
Integrating Constraints

with an Object-Oriented Language ∗

Bjorn N. Freeman-Benson
University of Victoria

Department of Computer Science
P.O. Box 3055

Victoria, B.C., V8W 3P6, CANADA
bnfb@csr.uvic.ca

Alan Borning
Department of Computer Science and Engineering, FR-35

University of Washington
Seattle, Washington 98195, USA

borning@cs.washington.edu

Abstract

Constraints are declarative statements of relations among elements of the language’s computational
domain, e.g., integers, booleans, strings, and other objects. Orthogonally, the tools of object-oriented
programming, including encapsulation, inheritance, and dynamic message binding, provide important
mechanisms for extending a language’s domain. Although the integration of constraints and objects seems
obvious and natural, one basic obstacle stands in the way: objects provide a new, larger, computational
domain, which the language’s embedded constraint solver must accommodate. In this paper we list
some goals and non-goals for an integration of constraints and object oriented language features, outline
previous approaches to this integration, and describe the scheme we use in Kaleidoscope’91, our object-
oriented constraint imperative programming language. Kaleidoscope’91 uses a class-based object model,
multi-methods, and constraint constructors to integrate cleanly the encapsulation and abstraction of a
state-of-the-art object-oriented language with the declarative aspects of constraints.

1 Introduction

A constraint describes a relation that should be maintained. In a constraint-based programming language,
constraints are declarative statements of relations among elements of the language’s computational domain,
e.g., integers, booleans, strings, and other objects. These constraints are solved by delegating to the lan-
guage’s embedded constraint solver the task of determining the algorithms to use and the order in which
those algorithms should be applied. As demonstrated by the wide variety of systems and languages that
use them, constraints are useful in programming languages, user interface toolkits, simulation packages, and
many other systems. (See [16] or [29] for an overview.) Their usefulness stems from the fact that con-
straints are declarative: constraints emphasize the relation itself rather than the procedural steps necessary

∗Published in the Proceedings of the 1992 European Conference on Object-Oriented Programming, pages 268–286

1

to maintain the relation. Furthermore, in general they are multi-directional; for example the single constraint
c = a+ b can be used to find a value for any one of the variables a, b, and c, or (in combination with other
constraints) values for several of the variables.

Orthogonally, the concept of an object provides a important mechanism for extending a language’s compu-
tational domain. Normally, an object-oriented programming language provides both primitive objects (such
as integers, booleans, and arrays), and the means for the programmer to create new application-specific
objects. Most existing object-oriented languages are imperative, that is, they include state-changing oper-
ations, either provided explicitly using an assignment statement, or as primitive methods that change the
state of an object.

We believe that combining the declarative relations of a constraint-based language and the extensibility
of an object-oriented one leads to an interesting and useful mixed-paradigm programming language. The
integration seems obvious and natural, as evidenced, for example, by the large number of object-oriented
languages and environments that include some sort of constraint-like mechanism, such as a one-way depen-
dency maintenance system (see e.g. [2, 28, 32]). However, one basic obstacle stands in the way of a thorough
integration: objects provide a new, larger computational domain, which the language’s embedded constraint
solver must accommodate. Providing a general solver for arbitrary constraints over arbitrary domains is a
completely unreasonable goal. There are good algorithms for particular classes of constraints (such linear
equations over real numbers, or acyclic constraints over arbitrary domains), but not for arbitrary constraints
over arbitrary domains.

The primary purpose of this paper is to describe both the obstacles to, and some solutions for, the inte-
gration of constraints into object-oriented programming languages. First, we list some reasonable goals and
non-goals for such an integration. Second, we describe a number of previous approaches to the integration
of constraints and objects, and why each fails to meet our goals. The five that we survey are the ones
that recur most regularly in the literature, usually without a full discussion of their weaknesses. Third, we
describe the design and implementation of the integration techniques we are using in Kaleidoscope’91, our
second-generation object-oriented constraint imperative programming language. Kaleidoscope’91 contains
a number of significant differences from its predecessor, Kaleidoscope’90 (as described in [15]). For exam-
ple, Kaleidoscope’91 uses multi-methods whereas the original Kaleidoscope’90 did not; Kaleidoscope’91 has
separate type and implementation inheritance hierarchies whereas Kaleidoscope’90 combined the two; and
Kaleidoscope’91 has only one kind of constraint as opposed to the bewildering variety of kinds in Kalei-
doscope’90. Finally, we demonstrate, using a small number of examples, the importance of multi-method
dispatching in a language that integrates constraints and object-oriented features.

1.1 Goals

Previous integrations of constraints and objects have compromised the benefits of either one or the other (or
both). We propose that a successful integration of the two should meet the following goals. In subsequent
sections of this paper, we discuss how well Kaleidoscope’91 succeeds at this task.

1. The language design should preserve all the flexibility and expressiveness of modern object-oriented
languages. Among other things, it should not rule out such features as multiple inheritance, or separate
type and implementation inheritance hierarchies.

2. It should support constraints in an object-oriented style. For example, it should allow constraints
to be placed on the result of sending a message to an object, rather than on the object’s concrete
implementation. Also, it should support user-defined constraints on user-defined objects, in the same
way that existing object-oriented languages allow the user to define new kinds of objects, and methods
for those objects. Constraints should interact correctly with the language’s inheritance mechanism.

2

3. It should allow standard imperative object-oriented programs to be written without forcing an extensive
alteration of programming style. It should be possible, if the constraint mechanism is not used, to write
code much like that in a standard imperative language. In the imperative portions of programs that
do use constraints, the programmer should not be forced to trigger the constraints manually using e.g.
self changed messages.

4. It should solve useful collections of constraints—in other words, the integrated language should aid in
solving problems that were difficult to solve before. Our original and continuing motivation for inte-
grating constraints and objects is to support the development of interactive graphical user interfaces.
Based on our experience with such interfaces, we suggest that the minimal useful collection of con-
straints and solvers for supporting graphical user interfaces include arbitrary constraints solved by local
propagation, and linear equalities and inequalities over real numbers (which might be simultaneous).

