
Integrating DB and IR Technologies:

 What is the Sound of One Hand Clapping? *

Surajit Chaudhuri1, Raghu Ramakrishnan2, Gerhard Weikum3

1) Microsoft Research, Redmond, WA 98052, USA (surajitc@microsoft.com)
2) University of Wisconsin, Madison, WI, 53706, USA (raghu@cs.wisc.edu)

3) Max-Planck Institute of Computer Science, D-66123 Saarbruecken, Germany (weikum@mpi-sb.mpg.de)

Abstract

Databases (DB) and information retrieval (IR)
have evolved as separate fields. However, mod-
ern applications such as customer support, health
care, and digital libraries require capabilities for
both data and text management. In such settings,
traditional DB queries, in SQL or XQuery, are
not flexible enough to handle application-
specific scoring and ranking. IR systems, on the
other hand, lack efficient support for handling
structured parts of the data and metadata, and do
not give the application developer adequate con-
trol over the ranking function. This paper ana-
lyzes the requirements of advanced text- and
data-rich applications for an integrated platform.
The core functionality must be manageable, and
the API should be easy to program against. A
particularly important issue that we highlight is
how to reconcile flexibility in scoring and rank-
ing models with optimizability, in order to ac-
commodate a wide variety of target applications
efficiently. We discuss whether such a system
needs to be designed from scratch, or can be in-
crementally built on top of existing architectures.
The results of our analyses are cast into a series
of challenges to the DB and IR communities.

1. Introduction

1.1 Motivation and State of the Art

DB and IR systems are currently separate technolo-
gies. Thirty years ago, the application classes that drove
the progress of these systems were disjoint and did indeed
pose very different requirements: classical business ap-
plications like payroll or inventory management on the
DB side, and abstracts of publications or patents on the IR
side. The situation is radically different today. Virtually
all advanced applications need both structured data and

text documents, and information fusion is a central issue.
Seamless integration of structured data and text is at the
top of the wish lists of many enterprises. Example appli-
cations that would benefit include the following: ♣
• Customer support systems that track complaints and

response threads and must ideally be able to auto-
matically identify similar earlier requests.

• Health care systems that have access to the electronic
information produced by all hospitals, medical labs,
and physicians (with appropriate measures for pri-
vacy and authorization), and have the capability of
monitoring trends and generating early alerts about
health crises such as epidemic diseases.

• Intranet search engines for organizations with richly
structured data sources in addition to traditional
document repositories.

There are commercial systems that address the above ap-
plications and provide partial solutions. A typical state-of-
the-art data-plus-text system is a collection of platforms
and tools that are “glued together” in an ad-hoc, applica-
tion-specific manner. The complexity that an application
developer faces when using such systems is tremendous,
yet they often lack options needed by advanced develop-
ers. Integration of database (DB) and information retrieval
(IR) technologies has been listed among the major chal-
lenges of our field in [Lo03]. Throughout this paper, we
take the viewpoint of the developer of an advanced appli-
cation, such as those mentioned above, who wants to gain
productivity by building on top of a generic platform, but
also needs explicit control over application-specific de-
tails, especially scoring and ranking. We also focus on
retrieval and query capabilities, although requirements for
features like concurrency and recovery often interact with
the design of query-related features. With this in mind, the
currently available commercial systems may be classified
into the following three categories:
• DB+IR: There are a few niche-market systems that

have been built from scratch for specific application

* This is a famous koan, one of the cryptic riddles of Zen Bud-
dhism that a master may give to his student as a meditation ex-
ercise. The analogy is that the answer would be truly enlighten-
ing, but it is unfortunately unclear if there really is an answer.

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct commer-

cial advantage, the VLDB copyright notice and the title of the publica-

tion and its date appear, and notice is given that copying is by permis-

sion of the Very Large Data Base Endowment. To copy otherwise, or to

republish, requires a fee and/or special permission from the Endowment

Proceedings of the 2005 CIDR Conference

classes with integrated text and data management. A
good example is the QUIQ system [Ka03] for cus-
tomer support applications. It takes a unified ap-
proach to handling structured data and text fields, in-
cluding scoring for similarity search, but, it was not
designed to be a universal infrastructure platform,
and its functionality cannot be easily extended to
handle applications beyond its originally intended
target domain.

• IR: The market-leading intranet and Web search en-
gines (e.g., Verity, Inktomi, Google) provide rich
functionality and flexibility for text search, including
powerful options for thesauri, feature extraction, and
alternative scoring methods. Although their heritage
is document-oriented, these systems have recently
paid more attention to structured data and provide
some XML support as well. Widely unknown to DB
folks is that intranet search engines come with a rich
API, and are not just end-user-oriented platforms.
However, this class of systems lacks the query opti-
mization that database engines have. Thus, the pro-
grammer also has the burden of making decisions
about search strategies (e.g., evaluation orders) or
must rely on default behavior with “suboptimal” per-
formance. This issue becomes critical when applica-
tions need joins and more complex queries, especially
when these access both text and structured data.

• DB: Most commercial database systems (e.g., Oracle,
IBM DB2, Microsoft SQL Server) have a text exten-
sion that handles search on text documents. Typi-
cally, the text extension is a separate engine that is
not really integrated with the database engine. At the
API level, search predicates on text follow different
concepts and syntax compared to SQL, and some-
times specific syntax is required to guide the query
processor on index usage and other optimizations that
should ideally be user-invisible if the system truly
provided data independence. Last but not least, de-
spite the fact that these systems are promoted as ex-
tensible database technology, they provide hardly any
flexibility in their scoring and ranking functionality.
Although such limited systems have found use in
many applications that combine data and text, we
must recognize that building, for example, a versatile,
customizable intranet search system on top of such a
platform is virtually impossible.

Thus, both DB and IR systems have critical gaps that the
other side fills, and much functionality is currently glued-
on in a way that poses undue complexity to application
developers. In summary, there is insufficient text support
in the DB world, and no query optimization for advanced
queries in the IR world. What is badly needed is a plat-
form that integrates DB and IR technologies, is open and
flexible with regard to scoring and ranking, and yet is
easy to use by a reasonably experienced programmer. In
addition, there must be an underlying query optimizer that
is aware of ranking methods.

To conclude this motivating discussion, we have to
admit that despite our critical remarks about existing sys-
tems it is very difficult to assess the benefits and idiosyn-
crasies of each system, leaving us with:
Challenge 1: How should we systematically compare
different systems with partial DB&IR support in terms of
ease of use, flexibility and versatility, search result qual-
ity, and efficiency? What is an appropriate experimental
framework for such a comparison?*

1.2 Contributions and Paper Organization

This paper takes a new look at the old problem of how to
integrate structured data and text with similarity search
based on scoring and ranking. We aim at a deeper under-
standing of requirements and possible system architec-
tures. In doing this we have tried to reconcile the follow-
ing three goals: 1) Providing rich functionality to ad-
vanced developers in an easy-to-use API. 2) Providing a
means of extending and customizing scoring and ranking
methods. 3) Enabling the database engine’s query opti-
mizer to effectively handle scoring and ranking.

The paper is organized as follows:
• In Section 2, we discuss three motivating application

scenarios, and derive a set of requirements for a core
DB&IR system.

• In Section 3, we consider architectural issues in inte-
grating text-processing capabilities with database
query languages, and argue for a RISC-style addition
of a DB&IR layer to a simplified database system.

• In Section 4, we consider possible foundations for the
DB&IR layer, and present several alternative exten-
sions of relational algebra that support flexible rank-
ing and scoring, and allow for early termination after
computing the most highly ranked results.

• In Section 5, we illustrate the major challenges in
query optimization and evaluation by discussing the
limitations of our algebras with respect to the set of
algebraic equivalences that they (mostly do not!) al-
low. Collectively, Sections 4 and 5 are intended to
highlight the main challenges through discussion of
technical specifics; we make no claims that the alge-
bras we propose are most appropriate.

