l does not exist in M . In this case the

message is forwarded by a new location J satisfying the delegation condition. To avoid

non-terminating executions we only do this when it is possible to decide that the “new”

forwarder of the message is indeed “different” from the previous one in the sense that it

cannot communicate with the original object.

The ASK and TELL rules describe the interaction between constraint processes and the

store. TELL gives the way of adding information to the store. Process tell φ then P adds

constraint φ to store S and then activates its continuation P. Such augmentation of the store

is the major mechanism in CCP languages for a process to affect the behavior of other

processes in the system [11]. For example, agent tell (x = a) then P informs messages of

the form x ⊳ m that their target objects are now those accepting messages from a.

ASK gives the way of obtaining information from the store. The rule says that P can

be activated if the current store S entails φ, or discarded when S entails ¬φ. For instance,

process ask (x ∈ {a, b}) then x ⊳ m is able to send m to objects accepting messages both

from a or b.
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An ask process that cannot be reduced in the current store S is said to be suspended by S.

A process suspended by S might be reduced in some augmentation of S. In particular, as

the store becomes stronger more messages can potentially be accepted by objects. Thus ask

processes add the “blocking ask” mechanism in cc models to the synchronization scheme

of object calculi.

PAR says that reduction can occur underneath composition. DEC-V is the way of intro-

ducing new variables. Expression S ≫ {I1, . . . , In} is as shorthand for store S ∧ (I1 =
I1)∧· · ·∧(In = In). Intuitively, S ≫ {x} (i.e. S∧x = x) denotes the addition of variable x to

store S when x 6∈ f v(S). Thus, any variable x 6∈ f v(S) added to the store by S ≫ {x} will

not be used in subsequent declarations. If x ∈ f v(S), we can rename x with a new variable

z 6∈ f v(S)∪ f v(P) by α-conversion (i.e. local x in P ≡ local z in P{z/x} i f z 6∈ f v(P)).

DEC-N is defined in a similar way. Rule EQUIV simply says that P-equivalent configura-

tions have the same reductions.

2.4. Computation as Processes Reduction

A computation in PiCO can be seen as a sequence of states or configurations. Each state

consists of two items, a process and a store. The computation proceeds from one state to

the next by deciding which process or combination of processes are enabled at that point.

The decision may require looking at the information accumulated in the store. A process

or combination of enabled processes is then selected and run. Running processes result in

transforming them into others and (possibly) adding information to the store. The effects of

running the processes is thus a new state. The computation ends (if ever) when no enabled

processes remain. For example, let the store be S = ⊤, and consider the program (%

denotes the modulo function),

clone ((sender % 2 = 0)∧(sender 6= 0))

⊲[e: (z, y)local x, w in (tell(sender ÷ 2 = x∧w = z × z)) | x ⊳ e[w, y]] |
clone (sender % 2 = 1)

⊲[e: (z, y)local x, w in (tell(sender − 1 = x∧w = y × z) | x ⊳ e[z, w])] |
clone (sender = 0) ⊲ [e: (z, y) tell result = y] |
local x, y, z in (tell (x = 2∧y = 1∧z = 3) | x ⊳ e[z, y]).

A possible computation for the parallel composition of the four processes in the program

given above is the following:

tell (x = 2∧y = 1∧z = 3) ; S = ⊤

↓

x ⊳ e[z, y] | (sender % 2 = 0)∧(sender 6= 0)) ⊲ [. . .]

; S = (x = 2∧y = 1∧z = 3)

↓

tell(x ÷ 2 = x1∧w = z × z) ; S = (x = 2∧y = 1∧z = 3)
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↓

x1 ⊳ e[w, y] | (sender % 2 = 1) ⊲ [. . .]

; S = (x = 2∧y = 1∧z = 3∧x1 = 1∧w = 9)

↓

tell(x1 − 1 = x2∧w1 = y × w)

; S = (x = 2∧y = 1∧z = 3∧x1 = 1∧w = 9)

↓

x2 ⊳ e[w, w1] | (sender = 0) ⊲ [. . .]

; S = (x = 2∧y = 1∧z = 3∧x1 = 1∧w = 9∧x2 = 0∧w1 = 9)

↓

tell result = w1

; S = (x = 2∧y = 1∧z = 3∧x1 = 1∧w = 9∧x2 = 0∧w1 = 9)

↓

S = (x = 2∧y = 1∧z = 3∧x1 = 1∧w = 9∧x2 = 0∧w1 = 9∧result = 9)

Computations can be defined operationally in terms of an equivalence relation, ≡P , on

configurations describing computation states and a one-step reduction relation, −→, de-

scribing transitions on these configurations. In the following, a configuration is represented

as a tuple 〈P; S〉 consisting of a process P and a store S and H⇒ will denote the reflexive

and transitive closure of −→. Finally, we will say that
〈
P ′; S′

〉
is a derivative of 〈P; S〉 iff

〈P; S〉 H⇒
〈
P ′; S′

〉
.

