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Abstract 

Databases (DB) and information retrieval (IR) 
have evolved as separate fields. However, mod-
ern applications such as customer support, health 
care, and digital libraries require capabilities for 
both data and text management. In such settings, 
traditional DB queries, in SQL or XQuery, are 
not flexible enough to handle application-
specific scoring and ranking. IR systems, on the 
other hand, lack efficient support for handling 
structured parts of the data and metadata, and do 
not give the application developer adequate con-
trol over the ranking function. This paper ana-
lyzes the requirements of advanced text- and 
data-rich applications for an integrated platform. 
The core functionality must be manageable, and 
the  API should be easy to program against. A 
particularly important issue that we highlight is 
how to reconcile flexibility in scoring and rank-
ing models with optimizability, in order to ac-
commodate a wide variety of target applications 
efficiently. We discuss whether such a system 
needs to be designed from scratch, or can be in-
crementally built on top of existing architectures. 
The results of our analyses are cast into a series 
of challenges to the DB and IR communities.  

1. Introduction 

1.1   Motivation and State of the Art 

DB and IR systems are currently separate technolo-
gies. Thirty years ago, the application classes that drove 
the progress of these systems were disjoint and did indeed 
pose very different requirements: classical  business ap-
plications like payroll or inventory management on the 
DB side, and abstracts of publications or patents on the IR 
side. The situation is radically different today. Virtually 
all advanced applications need both structured data and 

text documents, and information fusion is a central issue. 
Seamless integration of structured data and text is at the 
top of the wish lists of many enterprises. Example appli-
cations that would benefit include the following: ♣ 
• Customer support systems that track complaints and 

response threads and must ideally be able to auto-
matically identify similar earlier requests. 

• Health care systems that have access to the electronic 
information produced by all hospitals, medical labs, 
and physicians (with appropriate measures for pri-
vacy and authorization), and have the capability of 
monitoring trends and generating early alerts about 
health crises such as epidemic diseases. 

• Intranet search engines for organizations with richly 
structured data sources in addition to traditional 
document repositories.  

There are commercial systems that address the above ap-
plications and provide partial solutions. A typical state-of-
the-art data-plus-text system is a collection of platforms 
and tools that are “glued together” in an ad-hoc, applica-
tion-specific manner. The complexity that an application 
developer faces when using such systems is tremendous, 
yet they often lack options needed by advanced develop-
ers. Integration of database (DB) and information retrieval 
(IR) technologies has been listed among the major chal-
lenges of our field in [Lo03]. Throughout this paper, we 
take the viewpoint of the developer of an advanced appli-
cation, such as those mentioned above, who  wants to gain 
productivity by building on top of a generic platform, but 
also needs explicit control over application-specific de-
tails, especially scoring and ranking.  We also focus on 
retrieval and query capabilities, although requirements for 
features like concurrency and recovery often interact with 
the design of query-related features. With this in mind, the 
currently available commercial systems may be classified 
into the following three categories: 
• DB+IR: There are a few niche-market systems that 

have been built from scratch for specific application 
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classes with integrated text and data management. A 
good example is the QUIQ system [Ka03] for cus-
tomer support applications. It takes a unified ap-
proach to handling structured data and text fields, in-
cluding scoring for similarity search, but, it was not 
designed to be a universal infrastructure platform, 
and its functionality cannot be easily extended to 
handle applications beyond its originally intended 
target domain. 

• IR: The market-leading intranet and Web search en-
gines (e.g., Verity, Inktomi, Google) provide rich 
functionality and flexibility for text search, including 
powerful options for thesauri, feature extraction, and 
alternative scoring methods. Although their heritage 
is document-oriented, these systems have recently 
paid more attention to structured data and provide 
some XML support as well. Widely unknown to DB 
folks is that intranet search engines come with a rich 
API, and are not just end-user-oriented platforms. 
However, this class of systems lacks the query opti-
mization that database engines have. Thus, the pro-
grammer also has the burden of making decisions 
about search strategies (e.g., evaluation orders) or 
must rely on default behavior with “suboptimal” per-
formance. This issue becomes critical when applica-
tions need joins and more complex queries, especially 
when these access both text and structured data. 

