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Abstract

Genomic selection, enabled by whole genome prediction (WGP) methods, is revolutionizing

plant breeding. Existing WGPmethods have been shown to deliver accurate predictions in

the most common settings, such as prediction of across environment performance for traits

with additive gene effects. However, prediction of traits with non-additive gene effects and

prediction of genotype by environment interaction (G×E), continues to be challenging. Pre-

vious attempts to increase prediction accuracy for these particularly difficult tasks employed

prediction methods that are purely statistical in nature. Augmenting the statistical methods

with biological knowledge has been largely overlooked thus far. Crop growth models

(CGMs) attempt to represent the impact of functional relationships between plant physiol-

ogy and the environment in the formation of yield and similar output traits of interest. Thus,

they can explain the impact of G×E and certain types of non-additive gene effects on the

expressed phenotype. Approximate Bayesian computation (ABC), a novel and powerful

computational procedure, allows the incorporation of CGMs directly into the estimation of

whole genome marker effects in WGP. Here we provide a proof of concept study for this

novel approach and demonstrate its use with synthetic data sets. We show that this novel

approach can be considerably more accurate than the benchmark WGPmethod GBLUP in

predicting performance in environments represented in the estimation set as well as in pre-

viously unobserved environments for traits determined by non-additive gene effects. We

conclude that this proof of concept demonstrates that using ABC for incorporating biological

knowledge in the form of CGMs into WGP is a very promising and novel approach to

improving prediction accuracy for some of the most challenging scenarios in plant breeding

and applied genetics.

Introduction

Genomic selection [1], enabled by whole genome prediction (WGP) methods, is revolutioniz-

ing plant breeding [2]. Since its inception, attempts to improve prediction accuracy have
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focused on: developing improved and specialized statistical models [3–6], increasing the

marker density used [7–9], increasing the size and defining optimal designs of estimation sets

[10–13] and better understanding the genetic determinants driving prediction accuracy [14,

15].

In-silico phenotypic prediction, enabled by dynamic crop growth models (CGMs), dates

back to the late 1960’s [16] and it has constantly evolved through inclusion of scientific

advances made in plant physiology, soil science and micrometeorology [16, 17]. CGMs used in

plant breeding are structured around concepts of resource capture, utilization efficiency and

allocation among plant organs [18–21] and are used to: characterize environments [22, 23],

predict consequences of trait variation on yield within a genotype × environment × manage-

ment context [24], evaluate breeding strategies [25–27], and assess hybrid performance [2].

Early attempts to extend the use of CGMs to enable genetic prediction have focused on

developing genetic models for parameters of main process equations within the CGM [21, 28,

29]. Linking quantitative trait locus (QTL) models and CGMs for complex traits motivated

adapting CGMs to improve the connectivity between physiology and genetics of the adaptive

traits [21, 27, 30]. However, despite a tremendous body of knowledge and experience, CGMs

were largely ignored for the purpose of WGP.

There is ample evidence for the importance of epistasis in crops, including for economically

important traits such as grain yield in maize [31–33]. Yield and other complex traits are the

product of intricate interactions between component traits on lower hierarchical levels [19, 34–

37]. If the relationship among the underlying component traits is nonlinear, epistatic effects

can occur on the phenotypic level of complex traits even if the gene action is purely additive

when characterized at the level of the component traits [33]. This phenomenon was first

described for multiplicative relationships among traits by Richey [38] and later quantified by

Melchinger et al. [39]. CGMs, which explicitly model these nonlinear relationships among

traits, have therefore the potential to open up novel avenues towards accounting for epistatic

effects in WGP models by explicit incorporation of biological knowledge.

The target population of environments for plant breeding programs is subject to continuous

re-evaluation [2]. To select for performance in specific environments, genotype by environ-

ment (G×E) interactions have to be predicted. Genomic prediction of G×E interactions is

therefore of great interest for practical applications of breeding theory. Previous attempts

incorporated G×E interactions in WGP models through environment specific marker effects

[40] or genetic and environmental covariances [41]. Later Jarquín et al. [42] and Heslot et al.

[43] developed WGP models that accounted for G×E interactions by means of environmental

covariates.

While these previous attempts are promising, they are purely statistical in nature and do not

leverage the substantial biological insights into the mechanisms determining performance in

specific environments. CGMs are an embodiment of this biological knowledge and might serve

as a key component in novel WGP models for predicting G×E interactions. In fact, Heslot et al.

[43] recognized this potential for CGMs. However, they employed them only for computing

stress covariates from environmental data, which were subsequently used as covariates in

purely statistical WGP models.