Runtime failure. In the cc-model [11] the invariant property of the store is that it is

satisfiable. This can be made to hold in PiCO by defining transitions from 〈tell φ then P; S〉
just when S∧φ is satisfiable, and otherwise reducing to a distinguished configuration called

fail. Fail denotes a runtime failure which is propagated thereafter in the usual way. For

simplicity we do not consider runtime failures, but we can add these rules orthogonally, as

in [14], without affecting any of our results.

Potentiality of reduction. Whenever we augment the store, we may increase the poten-

tiality of process reduction, that is, the number of possible transitions from a configuration.

The following proposition states that any agent P ′ obtained from a configuration 〈P; S1〉 can

be obtained from a configuration 〈P; S2〉, S2 being an augmentation of S1. The proposition

can be easily proved from the operational rules given above.

Proposition 2.3 If S2 ⊢ S1 and 〈P1; S1〉 −→
〈
P2; S′

1

〉
then 〈P1; S2〉 −→

〈
P2; S′

2

〉
and

S′
2 ⊢ S′

1.

We consider next an example illustrating how delegation works in PiCO. Let us suppose

we have two objects generating musical chords depending on a base note:

clone (sender ∈ {do, re, . . . , si}, forward ∈ {do♯, re♯, . . . , la♯})
⊲[basic: Chord1(sender)] |
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clone (sender ∈ {do♯, re♯, . . . , la♯})
⊲[basic: Chord1(sender) & minor : (x) Chord2(x, sender)]

Parallel composition of the above objects with the process

tell note ∈ {re, f a} then note ⊳ minor[note]

behaves as follows:

1. Since message location note satisfy the guard of the first object (with sender replaced

by note), a communication is established.

2. Message minor does not exist in the methods of the first object, therefore delegation is

attempted. Since message location note does not satisfy the delegation condition in the

first object, delegation is accepted.

3. A new process local J in tell J ∈ {do♯, re♯, . . . , la♯} then J ⊳ minor[note] is con-

structed.

4. The new process is able to communicate with the second object. The result is executing

process Chord2(note, J ).

Note that the original and delegated objects could very well have methods in common (label

basic in both objects).

Behavioral equivalence. In [15] a reduction-equivalence relation for an extension of

the π -calculus with constraints was defined. This relation equates configurations whose

agents can communicate through the same channels at each transition. For each process

identifier I and label l, this is expressed by means of an observation predicate detecting the

possibility of performing a communication with the external environment along identifier

I and label l in a store S. Behavioral equivalence can be similarly defined for PiCO. The

details of this are out of the scope of this paper.

Names and Variables. In the π -calculus there is no difference between names and

variables [13]. Names and Variables in PiCO are different entities because of the presence

of constraints.

The following example illustrates this difference. Let

P1 ≡ local x in local y in (ask ¬(x = y) then Q)

and

P2 ≡ local a in local b in (ask ¬(a = b) then Q)

Since a and b are different names, configuration 〈P2; ⊤〉 is able to reduce process P2 to Q,

whereas process P1 is suspended in configuration 〈P1; ⊤〉. The need for names is justified

because, conveniently used, they provide a unique reference to concurrent objects which

can be used for data encapsulation as in [14]. We will use this useful property to encode

classes.
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3. Classes

In this section we discuss the definition in PiCO of basic object-oriented constructs. Most

definitions in the rest of the paper use the restricted syntax of objects located in variables or

names, but not in constraints. The reason is that we want to stress the relationship between

defining processes in the calculus and programming in Cordial, the visual language running

on top of it. As of this writing we have not yet included visual representations of constraint

guarded objects in Cordial so our musical examples in PiCO do not use this feature.

The basic object-oriented constructs we discuss are classes, instances and inheritance.

Classes denote sets of objects. A class is just a frame used to construct objects belonging

to its associated set. It consists of attributes, class constraints and methods. Attributes

define the local state of instances (i.e. objects) of the class. Methods implement operations

on the state. Class constraints are predicates that must be satisfied by the state of any

object of the class. Classes can be organized hierarchically. This hierarchy is defined by

an inheritance relation. For the purpose of the simple examples presented here, a class B

is said to inherit from class A if class A can provide some of the services (i.e. methods) for

class B. Thus, class B may decide to respond to some requests by passing the request to

class A. Delegation in PiCO objects is used to implement this behavior.

Classes are modeled as cloned (i.e. persistent) located objects without delegation. A

particular class object has at least two methods: new and super. The unary method super

gives access to the location of the object representing the superclass (if any) of the class

currently being defined. Method new creates a new instance of the class. This instance is a

located object with the collection of methods defined for the class. Each attribute defined

for an instance of the class is stored in a cell, in a similar way as is done in Oz [13]. Cells

are objects having reading and writing methods, as shown below.

clone cellmaker⊲
[create: (x, y) x ⊲ [get : (z) tellz = y

then cellmaker ⊳ create(x, y)&

set: (z)cellmaker ⊳ create(x, z)] ]

Message cellmaker⊳create[c, value] creates a cell object located at c. The contents of the

cell is initially set to value. Notice that setting a value creates a new cell. Since attributes

in instances are represented by cells, this means that previous constraints imposed on an

attribute are “lost” when a new value is assigned to it. In particular, class constraints (as

explained below) must be asserted again for new values of instance attributes.