• DB: Most commercial database systems (e.g., Oracle, 
IBM DB2, Microsoft SQL Server) have a text exten-
sion that handles search on text documents. Typi-
cally, the text extension is a separate engine that is 
not really integrated with the database engine. At the 
API level, search predicates on text follow different 
concepts and syntax compared to SQL, and some-
times specific syntax is required to guide the query 
processor on index usage and other optimizations that 
should ideally be user-invisible if the system truly 
provided data independence. Last but not least, de-
spite the fact that these systems are promoted as ex-
tensible database technology, they provide hardly any 
flexibility in their scoring and ranking functionality. 
Although such limited systems have found use in 
many applications that combine data and text, we 
must recognize that building, for example, a versatile, 
customizable intranet search system on top of such a 
platform is virtually impossible. 

Thus, both DB and IR systems have critical gaps that the 
other side fills, and much functionality is currently glued-
on in a way that poses undue complexity to application 
developers. In summary, there is insufficient text support 
in the DB world, and no query optimization for advanced 
queries in the IR world. What is badly needed is a plat-
form that integrates DB and IR technologies, is open and 
flexible with regard to scoring and ranking, and yet is 
easy to use by a reasonably experienced programmer. In 
addition, there must be an underlying query optimizer that 
is aware of ranking methods. 

To conclude this motivating discussion, we have to 
admit that despite our critical remarks about existing sys-
tems it is very difficult to assess the benefits and idiosyn-
crasies of each system, leaving us with: 
Challenge 1: How should we systematically compare 
different systems with partial DB&IR support in terms of 
ease of use, flexibility and versatility, search result qual-
ity, and efficiency? What is an appropriate experimental 
framework for such a comparison?* 

1.2   Contributions and Paper Organization 

This paper takes a new look at the old problem of how to 
integrate structured data and text with similarity search 
based on scoring and ranking. We aim at a deeper under-
standing of requirements and possible system architec-
tures. In doing this we have tried to reconcile the follow-
ing three goals: 1) Providing rich functionality to ad-
vanced developers in an easy-to-use API. 2) Providing a 
means of extending and customizing scoring and ranking 
methods. 3) Enabling the database engine’s query opti-
mizer to effectively handle scoring and ranking. 

The paper is organized as follows: 
• In Section 2, we discuss three motivating application 

scenarios, and derive a set of requirements for a core 
DB&IR system. 

• In Section 3, we consider architectural issues in inte-
grating text-processing capabilities with database 
query languages, and argue for a RISC-style addition 
of a DB&IR layer to a simplified database system. 

• In Section 4, we consider possible foundations for the 
DB&IR layer, and present several alternative exten-
sions of relational algebra that support flexible rank-
ing and scoring, and allow for early termination after 
computing the most highly ranked results.  

• In Section 5, we illustrate the major challenges in 
query optimization and evaluation by discussing the 
limitations of our algebras with respect to the set of 
algebraic equivalences that they (mostly do not!) al-
low.  Collectively, Sections 4 and 5 are intended to 
highlight the main challenges through discussion of 
technical specifics; we make no claims that the alge-
bras we propose are most appropriate. 

1.3   Related Work 

Ranked retrieval of data has been studied in the IR com-
munity for over 30 years [BR99, WMB99], and in the DB 
field for at least 10 years with an emphasis on multimedia 
data and approximate query processing [GJM97]. How-
ever, only a small subset of this prior work has been con-
cerned with systematically reducing a variety of methods 
onto a compact yet versatile core set of functions, and 
even fewer papers have tried to integrate such a core with 
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existing technology for query execution and optimization. 
Most notably, recent work on score and rank aggregation 
[NR99, GBK00, Na01, FKS03, Fa03, FLN03, BGM02, 
CH02, YPM03] has led to some convergence in the com-
putational models, but integration of ranked retrieval into 
a DB engine remains open; for example, it is unclear how 
Fagin’s threshold algorithm (TA) could be incorporated 
into a state-of-the-art query processor and optimizer. 