1.3 Related Work

Ranked retrieval of data has been studied in the IR com-
munity for over 30 years [BR99, WMB99], and in the DB
field for at least 10 years with an emphasis on multimedia
data and approximate query processing [GJM97]. How-
ever, only a small subset of this prior work has been con-
cerned with systematically reducing a variety of methods
onto a compact yet versatile core set of functions, and
even fewer papers have tried to integrate such a core with

* Note that the TREC and INEX benchmarks in IR focus on
search result quality alone. Only INEX considers semistructured
data, but is still very much document-centric and hardly ad-
dresses structured data aspects.

existing technology for query execution and optimization.
Most notably, recent work on score and rank aggregation
[NR99, GBK00, Na01, FKS03, Fa03, FLN03, BGM02,
CH02, YPM03] has led to some convergence in the com-
putational models, but integration of ranked retrieval into
a DB engine remains open; for example, it is unclear how
Fagin’s threshold algorithm (TA) could be incorporated
into a state-of-the-art query processor and optimizer.

IR work is typically (though not exclusively) more
concerned with effectiveness (i.e., search result quality,
under metrics such as precision and recall) than with effi-
ciency. For example, the TREC and INEX benchmarks do
not consider response time or throughput. In terms of ef-
fectiveness, IR has made major progress in the last few
years by developing methods based on statistical language
models and other machine learning and web mining tech-
niques [CL02, MS99, Cha02]. The most striking “weak-
ness” of IR technology, in our opinion, is the absence of
automatic query optimization for advanced queries.

The most relevant lines of work on how to combine
top-k similarity queries with query processing technology
is by Chaudhuri et al. [CDY95], who investigated execu-
tion strategies for database queries with external text
sources, Bruno et al. [BCG02], who mapped top-k queries
onto multidimensional range queries, Carey and
Kossmann [CK97, CK98], who introduced a stopping
operator into pipelined query execution plans, Don-
jerkovic and Ramakrishnan [DR99], who discussed a
probabilistic optimization framework for top-k queries,
Kießling et al. [Ki02, LK02] and Hristides et al. [HKP01],
who developed models and systems for specifying user
preferences in queries (e.g., on product catalogs), Cohen
[Co98, Co00], Agrawal et al. [Ag03], and Ilyas et al.
[IAE03] who adopted and extended IR-style statistical
measures for ranking of SQL query results, and Kabra et
al. [Ka03] on the specific ranking and query processing
model of the hybrid DB&IR system QUIQ. Very recently,
Ilyas et al. [Il04] and Theobald et al. [TWS04] have
looked into estimating the distributions of scores in
ranked lists for query rewriting and run-time optimiza-
tions.

From an IR viewpoint, the efficient processing of in-
verted index lists and models for applying probabilistic IR
to structured data are the issues that are closest to data-
base query processing. Relevant research on index proc-
essing includes the work by Moffat and Zobel [MZ96],
who developed heuristics for pruning the scanning of long
inverted lists while maintaining retrieval quality, by Long
and Suel [LS03] as well as Brin and Page [BP98], who
develop additional heuristics as well as TA-style robust
pruning techniques, Fuhr et al. [FGA03] who have ex-
tended these approaches to an XML setting, and Kaushik
et al. [Ka04], who discuss how to combine inverted lists
and path indexes for XML, and generalize Fagin’s TA
framework in the presence of indexes, as is the case
within a core DB engine.

Relevant research on probabilistic IR for structured
data includes the seminal work by Fuhr [Fu00] on prob-
abilistic Datalog and W. Cohen’s WHIRL system [Co98,
Co00], and recent work presented in [ACD02, As02,
Ch04, HP02, BHP04]. An overview of other IR ap-
proaches to handle structured data is given in [BR99].
None of this work addresses full-fledged compositionality
of operators with ranked results, in combination with
early termination as in top-k index processing.

There is increasing interest in studying ranked re-
trieval on semistructured XML data, a topic that implicitly
calls for combining DB and IR technologies, in both
communities,. This includes work on structural similarity
search on XML trees, using, e.g., tree edit distance meas-
ures [SM02, ACS02, ZAR03], work on text pattern
matching tailored to XML notions of adjacency [Am03,
AYJ03, Ba03, FKM00], and work that generalized IR
similarity measures using word statistics, thesauri, etc.
[Co03, CK02, Ca03, FG04, GBS01, Gu03, SM02,
STW03, TW00, TW02]. Most of this prior and ongoing
research focuses on special issues, and has not yet ad-
dressed issues like manageability, versatility for applica-
tions, and streamlining of architectures. The current ex-
tension of the XQuery W3C standard for text handling, on
the other hand, only considers simple text search func-
tionality without flexible scoring [Ry03, ABS04].

Our design considerations for an algebraic DB&IR in-
terface have been implicitly influenced by earlier work on
query algebras for lists [MV93, SLR96, Ra98, Sa01,
SJS01], extensible systems with ADTs and user-defined
aggregation functions [SLR97, WZ00], and uncertain data
with probabilistic reasoning [BGP92, HGS03]. None of
this prior work, however, is directly concerned with inte-
grating DB and IR technologies.

2. Application Requirements

2.1 Applications

Potential applications for an integrated DB&IR system are
numerous: searching product catalogs for houses, cars,
electronics, vacation places, etc.; customer support and
customer relationship management (CRM); news archives
for journalists and press agencies; personal information
management (PIM) for email and file folders, annotated
photo collections, etc.; world-wide health care for moni-
toring and notification of epidemics; bulletin boards for
social communities such as ethnic minorities; different
flavours of Internet-scale search engines for Deep-Web
sources, intranet data, and peer-to-peer search; etc. We
discuss three of these example applications, and subse-
quently derive requirements for a generic platform and an
appropriate API on top of which these applications could
be built with modest effort.

Customer support. Consider the customer support
system of a large software company, electronics manufac-
turer, or Internet service provider. The system receives
help requests and complaints via email or a call-center,

such as, e.g., “My notebook, which is model … config-
ured with …, has a problem with the driver of its Wave-
LAN card. I already tried the following fixes … but only
received error messages …” Some of this data can easily
be cast into structured fields such as NotebookModel, but
there remains a good fraction that is free text. Of this text
some part may be converted into a semistructured format
using natural language processing (NLP) technology; e.g.,
named entities such as (multi-word and possibly mis-
spelled) product names or temporal adverbial phrases
referring to earlier customer requests may be recognized.
After capturing the user’s initial request, the system aims
to match the new case against previous cases, using simi-
larity measures in terms of customer profiles, the struc-
tured part of the request, and the text parts. In addition,
the request may be classified into a hierarchy of problem
categories, e.g., category /notebooks/drivers/network.
When a request cannot be immediately answered, a work-
flow is established that keeps track of subsequent replies
and follow-ups. Similarity search may refer to individual
requests or to entire workflows.

News archive. Large press agencies and newspaper
publishers produce and receive a huge amount of news
and complementary material such as photos every day. A
first challenge lies in managing the redundancy in this
data, as many articles are just copied and slightly modi-
fied. Photos are annotated, at least with respect to time
and location (e.g., provided by GPS), and additional anno-
tations may be available in the form of recorded speech.
Speech processing technology may transcribe a good frac-
tion of these annotations into text form, and, again, NLP
techniques may yield additional structuring and tagging.
Of course, news items also carry explicit structured data
such as details about their origins (e.g., front page news).
This data is used by professional journalists, who are very
knowledgeable in their specific fields (unlike, e.g., the
typical user for Internet search). Thus, journalists make
use of a full repertoire of multilingual search operations,
including relevance feedback, rich thesauri, and ontolo-
gies. Ontologies are important, for example, in conjunc-
tion with spatiotemporal search conditions such as “sum-
mer 1998 in Texas” and a relevant news article says “Au-
gust 1, 1998 in Austin”.