5. It should have a clean, declarative semantics. A particular issue concerning semantics is that many
of the early interactive constraint-based systems, such as the original ThingLab [4] and Magritte [19],
used a perturbation model of constraints. In this model, the constraints describe the relations that
should hold. The user or some other outside influence perturbs the system, which must then adjust
itself to re-satisfy the constraints. The problem with this model is that there are often many ways
of adjusting the system to re-satisfy the constraints, but no declarative specification of which way
should be selected, so that this choice was often embedded procedurally into the constraint solver. In
contrast, in the refinement model of constraints, the set of possible values for each variable is refined
during the execution of the program (but never altered in other ways). This model is more declarative,
and is invariably used in the constraint systems rooted in logic programming (e.g. [6, 11, 21, 35]). We
therefore set as a subgoal the use of a refinement model in the integrated language.

6. Finally, it should be reasonably efficient.

1.2 Non-Goals

We also suggest a number of “non-goals” for such an integration:

1. Although it should be reasonably efficient, it need not be 100% as efficient as an optimized imperative-
only object-oriented language, such as C++, Eiffel, or Self. The additional expressiveness of the
integration will offset some loss of efficiency, just as the additional expressiveness of an object-oriented
language offsets the cost of doing additional pointer manipulation and run-time dispatching.

2. While we require that the language preserve object encapsulation from the programmer’s point of view,
we do not require that its internal runtime structures do so, as long as the language semantics is pre-
served. (Requiring the internal runtime structures of the constraint satisfier to preserve encapsulation
would be analogous to requiring an optimizing compiler for an object-oriented language to respect en-
capsulation, which would preclude such optimizations as directly accessing instance variables, inlining
methods, caching pointers, and producing customized versions of methods. Such optimizations are key
to efficient implementations of pure object-oriented languages [10, 13].)

3. The work in the logic programming community on integrating constraints with logic programming, and
on doing object-oriented programming in a concurrent logic programming framework [23, 24, 36], is
quite relevant to the task at hand. However, for the current experiment, we wish to remain rooted in the
imperative, object-oriented world; we do not set as a goal supporting logic variables or backtracking.
Also, we wish to represent objects in a more-or-less standard manner as encapsulated chunks of state
and behavior, rather than in the concurrent logic programming style as perpetual processes consuming
a lazily-produced stream of messages. Our reasons for making these choices in the current design are:

3

first, as noted above, we believe that the integration of constraints with an imperative object-oriented
language is itself a natural and useful step; and second, we believe such languages will make it easier for
more conventionally-trained programmers to move from existing object-oriented languages to constraint
imperative languages, thus making it more likely that such languages could achieve widespread use.
In future versions of Kaleidoscope, we will likely attempt to integrate more of the features of logic
programming with the language.

2 Constraints

Formally, a constraint is a relation over some domain D. In an object-oriented language, the domain D
includes arbitrary user-defined objects, as well as primitives such as integers and real numbers. A constraint
graph G = 〈C, V,D〉 is a set of constraints C, their variables V , and their domain D. A valuation θ is a
function that maps the variables of a constraint graph to elements of the domain D. A solution S to a
constraint graph is the set of all valuations that satisfy all of the constraints in the graph. A flat constraint
system is one in which all valuations in a solution must satisfy all of the constraints completely. For example,
if the constraint graph contains the canonical Celsius–Fahrenheit–Kelvin graph over real numbers:

G =
〈{

c ∗ 1.8 = f − 32.0
c = k − 273.13

}
, {c, f, k} ,R

〉
then one possible valuation is: θ = {c, f, k 7→ 0.0, 32.0, 273.13}
and the solution is the infinite set of valuations:

S =

{c, f, k 7→ 0.0, 32.0, 273.13}
{c, f, k 7→ −40.0, −40.0, 233.13}
{c, f, k 7→ 100.0, 212.0, 373.13}

. . .

2.1 Constraint Hierarchies

We have found it useful to extend the constraint paradigm to allow both required and non-required, or pref-
erential, constraints. The required constraints must hold for all solutions, while the preferential constraints
should be satisfied if possible, but no error condition arises if they are not. A constraint hierarchy can contain
an arbitrary number of levels of preference, in either a total or partial order. The solutions to a constraint
hierarchy are the valuations (mappings from variables to values) that best satisfy the constraints in the
hierarchy, respecting their relative strengths. References [6, 18] present a formal description of the theory
of constraint hierarchies, while [16, 17] describe two algorithms, DeltaBlue and DeltaStar respectively, for
finding solutions to them.

Extending the Celsius–Fahrenheit–Kelvin example with a constraint hierarchy results in the constraint graph:

G =

〈
required c ∗ 1.8 = f − 32.0
required c = k − 273.13
strong c = 0.0
weak f = 0.0

 , {c, f, k} ,R

〉

The solution to this graph is the singleton set of the best valuation (note that this valuation satisfies the
three strongest constraints at the expense of the single weakest one):

S =
{
{c, f, k 7→ 0.0, 32.0, 273.13}

}
4

3 Previous Constraint–Object Integrations

As we mentioned earlier, there are a number of obstacles to the successful integration of constraints and
objects.

• (The Meaning of Constraints) One obstacle is that standard object-oriented languages provide
excellent mechanisms for defining new methods, but (obviously) no mechanisms for defining new con-
straints. In those cases where constraint definition mechanisms are provided, the mechanisms usually
do not respect the object-oriented nature of the base language.

• (Constraints on Parts and Wholes) A second difficulty is that constraints can be placed at many
different levels of a part-whole hierarchy. For example, consider the following two constraints—one
between two whole objects, the other between a part and a constant:

var c1, c2 : Circle;
always: c1 = c2;
always: c2.center = 10@23;

Most existing constraint solving algorithms are tailored to primitive domains such as integers, reals,
or booleans, and thus cannot handle this kind of structured information directly.