Given the potential merits of integrating CGMs in WGP, the question arises of how to com-

bine the two in a unified predictive system. The ever increasing computational power of mod-

ern computing environments allows for efficient simulation from the most complex of models,

such as CGMs [27]. This computational power is leveraged by approximate Bayesian computa-

tion (ABC) methods, which replace the calculation of a likelihood function with a simulation

step, and thereby facilitate analysis when calculation of a likelihood function is impossible or

computationally prohibitive. ABC methods were developed in population genetics, where they
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helped solve otherwise intractable problems [44–47]. However, ABC methods were rapidly

adopted in other scientific fields, such as ecology [48], systems biology [49] and hydrology

[50]. Recently, Marjoram et al. [51] proposed using ABC methods for incorporating the biolog-

ical knowledge represented in gene regulatory networks into genome-wide association studies,

arguing that this might present a solution to the ‘missing heritability’ problem.

Here we make the case that ABC may hold great promise for enabling novel approaches to

WGP as well. Thus, the objective of this study is to provide a proof of concept, based on syn-

thetic data sets, for using ABC as a mechanism for incorporating the substantial biological

knowledge embodied in CGMs into a novel WGP approach.

Materials and Methods

CGM and environmental data

We used the maize CGM developed by Muchow et al. [52], which models maize grain yield

development as a function of plant population (PPOP, plantsm−2), daily temperature (°C) and

solar radiation (MJ m−2) as well as several genotype dependent physiological traits. These traits

were total leaf number (TLN), area of largest leaf (AM), solar radiation use efficiency (SRE)

and thermal units to physiological maturity (MTU). Details on the calculation of trait values

for the genotypes in the synthetic data set are provided later. However, the values used were

within typical ranges reported in the literature. The simulated intervals for TLN, AM, SRE and

MTU were [6, 23] [52, 53], [700, 800] [52, 54], [1.5,1.7] [55] and [1050, 1250] [56–58], respec-

tively, with average values at the midpoints of the intervals.

We chose Champaign/Illinois (40.08° N, 88.24° W) as a representative US Corn Belt loca-

tion. Temperature and solar radiation data were obtained for the years 2012 and 2013 (Data

provided by the Water and Atmospheric Resources Monitoring Program, a part of the Illinois

State Water Survey (ISWS) located in Champaign and Peoria, Illinois, and on the web at www.

sws.uiuc.edu/warm). The sowing date in 2012 was April 15th and in 2013 it was May 15th. We

modified the original CGM of Muchow et al. [52] by enforcing a maximum length of the grow-

ing season, after which crop growth simulation was terminated, regardless of whether the geno-

type reached full physiological maturity or not. The length of the growing season in 2012 was

120 days from sowing and in 2013 it was 130 days from sowing. Both durations are within the

range typically observed in the US Corn Belt [59]. In 2012 PPOP was 8 plantsm−2 and in 2013

PPOP was 10 plantsm−2. The 2012 and 2013 environments therefore differed not only in tem-

perature and solar radiation but also in management practices. The temperature and solar radi-

ation from date of sowing is shown in Fig 1. Typical total biomass and grain yield development

curves for early, intermediate and late maturing genotypes in the 2012 and 2013 environments

are shown in Fig 2 and corresponding curves for development of total and senescent leaf area

in S1 Fig.

The CGM can be viewed as a function F of the genotype specific inputs (the physiological

traits) and the environment data

FðyTLNi
; ySREi ; yAMi

; yMTUi
;OkÞ ð1Þ

where yTLNi
etc. are the values of the physiological traits observed for the ith genotype and the

weather and management data of environment k are represented as Ok. To simplify notation,

we will henceforth use F(�)ik to represent the CGM and its inputs for genotype i in environment

k.
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Fig 1. Daily average temperature and solar radiation at Champaign, Illinois in 2012 and 2013. The thick
grey line shows a smoothed curve.

doi:10.1371/journal.pone.0130855.g001

Fig 2. Simulated development of total biomass and grain yield. The early, intermediate and late maturing genotypes had a total leaf number (TLN) of 6,
14.5 and 23, respectively. The values for the other three traits were 750 for AM, 1.6 for SRE and 1150 for MTU and in common for all genotypes. The full and
dotted vertical lines indicate the end of the 2012 and 2013 growing season, respectively.

doi:10.1371/journal.pone.0130855.g002
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Approximate Bayesian Computation (ABC)

ABC replaces likelihood computation with a simulation step [44]. An integral component of

any ABC algorithm is therefore the simulation model operatorModelðy�ik j yÞ which generates

simulated data y�ik given parameters θ. In our proof of concept study, the crop growth model F

(�)ik represents the deterministic component ofModelðy�ik j yÞ, to which a Gaussian noise vari-

able distributed asN ð0; s2

eÞ is added as a stochastic component. IfModelðy�ik j yÞ is fully deter-

ministic, the distribution sampled with the ABC algorithm will not converge to the true

posterior distribution when the tolerance for the distance between the simulated and observed

data goes to zero [50].