P2P Web search. Consider a peer-to-peer search envi-
ronment where each peer is a full-fledged search engine,
and all peers are autonomous in terms of what data they
crawl, index, and score or rank. When a peer seeks infor-
mation, the request is first evaluated on the peer’s local
index, but when the result is insufficient in terms of preci-
sion or recall the peer may forward the query to a selected
subset of “nearby” peers. This query routing should take
into account similarities between peers in terms of their
user interests, usage patterns, index contents, etc. Peers
can have different search engines but they should all obey
some common API. Obviously, peers are interested in
exchanging statistical information about their local data,
e.g., to estimate the inverse document frequency of words

(a standard IR measure) or to compare their index list
sizes. Each peer could be programmed and configured in
a personalized manner. For example, scores and ranks
returned by remote peers could be normalized relative to
the peer’s local results and its own scoring function by
identifying data objects in the intersection of remote and
local results.

2.2 Requirements

With these application scenarios in mind, we now put
together a list of requirements for a core DB&IR system
that can support development of multiple applications.

1) Flexible scoring and ranking: At the heart of a
truly versatile DB&IR system is customizable scoring and
ranking. Given the wide spectrum of target applications, it
is unlikely that a universal best-compromise solution ex-
ists. For example, while Page-Rank-style authority meas-
ures are a great asset for Web search, they may be mean-
ingless in an intranet setting where authorship and cross-
references are tightly controlled; and a journalist working
with a news archive every day may want the system to
automatically learn scoring weights according to her per-
sonal preferences and relevance feedback. At the API
level, explicit control over scoring and score aggregation
is essential, despite the widespread belief that only ordinal
ranks matter; sophisticated applications such as meta-
search engines need to distinguish rankings with all scores
close to each other from rankings that have wide gaps in
terms of scores. Also, some applications may wish to pro-
duce variable-length result lists by thresholding on abso-
lute scores rather than presenting the top k with a fixed k,
if some of the top k results are only marginally relevant.

2) Optimizability: Although the emphasis of this dis-
cussion is on richer functionality and search result quality,
performance is a critical issue for the large-scale applica-
tions that we have in mind. Queries in a DB&IR system
should be amenable to query optimization that takes
workload and data characteristics into account. In particu-
lar, scoring and ranking operations need to be viewed in
the context of query execution plans, and the optimizer
should have leeway for carefully placing these operations.
Moreover, it is crucial that, in situations where just a few
top-ranked query results are sufficient, the query proces-
sor should be able to terminate the computation early
without having to enumerate all results. Obviously, this is
a highly nontrivial requirement that may not always be
achievable, but a good system should at least seize the
opportunities that arise in specific cases.

3) Metadata and ontologies: In addition to metadata
that describes data sources, additional metadata may be
required for building a cognitive model of the user’s in-
formation demands, in the form of thesauri, lexicons, on-
tologies, or at least—in data-warehousing terms—simple
dimension hierarchies. A viable long-term solution should
also capture uncertainty inherent in such metadata

We believe that the above three requirements, in par-
ticular the first, are the most important ones, and their co-
existence poses:
Challenge 2: How do we cope with the tension between
the need for flexible scoring and ranking and the desire
for optimizability of query execution plans?

In addition, a broader view of the topic leads to further
requirements that we mention, but will not discuss further
in this paper:

4) Data model: Given that words in a text form a se-
quence, and that ranking of a document collection inher-
ently imposes an order across the documents, we must
consider a data model with ordered lists Since documents
are often hierarchically structured (e.g., into paragraphs),
this naturally calls for an XML-like data model. Unfortu-
nately, the XML standards suite has become overloaded
with features and complexity and is thus inappropriate for
a manageable API. Inventing a simple core XML model
would be a very laudable research task, but “fixing” the
entire X suite (XSchema, XQuery, etc.) is a huge order. In
this paper we limit ourselves to simple relations and lists
of tuples as conceptual data.

5) Data preparation: Raw data like text, speech, or
photos often needs to be pre-processed to generate richer
annotations, eliminate “fuzzy duplicates”, and generally
make the data more amenable to effective and efficient
querying. Such data preparation could benefit from ma-
chine learning techniques and leverage ontological back-
ground knowledge and lexicons for named entity recogni-
tion, auto-correction of misspellings, etc. A DB&IR sys-
tem may by itself not include these kinds of techniques,
but its API should support easy-to-program interaction
with tools and libraries for machine learning and NLP.

6) Personalization: Users have individual preferences.
Therefore, flexible mechanisms (e.g., user-specific
weights in scoring functions) need to be part of the
DB&IR system itself, whereas intelligent strategies for
personalization (e.g., learning weights) would naturally
belong to the application software.

7) Usage patterns: Considering query logs, click
streams, and other statistics from an entire user commu-
nity may be an invaluable asset for improving the sys-
tem’s search result quality in general. Usage patterns are
also a key to personalization strategies. IR research has
been much more aware of these user aspects than DB re-
search (see, e.g., [BR99, BFS03, Cha02] and references
given there); for integrated DB&IR applications the chal-
lenge is widely open.

3. System Architecture

In this section we discuss various design alternatives for
the overall architecture of a DB&IR system. As described
in the previous section, we are primarily interested in ad-
vanced DB&IR applications that need to combine text and
structured data, and in scoring and ranking operations that
can be flexibly combined and effectively optimized. We
do not consider Web search engines as a possible starting

point because, while they are intriguing from a software
architecture and API viewpoint, they do not provide pow-
erful query primitives such as joins and grouping, let
alone in conjunction with scoring, ranking, and cost-based
optimization.

We see four major alternatives:
(a) On-top-of-SQL: The IR part of the functionality is
layered on top of a full-fledged SQL engine.
(b) Middleware: The combined DB&IR functionality is
provided in a middleware layer on top of both an SQL
engine and a full-fledged IR system.
 (c) IR-via-ADTs: The IR functionality is integrated into
an SQL engine using a separate engine that is invoked
from the relational database via mechanisms such as user-
defined functions or ADTs. This is the “ugly” alternative
referred to in Section 1.
 (d) RISC: Querying capabilities for IR are layered on top
of a relational storage engine. The latter would be a core
system, comparable to, say System R’s RSS, Exo-
dus+Shore, or, perhaps, Berkeley DB, with restricted
“RISC-style” functionality and a simple API, similar to
what we advocated as a base layer in [CW00]. In particu-
lar, the storage engine should include self-tuning B-tree-
family indexing, full-fledged concurrency control and
recovery, and single-table queries with a simple opti-
mizer. The DB&IR system would form an additional layer
on top of the storage engine, and application classes
would be built on top of the DB&IR API.

We believe that the RISC approach offers the least of
the evils. Compared to the other approaches, we find the
RISC alternative attractive along two related dimensions:
customizability and programming complexity, and effi-

ciency. Roughly, the first dimension addresses require-
ments 1) and (especially) 2), and the second addresses
requirement 3).

The first three alternatives rely heavily on a full-blown
SQL engine, and we believe that this characteristic makes
them uninteresting,† and in the rest of this section we ex-
plain why.

In the on-top-of-SQL approach, it is difficult to cus-
tomize the DB&IR functionality in an efficient way. Most
notably, if the DB&IR component wants to compute a
ranked result list based on its own scoring function, it is
forced to extract the complete result from the SQL engine,
then score it and sort it, and finally return only a short top-
k prefix to the application. If flexible scoring were inte-
grated into the engine, it could employ index pruning
techniques to avoid computing the full result set before
scoring. Of course, the DB&IR layer could emulate a
threshold algorithm on top of the SQL engine, but given
that the engine’s internal indexes are not visible to the
programmer, this would amount to sorted accesses on full

† As a side remark, note that we do not consider layering
DB&IR on top of an XQuery engine, for we believe that this
would be even worse than Option (a) in terms of API complex-
ity for the application developer.

tables rather than indexes, and random accesses via pri-
mary keys rather than RIDs. It was exactly this kind of
indirect and inefficient access to inverted index lists that
led Inktomi, a successful Web search engine, to build its
own storage system rather than using a SQL engine.