• (Declarative versus Imperative) A third difficulty with the integration of constraints and object-
oriented programming languages is that constraints are declarative and object-oriented languages are
usually imperative. Thus any useful integration must provide a solution to the interaction between
destructive assignment and declarative constraint satisfaction. For example, what happens when the
program assigns 42 to a variable that is constrained to contain anything except 42? Does the assignment
fail, and if so, what does that mean? What if the program assigns 42 to a variable that is weakly
constrained to be 33? Does the variable remain 42 after the assignment, or does it revert to 33?

Furthermore, the integration must consider not only how the constraints are solved, but when they are
solved. Is the solver automatically invoked whenever a variable changes, or does is the programmer
given the burden of explicitly triggering the solver when necessary?

In reviewing previous efforts to overcome these obstacles, one finds a small number of approaches, none of
which meet all of our goals:

1. Use local propagation exclusively.

2. Limit constraints to primitive leaf objects.

3. Link in a new constraint solver.

4. Use a graph rewriting system.

The following sections discuss these basic approaches.

3.1 Local Propagation

By far the most common technique is local propagation. Local propagation starts with some known set
of values and then, using a single constraint, determines another value. This may in turn let yet another
value be determined by another constraint, and so forth. The popularity of local propagation is due to its
simplicity and speed. Local propagation works very well when local choices of constraint satisfaction can lead

5

to globally satisfactory solutions. Unfortunately, local propagation is incapable of solving cyclic constraints
(i.e., simultaneous equations) and partial information constraints (e.g., greater-than). Furthermore, local
propagation will not work correctly when constraints are used at different levels in a part-whole hierarchy
unless information is available to connect parts to wholes, and wholes to parts.

There are two basic phases in local propagation: choosing which constraints to use, and then executing
those constraints. Dataflow, or blind, local propagation systems use local knowledge both for choosing and
executing constraints. Planned local propagation systems use global knowledge for the choosing phase, and
thus can solve more complex constraint graphs than dataflow propagation. Some local propagation systems
(particularly blind ones) interleave the two phases. This has the advantage of simplicity. On the other hand,
an advantage of separating the phases is that one particular choice of constraints (a “plan”) can be reused
until the constraint graph topology changes, thus resulting in better execution speed.

Representative examples of systems that use local propagation include Alien [12], Garnet [33], Smalltalk’s
MVC mechanism1 [28], and ThingLab II [31]. Alien, Garnet, and MVC all use dataflow propagation, whereas
ThingLab II uses planned propagation. Although these systems are all reasonably efficient (meeting goal 6),
they are strictly limited in the kinds of constraints they can solve (not meeting goal 4). Furthermore, these
systems all require a different programming style (not meeting goal 3): either the use of special constrainable
variables or the sending of self changed messages. None of these systems solve cyclic constraints. However,
all but MVC will detect cycles and not go into an infinite loop; with MVC, this detection is the programmer’s
responsibility.

3.2 Constraints on Primitive Leaves

A less common, but still simple, technique for integrating constraints and objects is to separate the domain
into two subdomains: Dc and Dp. Dc contains the complex user-defined objects (e.g., employees, loans, and
machine tools), and Dp contains the pre-defined primitive objects (e.g., integers, reals, and booleans). The
kinds of constraints available are pre-defined, and constraints can only be asserted on variables that range
over the primitive domain Dp. In other words, constraints can only be asserted on the primitive leaf objects
in the part-whole hierarchy.

There are a number of well known algorithms for solving constraints over these primitive domains, including
local propagation, Gaussian elimination, and the Simplex algorithm. However, because the set of constraints
is fixed by the system, the programmer cannot create new application specific constraints. For example, if
the programmer needs to assert cos(x) = y, but the built-in set does not include cos, then the programmer
is out of luck. Further, the programmer cannot define constraints over application specific objects. For
example, the constraint x + y = z is legal if x, y, and z are integers or reals, but not if they are points
or sets. The program can explicitly “split” a constraint on compound objects into a set of constraints on
leaf objects, but the division is done only once and is based on the concrete implementation of the objects.
This works well in a logic programming environment in which there is no mutable state, and is frequently
used in programs written in languages such as CLP(R) [22]. However, it is problematic in an object-
oriented language, since the splitting immediately becomes invalid if either the objects or the implementations
change. For example, one could manually divide the p + q = r constraint over CartesianPoints into
two leaf constraints: p.x + q.x = r.x and p.y + q.y = r.y. However, doing so effectively “freezes” the
implementations of p, q, and r—they can no longer store PolarPoints, 3DPoints, or Pixels. As another
example of this difficulty, suppose we have a constraint that one tree is the mirror image of another. We
could split the mirror constraint into primitive equality constraints on the corresponding leaves, but this
splitting would become invalid as soon as the shape of one of the trees changed.

1As one anonymous referee noted, MVC is more primitive than the other systems listed here, and perhaps should be called
a communication mechanism rather than a constraint system.

6

Worse, from an object-oriented point-of-view, this constraints-on-leaves scheme forces the programmer to
violate encapsulation when asserting inter-object constraints. Constraints must be asserted on the leaves,
and the leaves can only be accessed by explicitly descending the part-whole hierarchy and accessing in-
stance variables. For example, consider two Rectangle objects constrained to have the same center. Using
constraints-on-leaves the necessary constraints are:

r1.origin.x + r1.corner.x = r2.origin.x + r2.corner.x;
r1.origin.y + r1.corner.y = r2.origin.y + r2.corner.y;

However, the correct, encapsulation-preserving constraint would be:

r1.center = r2.center;

Note that the undesirable set of constraints forces (i) the Rectangle class to have origin and corner
instance variables and (ii) those instance variables to contain CartesianPoint objects. Assuming reasonable
abstraction principles and encapsulation mechanisms, the programmer should not need to know anything
about the internal implementation of Rectangle, much less about what implementations of Points are used.

A representative example of a system that uses this two-domain, constraints-on-leaves technique is the
COOL system [1]. This system appears to be reasonably efficient (meeting goal 6), but does not preserve
the object-oriented programming style when defining or using constraints (not meeting goal 2).