The weather and management data Ok was assumed to be known, the physiological traits,

however, were unknown and treated as latent or hidden variables, that were modeled as linear

functions of the trait specific marker effects

yTLNi
¼ mTLN þ ziuTLN

yAMi
¼ mAM þ ziuAM

ySREi ¼ mSRE þ ziuSRE

yMTUi
¼ mMTU þ ziuMTU ;

ð2Þ

where zi is the genotype vector of the observed biallelic single nucleotide polymorphism (SNP)

markers of genotype i, μTLN etc. denote the intercepts and uTLN etc. the marker effects. For

brevity, we will use θ to denote the joint parameter vector [μTLN,. . ., μMTU,uTLN,. . .,uMTU].

We used independent Normal distribution priors for all components of θ. The prior for

μTLN wasN ðmTLN ; s
2

mTLN
Þ. To simulate imperfect prior information, we drew the prior mean

mTLN from a Uniform distribution over the interval ½0:8 � TLN; 1:2 � TLN�, where TLN is the

observed population mean of TLN. The average difference betweenmTLN and TLN then is 10%

of the latter value. The prior variance s2

mTLN
, which represents the prior uncertainty, was equal

to 2.252. The prior means of AM, SRE and MTU were obtained accordingly and the prior vari-

ances s2

mAM
, s2

mSRE
and s2

mMTU
were 1502, 0.32 and 2252, respectively.

The prior for the marker effects uTLN wasN ð0; s2

mTLN
Þ, which corresponds to the BayesC

prior [60]. In BayesC, the prior variance of marker effects s2

mTLN
, which introduces shrinkage, is

the same across markers. For simplicity, we set this variance to a constant value and did not

attempt to estimate it. Also in this case we simulated imperfect information by drawing the

value of s2

mTLN
from a Uniform distribution over the interval [0.8 � var(TLN)/M,1.2 � var(TLN)/

M], whereM is the number of markers and var(TLN) the observed population variance of

TLN. The prior variances of marker effects of the other traits were obtained accordingly.

The value of s2

e , the variance of the Gaussian noise variable that is part of the model operator

Modelðy�ik j yÞ, was drawn from a Uniform distribution over the interval [0.8 � ve,1.2 � ve],

where ve is the residual variance component of the phenotypic grain yield values used to fit the

model.

Algorithm 1 in Table 1 shows pseudocode for the ABC rejection sampling algorithm we

used. As distance measure between the simulated and observed data we used the Euclidean dis-

tance. The tolerance level � for the distance between the simulated and observed data was

tuned in a preliminary run of the algorithm to result in an acceptance rate of approximately 1 �

10−6. The number of posterior samples drawn was 100. We will refer to this ABC based WGP

method that incorporates the CGM as CGM-WGP. The CGM-WGP algorithm was imple-

mented as a C routine integrated with the R software environment [61].

Integrating Crop Growth Models with Whole Genome Prediction
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Synthetic data set

To test the performance of CGM-WGP, we created a biparental population of 1,550 doubled

haploid (DH) inbred lines in silico. The genome consisted of a single chromosome of 1.5 Mor-

gan length. The genotypes of the DH lines were generated by simulating meiosis events with

the software package hypred [62] according to the Haldane mapping function. On the chromo-

some, we equidistantly placed 140 informative SNP markers. A random subset of 40 of these

markers were assigned to be QTL with additive effects on either TLN, AM, SRE or MTU. Each

physiological trait was controlled by 10 of the 40 QTL, which were later removed from the set

of observed markers available for analysis.

The additive substitution effects of the QTL were drawn from a Standard Normal distribu-

tion. Raw genetic scores for each physiological trait were computed by summing the QTL

effects according to the QTL genotypes of each DH line. These raw scores were subsequently

re-scaled linearly to the aforementioned value ranges. Finally, phenotypic grain yield values

were created as

yik ¼ Fð�Þik þ eik; ð3Þ

where eik is a Gaussian noise variable with mean zero and variance ve. The value of ve was cho-

sen such that the within-environment heritability of yik was equal to 0.85. We generated 50

synthetic data sets by repeating the whole process. An example synthetic data set is available as

supplemental material (S1 Dataset).

Estimation, prediction and testing procedure

The models were fitted using N = 50 randomly chosen DH lines as an estimation set. The

remaining 1500 DH lines were used for testing model performance. Separate models were fitted

using the 2012 and the 2013 grain yield data of the estimation set lines. The environment from

which data for fitting the model was used will be referred to as estimation environment. Param-

eter estimates from each estimation environment were subsequently used to predict perfor-

mance of the lines in the test set in both environments. Predictions for the same environment

as the estimation environment will be referred to as observed environment predictions (e.g.,

Table 1. Pseudocode of ABC rejection sampling algorithm.

while x <= no. posterior samples do

while d > � do

draw candidate θ* from prior(θ)

for All i = 1, 2, . . ., N do

generate simulated data y�
ik from Modelðy�

ik j y
�Þ

end for

compute d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN

i¼1
ðyik � y�

ikÞ
2

q

end while

accept and store θ*

increment x

end while

Basic ABC rejection sampling algorithm to sample from the approximate posterior distribution of θ.

doi:10.1371/journal.pone.0130855.t001
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predictions for 2012 with models fitted with 2012 data). Predictions for an environment from

which no data were used in fitting the model will be referred to as new environment predictions

(e.g., predictions for 2013 with models fitted with 2012 data).