The middleware approach, albeit seemingly very natu-
ral, incurs the complexity of both an SQL engine and a
full-fledged IR system. Programmers must cope with two
APIs, which may differ radically in terms of their pro-
gramming philosophies. And, of course, all the perform-
ance drawbacks that result from indexes not being acces-
sible by the application code hold in this architecture, too.

The IR-via-ADTs approach solves the customizability
problem “in principle”. Well-designed ADTs that build on
a core IR engine can potentially allow the programmer to
hook application-specific scoring and ranking functions
directly into the query processing engine. However, query
optimization in the presence of user-defined functions,
including row-set aggregation functions, is very difficult.
But even from a programmer viewpoint, the IR-via-ADTs
architecture is far from ideal: it still has the full complex-
ity of SQL, and performance-conscious coding of ADT
functions. In most commercial relational systems, only the
core IR functionality (and no additional support for flexi-
ble ranking) has been made available through this ap-
proach by using a separate IR engine. The IR functional-
ity is programmatically exposed via text as a datatype.
Extending this approach to support flexible user-definable
ranking functions is not easy. It is also conceivable to
extend the SQL engine itself to support IR functionality,
e.g., by adding new access methods in the core engine.
We do not favor this approach because SQL systems are
already complex, and such an extension will lead to sig-
nificant additional complexity while offering limited
flexibility.

In summary, we argue that a storage-level core system
with RISC-style functionality is the right architectural
approach to explore. Despite its attractiveness, the RISC
approach raises some challenges as well. It is no accident
that no relational vendor uses its native storage engine for
its text ADT. Trying to use the vanilla B+ tree implemen-
tation and a traditional relational storage layer without
modification can result in very poor performance charac-
teristics. In fact, the challenges may lead us to architecture
such as in [Ka03] where interaction between the query
(DB&IR API) and the storage layer was different from
that in a traditional relational system. Thus, this conclu-
sion leaves us with the challenge:
Challenge 3: Design and implement a “core” storage-
level DB&IR platform, with an external API for the query
layer, and a carefully designed sharing of responsibilities
between the DB&IR layer and the storage engine.

4. Towards an Algebraic DB&IR API

4.1 Framework and Design Rationale

In this section we present and discuss three proposals for
a DB&IR core algebra that would enable customizable
scoring and ranking, which we regard as the key require-
ment among those identified in Section 2. We cast our
considerations into an abstract algebraic framework that
we call SALT for “Scoring Algebra for Lists and Text”.‡
As discussed in Section 3, we assume a RISC architecture
for an integrated DB&IR system. As for the other re-
quirements, such as interoperability with ontologies, cap-
ture and exploitation of usage patterns, etc., we believe
that these are partly supported already by using an engine
with basic relational database capabilities, and can be en-
hanced on top of the DB&IR system. For example, we
can store thesauri, ontologies, corpus statistics, query
logs, click streams, etc. in relational tables and feed them
into queries and scoring functions within the DB&IR sys-
tem. We believe that richer NLP and learning techniques
can be implemented on top without significant loss of
performance, whereas not including customizable scoring
in the DB&IR kernel would result in major inefficiencies,
as discussed in Section 3.

Conceptually, we view the DB&IR API as an ex-
tended form of relational-style algebra, analogous to a
storage system providing C++/Java/C# methods for (table
or index) scan, selection, projection, etc. Our criteria for a
good algebraic interface are: 1) ease of use, which in-
cludes concise notation/coding, 2) easy composability
with other methods within applications on top of DB&IR,
3) efficiency and optimizability, i.e., the capability to re-
write expressions of the extended algebra and map them
onto efficient evaluation plans, and 4) minimal invasive-
ness with regard to current storage systems. The last point
is actually a breach with the clean-sheet-design philoso-
phy of this paper, but industrial experience tells us that
designs have a better chance of making an impact if they
can be easily combined with existing software and thus
preserve earlier investments.

The SALT algebras operate on lists of tuples for two
main reasons. First, as discussed in Section 2, lists are
more appropriate than sets for modelling the sequencing
in text documents.§ Second, and equally important, as
many queries are interested only in the top k elements of a
ranked result list, the query processor should be able to
stop computations early, rather than first computing entire
results and then scoring and sorting them.

So the basic framework should have list-oriented ver-
sions of selection σ, join |×|, union ∪, difference −, and an

‡ Salt was used as a currency before coins became more popu-
lar, so it is a traditional means of scoring. Also, the name re-
minds us of Gerald Salton, the IR pioneer.
§ It would be tempting to allow nesting of lists, leading to an
XML-style data model, but we do not fully understand the rami-
fications and would like to keep our proposal simple.

additional sort operator to produce lists with specific or-
ders as well as some auxiliary operators like prefix. Note
that order-preservation is a key issue to be defined for list
versions of the above operators. For binary operations
such as join we have to distinguish left-order-preservation
and right-order-preservation; in special cases the order of
both inputs may be preserved. Further, all operators may
have both an order-preserving style and a style with arbi-
trarily (un)ordered output. This allows for alternative im-
plementations with different run-time costs; for example,
a hash join would implement a non-order-preserving equi-
join whereas index nested-loop join would provide a left-
order-preserving equijoin.

We consider three alternative SALT algebras: 1) add-
ing top-k and at-least-k operators, 2) an extended rela-
tional algebra with scoring/ranking modalities for each
operator, 3) an extended algebra for lists with a single

extra operator Σ for customizable scoring and ranking.
Note that all major vendors of SQL engines provide a

form of top-k syntax for queries with sorted output, e.g.,
in the form “… order by 2*R.A + 3*S.B stop after 10”.
This, in combination with user-defined functions, e.g., for
specifying “… order by myfunction(R.A, S.B) …”, seems
to be fully sufficient. Indeed, this approach may be ex-
pressive enough, but the crux is in the difficulty of opti-
mizing such queries using the vanilla relational algebraic
infrastructure. The point of our discussion is exactly how
to package flexible scoring in a way that exposes oppor-
tunities to handle top-k queries more efficiently.

4.2 Top-k and At-least-k Operators

The top-k operator proposed by [CK97, CK98] can be
generalized to specify how many answers a user wants,
but in the context of text, the ranking function can be
quite complex. Given a query with a final top-k clause
based on an application-specific scoring function, we
could derive additional filters for the attributes used in the
scoring function. This amounts to mapping top-k queries
into multidimensional selections with speculative filters
[BCG02, CG96, CK98, DR99]. For example, the system
could automatically rewrite a top-k query about recent
sports news in Paris into

 σ[Category=”sport” ∧ Date ≥ 15-March-2004
 ∧ distance(Location, “Paris”) ≤ 200km] (News)

where Category, Date, and Location are attributes of a
News table, and distance is a user-defined function.

The difficulties with this approach are threefold. First,
while numerical attributes are straightforward to handle, it
is unclear how to deal with categorical attributes and simi-
larity scores that are highly application-dependent. For
Location we resort to a distance function above, but the
application may prefer scores derived from an ontological
generalization hierarchy so that, for example, Location
“Isle de France” is considered a good match to the query
condition. Second, it is extremely difficult to derive suit-
able filter predicates from an arbitrary score aggregation

function, which may be more complex than merely a
weighted sum. Selectivity estimation would have to con-
sider correlations among the attributes in the filter but also
with non-relaxed attributes (e.g., between Category and
Date) and text attributes (e.g., the occurrence of words
“soccer”, “cup”, “champion” in a Headline attribute). If
selectivities are overestimated, the query produces too
few results and has to be restarted. Third, it is unclear how
speculative filters should be generated for more complex
query expression that involve unions, differences, outer
joins, grouping, etc.