3.3 New Constraint Solvers

The most powerful of the common techniques for integrating constraints and objects is to define a new
constraint solver to handle the new domain. The new solver can be provided by extra procedures in the
program itself or, more often, by linking a new solver into the runtime system. In either case, the result is two
solvers, one for each of the two domains: the primitive domain Dp and the user-defined objects Dc. Typically,
each of the two solvers will be an efficient algorithm tailored to the domain, i.e., based on domain-specific
knowledge.

Unfortunately, in general, this technique suffers from the same inflexible nature as the constraints-on-leaves
technique. For example, if an extra solver has been written to solve constraints over the user-defined objects
in Dc, that solver will not solve constraints over a different set of user-defined objects Dd. Second, and
perhaps worse, having separate solvers for separate domains usually precludes any inter-domain constraints!
Thus, if Dp is the real numbers and Dc is geometric figures, the following figure-to-real constraint would not
be supported by a two-solver system:

myCircle.radius = 15.2*x - 9.4*y;

A single solver for the unified domain of figures and real numbers could handle that constraint, but not
a system with separate solvers for separate domains. The problem is that the integration of two domains
requires the integration of two solvers. However, constraint solvers are typically not written to support
integration—their algorithms assume an internal database representing the complete state of the world,
rather than an incomplete state that must be communicated to and from other solvers.

Representative examples of systems that use this new solver approach are the constraint systems for graphical
objects described in [25] and [37]. These systems are efficient (meeting goal 6) and provide constraints at
a higher level of abstraction than just the real numbers (partially meeting goal 4), but do not allow the
programmer to define new kinds of constraints (not meeting goal 2).

7

3.4 Graph Rewriting

A number of systems have integrated constraints and objects by using a graph rewriting system to rewrite
the constraint graph with the goal of producing a single solution object, or a local propagation dataflow
plan. Some of these systems are implemented on top of an existing object oriented language, whereas others
define the object model using rewrite rules as well. The most “object oriented” of these systems encapsulate
the rewrite rules within the objects (or their classes). Thus the definition of an object includes its state
(instance variables), its behavior (methods), and the rewrite rules that are applicable to it.

The biggest advantages of the graph rewriting technique are that encapsulation is preserved (goal 2), and
that the set of objects and their constraints are easily extendible (goals 1 and 2). However, the biggest
disadvantage is that the constraints over Dc are not solved directly. The constraint solver rewrites the graph
to a canonical representation, and then passes this residual graph to a primitive constraint solver. This two-
level constraint solving algorithm can be inefficient (not solving goal 6). More importantly, graph rewriting
is a fundamentally different execution model from the standard imperative one, bringing this technique in
conflict with goal 3.

The first programming language to use graph rewriting to integrate objects and constraints is Bertrand [29];
later systems of this type are Equate [39], and Siri [20]. A primary design goal of Equate is preserving
object encapsulation in the internal operation of the constraint satisfier, which, as noted above, we view as
an inappropriate goal. Siri has a completely integrated object model similar to that of BETA [27, 26] and
thus better satisfies goal 2.

3.5 Other Techniques

Another technique that has been used to integrate constraints and objects is the path approach used in
the original ThingLab [4]. The ThingLab constraint solver was essentially an augmented planned local
propagation system—it used both local propagation and iterative relaxation. The planning phase was based
on virtual variables. Each virtual variable was linked to a real variable through a path: an ordered sequence
of part names that defined a path from the root object to the variable being constrained. The planner would
use the paths to avoid conflicts, cycles, and various dataflow problems that are common to local propagation
systems. However, because the planner had no information about the implementation of the constraints or
the objects, using local propagation alone, it was unable to handle simultaneous constraints on an object,
unless it was explicitly told that those constraints applied to separate parts of the object. For example, it
could not handle the following set of constraints (which might occur in a multi-user user interface) using
local propagation:

var p, q, r : Point;
horizontal(q, r);
vertical(p, q);
mouse1 = p;
mouse2 = r;

Thus, the ThingLab constraint solver was reasonably efficient (meeting goal 6) and did not require a new
programming style (meeting goal 3). However, it required a static part-whole hierarchy, and (in the original
version) required the parts on the paths to be stored as instance variables rather than computed; both of
these restrictions violate goal 2.

8

4 The Kaleidoscope’91 Approach

After discovering that none of the existing approaches to the integration of constraints and objects met
our requirements, we considered modifying an existing object-oriented language or designing our own. We
began by defining the basic semantics of such an integration: the object-oriented constraint imperative
programming framework. As we were unable to find an existing object-oriented programming language
that had both a simple semantics and support for multi-methods, we designed and implemented a new
language, Kaleidoscope’90, as an initial instance of this framework. As described in the introduction, we
are now implementing a successor language, Kaleidoscope’91, based on the lessons learned from this initial
experiment. The remainder of this paper describes the interesting features of our second language, in
particular those aspects that deal with the integration of constraints and objects.

4.1 Object Model

One task in the design of a language that integrates constraints and objects is the specification of the object
model. Most of the choices here (for example, prototypes versus classes, single versus multiple inheritance,
static versus dynamic type checking, combined or separate type and implementation hierarchies) are in-
dependent of the particular problems of making the integration. One attribute that is not independent,
however, is single dispatching versus multiple dispatching. Kaleidoscope’91 adopts the multiple dispatching
techniques of Cecil [9], rather than the single dispatching of Smalltalk and C++. Multi-methods are par-
ticularly appropriate in a constraint language, since the multi-directional nature of constraints means that,
in general, any argument could be either an input or an output. Thus dispatching on all arguments makes
more sense than on any single argument. For example, single dispatching on the message receiver does not
work when the message receiver is unknown. Consider the following situation: variables x, y, and z are
constrained with x + y = z, i.e., the constraint x.plus(y,z). Also, it is known that y = 3 and z = 5,
but x is unknown. Obviously, one would conclude that the Integer plus constraint should be used, but
that conclusion could only be arrived at using the types of the arguments y and z, i.e., using multi-method
dispatching2.