As a point estimate for predicted grain yield performance in a specific environment, we

used the mean of the posterior predictive distribution for the DH line in question. The poste-

rior predictive distribution was obtained by evaluating F(�)ik over the accepted θ samples, using

the weather and management data Ok pertaining to that environment.

Prediction accuracy was computed as the Pearson correlation between predicted and true

performance in the environment for which the prediction was made. The true grain yield per-

formance was obtained by computing F(�)ik with the true values of the physiological traits.

As a performance benchmark we used genomic best linear unbiased prediction (GBLUP

[1]). The model is

yik ¼ b
0
þ ziuþ ei ð4Þ

where β0 is the intercept, u the vector of marker effects and ei a residual. As before, zi denotes

the marker genotype vector. The GBLUP model was fitted with the R package rrBLUP [63].

GBLUP and BayesC are comparable in their shrinkage behavior because both use a constant

variance across markers. For GBLUP, predicted values were computed according to Eq (4) as

β0+zi u. Note that because the conventional GBLUP model does not utilize information about

the environment for which predictions are made, observed and new environment predictions

are identical.

Results and Discussion

Predicting performance in observed environments

The accuracy of observed environment predictions achieved by CGM-WGP was considerably

larger than that of the benchmark method GBLUP in both environments (Table 2, Fig 3, S2

Fig). This superiority of CGM-WGP over GBLUP can be explained by the presence of non-

additive gene effects which cannot be captured fully by the latter. In the example scenario we

studied, the non-additive gene effects on grain yield are a result of nonlinear functional rela-

tionships between the physiological traits and grain yield, which was particularly pronounced

for TLN (Fig 4).

For any point in time (t) during the maize growth cycle, dry matter growth (DMg) results

from the interception of solar radiation (SR) and its conversion into mass with efficiency SRE.

Light interception in turn depends on the size of the canopy, which is determined by the leaf

area per plant (LAPP) and the plant population (PPOP), and the distribution of light within

the canopy, which is modeled using a coefficient of light extinction (k). The relationship

Table 2. Accuracy of grain yield predictions of DH lines in the test set.

Estimation Env. Prediction Env. CGM-WGP GBLUP

2012 2012 0.77 0.54

2013 0.48 0.10

2013 2012 0.42 0.08

2013 0.75 0.62

Prediction accuracy for grain yield of DH lines in the test set, averaged over 50 replications.

doi:10.1371/journal.pone.0130855.t002
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Fig 3. Predicted vs. observed grain yield of 1500 DH lines in testing set for predictionmethods
CGM-WGP (top row) and GBLUP (bottom row). The estimation environment was 2012. Results shown are
from a representative example data set. In this example, the accuracy for observed environment predictions
was 0.83 (CGM-WGP) and 0.69 (GBLUP). For new environment predictions it was 0.39 (CGM-WGP) and
0.11 (GBLUP).

doi:10.1371/journal.pone.0130855.g003

Fig 4. Relationship between total leaf number (TLN) and grain yield.Results shown are from a
representative example data set.

doi:10.1371/journal.pone.0130855.g004
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between DMg, SR, SRE, LAPP and PPOP is non-linear [52]

DMgt
¼ SRt � SRE� ð1� e�k�LAPPt�PPOPÞ: ð5Þ

Because LAPP is determined by TLN and AM [52], DMg increases with increasing AM but

only up to a point when canopy size maximizes light interception. Because grain yield is a frac-

tion of the integral of DMg over the growing season, there is a non-linear relationship between

AM and grain yield, which can often be detected as a weak correlation (S3 Fig). From Eq (5)

one can see that an increase in SRE is always beneficial for DMg, which was reflected by the

more or less linear relationship between SRE and grain yield (S3 Fig). The longer the length of

the period between silking and physiological maturity, the more time the genotype has for

grain filling. However, the end of the growing season can forestall exploitation of the longer

grain filling periods of high MTU genotypes. Thus, increasing MTU beyond a point deter-

mined by the growing season length will have no further effect on grain yield. Such a saturation

curve was indeed observed in 2013 (S3 Fig). The relationship between MTU and grain yield

tended to be less clear in 2012, where many genotypes did not reach physiological maturity

because of the shorter growing season. The relationships between grain yield and the physio-

logical traits AM, SRE and MTU, were generally weak, however, and not obvious in all data

sets. We will therefore focus on discussing the relationship between grain yield and TLN,

which was very distinct and consistent.