IR work is typically (though not exclusively) more 
concerned with effectiveness (i.e., search result quality, 
under metrics such as precision and recall) than with effi-
ciency. For example, the TREC and INEX benchmarks do 
not consider response time or throughput. In terms of ef-
fectiveness, IR has made major progress in the last few 
years by developing methods based on statistical language 
models and other machine learning and web mining tech-
niques [CL02, MS99, Cha02]. The most striking “weak-
ness” of IR technology, in our opinion, is the absence of 
automatic query optimization for advanced queries. 

The most relevant lines of work on how to combine 
top-k similarity queries with query processing technology 
is by Chaudhuri et al. [CDY95], who investigated execu-
tion strategies for database queries with external text 
sources, Bruno et al. [BCG02], who mapped top-k queries 
onto multidimensional range queries, Carey and 
Kossmann [CK97, CK98], who introduced a stopping 
operator into pipelined query execution plans, Don-
jerkovic and Ramakrishnan [DR99], who discussed a 
probabilistic optimization framework for top-k queries, 
Kießling et al. [Ki02, LK02] and Hristides et al. [HKP01], 
who developed models and systems for specifying user 
preferences in queries (e.g., on product catalogs), Cohen 
[Co98, Co00], Agrawal et al. [Ag03], and Ilyas et al. 
[IAE03] who adopted and extended IR-style statistical 
measures for ranking of SQL query results, and Kabra et 
al. [Ka03] on the specific ranking and query processing 
model of the hybrid DB&IR system QUIQ. Very recently, 
Ilyas et al. [Il04] and Theobald et al. [TWS04] have 
looked into estimating the distributions of scores in 
ranked lists for query rewriting and run-time optimiza-
tions. 

From an IR viewpoint, the efficient processing of in-
verted index lists and models for applying probabilistic IR 
to structured data are the issues that are closest to data-
base query processing. Relevant research on index proc-
essing includes the work by Moffat and Zobel [MZ96], 
who developed heuristics for pruning the scanning of long 
inverted lists while maintaining retrieval quality, by Long 
and Suel [LS03] as well as Brin and Page [BP98], who 
develop additional heuristics as well as TA-style robust 
pruning techniques, Fuhr et al. [FGA03] who have ex-
tended these approaches to an XML setting, and Kaushik 
et al. [Ka04], who discuss how to combine inverted lists 
and path indexes for XML, and generalize Fagin’s TA 
framework in the presence of indexes, as is the case 
within a core DB engine.  

Relevant research on probabilistic IR for structured 
data includes the seminal work by Fuhr [Fu00] on prob-
abilistic Datalog and W. Cohen’s WHIRL system [Co98, 
Co00], and recent work presented in [ACD02, As02, 
Ch04, HP02, BHP04]. An overview of other IR ap-
proaches to handle structured data is given in [BR99]. 
None of this work addresses full-fledged compositionality 
of operators with ranked results, in combination with 
early termination as in top-k index processing. 

There is increasing interest in studying ranked re-
trieval on semistructured XML data, a topic that implicitly 
calls for combining DB and IR technologies, in both 
communities,. This includes work on structural similarity 
search on XML trees, using, e.g., tree edit distance meas-
ures [SM02, ACS02, ZAR03], work on text pattern 
matching tailored to XML notions of adjacency [Am03, 
AYJ03, Ba03, FKM00], and work that generalized IR 
similarity measures using word statistics, thesauri, etc. 
[Co03, CK02, Ca03, FG04, GBS01, Gu03, SM02, 
STW03, TW00, TW02]. Most of this prior and ongoing 
research focuses on special issues, and has not yet ad-
dressed issues like manageability, versatility for applica-
tions, and streamlining of architectures. The current ex-
tension of the XQuery W3C standard for text handling, on 
the other hand, only considers simple text search func-
tionality without flexible scoring [Ry03, ABS04]. 