When a message is sent, the implementation inheritance graph of each argument is searched for applicable
methods. All applicable methods (both local and inherited) are placed into a partial order by the inheritance
graphs. If there is a unique lower bound to this partial order, then that method is executed. If there is no
unique lower bound, then an “ambiguous message send” error is raised and the program halts. (In other
words, we take a conservative approach to multi-method selection: if it is unambiguous which method is to
be used, that method is selected; otherwise it is a runtime error. This approach is like the one taken in the
Smalltalk multiple inheritance extension [5] and in Cecil, and in contrast to the more elaborate approach in
CLOS, in which a linear ordering is imposed on the inheritance graph.)

Kaleidoscope’91 has also inherited Cecil’s optional and incremental static type checking system. Type dec-
larations on variables and method arguments are strictly optional, although if they are used, the compiler
will ensure that all uses of that variable or argument are type safe. The type inheritance hierarchy in Kalei-
doscope’91 (and in Cecil) is separate from the implementation inheritance hierarchy. Kaleidoscope’91 uses
a class-based object model (in contrast to Cecil), since the choice of prototypes versus classes is orthogonal
to our research focus of integrating constraints with object-oriented programming, and since the class-based
design seemed more stable.

Constraints are applied to objects during the execution of the program as constraint statements are encoun-
tered. An example statement in Kaleidoscope’91 is:

2Note that x.plus(y,z) is a statement of a constraint (a relation) rather than a statement of a functional computation.
Thus there is no “result” as there is in functional or imperative expression.

9

always: c1.radius = 1.0;

Executing this statement permanently asserts a constraint that specifies that the result of sending the radius
message to c1 will be equal to 1.0. Note that asserting a constraint is different than solving it—the asserted
constraints define a constraint graph, which is solved either when time is advanced (see Sect. 4.2), or when
an actual value of a variable should be necessary, e.g., for output to the screen or for use in a conditional
branch.

A class definition can include constraints that are automatically applied to its instances. For example,
Circle, UnitCircle, and FilledUnitCircle classes could be defined as follows, giving FilledUnitCircle
three instance variables and one constraint:

class Circle inherits from Object
var radius : Float;
var center : Point;

end Circle;

class UnitCircle inherits from Circle
always: required radius = 1.0;

end UnitCircle;

class FilledUnitCircle inherits from UnitCircle
var color : RGBColor;

end FilledUnitCircle;

In our effort to explore the limits of the constraint imperative programming framework, Kaleidoscope’91
uses constraints to implement type declarations. Thus the declaration:

var p : Point;

defines both the variable p and the type constraint “protocol_conforms(p,Point)”. Thus both the compiler
and the run-time system use the same constraint solver: the compiler for type inference, and the run-time
system for solving dynamically created constraints.

4.2 Time and Assignment

The second task in the design of an integrated language is devising a solution to the conflict between
declarative constraints and imperative assignment. One of our goals (3) is to allow standard imperative
object-oriented programs to be written without forcing an extensive alteration of programming style. There-
fore, Kaleidoscope’91 must smoothly integrate these two apparently incompatible paradigms. The standard
imperative assignment statement is a destructive operation: executing the statement left := right causes
the value of the right expression to be stored in the left variable. However, in a constraint imperative
language, the left variable might be connected, through constraints, to other variables. To treat assign-
ment cleanly and uniformly in Kaleidoscope’91, assignment is defined as an equality constraint between the
previous value of the right expression and the current value of the left variable. Thus, all expressions
denote constraints, and so all computation is handled by a single constraint solving mechanism—neither the
constraints nor the imperative object-oriented code is treated specially. Semantically, variables in Kaleido-
scope’91 contain streams of pellucid values, in analogy with Lucid [38]—one pellucid value for each integral
time interval. In Kaleidoscope’90, the programmer could reach arbitrarily far into the past to reference
an old state, requiring the implementation to store an unbounded number of pellucid variables. This was

10

expensive to implement, and allowed confusing (although interesting) programming styles. In reaction to
this, Kaleidoscope’91 has been restricted so that the programmer can only refer to two states of a variable:
the current state and the previous state.

All expressions are defined relative to a current time. For example, if the current time is 6, then the expression
c * 1.8 = f - 32.0 denotes c6 ∗ 1.8 = f6 − 32.0, and the assignment x := y + z denotes x6 = y5? + z5?.
(The “?” annotations on the variables y5 and z5 indicate that they are read-only, so that information can only
flow from the past to the present, and not vice versa. The “?” annotation, as well as a write-only annotation
“!”, is also available at the language level.) The current time is advanced at the end of each statement. In
addition, we can create a compound statement, to be executed without advancing the clock between the two
sub-statements, by using the || operator. Thus, for example, the statement x := y || y := x; swaps x
and y without using a temporary.

The duration for which a constraint expression is asserted can vary. By default, assignments are asserted
“just once,” and normal constraints are asserted “from now on.” However, by using the keywords once:,
always:, and assert. . . during. . . the programmer can specify a different duration for any expression.
Semantically, each constraint expression specifies that a new constraint instance be created for each time
at which the expression is active, e.g., the constraint c * 1.8 = f - 32.0 creates c7 ∗ 1.8 = f7 − 32.0 at
time 7, c8 ∗ 1.8 = f8 − 32.0 at time 8, and so on. Weak stay constraints (xi = xi−1?) are used to propagate
values forward in time when no other constraints apply; in other words, in the absence of other stronger
constraints, the values of variables will remain the same as time advances.

This semantics for time and assignment, we believe, meets goal 5 (a clean, declarative semantics). In
particular, in the description of that goal, we contrasted the perturbation and refinement models of constraint
satisfaction, preferring the refinement model. On the face of it, the refinement model is incompatible with an
imperative programming style. However, our semantics for variables (a variable holds a stream of pellucid
variables, with weak stay constraints to implement the frame axioms relating successive elements in the
stream), allows us to provide a refinement-based semantics for our language.

4.3 Constraint Constructors and Procedures

The third task in the design of an integrated constraints-and-objects language is support for user-defined
constraints over user-defined objects. Mechanisms are needed both to define the meaning of constraints, and
to support constraints at different levels of the part-whole hierarchy. As described in Sect. 3.4, the most
object-oriented technique for this support is to use the objects themselves (or their classes) to define the
meanings of the constraints. In the graph rewriting systems described earlier, this was accomplished by
encapsulating rewrite rules within the objects. In Kaleidoscope’91, however, the meanings of the constraints
are defined using the same imperative object-oriented constructs as are used in the rest of the language.
Thus, a Kaleidoscope’91 programmer does not need to learn a separate sub-language for each of the two
integrated paradigms: constraints and objects.