TLN is closely related with the maturity rating of genotypes [52]. The higher it is, the later

the onset of the reproductive phase and the later the maturity. Late genotypes have a higher

yield potential than earlier genotypes because of a greater leaf area (S1 Fig). However, if the

growing season is too short, they cannot realize this yield potential because of their slower

development and later onset of the generative phase (Fig 2). Very early genotypes on the other

hand, have a low leaf area and do not make use of the full growing season. As a consequence,

their realized yield is low, too. The relationship between TLN and grain yield therefore follows

an optimum curve (Fig 4). This was particularly pronounced in 2012, which had the shorter

growing season and therefore penalized the late maturing genotypes more. The more decidedly

nonlinear relationship between grain yield and TLN in 2012 also explains why the difference in

prediction accuracy between CGM-WGP and GBLUP was greater in this season than in 2013

(0.23 points in 2012 compared to 0.13 points in 2013, on average).

The scenario we studied is an example of a particular case of epistasis, which might be called

biological epistasis, that can arise even if the gene effects on the physiological component traits

underlying the final trait of interest (grain yield in our case) are purely additive [33]. We

accounted for nonlinear functional relationships among traits with the CGM. This enabled us

to capture biological epistasis through simple linear models relating marker genotypes to the

unobserved underlying physiological traits. Previously developed WGP models attempted to

capture epistasis by directly fitting nonlinear marker effects to the final trait of interest [64–66].

While these models showed some promise, they have not been adopted by practitioners on a

larger scale. By combining statistics with biological insights captured by CGMs, CGM-WGP

takes a fundamentally different approach and presents a potentially powerful alternative to

purely statistical WGP models.

Predicting performance in new environments

New environment prediction accuracy was considerably lower than observed environment pre-

diction accuracy, for both prediction methods (Table 2, Fig 3, S2 Fig). The average prediction

accuracy for performance in 2012 when using the 2013 estimation environment was 54%

(CGM-WGP) and 15% (GBLUP) of the respective prediction accuracy achieved when using

Integrating Crop Growth Models with Whole Genome Prediction
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the 2012 estimation environment. The corresponding values for the accuracy of predicting per-

formance in 2013 were 64% (CGM-WGP) and 16% (GBLUP). Thus, CGM-WGP still delivered

a decent accuracy for predicting performance in new environments, while GBLUP largely

failed in this task. The prediction accuracy of GBLUP was in fact negative, and sometimes

strongly so, for close to 50% of the synthetic data sets (S2 Fig). For CGM-WGP negative accu-

racies were observed in only 14% (2012) and 4% (2013) of the cases.

The genetic rank correlation between true performance in 2012 and 2013 was only 0.54

(averaged over 50 synthetic data sets), which indicated the presence of considerable G×E inter-

actions, including changes in rank (S4 Fig). A genetic correlation of 0.54 between environments

is within the range typically observed in plant breeding data sets [67] and crossover interaction

between environments is a common phenomenon in plant breeding [34, 68, 69].

The interaction between the environment and TLN again explains the occurrence of G×E to

a large degree. In the shorter 2012 season, the late maturing genotypes cannot realize their

growth and yield potential and are outperformed by the genotypes with early and intermediate

maturity (Figs 2 and 4). In the 10 day longer growing season of 2013, however, the late matur-

ing genotypes can realize their greater yield potential better and outperform the early maturing

genotypes and have a similar performance as genotypes with intermediate maturity. This

dynamic leads to crossover G×E interactions between the 2012 and 2013 environments.

That new environment prediction under the presence of G×E interaction is considerably

less accurate than observed environment prediction was expected and already observed in

other studies [11, 70]. It is encouraging that the reduction in accuracy for CGM-WGP was con-

siderably less severe than for the conventional benchmark method GBLUP because this indi-

cates that the former method did succeed in predicting G×E interactions to some degree.

Predicting G×E interactions in new environments for which no yield data are available,

requires WGP models that link genetic effects (e.g., marker effects) with information that char-

acterizes the environments. Jarquín et al. [42] accomplished this by fitting statistical interac-

tions between markers and environmental covariates. A similar approach was taken by Heslot

et al. [43], who in addition used a CGM to extract stress covariates from a large set of environ-

mental variables. CGM-WGP takes this approach a step further by making the CGM and the

environmental data that inform it, an integral part of the estimation procedure.