The instance of a class has a unary method for each attribute. This method can be

used to access this attribute cell. Classes in PiCO are supposed to include one or several

class constraints that must be satisfied by the attributes of each instance of the class. Class

constraints are asserted at instance creation. The implementation of classes is shown below.

In what follows, we write x̃ for a sequence x1, x2, . . . , xk . We also take the convention that

when a subscripted variable or name xi appears in a process, the process really represents

the parallel composition of all processes of the same form, one for each variable or name in

the sequence. For example, celli ⊳ set[vi ] in process local c̃ell, ṽ in celli ⊳ set[vi ] represents

the parallel composition cell1 ⊳ set[v1] | cell2 ⊳ set[v2] | . . . containing one subprocess for
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each corresponding element of c̃ell, ṽ

clone class⊲ [new:(self ) local d, c̃ell, ṽal, c̃ in

superclass ⊳ new[d]|
clone (self , d)⊲ [ attri : (x)tell x = celli &

update: (̃v)celli ⊳ set[vi ] |
ci ⊳ cnstr[̃v]]

| cellmaker ⊳ create[celli , vali ]

| clone ci ⊲ [cnstr: (̃v)Ri (̃v)] | ci ⊳ cnstr[ṽal]

super: (r)tell r = superclass]

Method new of a class creates instances for that class and all classes in the superclass chain.

This is accomplished by message superclass ⊳ new[d]. Object superclass is representing

the superclass (if any) and d is a new instance of that class returned by the message. Cells

associated with attributes are created by messages cellmaker ⊳ create[celli , vali ], where

variable vali represents the attribute initial value. Message ci ⊲ [cnstr: (̃v)Ri (̃v)] defines an

object capable of asserting class constraint Ri on attributei . Notice that constraint Ri may

involve values for other attributes. Message ci ⊳ cnstr[ṽal] asserts the attribute constraint.

Class constraints are “reified” as objects in this way in order to simplify reasserting them

when attribute values are changed.

In some of the examples we discuss further below we assume the existence of a class

integer denoting integer values.

In the musical example we describe next we will refer to a particular type of musical

chord containing four notes defined modulo transposition (i.e. the base note of the chord

is not specified). These Estrada chords, named after the mexican composer who first

formally defined them, contain three intervals (expressed in number of semitones between

consecutive notes) whose sum modulo 12 must be equal to zero. To represent the intervals

of a chord we assume a constraint system over some suitable finite domain of integers.

Class E , of Estrada chords, is defined as follows.

clone E ⊲ [ new: (self )

local c, c̃ell, ṽal in

clone self ⊲ [ xi : (y) tell y = celli &

update: (̃v) . . . &

| cellmaker ⊳ create[celli , vali ]

| clone c ⊲ [cnstr: (̃v) local w, z in

v1 ⊳ add[v2, w] | v3 ⊳ add(w, z)

z ⊳ modulo[12, 0] ]

c ⊳ cnstr[ṽal] &

super: (r) tell r = E]

Each of the three attributes of a Estrada chord contains one interval between consecutive

notes of the chord, represented, as usual, by cells containing integers. The class constraint,

encoded in the replicated object located at c, ensures that attributes obey the Estrada

property.
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3.1. Objects with Complex Attributes

Objects may have attributes containing other arbitrary objects. A standard example are the

classes cons and list defined bellow. The class cons has attributes car and cdr that allow

accessing the components of the pair represented by the instance.

clone cons ⊲ [new:(self )

local acar, acdr, vcar, vcdr in

clone self ⊲ [car: (x)tell x = acar&

cdr: (x)tell x = acdr&

update: (vcar, vcdr) . . . &

| cellmaker ⊳ create[acar, vcar] | . . .

super: (r) tell r = cons]

List are modeled as instances with a unique attribute value, whose associated cell (cellself

in the program bellow) can be assigned either the particular identifier nil (the empty list) or

a cons object. The cdr part of this object should always be restricted to a list object. As

usual, list instances also have methods head and tail.

list ⊲ [new:(self )

local cellself , v in

clone self ⊲ [value: (x)

tell (x = cellself )&

head: (x) tell x = self .value.car &

tail: (x) local newlist in

list ⊳ new[newlist]

| newlist.value ← self .value.cdr& . . .]

cellmaker ⊳ create[cellself , v]

super: (r) tell r = list]

Message, list ⊳ new[l] | l ⊳ update[acons], where acons.car ← a | acons.cdr ← nil

creates the list [a].