Constraints in Kaleidoscope’91 are asserted by a statement containing a duration keyword, an optional
strength, and an expression. The expression is a normal object-oriented expression, i.e., each operator is
dispatched individually and the run-time offers no pre-determined meaning to any operator. For example, the
expression in following constraint statement is translated into three sub-expressions—one for each operator:

*(c, 1.8, tmp1)
always: required c * 1.8 = f - 32.0; ⇒ -(f, 32.0, tmp2)

=(tmp1, tmp2)

The objects involved in each sub-expression determine the implementation of that sub-constraint through
the multi-method dispatch described in Sect. 4.1. However, instead of dispatching to normal object methods,

11

constraint sub-expressions dispatch to constraint constructors: side-effect-free multi-methods. For example,
the Point addition constraint constructor is:

constructor +(p, q, r : Point)
always: p.x + q.x = r.x;
always: p.y + q.y = r.y;

end +;

This constructor splits the Point addition constraint into two smaller addition constraints on its component
x and y instance variables. The meanings of these smaller constraints are recursively defined using further
constructors and so on, until the objects being constrained are elements from the primitive domain Dp, and
a primitive constraint solver can be used. In other words, the Kaleidoscope’91 solution to the problem of
having constraints at different levels of the part-whole hierarchy is to decompose all constraints as far as
possible, thus allowing the primitive constraint solvers to deal with a flat, unstructured domain.

Because constraint constructors are methods rather than rewrite rules, they can include arbitrary computations—
assignment, iteration, recursion, and so forth—in addition to further constraints, thus making them more
natural to write for a programmer accustomed to the imperative style. To preserve the declarative prop-
erties of constraints, the language prohibits constructor methods from having non-local side-effects. Thus
constraint constructors may not constrain out-of-scope variables nor advance the global time. Instead, each
constraint constructor is executed in its own time scope and thus with its own interpretation of “current”
and “previous.”

Furthermore, note that q.x in the above constraint constructor is not a direct reference to the x instance
variable of the object contained in q. Rather, q.x preserves encapsulation by sending the x message to q,
which allows the q object to return either a stored instance variable or a computed (or “virtual”) variable.
Naturally, this computation is done with multi-directional constraints, and thus values can flow in as well as
out. For example, if Points are represented in polar coordinates, the x access method called from the above
Point addition constructor would be:

constructor x(p : Point, x)
always: x = r * cos(theta);

end x;

4.4 Implementation

The Kaleidoscope’90 interpreter included a direct naive implementation of the semantics of time described
in Sect. 4.2, using lists of pellucid values, thousands of constraints, lots of garbage collection, and very low
performance. Based on that experience, the semantics of Kaleidoscope’91 were restricted (as described in
Sect. 4.2) with one consequence being that an implementation need only store two pellucid values for each
variable. We anticipate that this restriction will eliminate much of the creation, and subsequent collection,
of constraint instances upon each time advance.

However, the greatest savings in execution time will come from moving as much of the constraint satisfaction
problem from run time to compile time as possible. When the compiler can statically determine which
constraints will be active at run time, it can use the constraint compiling technology of [14] to produce
a short sequence of instructions instead of a run-time constraint solver call. For example, if there is an
assignment to an otherwise unconstrained variable, rather than representing the assignment as a run time
constraint and solving it, we can compile it as a simple store instruction.

However, not all constraint satisfaction can be done at compile time, no matter how clever the algorithms.
For the run time constraint satisfaction that remains, the implementation of Kaleidoscope’91 relies on the

12

efficient implementation of two basic features: the streams of values over time, and a two-level constraint
solver. The two levels in the constraint solver are for the user-defined constraints over Dc, and for the
primitive constraints over Dp. For both Kaleidoscope’90 and Kaleidoscope’91, the primitive domain Dp

consists of three sub-domains: real numbers, booleans, and bitmaps. Each sub-domain has its own primitive
constraint solver: a combination local propagation/Simplex algorithm for real numbers, a finite-domain
solver [30] for booleans and type constraints, and a local propagation solver for bitmaps. These three solvers
use a variation of the algorithm described in [34] to cooperate when solving inter-domain constraints. The
idea behind the algorithm is that the primitive constraint solvers communicate relevant variable bindings
via inter-domain constraints. Each inter-domain constraint remains dormant until a sufficient number of
its variables become known, at which point the inter-domain constraint is replaced by two or more single-
domain constraints. It is these smaller constraints that contain the information (variable bindings) being
communicated between the solvers.

The user-defined constraint solver is, itself, divided into two parts: a type constraint solver and a con-
straint constructor execution unit. Each constraint expression in Kaleidoscope’91 defines two constraints:
a constraint on the types of its variables, and a constraint on the values of its variables. For example, an
x + y = z constraint expression defines a type constraint that restricts x, y, and z to contain objects such
that a +(. . .) constraint constructor exists for those objects. It also defines a “value constraint” such that
once types are found for those objects, the appropriate constraint constructor is executed. These constraint
constructors may assert further constraints, leading to further type constraints and constraint constructor
calls until, eventually, the process bottoms out and the constraint constructors create primitive constraints
over the primitive domain Dp.

Although this scheme is flexible and powerful, the fact that it splits and then delegates responsibility for
solving the constraints can be a drawback. Algorithms that deal with complex constraints at the original
level of abstraction (such as those described in Sect. 3.3) can be more efficient than those that solve the
same problem using a myriad of lower-level constraints. We are working to rectify this problem by providing
a pluggable solver interface to the Kaleidoscope’91 run-time. Thus, while constraint constructors will be
used to define most constraints, specialized constraint solvers for application-specific objects could be added
when necessary, which would interact correctly with existing solvers.