Our design considerations for an algebraic DB&IR in-
terface have been implicitly influenced by earlier work on 
query algebras for lists [MV93, SLR96, Ra98, Sa01, 
SJS01], extensible systems with ADTs and user-defined 
aggregation functions [SLR97, WZ00], and uncertain data 
with probabilistic reasoning [BGP92, HGS03]. None of 
this prior work, however, is directly concerned with inte-
grating DB and IR technologies. 

2.   Application Requirements 

2.1   Applications 

Potential applications for an integrated DB&IR system are 
numerous: searching product catalogs for houses, cars, 
electronics, vacation places, etc.; customer support and 
customer relationship management (CRM); news archives 
for journalists and press agencies; personal information 
management (PIM) for email and file folders, annotated 
photo collections, etc.; world-wide health care for moni-
toring and notification of epidemics; bulletin boards for 
social communities such as ethnic minorities; different 
flavours of Internet-scale search engines for Deep-Web 
sources, intranet data,  and peer-to-peer search; etc. We 
discuss three of these example applications, and subse-
quently derive requirements for a generic platform and an 
appropriate API on top of which these applications could 
be built with modest effort. 

Customer support.  Consider the customer support 
system of a large software company, electronics manufac-
turer, or Internet service provider. The system receives 
help requests and complaints via email or a call-center, 



such as, e.g., “My notebook, which is model … config-
ured with …, has a problem with the driver of its Wave-
LAN card. I already tried the following fixes … but only 
received error messages …” Some of this data can easily 
be cast into structured fields such as NotebookModel, but 
there remains a good fraction that is free text. Of this text 
some part may be converted into a semistructured format 
using natural language processing (NLP) technology; e.g., 
named entities such as (multi-word and possibly mis-
spelled) product names or temporal adverbial phrases 
referring to earlier customer requests may be recognized. 
After capturing the user’s initial request, the system aims 
to match the new case against previous cases, using simi-
larity measures in terms of customer profiles, the struc-
tured part of the request, and the text parts. In addition, 
the request may be classified into a hierarchy of problem 
categories, e.g., category /notebooks/drivers/network. 
When a request cannot be immediately answered, a work-
flow is established that keeps track of subsequent replies 
and follow-ups. Similarity search may refer to individual 
requests or to entire workflows.  

News archive. Large press agencies and newspaper 
publishers produce and receive a huge amount of news 
and complementary material such as photos every day. A 
first challenge lies in managing the redundancy in this 
data, as many articles are just copied and slightly modi-
fied. Photos are annotated, at least with respect to time 
and location (e.g., provided by GPS), and additional anno-
tations may be available in the form of recorded speech. 
Speech processing technology may transcribe a good frac-
tion of these annotations into text form, and, again, NLP 
techniques may yield additional structuring and tagging. 
Of course, news items also carry explicit structured data 
such as details about their origins (e.g., front page news). 
This data is used by professional journalists, who are very 
knowledgeable in their specific fields (unlike, e.g., the 
typical user for Internet search). Thus, journalists make 
use of a full repertoire of multilingual search operations, 
including relevance feedback, rich thesauri, and ontolo-
gies. Ontologies are important, for example, in conjunc-
tion with spatiotemporal search conditions such as “sum-
mer 1998 in Texas” and a relevant news article says “Au-
gust 1, 1998 in Austin”.  

P2P Web search. Consider a peer-to-peer search envi-
ronment where each peer is a full-fledged search engine, 
and all peers are autonomous in terms of what data they 
crawl, index, and score or rank. When a peer seeks infor-
mation, the request is first evaluated on the peer’s local 
index, but when the result is insufficient in terms of preci-
sion or recall the peer may forward the query to a selected 
subset of “nearby” peers. This query routing should take 
into account similarities between peers in terms of their 
user interests, usage patterns, index contents, etc. Peers 
can have different search engines but they should all obey 
some common API. Obviously, peers are interested in 
exchanging statistical information about their local data, 
e.g., to estimate the inverse document frequency of words 

(a standard IR measure) or to compare their index list 
sizes. Each peer could be programmed and configured in 
a personalized manner. For example, scores and ranks 
returned by remote peers could be normalized relative to 
the peer’s local results and its own scoring function by 
identifying data objects in the intersection of remote and 
local results.  