4. Cordial: A Visual Language for PiCO

Our research project includes the development of visual programming tools for musical

composition. Cordial [8] is a visual programming language integrating object oriented

and constraint programming intended for musical applications. The semantics of Cordial

has been defined in terms of PiCO. In this section we illustrate briefly some constructs of

Cordial together with their denotation in PiCO.

Cordial is an iconic language in the spirit of [2]. The basic notion is that of a patch. A

patch is a layout of forms (icons or other) on the screen.Links between forms in a patch

establish control dependencies in a computation. Data types and structures are also defined

visually. A visual class definition in Cordial, for example, has three main sections (see

figure 1): attributes, methods and constraints.
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Figure 1. Class definition in Cordial.

The translation of the class definition in figure 1 into a PiCO process can be roughly

defined as follows:

clone complex⊲
[ new: (self )

local c, cellr , celli , vr , vi in

clone self ⊲
[ real:(x)tell x = cellr &

imag: (x)tell x = celli &

add: (complex1, complex2)

self .real ⊳ add[complex1.real, complex2.real]|
self .imag ⊳ add[complex1.imag, complex2.imag]& . . .]

cellmaker ⊳ create[cellr , vi ]| . . . &

super: (r)tell r = complex]

A method definition (see figure 2), is a collection of messages (the envelopes in fig-

ure 2), conditionals and formal arguments (the circles in figure 2). Links connecting

two elements define identity relations. For example, linking visual object Vo with the

i-th circle of envelope E means that the i-th argument of the message associated with

E is equal to Vo. The body of the method in figure 2 shows a visual representation

of objects as rectangular boxes with an icon inside. The target of the message is the

unique object connected by a double line with the envelope. A message defines a par-

ticular relation that must be satisfied by the arguments and target object of the mes-

sage.

Non primitive method foo of class complex shows the use of a conditional (figure 3).
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Figure 2. Method definition in Cordial.

The definition of method foo in PiCO is:

foo(r)local tmpin (self ⊳ norm(tmp) |
ask tmp = 1 then tell r = 1 |
ask tmp = 0 then tell r = −1 |
ask tmp 6= 1 ∧ tmp 6= 0 then tell r = tmp)

5. Using Cordial: A Music Composition Example

In this section we solve a simple (but non trivial) music composition problem. With the

solution of this problem we argue the advantages of programming in a visual concurrent

constraint object oriented language that allows including constraints in class definitions.

The example makes extensive use of constrained classes to control the evolution of two

melodic voices: each voice evolves according to independent melodic properties, but they

must synchronize at given temporal points and they must also satisfy a number of harmonic

properties when their notes sound at the same time.
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Figure 3. Message definition and conditional in Cordial.

The two melodic voices, Voice1 and Voice2, will start at the same time and will be

generated until an external condition is met. Notes in the two voices have three attributes:

pitch, duration and dynamic. Their pitch values should be in a set of allowed ambitus (i.e.

a range) Amb, their durations must belong to a given set, say, {4, 2, 1} (where 2 represents,

say, a quarter note). Notes must also satisfy the following four conditions:

1. If n1 and n2 are two consecutive notes in Voicei (i ∈ {1, 2}) having pitches equal to

x and y, respectively, then tell max(x, y) − min(x, y) ∈ Melodyi , where Melodyi is a

given set of integers.

2. Notes are divided into groups of duration equal to 4. A group could be made to

correspond to any meaningful rhythmic division, for instance a beat or a measure. Each

group contains notes of both Voice1 and Voice2.

3. Notes starting a group are constrained differently. The first note in each duration group

has its dynamics equal to, say, 127. Other notes have its dynamics equal to 70.

4. Let n1 and n2 be notes from the same group in Voice1 and Voice2 respectively. If they

sound at the same time and their durations are both greater than 1 then the absolute

difference between their pitch values must be in a certain interval set, HARMONSET1.

In any other case, the absolute difference between their pitches must be in HARMON-

SET2.
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Figure 4. Class definitions.

To construct a solution for this problem taking advantage of the object oriented features

in Cordial, several classes are first defined. In the Cordial editor all of these must be drawn

on the program area, as can be seen in figure 4. Class Melody is the main class. It has

the attribute groups, a sequence of groups representing the two voices of the melody, two

class constraints, consecutive and end, and three class methods, voice1, voice2, and stop.

Class Group models a time window on the two voices of the class Melody. Each of these

voices are represented by the class Voice, modeled as a sequence of notes. Each note is

represented by class Note. This class characterizes a sound by its pitch, duration, and

dynamics.

We describe next some of the methods that define the implementation of the proposed

solution. For the sake of brevity, not all of the required methods are illustrated in the

figures.