Nonetheless, while novel prediction methods might succeed in narrowing the gap between

new and observed environment prediction, the former should always be expected to be less

accurate than the latter. Field testing should therefore be performed in environments of partic-

ular importance for a breeding program to achieve the maximum attainable prediction accu-

racy for these. The same applies for target environments in which G×E interaction effects are

expected to be particularly strong. CGMs can help to identify such environments and to inform

experimental design and utilization of managed environments [27, 29]. However, the range of

the target population of environments of modern plant breeding programs is much too large

for yield testing across the whole breadth [2]. Predicting performance in new environments

will therefore always be required and novel methods like CGM-WGP are anticipated to be

instrumental for enabling and enhancing success in this particularly daunting task.

Areas of further research and development

Alternatives to CGM-WGP. With continual technology improvements for phenotyping

traits it is becoming increasingly feasible to assay phenotypic variation for many of the physio-

logical traits underlying the CGM [19]. There would then be no need to treat them as latent,

hidden variables as in CGM-WGP. Such improved precision phenotyping capabilities thus

open up possible alternatives and extensions to the CGM-WGP methodology introduced here.
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One alternative that can be considered is a two-step procedure, in which (1) physiological

traits are predicted based on QTL identified in dedicated mapping experiments and (2) the so

obtained physiological trait values are used to parametrize CGMs and predict the expected

yield performance of novel genotypes in the same or different environments [71–73]. Using

WGP instead of QTL mapping in step 1, could further enhance that procedure.

One shortcoming of this approach is that all relevant physiological traits have to be mea-

sured for all genotypes in the estimation set. This may prove to be unfeasible in practice, partic-

ularly when done on an industrial scale (i.e., for many populations and repeated year after

year). The situation is exacerbated when more sophisticated models like APSIM [74], which

can model plant-soil interactions related to water and nutrient uptake, are used. The set of rele-

vant physiological traits for these CGMs includes root traits for example [75], which are partic-

ularly difficult to measure in a routine, high-throughput fashion [76].

A key novelty of CGM-WGP is that it can accommodate partially or fully unobserved physi-

ological traits by treating them as hidden variables. It could thus facilitate incorporating a

CGM inWGP even when phenotyping all relevant physiological traits is not feasible.

However, CGM-WGP and the described two-step approach have a common objective,

which is to apply a suitable CGM to capture non-linear relationships among traits and the

environment to succeed in the crucial but challenging task of predicting yield in future envi-

ronments. At this stage it is premature to suggest one approach ahead of these or other possi-

bilities. However, the results of the present study indicate that there are opportunities to

improve predictions for quantitative traits influenced by epistasis and G × E interaction,

through effective integration of appropriate CGMs into the genetic prediction methodology.

More sophisticated CGMs. For this first proof of concept study, we assumed that the

CGM used in the estimation process fully represented the systematic component of the data

generating process, besides the random noise. This was clearly a ‘best case scenario’. However,

decades of crop growth modeling research have provided the know-how necessary to approxi-

mate real crop development to a high degree of accuracy [17, 30, 77]. Advanced CGMs such as

APSIM[74], for example, model functional relationships between various crop parameters and

external factors such as water and nutrient availability, soil properties as well as weed, insect

and pathogen pressure. Thus, tools are principally available for applying CGM-WGP in more

complex scenarios than the one addressed in this study.

With multiple possible CGMs to choose from, model selection becomes an issue. The ABC

algorithm underlying CGM-WGP could in principle be used to perform model selection simul-

taneously with parameter estimation [49, 51, 78]. It could thus provide a statistically formal

way of comparing the fit of several CGMs.

Stochastic CGMs. There are examples of the use of fully deterministic model operators in

ABC [78, 79]. However, with fully deterministic model operators the sampled distribution

would not converge to the true posterior when the tolerance level � goes to zero [50] and

instead reduce to a point mass over those parameter values that can reproduce the data. The

CGM we used was fully deterministic. We therefore followed the example of Sadegh and Vrugt

[50], who constructed a stochastic model operator by adding a random noise variable, with the

same probabilistic properties as assumed for the residual component of the phenotype, to the

deterministic functional model. A more elegant and possibly superior solution, however,

would be to integrate stochastic processes directly into the CGM. While the vast majority of

CGMs are deterministic [16, 17], there are examples of stochastic CGMs [80]. In addition to

incorporating inherently stochastic processes of development [81], stochastic CGMs could also

serve to account for uncertainty in the parameters of the functional equations comprising the

model [82].
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Advanced ABC algorithms. For this proof of concept study we used the basic ABC rejec-

tion sampling algorithm [44, 45]. Considerable methodology related advances have been made,

however, over the last decade that have led to algorithms with improved computational effi-

ciency. Of particular interest here are population or sequential Monte Carlo algorithms, which

are based on importance sampling [78, 83, 84]. These algorithms can dramatically increase

acceptance rates without compromising on the tolerance levels. They achieve this by sampling

from a sequence of intermediate proposal distributions of increasing similarity to the target dis-

tribution. Unfortunately, importance sampling fails when the number of parameters gets large,

because then the importance weights tend to concentrate on very few samples, which leads to

an extremely low effective sample size [85]. In the context of sequential Monte Carlo, this is

known as particle depletion and was addressed by Peters et al. [84]. We implemented their

approach, but were not able to overcome the problem of particle depletion. The number of

parameters we estimated was 404 (100 marker effects per physiological trait plus an intercept),

which seems well beyond the dimensionality range for importance sampling [85].