2.2   Requirements 

With these application scenarios in mind, we now put 
together a list of requirements for a core DB&IR system 
that can support development of multiple applications.  

1) Flexible scoring and ranking: At the heart of a 
truly versatile DB&IR system is customizable scoring and 
ranking. Given the wide spectrum of target applications, it 
is unlikely that a universal best-compromise solution ex-
ists. For example, while Page-Rank-style authority meas-
ures are a great asset for Web search, they may be mean-
ingless in an intranet setting where authorship and cross-
references are tightly controlled; and a journalist working 
with a news archive every day may want the system to 
automatically learn scoring weights according to her per-
sonal preferences and relevance feedback. At the API 
level, explicit control over scoring and score aggregation 
is essential, despite the widespread belief that only ordinal 
ranks matter; sophisticated applications such as meta-
search engines need to distinguish rankings with all scores 
close to each other from rankings that have wide gaps in 
terms of scores. Also, some applications may wish to pro-
duce variable-length result lists by thresholding on abso-
lute scores rather than presenting the top k with a fixed k, 
if some of the top k results are only marginally relevant.  

2) Optimizability: Although the emphasis of this dis-
cussion is on richer functionality and search result quality, 
performance is a critical issue for the large-scale applica-
tions that we have in mind. Queries in a DB&IR system 
should be amenable to query optimization that takes 
workload and data characteristics into account. In particu-
lar, scoring and ranking operations need to be viewed in 
the context of query execution plans, and the optimizer 
should have leeway for carefully placing these operations. 
Moreover, it is crucial that, in situations where just a few 
top-ranked query results are sufficient, the query proces-
sor should be able to terminate the computation early 
without having to enumerate all results. Obviously, this is 
a highly nontrivial requirement that may not always be 
achievable, but a good system should at least seize the 
opportunities that arise in specific cases.  

3) Metadata and ontologies: In addition to metadata 
that describes data sources, additional metadata may be 
required for building a cognitive model of the user’s in-
formation demands, in the form of thesauri, lexicons, on-
tologies, or at least—in data-warehousing terms—simple  
dimension hierarchies. A viable long-term solution should 
also capture uncertainty inherent in such metadata 



We believe that the above three requirements, in par-
ticular the first, are the most important ones, and their co-
existence poses: 
Challenge 2: How do we cope with the tension between 
the need for flexible scoring and ranking and the desire 
for optimizability of query execution plans? 

In addition, a broader view of the topic leads to further 
requirements that we mention, but will not discuss further 
in this paper: 

4) Data model: Given that words in a text form a se-
quence, and that ranking of a document collection inher-
ently imposes an order across the documents, we must 
consider a data model with ordered lists  Since documents 
are often hierarchically structured (e.g., into paragraphs), 
this naturally calls for an XML-like data model. Unfortu-
nately, the XML standards suite has become overloaded 
with features and complexity and is thus inappropriate for 
a manageable API. Inventing a simple core XML model 
would be a very laudable research task, but “fixing” the 
entire X suite (XSchema, XQuery, etc.) is a huge order. In 
this paper we limit ourselves to simple relations and lists 
of tuples as conceptual data. 

5) Data preparation: Raw data like text, speech, or 
photos often needs to be pre-processed to generate richer 
annotations, eliminate “fuzzy duplicates”, and generally 
make the data more amenable to effective and efficient 
querying. Such data preparation could benefit from ma-
chine learning techniques and leverage ontological back-
ground knowledge and lexicons for named entity recogni-
tion, auto-correction of misspellings, etc. A DB&IR sys-
tem may by itself not include these kinds of techniques, 
but its API should support easy-to-program interaction 
with tools and libraries for machine learning and NLP. 