The main method (figure 5) simply creates an instance of the class Melody. Class con-

straints encode all constraints required by the problem. Constraint Consecutive ensures that

both voices of the melody satisfy the consecutive notes constraint of class Voice. That is,

the melodic distance between consecutive notes must belong to a particular set. Constraint

End restricts the voices on the melody to stop only when their last notes have the same

duration. In other words, it constraints the length of the groups attribute to the number of

groups generated.
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Figure 5. Main method.

Methods Voice1 (figure 6) and Voice2 recursively iterate over the sequence of groups

(attribute groups in class Melody), effectively extracting from them their corresponding

voices by building a list with their elements.

Method Stop (figure 7) limits the number of groups in a melody by instantiating the length

of its group attribute on the number of groups generated before the stop condition is met.

When the (presumably) final notes of each voice in a group have the same duration, the

end condition holds. Method End in class Group (figure 8) signals this by instantiating its

string argument to “stop.” This class has three class constraints. Class constraint Duration

sets the duration of each group on each voice by instantiating the corresponding durations to

some specific value. Class constraint Pitch constrains pitches of simultaneously sounding

notes in two voices of the group to a given set of values. This is accomplished by method

Pitch of classes Voice and Note. Finally, class constraint Dynamic (figure 9) sets the value

of the dynamic attribute of the first note in each voice to 127. The dynamic attribute of all

other notes in the group is set to 70.

Method Duration in class Voice (figure 10) restricts the sum of the duration of the notes on

the sequence to a given value. Method Dynamic sets the dynamics of the notes on the voice

to a given value, whereas method Consecutive forwards itself to each note of the voice.

Method Pitch in class Voice is defined for two different signatures: the first one (see

figure 11) asserts pitch relations between its own voice notes and the notes of the supplied

voice argument. The second asserts pitch relations between its own voice notes and the

single note supplied as argument.

Class constraint Set-up restricts pitch and duration attributes of a note to belong to a

given set of values. Finally, Pitch asserts the above mentioned relation on the pitch of two

simultaneously sounding notes.
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Figure 6. Method voice1 in Melody.

5.1. Translation of the Example into PiCO

The first issue is to find suitable constraint systems for musical applications. Finite domains

(FD) systems [4] can handle most musical problems in the (traditional) harmonic domain,

while other aspects such as rhythm or timbre would very likely need dense domains and

a richer set of operations. For the purposes of the above problem, it is clear that FD is

adequate. We assume the constraint system is defined over some suitable finite domain (for

pitch, duration and the like).

clone note⊲
[ new: (self )local cellp, celldu, celldy, vp, vdu, vdy in

clone self ⊲
[pitch: (x)tell x = cellp&

duration: (x)tell x = celldu&

dynamic: (x)tell x = celldy&

contiguous: (aNote) local int1, int2 in

self .pitch ⊳ sub[aNote.pitch, int1]|int1 ⊳ abs[int2]|
int2 ⊳ inrank[MELODY]&

harmony: (note′, ot1, ot2) local hint, r t1, r t2 in

r t1 ← 4 − ot1 − self .duration|
r t2 ← 4 − ot2 − note′.duration|
ask
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Figure 7. Method stop in Melody.

Figure 8. Method end in Group.
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Figure 9. Class constraint Dynamic in Group.

Figure 10. Method Duration in Voice.
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Figure 11. Method Pitch in Voice.

r t1.value ≤ note′.duration.value∧
self .duration.value > 1∧
note′.duration.value > 1

then

hint ← abs(self .pitch − aNote.pitch)

hint ⊳ inrank[HARMONISET1]|
ask

¬(r t1.value ≤ note′.duration.value∧
self .duration.value > 1∧
note′.duration.value > 1)

then

hint ← abs(self .pitch − aNote.pitch)

hint ⊳ inrank[HARMONISET2]|
ask . . . then . . . & . . .]

cellmaker ⊳ [cellp, vp] | . . . &

super: (r) tell r = note]

|

clone voice⊲
[ new: (self )local c, a, v in

clone self ⊲
[notes: (x)tell x = a&
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contiguous: ( ) local b1, b2 in

self .notes ⊳ isnil[b1]|
ask b1 = ⊥ then self .notes.tail ⊳ isnil[b2]|

ask b2 = ⊥ then

self .notes.head ⊳ contiguous[self .notes.tail.head]

voice1 ⊳ notes[self .notes.tail]| voice1 ⊳ contiguous[ ]&

duration: (int) local b, int2 in

self .notes ⊳ isnil[b]|
ask b = ⊤ then tell int.value = 0|
ask b = ⊥ then

voice1 ⊳ notes[self .notes.tail]|
voice1 ⊳ duration[int2]|
self .notes.head.duration ⊳ add[int2, int]&

dynamic: ( ) . . . &

harmonyv: (voice2, ot1, ot2) local b, ot0, voice1 in

self .notes ⊳ isnil[b]

ask b = ⊥ then

ot1 ⊳ add[self .notes.head.duration, ot0]|
voice1 ⊳ notes[self .notes.tail]|
voice1 ⊳ harmonyv[voice2, ot0, ot2]|
voice1 ⊳ harmonyn[self .notes.head, ot2, ot0]&

harmonyn: (note2, ot1, ot2) . . . & . . .]