Solutions to these problems are not out of the ques-
tion, but pose major research challenges, such as:
Challenge 4: How can we accurately predict the effect of
speculative filters on result sizes for arbitrarily complex
queries and application-specific scoring functions?

The top-k clause allows the programmer to request the
most interesting few results, but what if there are fewer
than the desired number of answers? We can extend every
operator of a core relational algebra like selection σ, un-

ion ∪, intersection ∩, difference −, equijoin |×|, etc. to
become a stretchable operator so that it returns at least k
(or, ideally, exactly k) result tuples, where k can be set by
the programmer.

For example, we would write σ~[k,F](R) for a stretch-
able top-k selection on input R with filter formula F,
∩~[k](R,S) for a stretchable intersection, and so on. The
semantics is that such an operator returns the best k ap-

proximate results if the corresponding exact-match opera-
tor returns fewer than k results. So the stretchable opera-
tors serve to guard against empty or almost empty results
by relaxing filter conditions, join conditions, intersection
semantics, etc. Every stretchable operator could be pa-
rameterized with a similarity measure on the correspond-
ing domains, for example, on a Genre domain in the case
of query σ~[k,Genre=”Science Fiction”] (Movies) or on
the Cartesian product of the attribute domains for two

schema-compatible relations in the case of query ∩~[k]
(Books1, Books2) with a similarity function that takes
into account misspellings, synonyms, etc.

This idea is appealing at first glance, but becomes
fairly complex upon deeper thought. First, each operator
would have to provide scored result tuples, as the applica-
tion programmer may want to combine scores from dif-
ferent expressions, and it is not clear how to make this
composable. Likewise, it is unclear how the programmer
should choose the parameter k for different operators in a
composite expression. Ideally, the programmer would like
to specify k only for the outermost operator and leave the
optimizer to “fill in” the scoring parameters for all the
inner operators. For example, a query on a movie database
that includes IR search conditions on both structured at-
tributes like year and text data like customer reviews
could look as follows:

σ~[k,True] (|×|~[k3, Movies.Title=Reviews.Title]
 (σ~[k1,Movies.Year=1999](Movies),

 σ~[k2,Reviews.Text like “…”](Reviews)))

This requires fine-tuning the k1, k2, and k3 parameters in

order to ensure that the outermost selection σ~[k,True]
can return k results. Note that we need this outermost se-
lection, with a trivial filter condition, for the final combi-
nation of scores. Further, note that the equijoin needs to
be stretchable, too, in the sense that it considers tuples as
approximately matching even if their titles differ slightly.

The proper choice of the target size for intermediate
results is intrinsically related to the difficult issue of accu-
rately estimating query result cardinalities and value dis-
tributions (e.g., using advanced histograms or other forms
of data synopses). Despite the rich body of research on
approximate query processing there is no satisfactory an-
swer yet to these kinds of estimation problems, and the
additional aspect of flexible scoring functions makes the
problem even harder.

In summary, the stretchable operator approach leaves
us with the following major research issues:
Challenge 5: How are result-size targets propagated be-
tween operators in a complex query execution plan? If
some top-level operator should produce k results, how can
we estimate the desired number of results k’ > k that the
various subordinate operators need to deliver?

4.3 Operators with Scoring Modalities

The scoring function can be viewed as a modality that can
be attached to any relational operator.** If the scoring de-
pends only on the output of the regular operator, e.g.,
scoring the result of a selection, then it suffices to con-
sider scoring as just another operator. However, if scores
may depend on input as well as output tuples of a regular
operator, then viewing scoring as a modality of the opera-
tor seems a natural approach.

For example, consider a union operator which we
want to extend with scoring as follows: tuples that appear
in both input relations obtain score 2 and all other result
tuples obtain score 1. This scheme could be generalized in
many ways. For example, both inputs could already carry
scores, and a result tuple that appears in both inputs is
assigned the average of its input scores, whereas a result
tuple that appears in only one input is assigned the score
from that input minus some constant penalty c. The point
is that it is impossible to compute this kind of scoring
after we have computed the result of the union (unless we
access additional data like the intersection result). Rather,
the scoring must be tied in with the union operator itself
and see the input tuples of ∪, too. A conceivable solution
is to have a scoring function invoked on each of the two
inputs and an additional score aggregation function on the
output tuples that are produced. The latter would simply
sum up the scores for those tuples that appear in both in-
puts. In ad-hoc notation this modality-based scoring
would look as follows:

** The use of the term “modality” is analogous to modal logics,
e.g., CTL, where modalities are associated with quantifiers.

∪[score(t) = if t ∈ R∪S then scoreR(t) + scoreS(t)
 else if t ∈ R then scoreR(t) – c
 else if t ∈ S then scoreS(t) – c]
 (R[scoreR(t) = …], S[scoreS(t) = …])

The function definitions in squared brackets are the mo-
dalities of the operators; for the two union operands we
could also have algebraic expressions rather than base
tables, e.g., σ[F][scoreσR(t)=…](R[scoreR=…]). Note
that the key point of this approach is that we can apply
these considerations to each and every basic operator that
our regular, exact-match, algebra provides. Further, we
can customize the scoring modalities to each operator,
even every invocation of an operator, in an application
program. A scoring function may even invoke another
database query to access score-relevant auxiliary informa-
tion, such as idf values or synonyms for query terms.

The elegance of the approach lies in the fact that scor-
ing is added to the original application queries in a per-
fectly orthogonal manner; dropping the modalities results
in an exact-match query without leaving traces such as
auxiliary operations that were introduced solely for the
purpose of similarity search. Thus, an application could
easily switch between exact-match evaluation mode and
similarity-search mode, by recompiling queries. Making
this idea practical requires us to provide a formalization of
scoring modalities for relational operators that is at once
expressive and intuitive, leading to our next challenge:
Challenge 6: Develop a full-fledged formal semantics for
the scoring modality model. Develop typical use-case
templates to guide programmers towards readable and
correct usage.

4.4 The Σ Operator

In this section, we present the third approach towards a
SALT algebra: the Σ operator, a generalization of rela-
tional selection σ. The Σ operator takes a single input list
and produces a single output list. The output may be
shorter than the input and its schema is extended by a
score attribute which is uniquely named. Σ has four pro-
grammable and thus customizable arguments:
1. A set α of simple aggregation functions, where each

function is restricted to be an accumulator whose
value can be computed by linear recursion over pre-
fixes of the input list.†† Thus, every accumulator
function has time complexity O(n) where n is the size
of the input list, and its space complexity is required
to be O(1); that is, it can use only constant working
memory. (We will explain below the rationale for
these restrictions.)

†† We note that LDL++ [ZAO93, WZ00] proposed a recursive
approach to new user-defined aggregate operations, similar to
our proposal for user-defined scoring operators. However, they
produce one aggregate result per input collection, whereas we
consider prefixes of lists. Also, they did not consider algebraic
compositionality, or mechanisms to facilitate early termination.

2. A scoring function ρ from dom(R)×out(α) to real
numbers (or non-negative real numbers or the inter-

val [0,1] if normalization is desired). Here out(α) de-
notes the Cartesian product of the result domains of
the accumulators in α. The result of ρ depends only
on the values in a given tuple and the values of the
accumulators when seeing this tuple. Note that we do
not a priori rule out negative scores, for this might be
useful to express anti-preferences.

3. A filter condition F, which can be a Boolean combi-
nation of elementary comparisons of the form attrib-

ute θ constant or attribute θ attribute, the same kind
of formulas that we are allowed to use in selections. F
refers to a single tuple only, that is, it must be com-
pletely evaluable without accessing other tuples.
However, a point specific to Σ is that F may refer to
the values of the accumulators in α.