Another interesting development isMCMC-ABC, which incorporates ABC with the

Metropolis-Hastings algorithm [86]. MCMC-ABC should result in high acceptance rates if the

sampler moves into parameter regions of high posterior probability. However Metropolis-Has-

tings sampling too can be inefficient when the parameter space is of high dimension.

The greatest computational advantage of the original ABC rejection algorithm over Monte

Carlo based ABC methods is that it generates independent samples and therefore readily lends

itself to ‘embarrassingly’ parallel computation [86]. The computation time thus scales linearly

to the number of processors available. Using the ABC rejection algorithm therefore allowed us

to fully leverage the high performance computing cluster of DuPont Pioneer. In the era of

cloud computing [87], high performance computing environments are readily available to

practitioners and scientists in both public and private sectors. Generality, scalability to parallel

computations, and ease of implementation make the basic rejection sampler a viable alternative

to more sophisticated approaches.

Using prior information. We used mildly informative prior distributions, the parameters

of which were derived from the population means and variances of the physiological traits. In

practice, the required prior information must be obtained from extraneous sources, such as

past experiments or from the literature [80]. Such information is imperfect and only partially

matches the true population parameters of the population in question. We determined the

prior parameters from the population itself, but perturbed them considerably to simulate erro-

neous prior information. Specifically, the average relative discrepancy (bias) between the prior

parameter used and the true population parameter was 10%. When we increased the relative

discrepancy to 25% (i.e., a maximum discrepancy of 50%), prediction accuracy dropped some-

what (S1 Table). The reduction was only slight for observed environment prediction but more

pronounced for new environment prediction. However, CGM-WGP was still considerably

more accurate than the benchmark GBLUP. Thus, CGM-WGP seems to be relatively robust to

moderate prior miss specification, as long as the value range supported by the prior distribu-

tion is not out of scope. In the ideal case of no prior bias, on the other hand, new and observed

environment prediction accuracy increased slightly as compared to a bias of 10%.

In the synthetic data sets we generated, the component traits were controlled by QTL with

independent effects and thus uncorrelated. In practice, however, the traits might be correlated,

because of pleiotropic QTL, for example. In this situation, marker effects are correlated too.

We modeled the marker effects as a priori independent and note that this does not preclude

posterior correlation if CGM-WGP in its current implementation is applied to a scenario with

correlated component traits. However, it is possible to model whole genome marker effects as a

priori correlated. This was explored for the purpose of fitting WGP models with breed specific
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but correlated marker effects in animal breeding [88]. Modeling a correlation structure could

allow information sharing across traits. It could also improve computational efficiency of

CGM-WGP, because the prior distribution would be closer to the posterior and thereby result

in fewer rejected samples.

Lastly, CGM-WGP can be modified to use ‘BayesB’ [1] or ‘BayesCπ’ [60] as priors of marker

effects, which would allow marker effects to be exactly zero. By allowing the effects of markers

to be zero, marker effect estimation and implicit SNP model selection are done simultaneously.

This could present an interesting compromise between a continuous WGP approach (BayesC)

and a discrete, QTL based approach to prediction.

Number of markers. We applied CGM-WGP to a biparental population, which is by far

the most common population type in commercial plant breeding programs [89]. Previous

WGP studies found that marker density is typically not the most limiting factor in these type of

populations and that densities achievable with around 200 genomwide markers suffice for

accurate predictions [13, 90–92]. This proof of concept showed that computations for

CGM-WGP are feasible for 100 markers. Thus, while more challenging, we expect that compu-

tations can be facilitated for the numbers of markers required for biparental populations. How-

ever, applying CGM-WGP to data sets with tens of thousands of markers is likely not possible

with current ABC algorithms, in particular if more sophisticated CGMs are used that require

specification of more physiological traits. Technow and Melchinger [12] showed that using a

more realistic but complex WGP model with a lower marker density can result in a higher pre-

diction accuracy than using a less realistic WGP model with a higher marker density. Thus, the

greater realism of CGM-WGP might compensate for the fact that it can currently be applied

only at low to intermediate marker densities.

In contrast to the complex trait of interest, component physiological traits may be realisti-

cally modeled based on a relatively simple genetic architecture, and for such traits, QTL

explaining a sizable proportion of genetic variance can be mapped and characterized [71, 93–

96]. In fact, such component trait QTL have been successfully used to parametrize CGMs for

studying genotype dependent response to environmental conditions [28, 29, 73, 94, 95].