cellmaker ⊳ [a, v]& super: (r) tell r = voice]

|

clone group⊲
[ new: (self )local c1, c2, c3, a1, a2, v1, v2 in

clone self ⊲
[ voice1: (x)tell x = a1& voice2: (x)tell x = a2& . . .]|

c1 ⊲ Mgroup1|c1 ⊳ duration[]| c2 ⊲ Mgroup2|c2 ⊳ dynamic[]|
c3 ⊲ Mgroup3|c3 ⊳ harmony[]| cellmaker ⊳ [ai , vi ]&

super: (r)tell r = group]

|

clone melody⊲
[ new: (self )local c, a1, v1, in

clone self ⊲
[ groups: (x)tell x = a1&

voice1: (notes) local melody1 in

self .groups ⊳ isnil[b]|
ask b = ⊤ then tell notes = nil

ask b = ⊥ then

self .groups.head.voice1 ⊳ cat[notes2, notes]|
melody1 ⊳ groups[self .groups.tail]|
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melody1 ⊳ voice1[notes2]&

voice2: (notes) . . . & . . .]|
c ⊲ Mmelody1|c ⊳ melody[]| cellmaker ⊳ [a1, v1]&

super: (r)tell r = melody]

where:

Mmelody1 ≡[melody: ()local notes1, notes2 in

self ⊳ voice1[notes1]|self ⊳ voice2[notes2]|
voice1 ⊳ notes[notes1]|voice2 ⊳ notes[notes2]|
voice1 ⊳ contiguous[]|voice2 ⊳ contiguous[]

Mgroup1 ≡[duration: (int)

self .voice1 ⊳ duration[4]|self .voice2 ⊳ duration[4]

Mgroup2 ≡
[dynamic: () local voice1, voice2, in

tell self .voice1.head.dynamic = 127

|tell self .voice1.head.dynamic = 127|
voice1 ⊳ notes[self .voice1.tail]|voice2 ⊳ notes[self .voice2.tail]|
voice1 ⊳ dynamic[]|voice2 ⊳ dynamic[]

Mgroup3 ≡[harmony: () self .voice1 ⊳ harmonyv[self .voice2, 0, 0]

6. Related and Future Work

In this section we highlight the expressiveness of PiCO by showing natural and elegant

encodings of basic constructs of the π, ρ and MCC calculi (see [6], [12], [10]). We do

this informally and do not provide proofs of correctness of the encodings. However, we

conjecture bisimilarities between the ρ-calculus and a restricted version of PiCO having

no delegation and only equality for constraint guards, and between the MCC-calculus

and this same reduced PiCO supplied with the MCC condition on the store for process

communication. We plan to pursue the proof of these conjectures in the near future.

6.1. PiCO and the π-Calculus

One of the key features of the π -calculus is process mobility. In [6] this is illustrated using

the example of mobile telephones. A CENTRE is in permanent contact with two BASE

stations,each in a different part of the country. A CAR with a mobile telephone moves

about the country; it should always be in contact with a BASE. If it gets rather far from its

current BASE contact, then (in a way that is not modeled in the above mentioned paper)

a hand-over procedure is initiated, and as a result the CAR relinquishes contact with one

BASE and assumes contact with another.
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A PiCO solution in the same spirit as that shown in [6] is:

car industry ⊲ [make car: (car)

car ⊲ [talk: (m)local base in

central ⊳ get base[base]|base ⊳ com[m]|
car industry ⊳ make car[car]]]|

basei ⊲ [com: (m) P(m)]|
local c in

cellmaker ⊳ create[c, 0]|
clone central ⊲ [get base: (base)c ⊳ get[base] then c ⊳ set[(base + i)%2]]

Here, object car industry is used for creating car processes, objects basei , i = 1, 2 process

messages sent by cars, and object central decides which base must receive the messages.

Note that central simply switches the base receiving the message, as in [6].

In a more practical setting, we would have a set of communicating centers in a country.

Each of them having a set of independent associated bases. Each one of these bases is able

to process a message just when its distance to the car is less than or equal to some given

value. The role of the central base is to choose some base of a different communication

center when messages from a car cannot be transmitted by any of the bases belonging to

the current center.

We use PiCO constraint “located” objects for modeling this:

car industry ⊲ [make car: (car, pos)

car ⊲ [talk: (m)pos ⊳ com[m]|car ⊳ make car[car, pos]&

get: (x)tell pos = x |car industry ⊳ make car[car, pos]&

set: (x)car ⊳ make car[car, x]]]|
φi (sender) ⊲ [com: (m) P(m)]|
9(sender) ⊲ [com: (m) local base in

central ⊳ get base(sender, base)|base ⊳ com[m]]|
clone central ⊲ [get base: (pos, base)P(pos, base)]

Here, φi (p) = distance to Bi (p) ≤ di , i = 1, 2 and 9(p) = ¬φ1(p) ∧ ¬φ2(p).