4. A stopping condition T, which is of the same format
and complexity as F.

When applied to input list R, we may write
Σ[α;ρ;F;T](R). For example, a ranked search for movies
that appeared in or around a given year and obtained re-
views with certain indicative terms could be phrased as
follows:

sort[k, Score, desc] (
 Σ[α: min := min{Score of best k tuples so far};
 threshold := best possible Score of
 candidates not yet seen at all;
 count := length of current prefix;
 ρ(t) := sum(MoviesScore, ReviewsScore);
 F: Score > min ∨ count < k;
 T: (min ≥ threshold ∧ count ≥ k] (
 merge (sort[MoviesScore] (Σ[...](Movies)),
 sort[ReviewsScore] (Σ[...](Reviews))
)))

Here an appropriate threshold is computed for early stop-
ping, such as the threshold of the TA method. This illus-
trates the versatility of the accumulator and stopping-
condition concepts. Note that Σ is applied in a nested way,
computing the sub-scores MoviesScore and ReviewsScore
on the two lists that form the merged input stream to the
outer Σ. This illustrates the easy composability of the Σ
operator. All operators consume lists in a pipelined man-
ner. The outermost sort operator is needed because the
filter F is passed by top-k candidates that may later be
superseded by better results. Note, however, that this sort-
ing can be implemented by a bounded priority queue, so it
is very space-efficient and does not block the pipeline.

All four building blocks α, ρ, F, and T are applied to

each prefix of the input list R. We describe the semantics
of Σ in the following procedural manner:

Step 1: Accumulator computation. For prefix p of R
with t being the currently seen tuple (i.e., p’s suffix of
length 1), the accumulators in α are computed. Because of

their linear-recursion property, this can be done with the
previous accumulator values and t as the only inputs. One
possible purpose of the accumulators is to track threshold-
ing values such as higher and lower bounds for scores of
interesting tuples, e.g., the current top-k tuples. Note that
it is crucial to limit the space complexity of α to O(1),
with k for top-k being viewed as a constant, but the length
of the current prefix would violate the O(1) restriction.
Otherwise, scoring would be a treacherous backdoor for
inefficient queries, an aspect that would be awfully hard
for the query optimizer to deal with. In fact, this is exactly
the kind of trapdoor that we see in the IR-via-ADTs ap-
proach of Section 3 and have criticized there.

Step 2: Scoring. Next we compute the actual score of
the current tuple t, based on t’s attribute values and the
values of the accumulators. The latter are simply treated
as if they were additional virtual attributes of t. Note that
the computation of ρ cannot use any global information
that is not carried in t or the accumulators. This rules out,
for example, accessing some global statistics for obtaining
idf values and factoring them into a list of tf-scored docu-
ments. To achieve this effect, the programmer would first
have to construct input tuples to Σ that already carry the
idf values with them (using the SALT algebra). The ra-
tionale for this restriction is to make expensive operations
(e.g., joins in this case) explicit to the programmer and
explicitly known to the query optimizer.

Step 3: Result tuple preparation. The result of the
scoring function ρ is made available in the output tuples
of Σ in the form of an additional attribute “Score” whose
actual name can either be chosen by the programmer by
an “As <Name>” clause or is automatically generated.
We assume that the names of such virtual attributes pro-
duced during query processing are unique within the
given query. Analogously, results of accumulator func-

tions in α could be made available in output tuples, too.
Step 4: Filter test. For each prefix the current tuple is

tested against the filter condition F. It is output by the Σ
operator only if it passes the test; otherwise it is discarded.
Note that the filter test is applied after the result tuple is
prepared so that it can more easily refer to accumulator
and scoring values by named attributes.

Step 5: Stopping test. For each prefix, the stopping
test T is executed. Like the filter test, it can refer to the
values of the current tuple and the named results of accu-
mulators and scoring. If the stopping test yields true, the
entire operator execution is terminated. The role of T is
obviously to provide the programmer with flexible ways
of threshold-driven (or other, provably safe or heuristic,
approaches to) early termination. After all, top-k similar-
ity queries are heuristic by their very nature: users rarely
look at all top k results in detail but would merely like to
spot one or two good results among the top k. This may
justify all kinds of application-specific pruning tricks for
efficiency. Recall that the SALT framework is designed to

accommodate customizable pruning, but by itself provides
only mechanisms to this end and no pruning strategies.

The mechanisms we described for the Σ operator re-
semble the rank() function of SQL:1999 in combination
with user-defined aggregation functions for scoring. In-
deed, all user-defined aggegation in SQL follows the

same initialize-accumulate-terminate steps that Σ uses.
However, Σ is more powerful as it supports filter condi-
tions that can depend on accumulator values and, most
importantly, allows early termination by the programma-
ble stopping test.

We believe that we have identified a valuable set of
features and packaged them into the relatively lightweight
Σ operator, which offers flexibility while allowing for
integration into a relational engine with modest effort.
However, we invite the reader to disagree and tackle:
Challenge 7: Apply Occam’s razor to the Σ operator and
identify core functionality such that we ideally achieve 80
percent of the benefits with 20 percent of the current

complexity. Or design an alternative to Σ!

4.5 Discussion

It is not easy to compare our proposals for a SALT alge-
bra; they have very different appeals and pitfalls, and
above all, we have only a preliminary and fairly superfi-
cial understanding of their properties. Table 1 depicts our
immature and vague assessments in a simplified manner,
using the qualitative ratings +, 0, - from good to bad. We
break down the ease-of-use criterion into two separate
aspects: how easy it is for the programmer to write rea-
sonable code for simple tasks using the SALT algebra,
and how easy it is to fully understand the SALT concepts
and program difficult tasks with high confidence in the
correctness of the solution. In a similar vein, we decom-
pose the system complexity and performance issue into
two aspects: how easy it is to implement the SALT alge-
bra in a storage-level system, and how easy it is to reflect
its impact in the query optimizer.

P
ro

g
ra

m
m

in
g

U
n

d
er

st
an

d
in

g

F
le

x
ib

il
it

y

Im
p

le
m

en
ta

ti
o

n

O
p

ti
m

iz
at

io
n

Top-k & at-least-k operators + 0 − + −
Modalities 0 − + 0 −
Σ operator 0 0 + + 0

Table 1: Comparison of SALT algebras

Speculative filters for top-k operators are easy to use, ide-
ally transparent to the programmer if automatically gener-
ated, but query results may not be easily explainable to
the programmer and it is unclear how to incorporate arbi-
trary scoring functions. Moreover, selectivity estimation
is still a big open issue for speculative filters. Stretchable
at-least-k operators are a reasonably straightforward ab-

straction for simple tasks. However, their limits in terms
of expressiveness are unclear, and the query optimizer
faces very difficult result-size estimation problems. Mo-
dalities for every operator seem to have the highest con-
ceptual complexity; writing programs may still be man-
ageable by many but fully understanding all potential in-
tricacies seems challenging. How to efficiently implement
and optimize modalities is a widely open issue. The Σ
operator is in some sense a light-weight, more easily di-
gestible variant of the modalities approach, and we
fleshed it out in more detail than the other proposals. It
compares favorably to modalities in terms of program-
ming complexity, and we believe that it is better suited for
DB-style query optimization than the other approaches.

5. Optimization Issues

One of the cornerstones of efficient query processing is
pipelining between operators, to avoid materializing big
intermediate results. This is of utmost importance for
ranking queries where we only want the k best results, and
would like to stop all query processing as early as possi-
ble. Fortunately, all three of our proposals for SALT alge-
bras are well behaved with regard to pipelining; in fact,
they were designed with this in mind. Thus, when a SALT
expression requires sorted input to a stretchable operator,
an operator with scoring modality, or the Σ operator (even
if this input has to be joined with big tables), the scoring
part of the expression can consume the input incremen-
tally and stop as soon as it is sure it has found the top k
results. With sorting as a subordinate operator, this is, of
course, only feasible if the sorted stream can be produced
by an index or table scan without explicit sorting. The
speculative filter approach behaves just like any other
selection and so is naturally pipeline-enabled.