Thus the overview of the Kaleidoscope’91 constraint solver is: first, solve the type constraints; second,
execute the constraint constructors; and third, solve the primitive constraints. The complete algorithm is
omitted here due to space restrictions, but is available in [18]. The complete algorithm is incremental, and
accommodates the constraint constructors asserting further constraints (or local constraints), which then
require solving additional type constraints, calling additional constraint constructors, and so on.

5 Examples

As we stated earlier, our original and continuing motivation for both Kaleidoscopes, and the more general
constraint imperative programming framework, is to support the development of interactive graphical user
interfaces. Language features of Kaleidoscope’91, such as the constraint hierarchy, multi-methods, and
constraint constructors are particularly useful in such programs.

As an example of the sort of code we have written, consider the following code fragment from the Thermometer
class in the Celsius–Fahrenheit–Kelvin application. Constraints are used, not only for typical arithmetic
relations, but also to define the user interaction and the graphical appearance. Note that because the
graphical appearance is defined with constraints, it will be updated automatically as the other constraints
are solved:

13

always: temperature = mercury.height / scale;
always: white rectangle(thermometer);
always: grey rectangle(mercury);
always: text pos = (thermometer.right)@(mercury.top);
always: display number(temperature, text pos);

if(near(mouse, mercury)) then
assert

medium mouse.location.y = mercury.top;
while(mouse.button = down);

elseif(near(mouse, menu.top)) then
...

endif;

As a second example, consider the definition of an object dragging routine for an object-oriented graphical
drawing program such as [3]. The object being dragged usually follows the mouse. However, if the dragged
object is moved within the “gravity” region of another object, the dragged object sticks to the fixed object
while minimizing the distance between itself and the mouse. The following constraint hierarchy can be used
to specify this behavior:

always: weak cursor = mouse;
always: strong stick to(dragged, near);
always: required near = nearest or nil(mouse);
always: required dragged.center = cursor;

The weak equality constraint provides the default tracking behavior and the strong stick to constraint
provides the sticking. However, the implementation of the stick to constraint is different for each pair
of graphical objects (circle-circle, circle-line, rectangle-triangle, polygon-spline, triangle-rectangle, etc.) and
thus multi-method dispatching is used to invoke different stick to constraint constructors as the mouse
moves near different objects.

6 Conclusion

The Kaleidoscope’91 language and implementation meets five of our six original goals, and provides the
power of constraints in the framework of an object-oriented language. The one goal that it does not yet
meet is number 6: reasonable efficiency. We hypothesize that the Kaleidoscope’91 compiler-interpreter pair
will be much more efficient than the proof-of-concept Kaleidoscope’90 interpreter; this hypothesis will be
supported or refuted once our implementation is completed. To this end, our implementation and research
effort is divided between improving our constraint solvers and developing specialized compilation techniques.

In general, we believe that the object-oriented constraint imperative programming framework is a promising
direction in language design because it combines the declarative aspects of constraint programming with
the abstraction, encapsulation, and destructive assignment aspects of imperative object-oriented languages.
This marriage allows the programmer to use the correct paradigm (declarative or imperative) for each task,
rather than forcing the entire application to be molded into a single model. Furthermore, the availability of
two paradigms will encourage the development of novel dual-paradigm algorithms, such as the associative
array and set implementations described in [7, 8].

14

Acknowledgements

This work has been supported by the University of Victoria, and by the National Science Foundation under
grant IRI-9102938. Craig Chambers, Denise Draper, Gus Lopez, and Michael Sannella have all been actively
participating in the design of Kaleidoscope’91; and, along with the anonymous referees, also provided valuable
suggestions on improving this paper. We would also like to thank John Maloney, Brad Meyers, and Bradley
Vander Zanden for their suggestions and advice.

References

[1] P. Avesani, A. Perini, and F. Ricci. COOL: An Object System with Constraints. In TOOLS 2, June
1990.

[2] Paul Barth. An Object-Oriented Approach to Graphical Interfaces. ACM Transactions on Graphics,
5(2):142–172, April 1986.

[3] Eric A. Bier and Maureen C. Stone. Snap-Dragging. In Proceedings of SIGGRAPH’86, Dallas, Texas,
August 1986. Also in Computer Graphics 20(4), August 1986.

[4] Alan Borning. The Programming Language Aspects of ThingLab, A Constraint-Oriented Simulation
Laboratory. ACM Transactions on Programming Languages and Systems, 3(4):353–387, October 1981.

[5] Alan Borning and Danial H. H. Ingalls. Multiple Inheritance in Smalltalk-80. In Proceedings of the
National Conference on Artificial Intelligence, pages 234–237, Pittsburgh, Pennsylvania, August 1982.
American Association for Artificial Intelligence.

[6] Alan Borning, Michael Maher, Amy Martindale, and Molly Wilson. Constraint Hierarchies and Logic
Programming. In Proceedings of the Sixth International Conference on Logic Programming, pages 149–
164, Lisbon, June 1989.

[7] Timothy A. Budd. Blending Imperative and Relational Programming. IEEE Software, 8(1), January
1991.

[8] Timothy A. Budd. Multiparadigm Data Structures in Leda. In Proceedings of the IEEE Computer
Society 1992 International Conference on Computer Languages, April 1992.

[9] Craig Chambers. Object-Oriented Multi-Methods in Cecil. In Proceedings of the 1992 European Con-
ference on Object-Oriented Programming, pages 33–56, June 1992.

[10] Craig Chambers and David Ungar. Making Pure Object-Oriented Languages Practical. In Proceedings
of the 1991 ACM Conference on Object-Oriented Programming Systems, Languages, and Applications,
pages 1–15, Phoenix, October 1991.

[11] Jacques Cohen. Constraint Logic Programming Languages. Communications of the ACM, 33(7):52–68,
July 1990.

[12] Eric Cournarie and Michel Beaudouin-Lafon. ALIEN: A Prototype-based Constraint System. In
Preprints of the Second Eurographics Workshop on Object Oriented Graphics, pages 93–114, Texel,
The Netherlands, June 1991. To be published in revised form by Springer-Verlag.