In addition to the communication method talk, a car has methods get and set for retrieving

or setting its position attribute. Bases are “located” in constraints φi . An additional object

“located” in 9 is used to call central just when there is no base a car can communicate with.

The above solution can be improved in two aspects:

– Elegance: Since a car object is very similar to a cell object (see section 3), we can

model a car as an object that knows how to answer talk messages but delegates to

a cell object the answering of get and set messages.

– Efficiency: Notice that methods talk,get and set rebuild a car object each time they

are called. This can also be avoided using cells.

The result is:

car industry ⊲ [make car: (car, pos)
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Table 4. Basic MCC processes in PiCO.

MCC process PiCO encoding

send(a, λEx φ(Ex)) local i in i ⊲ [assert: (Ex) tell φ(Ex)] | a ⊳ m[i]

receive(a, Ey).S(Ey) a ⊲ [m: (i) i ⊳ assert[Ey] then S(Ey)]

local cellcarin

cellmaker ⊳ create[cellcar, pos]|
clone (car, cellcar) ⊲ [talk: (m)local pos in

car ⊳ get[pos]|
pos ⊳ com[m]]]|

clone mover ⊲ [new pos: (car)local pos pos′ in

car ⊳ get[pos]|P(pos, pos′)|car ⊲ set[pos′]]

6.2. MCC Processes in PiCO

As was mentioned in the introduction, MCC [10] considers extensions of the cc model to

account for reliable communication of agents having their own local constraints store. A

fundamental contribution of MCC is the ability to restrict communications to non inconsis-

tent stores so as to maintain independence of deductions among local stores. This cannot

be directly modeled in PiCO using the operational rules given in section 2.3. Of course, by

adding the same condition of store consistency to the premise of the communication rule it

is likely that the “local stores” behavior of MCC could be encoded in PiCO.

We describe here a general encoding in PiCO of the important send and receive MCC

processes. We illustrate the encoding by comparing the behavior of both MCC and PiCO

in a simple communication example using these kind of processes. We then argue that the

MCC behavior is correctly simulated by the encoding.

It was shown in [10] how to implement dynamic reconfiguration of communication net-

works in the MCC-calculus. The implementation is illustrated with an example using two

agents p and q sharing a channel a. Agent p also shares channel b with a third agent r . The

following procedure declarations are given (declarations of s and t are left unspecified):

p(a, b) :: ∃x send(b, λx x = a) ‖ ∃Eyreceive(a, Ey).s(Ey)

q(a) :: send(a, λExC)

r(b) :: ∃d(receive(b, d).∃Ezreceive(d, Ez).t (Ez))

These declarations together with the program ∃a,b(p(a, b) ‖ q(a) ‖ r(b)), results in

communication of channel a through channel b, so that a becomes shared by the three sites.

This makes it possible for send(a, λExC) to communicate with any of the other sites. This

corresponds to the “scope extrusion” on the π -calculus.

Encodings in PiCO for send and receive MCC processes and equivalent processes for the

MCC definitions are shown in tables 4 and 5.



INTEGRATING CONSTRAINTS 49

Table 5. MCC example in PiCO.

MCC process PiCO encoding

p(a, b) ≡ local x in [local i1 in i1 ⊲ [assert: (x)

tell x = a] | b ⊳ m[i1]] |

local Ey in a ⊲
[
m: (i) i ⊳ assert[Ey] then s(Ey)

]

q(a) ≡ local i2 in i2 ⊲
[
assert(Ex): tell C

]
| a ⊳ m[i2]

r(b) ≡ local d in [b ⊲ [m: (i) i ⊳ assert[d] then

local Ez in d ⊲ [m: (i) i ⊳ assert[Ez] then t (Ez)]]]

The above MCC program is encoded in PiCO as

local a, b in [ [[p(a, b)]]PiCO | [[q(a)]]PiCO | [[r(b)]]PiCO]

where [[p(x)]]PiCO denotes the PiCO encoding for the MCC process p(x). Assuming the

same order of execution in MCC and PiCO, it is not hard to see that the same behavior is

observed. That is, communication between b ⊳ m[i1] and

b ⊲
[
m: (i) i ⊳ assert[d] then local Ez in d ⊲ [m: (i) i ⊳ assert[Ez] then t (Ez)]

]

yields d = a once the continuation of method m in b is reduced. This results in the sharing

of channel a.

6.3. PiCO and the ρ-Calculus

Table 6 shows how the behaviors of constructs in the ρ-calculus can be captured by executing

suitable PiCO expressions. In this table, reduction of expressions in the ρ-calculus and of

configurations in PiCO are denoted by rules. The intended meaning is that the expression or

configuration in the premise reduces in one or more steps to the expression or configuration

in the conclusion. A relation between reduction of expressions in the two calculus can thus

be defined as follows:

– Application of an abstraction in the ρ-calculus can be modeled in PiCO as a process that

sends an appropriated message to a persistent object containing a method that simulates

the abstraction.