Orthogonal to pipelining is the ability of a query opti-
mizer to push selective operators toward the leaves of an
operator tree and, more generally, reorder expensive op-
erators so as to minimize total execution costs. This is
done through algebraic equivalences that serve as rewrite
rules. For example, when a scored result is order-
correlated to the input sorted by certain attributes, and this
sort order can be produced by an inexpensive index scan,
then we would like to commute sorting and scoring in an
expression such as sort[…] (Σ[…] (…)). Or we would
like to commute selection and scoring in σ~[k, F] (σ[f(…)
As Score] (…)), with the stretchable operator approach, if
the filter predicate F is highly selective.

Unfortunately, there are few algebraic equivalences

for our SALT algebras. For example, σ and Σ are not
commutative, unless the score function and the stopping
condition were restricted to allow only trivial and useless
cases. Likewise, none of the scoring or stretchable opera-
tors commute with sorting. Does this mean that our vari-
ous SALT algebras are not well designed, and that we
should look for better alternative algebras? Perhaps, but
we believe, rather, that it reveals an inherent difficulty in

the nature of scoring and ranking operators in general. In
formalizing algebraic properties, we had to deal with lists
and bags and order-preserving or non-order-preserving
relational operators, and we realized that the literature is
very scarce on truly rigorous results for ordered bags (a
notable exception being [SJS01]). This leads us to:
Challenge 8: Develop a comprehensive set of algebraic
equivalences for a SALT-like DB&IR algebra, in particu-
lar, equivalences that facilitate early termination. If the
algebra exhibits only weak properties in terms of rewrita-
bility, develop useful sub-algebras and specialized, re-
stricted variants of operators that are sufficiently expres-
sive and have better opportunities for rewriting.

An alternative is to relax the operators’ semantics of
being exact computations. Instead, we could consider
them as merely approximative, in the sense of contribut-
ing to a correct top-k query result only with high probabil-

ity. We believe that most target applications of a DB&IR
system would justify such a relaxation, but it is important
to be precise about the nature of such approximability.
Challenge 9: Develop a notion of “approximative equiva-
lences” and “approximative orders” that hold with high
probability (and controllable error bounds). Study how
this would affect the rewriting capabilities of a DB&IR
query optimizer.

The last challenge may build on earlier work about
data synopses and approximate query processing (e.g.,
[AGP99, Ch01, CDN01, HH01]), but it aims at a wider
and more demanding target and it may perhaps be better
to pursue radical departures from these earlier approaches.

6. Conclusion

This paper is a high-level attempt to lay out a research
agenda for integrating DB and IR technologies, with par-
ticular emphasis on the tradeoffs between customizable
scoring and optimizability. We believe we have pointed
out a number of interesting research opportunities, even
though—or perhaps because—our concrete proposals (in
particular, the various algebras) are clearly far from con-
clusive. Some of the challenges that we pose throughout
the paper require major community efforts, but some may
be tackled at the level of individual doctoral theses. We
think that Challenges 4 through 8 are in the latter cate-
gory, whereas the other challenges are at a more strategic
level. In conclusion we add a final community-scale issue:
Challenge 10: How can we foster better interaction be-
tween, and eventually integration of, the sociologically
separated DB and IR research communities?

The challenges raised here are central to understand-
ing whether DB and IR are destined to forever be on two
separate islands, or whether they share far more synergy
than is apparent today.

References

[AGP99] S. Acharya, P.B. Gibbons, V. Poosala: Aqua: A Fast
Decision Support Systems Using Approximate Query Answers.
VLDB 1999

[As02] B. Aditya, G. Bhalotia, S. Chakrabarti, R. Desai, A. Hul-
geri, C. Nakhe, Parag, S. Sudarshan. Browsing and Keyword
Search in Relational Databases. VLDB 2002

[ACD02] S. Agrawal, S. Chaudhuri, G. Das: DBXplorer, A
System for Keyword-Based Search over Relational Databases,
ICDE 2002

[Ag03] S. Agrawal, S. Chaudhuri, G. Das, A. Gionis: Auto-
mated Ranking of Database Query Results. CIDR 2003

[AYJ03] S. Al-Khalifa, C. Yu, H.V. Jagadish: Querying Struc-
tured Text in an XML Database. SIGMOD 2003

[ACS02] S. Amer-Yahia, S. Cho, D. Srivastava: Tree Pattern
Relaxation. EDBT 2002

[Am03] S. Amer-Yahia, M.F. Fernandez, D. Srivastava, Y. Xu:
Phrase Matching in XML. VLDB 2003

[ABS04] S.Amer-Yahia, C. Botev, J. Shanmugasundaram.
TeXQuery: A Full-Text Search Extension to XQuery. WWW
2004
[BR99] R. Baeza-Yates and B. Ribeiro-Neto. Modern Informa-
tion Retrieval. Addison-Wesley, 1999
[BFS03] P. Baldi, P. Frasconi, P. Smyth: Modeling the Internet
and the Web, Wiley&Sons, 2003
[Ba03] A. Balmin, V. Hristidis, N. Koudas, Y. Papa-
konstantinou, D. Srivastava, T. Wang: A System for Keyword
Proximity Search on XML Databases. VLDB 2003

[BHP04] A. Balmin, V. Hristides, Y. Papakonstantinou: Objec-
tRank: Authority-Based Keyword Search in Databases, VLDB
2004
[BGP92] D. Barbará, H. Garcia-Molina, D. Porter: The Man-
agement of Probabilistic Data. IEEE TKDE 4 (5), 1992

[BP98] S. Brin, L. Page: The Anatomy of a Large-Scale Hyper-
textual Web Search Engine. WWW 1998

[BCG02] N. Bruno, S. Chaudhuri, L. Gravano: Top-k selection
queries over relational databases: Mapping strategies and per-
formance evaluation. ACM TODS 27 (2), 2002

[BGM02] N. Bruno, L. Gravano, A. Marian: Evaluating Top-k
Queries over Web-Accessible Databases. ICDE 2002

[Ca03] D. Carmel, Y.S. Maarek, M. Mandelbrod, Y. Mass, A.
Soffer: Searching XML Documents via XML Fragments, SIGIR
2003

[CH02] K. Chang, S. Hwang: Minimal probing: supporting ex-
pensive predicates for top-k queries. SIGMOD 2002

[CK97] M.J. Carey, D. Kossmann: On Saying "Enough Al-
ready!" in SQL. SIGMOD 1997

[CK98] M.J. Carey, D. Kossmann: Reducing the Braking Dis-
tance of an SQL Query Engine. VLDB 1998

[Ch01] K. Chakrabarti, M.N. Garofalakis, R. Rastogi, K. Shim:
Approximate query processing using wavelets. VLDB Journal
10 (2-3), 2001

[Cha02] S. Chakrabarti: Mining the Web: Discovering Knowl-
edge from Hypertext Data, Morgan Kaufmann, 2002
[CDN01] S. Chaudhuri, G. Das, V. Narasayya: Vivek R. Na-
rasayya: A Robust, Optimization-Based Approach for Approxi-
mate Answering of Aggregate Queries. SIGMOD 2001

[CDY95] S. Chaudhuri, U. Dayal, T.W. Yan: Join Queries with
External Text Sources: Execution and Optimization Techniques.
SIGMOD 1995

[CDH04] S. Chaudhuri, G. Das, V. Hristides, G. Weikum: Prob-
abilistic Ranking of Database Query Results, VLDB 2004

[CG96] S. Chaudhuri, L. Gravano: Optimizing Queries over
Multimedia Repositories, SIGMOD 1996

[CW00] S. Chaudhuri, G. Weikum: Rethinking Database Sys-
tem Architecture: Towards a Self-Tuning RISC-Style Database
System. VLDB 2000

[Ch04] S. Chaudhuri, G. Das, V. Hristides, G. Weikum: Prob-
abilistic Ranking of Database Query Results, VLDB 2004
[DR99] D. Donjerkovic, R. Ramakrishnan: Probabilistic optimi-
zation of top N queries. VLDB 1999.