[13] L. Peter Deutsch and Allan M. Schiffman. Efficient Implementation of the Smalltalk-80 System. In
Proceedings of the Eleventh Annual Principles of Programming Languages Symposium, pages 297–302,
Salt Lake City, Utah, January 1984. ACM.

15

[14] Bjorn Freeman-Benson. A Module Compiler for ThingLab II. In Proceedings of the 1989 ACM Con-
ference on Object-Oriented Programming Systems, Languages and Applications, pages 389–396, New
Orleans, October 1989. ACM.

[15] Bjorn Freeman-Benson. Kaleidoscope: Mixing Objects, Constraints, and Imperative Programming. In
Proceedings of the 1990 Conference on Object-Oriented Programming Systems, Languages, and Appli-
cations, and European Conference on Object-Oriented Programming, pages 77–88, Ottawa, Canada,
October 1990. ACM.

[16] Bjorn Freeman-Benson, John Maloney, and Alan Borning. An Incremental Constraint Solver. Commu-
nications of the ACM, 33(1):54–63, January 1990.

[17] Bjorn Freeman-Benson, Molly Wilson, and Alan Borning. DeltaStar: A General Algorithm for In-
cremental Satisfaction of Constraint Hierarchies. In Proceedings of the Eleventh Annual IEEE Phoenix
Conference on Computers and Communications, pages 561–568, Scottsdale, Arizona, March 1992. IEEE.

[18] Bjorn N. Freeman-Benson. Constraint Imperative Programming. PhD thesis, University of Washington,
Department of Computer Science and Engineering, July 1991. Published as Department of Computer
Science and Engineering Technical Report 91-07-02.

[19] James A. Gosling. Algebraic Constraints. PhD thesis, Carnegie-Mellon University, May 1983. Published
as CMU Computer Science Department Technical Report CMU-CS-83-132.

[20] Bruce Horn. A Constrained-Object Language for Reactive Program Implementation. Technical Report
CMU-CS-91-152, School of Computer Science, Carnegie-Mellon University, June 1991.

[21] Joxan Jaffar and Jean-Louis Lassez. Constraint Logic Programming. In Proceedings of the Fourteenth
ACM Principles of Programming Languages Conference, Munich, January 1987.

[22] Joxan Jaffar, Spiro Michaylov, Peter Stuckey, and Roland Yap. The CLP(R) Language and System.
Technical Report CMU-CS-90-181, School of Computer Science, Carnegie Mellon University, October
1990. To appear in ACM Transactions on Programming Languages and Systems.

[23] Kenneth Kahn, Eric Tribble, Mark Miller, and Daniel Bobrow. Objects in Concurrent Logic Pro-
gramming Languages. In Proceedings of the 1986 ACM Conference on Object-Oriented Programming
Systems, Languages and Applications, pages 242–257, Portland, Oregon, September 1986. ACM.

[24] Kenneth M. Kahn. Objects—A Fresh Look. In Proceedings of the European Conference on Object-
Oriented Programming, July 1990.

[25] Glenn Kramer, Jahir Pabon, Walid Keirouz, and Robert Young. Geometric Constraint Satisfaction
Problems. In Working Notes of the AAAI Spring Symposium on Constraint-Based Reasoning, pages
242–251, Stanford, March 1991.

[26] Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Møller Pedersen, and Kristen Nygaard. Object
Oriented Programming in the Beta Programming Language. Draft of unpublished book, 1991.

[27] Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Møller Pederson, and Kirsten Nygaard. Abstrac-
tion Mechanisms in the BETA Programming Language. In Proceedings of the Tenth Annual Principles
of Programming Languages Symposium, Austin, Texas, January 1983. ACM.

[28] Wilf R. LaLonde and John R. Pugh. Inside Smalltalk, volume II. Prentice Hall, Englewood Cliffs, NJ,
1991.

[29] William Leler. Constraint Programming Languages. Addison-Wesley, 1987.

[30] Alan K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence, 8(1):99–118, 1977.

16

[31] John Maloney. Using Constraints for User Interface Construction. PhD thesis, Department of Computer
Science and Engineering, University of Washington, August 1991. Published as Department of Computer
Science and Engineering Technical Report 91-08-12.

[32] Brad A. Myers, Dario Guise, Roger B. Dannenberg, Brad Vander Zanden, David Kosbie, Philippe
Marchal, and Ed Pervin. Comprehensive Support for Graphical, Highly-Interactive User Interfaces:
The Garnet User Interface Development Environment. IEEE Computer, 23(11):71–85, November 1990.

[33] Brad A. Myers, Dario Guise, Roger B. Dannenberg, Brad Vander Zanden, David Kosbie, Philippe
Marchal, Ed Pervin, Andrew Mickish, and John A. Kolojejchick. The Garnet Toolkit Reference Manuals:
Support for Highly-Interactive Graphical User Interfaces in Lisp. Technical Report CMU-CS-90-117,
Computer Science Dept, Carnegie Mellon University, March 1990.

[34] Greg Nelson and Derek C. Oppen. Simplification by Cooperating Decision Procedures. In Proceedings
of the Fifth ACM Symposium on Principles of Programming Languages. ACM SIGPLAN, 1978.

[35] Vijay A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis, Carnegie-Mellon
University, Computer Science Department, January 1989.

[36] E. Shapiro and A. Takeuchi. Object-Oriented Programming in Concurrent Prolog. In Ehud Shapiro,
editor, Concurrent Prolog: Collected Papers, volume 2, chapter 21. MIT Press, 1987.

[37] Remco C. Veltkamp. A Quantum Approach to Geometric Constraint Satisfaction. In Preprints of
the Second Eurographics Workshop on Object Oriented Graphics, pages 53–67, Texel, The Netherlands,
June 1991. To be published in revised form by Springer-Verlag.

[38] William W. Wadge and Edward A. Ashcroft. Lucid, the Dataflow Programming Language. Academic
Press, London, 1985.

[39] Michael Wilk. Equate: An Object-Oriented Constraint Solver. In Proceedings of the 1991 ACM Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications, pages 286–298, Phoenix,
October 1991.

17