– The representation of tell operations is straightforward. In Table 6, 9 ≡ φ1 ∧ φ2.

– The behavior of Cells in the ρ-calculus are captured in PiCO by the cellmaker object

process. Consulting the value of a cell corresponds to sending the message get to the

created cell object while updating a cell is achieved by sending the message set to the

cell object. In Table 6 cell(x, u) represents a cell having x as its identifier and u as its

value.

– Conditional expressions of the ρ-calculus are modeled by the composition of two PiCO

ask processes. The fist one represents the “then” branch and the second one the “else”

branch. The two possible behaviors are shown in table 6.
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Table 6. PiCO and Rho.

PiCO Rho

〈
clonex ⊳ [l(x): E]|x ⊳ l[z]; φ

〉
〈
clonex ⊳ [l(x): E]|E[z/y]; φ

〉 φ ∧ x : y/E ∧ x ′z

φ ∧ x : y/E ∧ E[z/y]

〈tellφ2then0; φ1〉

〈0; 9〉

φ1 ∧ φ2

9

〈newcell(x, y)|x ⊳ get[v] then x ⊳ set[u]; φ〉

〈clone cellmaker ⊲ [..]|cell(x, u)|tell v = y then 0; φ〉

φ ∧ x : y ∧ x ′uv

φ ∧ x : u ∧ v = y

〈ask 9 then E |ask ¬9 then F; φ〉

〈E; φ〉

φ ∧ if 9 then E else F fi

φ ∧ E

〈ask 9 then E |ask ¬9 then F; φ〉

〈F; φ〉

φ ∧ if 9 then E else F fi

φ ∧ F

6.4. Future Work

In addition to the formal proof of bisimilarities with related calculi mentioned above, future

works include defining suitable constraint systems for different domains in the area of

computer aided music composition. We also plan to include constraint guards for instances

in the visual formalism of Cordial and recasting in Cordial the system for harmonic structure

generation of Situation [3], originally written as a constraint satisfaction tool in Common

Lisp. We will also be collaborating in the near future with the swedish composer Orjan

Sandred, currently doing musical research at IRCAM, in implementing in Cordial a system

for rhythm structure generation.

7. Conclusions

We defined PiCO, a calculus integrating objects and constraints. We did this by adding

variables and allowing agents to interact through constraints in a global store. PiCO is

parameterized in a constraint system and thus independent of a particular domain of appli-

cation, but has been thought to provide a basis for music composition tools.

Message-object communications is not restricted to equality of sender and receiver chan-

nels. The full power of constraints is used instead to restrict implicitly the type of sender

channels accepted by an object. We argued that this allows a more natural modeling of

situations in which object services are to be provided to collections of requesters. We

discussed concrete examples taken advantage of this.

We showed how the operation of delegation built into the calculus allows simple repre-

sentations of inheritance schemes.

We defined the operational semantics of PiCO by an equivalence relation and a reduction

relation on configurations of an agent and a store.
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We described examples showing the generalized mechanism of synchronization of PiCO

and the transparent interaction of constraints and communicating processes. They also

show the possibility to define mutable data and persistent objects in PiCO. Finally we show

how classes and subclasses with attributes containing partial and mutable information can

be easily codified in the calculus.

We implemented in the calculus a non trivial musical example. This example was also

implemented in Cordial, a high level visual language for music composition. We used this

example to illustrate the visual environment of Cordial and its close semantic relation to

PiCO. We argued that the possibilities of constraining every instance of a class to obey user

defined properties and of associating particular visualizations to specific instances (such as

a score object) should provide more intelligent facilities for musical structures construction

and editing. In fact, it is not hard to imagine having in Cordial constraints driven score

editors in which the space of possible musical material is adapted to the particular needs of

a musical piece. We intend to explore this path in the near future.

PiCO is part of an on going research project in programming tools for music composition.

The project includes the definition of a visual language with a rigorous semantic model, a

visual program editor and a compiler. An abstract machine for PiCO has been implemented

in Java (http://atlas.ujavcali.edu.co/sp/grupos/avispa/software/mapico.html). The current

version uses a subset of the finite domain constraints defined in [4]. A β version of the

visual editor of Cordial and its compiler into (the abstract machine of) PiCO, both written

in Java, can be found in

ftp://atlas.ujavcali.edu.co/pub/grupos/avispa/cordial/
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Notes

1. In [11], a more general notion of a constraint system is defined. We follow [13], [12] in taking Predicative

Logic as the starting point, so we can rely on well-established intuitions, notions and notations.

2. Objects (φsender, δforward) ⊲ M allow message delegation only if it can be inferred that the original sender

does not satisfy the delegation condition represented by δforward
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