[CK02] T.T. Chinenyanga, N. Kushmerick: An expressive and
efficient language for XML information retrieval. JASIST 53
(6), 2002

[Co98] W.W. Cohen: Integration of Heterogeneous Databases
Without Common Domains Using Queries Based on Textual
Similarity. SIGMOD 1998

[Co00] William W. Cohen: Data integration using similarity
joins and a word-based information representation language.
ACM TOIS 18(3), 2000
[Co03] S. Cohen, J. Mamou, Y. Kanza, Y. Sagiv: XSEarch: A
Semantic Search Engine for XML. VLDB 2003

[CL02] W.B. Croft and J. Lafferty (eds), Language Models for
Information Retrieval, Kluwer Academic Publishers, 2002
[FKS03] R. Fagin, R. Kumar, D. Sivakumar: Efficient similarity
search and classification via rank aggregation. SIGMOD 2003

[Fa03] R. Fagin, R. Kumar, K.S. McCurley, J. Novak, D. Siva-
kumar, J.A. Tomlin, D.P. Williamson: Searching the workplace
web. WWW 2003

[FLN03] R. Fagin, A. Lotem, M. Naor: Optimal aggregation
algorithms for middleware. J. Comput. Syst. Sci. 66(4), 2003

[FKM00] D. Florescu, D. Kossmann, I. Manolescu: Integrating
keyword search into XML query processing. WWW 2000
[Fu00] N. Fuhr: Probabilistic Datalog: Implementing Logical
Information Retrieval for Advanced Applications, JASIS 51(2),
2000
[FG04] N. Fuhr, K. Großjohann, XIRQL: An XML Query Lan-
guage Based on Information Retrieval Concepts, ACM TOIS
[FGA03] N. Fuhr, N. Gövert, M. Abolhassani: Retrieval Quality
vs. Effectiveness of Relevance-Oriented Search in XML Docu-
ments, Tech. Report, Univ. Duisburg-Essen, 2003.

[GBS01] T. Grabs, K. Böhm, H.-J. Schek: PowerDB-IR - In-
formation Retrieval on Top of a Database Cluster. CIKM 2001

[GJM97] W.I. Grosky, R. Jain, R. Mehrotra, Handbook of Mul-
timedia Information Management, Prentice Hall, 1997
[Gu03] L. Guo, F. Shao, C. Botev, J. Shanmugasundaram:
XRANK: Ranked Keyword Search over XML Documents.
SIGMOD 2003

[GBK00] U. Güntzer, W.-T. Balke, W. Kießling: Optimizing
Multi-Feature Queries for Image Databases. VLDB 2000

[HH01] P.J. Haas, J.M. Hellerstein: Online Query Processing.
SIGMOD 2001

[HKP01] V. Hristides, N. Koudas, Y. Papakonstantinou: Prefer:
A System for the Efficient Execution of Multi-parametric
Ranked Queries. SIGMOD 2001

[HP02] V. Hristides, Y. Papakonstantinou: DISCOVER: Key-
word Search in Relational Databases. VLDB 2002
[HGS03] Edward Hung, Lise Getoor, V.S. Subrahmanian: Prob-
abilistic Interval XML. ICDT 2003

[IAE03] I.F. Ilyas, W.G. Aref, A.K.Elmagarmid: Supporting
Top-k Join Queries in Relational Databases. VLDB 2003

[Il04] I.F. Ilyas, R. Shah, W.G.Aref, J.S. Vitter, A.K. Elmagar-
mid: Rank-Aware Query Optimization, SIGMOD 2004

[Ka03] Navin Kabra, Raghu Ramakrishnan, Vuk Ercegovac:
The QUIQ Engine: A Hybrid IR DB System. ICDE 2003.

[Ka04] R. Kaushik, R. Krishnamurthy, J. Naughton, R. Rama-
krishnan: On the Integration of Structure Indexes and Inverted
Lists. SIGMOD 2004

[Ki02] W. Kießling: Foundations of Preferences in Database
Systems. VLDB 2002

[LK02] A. Leubner, W. Kießling: Personalized Keyword Search
with Partial-Order Preferences. SBBD 2002

[LS03] X. Long, T. Suel: Optimized Query Execution in Large
Search Engines with Global Page Ordering. VLDB 2003

[Lo03] Authors: The Lowell Database Research Self Assess-
ment, 2003, http://research.microsoft.com/~gray/lowell/

[MV93] D. Maier, B. Vance: A Call to Order. PODS 1993

[MS99] C.D. Manning, H. Schütze: Foundations of Statistical
Natural Language Processing, MIT Press, 1999
[MZ96] A. Moffat, J. Zobel: Self-Indexing Inverted Files for
Fast Text Retrieval. ACM TOIS 14(4), 1996

[Na01] A. Natsev, Y.-C. Chang, J.R. Smith, C.-S. Li, J.S. Vitter:
Incremental Join Queries on Ranked Inputs. VLDB 2001

[NR99] S. Nepal, M.V. Ramakrishna: Query Processing Issues
in Image (Multimedia) Databases. ICDE 1999

[Ra98] R. Ramakrishnan, D. Donjerkovic, A. Ranganathan, K.S.
Beyer, M. Krishnaprasad: SRQL: Sorted Relational Query Lan-
guage. SSDBM 1998

[Ry03] M. Rys: Full-Text Search with XQuery: A Status Report.
H. Blanken et al. (Eds.): Intelligent Search on XML Data, 2003

[Sa01] R. Sadri, C. Zaniolo, A.M. Zarkesh, J. Adibi: Optimiza-
tion of Sequence Queries in Database Systems. PODS 2001

[SLR96] P. Seshadri, M. Livny, R. Ramakrishnan: Design and
Implementation of a Sequence Database System. VLDB 1996

[SLR97] P. Seshadri, M. Livny, R. Ramakrishnan: The Case for
Enhanced Abstract Data Types. VLDB 1997

[SM02] T. Schlieder, H. Meuss: Querying and ranking XML
documents. JASIST 53(6), 2002

[STW03] R. Schenkel, A. Theobald, G. Weikum: Ontology-
Enabled XML Search. In: H. Blanken et al. (Eds.): Intelligent
Search on XML Data, 2003

[SJS01] G. Slivinskas, C.S. Jensen, R.T. Snodgrass: A Founda-
tion for Conventional and Temporal Query Optimization Ad-
dressing Duplicates and Ordering. IEEE TKDE 13(1), 2001

[TW00] A. Theobald, G. Weikum: Adding Relevance to XML.
WebDB 2000

[TW02] A. Theobald, G. Weikum: The Index-Based XXL
Search Engine for Querying XML Data with Relevance Rank-
ing. EDBT 2002

[TWS04] M. Theobald, G. Weikum, R. Schenkel: Top-k Query
Evaluation with Probabilistic Guarantees, VLDB 2004
[WZ00] Haixun Wang, Carlo Zaniolo: User Defined Aggregates
in Object-Relational Systems. ICDE 2000

[WMB99] I. Witten, A. Moffat, T. Bell: Managing Gigabytes:
Compressing and Indexing Documents and Images, 2ed, Mor-
gan-Kaufmann, 1999
[YPM03] C.T. Yu, G. Philip, W. Meng: Distributed Top-N
Query Processing with Possibly Uncooperative Local Systems.
VLDB 2003

[ZAO93] C. Zaniolo, N. Arni, K. Ong: Negation and Aggregates
in Recursive Rules: the LDL++ Approach. DOOD 1993

[ZAR03] P. Zezula, G. Amato, F. Rabitti: Processing XML Que-
ries with Tree Signatures. H. Blanken et al. (Eds.): Intelligent
Search on XML Data 2003