Knowledge about the location and effect of such QTL, or of transgenes [97–99], could be incor-

porated as an additional source of prior information. Then, instead of estimating marker effects

for the whole genome, CGM-WGP could focus on genomic regions of particular importance.

This reduces the dimensionality of the parameter space dramatically and enables CGM-WGP

to be used in settings that traditionally required high marker densities, such as WGP in diverse

germplasm [100].

Identifiability. It is possible that the CGM generates the same yield for two or more sets

of component trait values. There are often several possible biological strategies with equivalent

outcome, so this does not necessarily indicate model missspecification. In this situation, how-

ever, it is not possible to identify from the observed yield data alone which set of trait values is

more appropriate. By extension, the same applies to the sets of marker effects of which the

component trait values are linear functions. This is referred to as likelihood nonidentifiability

(short ‘nonidentifiability’) and is a known problem in biological modeling with hidden vari-

ables [101]. When analyses are conducted under the Bayesian statistical paradigm, noniden-

tifiability does not necessarily preclude inference and estimation, because informative prior

distributions can identify the parameters nonetheless [102, 103]. This is another argument in

favor of using informative prior distributions. Nonidentifiability also does not preclude predic-

tion, because the posterior predictive distribution is a function that is identified even if the

parameters are not [104]. If prediction is the sole purpose, the nonidentified parameters can be

viewed as nuisance variables [101], that are averaged over in the posterior predictive distribu-

tion. In fact, Gianola [104] argues that in a predictive setting, parameters are merely ‘tools
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enabling one to go from past to future observations’. However, nonidentifiability can be associ-

ated with computational problems [102] and is of course an issue if the latent variables are of

interest themselves. A special case of nonidentifiability occurs when the parameters are not

identifiable for the estimation data set at hand, out of sheer coincidence [101]. However, when

applied to new observations, i.e., for prediction, the parameters might be identifiable, with one

set of parameters being more appropriate than the others. If this is the case, nonidentifiability

might lead to a reduction in prediction accuracy.

In addition to using informative prior distributions, increasing the informativeness of the

data with respect to the parameters is a direct way to improve their identifiability. In our case,

this can be achieved by using additional response variables next to final grain yield. One possi-

ble choice is to use grain yield measurements from multiple environments, because several sets

of component trait values might generate the same grain yield in one environment, but not in

the others. Other possible choices are intermediate traits generated by the CGM, such as early

biomass development or leaf area index, which can be measured non-destructively and with

high-throughput [105–107].

Actually measuring the underlying physiological traits obviates the need to treat them as

latent, hidden variables. This would obviously guarantee identifiability. As mentioned before, it

might be possible to measure at least some of the traits. If these are key traits in the develop-

ment of grain yield, observing them would identify the unobserved traits, too. One way of

exploiting the information from observed physiological traits in CGM-WGP is to treat them as

constants in the estimation procedure. In this framework, physiological trait values of new

genotypes have to be predicted from conventional QTL or WGP models, as described above.

However, CGM-WGP could also be extended to estimate marker effects for observed and hid-

den physiological traits simultaneously.

Other applications. The idea of incorporating biological insights into WGP models is not

limited to CGMs. Plant metabolites are chemical compounds produced as intermediate or end

products of biochemical pathways. They are seen as potential bridges between genotypes and

phenotypes of plants [108] and are therefore of particular interest in plant breeding [109]. Met-

abolic networks model the interrelationships between genes, intermediate metabolites and end

products through biochemistry pathways [110]. Elaborate metabolic network models are avail-

able today that allow studying and simulating complex biochemical processes related to crop

properties, such as flowering time, seed growth, nitrogen use efficiency and biomass composi-

tion [97, 111–113]. Liepe et al. [49] demonstrated how ABC can be used for parameter estima-

tion with metabolic and other biochemical networks. Using the principles outlined here for

CGM-WGP, metabolic networks might add valuable biological information for the purpose of

WGP, too.

Despite ever increasing sample sizes and marker densities, most of the genetic variance of

complex traits remains unaccounted for in genome-wide association studies [114]. Marjoram

et al. [51] argued that signal detection power could be increased by augmenting the purely sta-

tistical association models used thus far with biological knowledge. They demonstrated their

approach by using ABC for incorporating gene regulatory networks into their analysis. Here

we showed that the same principle can be applied to WGP by using ABC for integrating a

CGM in the estimation of whole genome marker effects. Yield is a product of plant genetics

and physiology, the environment and crop management and integrating information pertain-

ing to these components will ultimately enable us to better predict it [115]. While this study is

only a first step and many questions remain, we conclude that CGM-WGP presents a promis-

ing novel path forward towards a new class of WGP models that integrate genomics, quantita-

tive genetics, and systems biology and thereby increase prediction accuracy in settings that

have proved challenging for plant breeding and applied genetics.
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