6) Personalization: Users have individual preferences. 
Therefore, flexible mechanisms (e.g., user-specific 
weights in scoring functions) need to be part of the 
DB&IR system itself, whereas intelligent strategies for 
personalization (e.g., learning weights) would naturally 
belong to the application software. 

7) Usage patterns: Considering query logs, click 
streams, and other statistics from an entire user commu-
nity may be an invaluable asset for improving the sys-
tem’s search result quality in general. Usage patterns are 
also a key to personalization strategies. IR research has 
been much more aware of these user aspects than DB re-
search (see, e.g., [BR99, BFS03, Cha02] and references 
given there); for integrated DB&IR applications the chal-
lenge is widely open. 

3.   System Architecture 

In this section we discuss various design alternatives for 
the overall architecture of a DB&IR system. As described 
in the previous section, we are primarily interested in ad-
vanced DB&IR applications that need to combine text and 
structured data, and in scoring and ranking operations that 
can be flexibly combined and effectively optimized.  We 
do not consider Web search engines as a possible starting 

point because, while they are intriguing from a software 
architecture and API viewpoint, they do not provide pow-
erful query primitives such as joins and grouping, let 
alone in conjunction with scoring, ranking, and cost-based 
optimization.  

We see four major alternatives: 
(a) On-top-of-SQL: The IR part of the functionality is 
layered on top of a full-fledged SQL engine. 
(b) Middleware: The combined DB&IR functionality is 
provided in a middleware layer on top of both an SQL 
engine and a full-fledged IR system. 
 (c) IR-via-ADTs: The IR functionality is integrated into 
an SQL engine using a separate engine that is invoked 
from the relational database via mechanisms such as user-
defined functions or ADTs. This is the “ugly” alternative 
referred to in Section 1. 
 (d) RISC: Querying capabilities for IR are layered on top 
of a relational storage engine. The latter would be a core 
system, comparable to, say System R’s RSS, Exo-
dus+Shore, or, perhaps, Berkeley DB, with restricted 
“RISC-style” functionality and a simple API, similar to 
what we advocated as a base layer in [CW00]. In particu-
lar, the storage engine should include self-tuning B-tree-
family indexing, full-fledged concurrency control and 
recovery, and single-table queries with a simple opti-
mizer. The DB&IR system would form an additional layer 
on top of the storage engine, and application classes 
would be built on top of the DB&IR API.  

We believe that the RISC approach offers the least of 
the evils. Compared to the other approaches, we find the 
RISC alternative attractive along two related dimensions: 
customizability and programming complexity, and effi-

ciency. Roughly, the first dimension addresses require-
ments 1) and (especially) 2), and the second addresses 
requirement 3).  

The first three alternatives rely heavily on a full-blown 
SQL engine, and we believe that this characteristic makes 
them uninteresting,† and in the rest of this section we ex-
plain why. 

In the on-top-of-SQL approach, it is difficult to cus-
tomize the DB&IR functionality in an efficient way. Most 
notably, if the DB&IR component wants to compute a 
ranked result list based on its own scoring function, it is 
forced to extract the complete result from the SQL engine, 
then score it and sort it, and finally return only a short top-
k prefix to the application. If flexible scoring were inte-
grated into the engine, it could employ index pruning 
techniques to avoid computing the full result set before 
scoring. Of course, the DB&IR layer could emulate a 
threshold algorithm on top of the SQL engine, but given 
that the engine’s internal indexes are not visible to the 
programmer, this would amount to sorted accesses on full 
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DB&IR on top of an XQuery engine, for we believe that this 
would be even worse than Option (a) in terms of API complex-
ity for the application developer. 



tables rather than indexes, and random accesses via pri-
mary keys rather than RIDs. It was exactly this kind of 
indirect and inefficient access to inverted index lists that 
led Inktomi, a successful Web search engine, to build its 
own storage system rather than using a SQL engine. 

The middleware approach, albeit seemingly very natu-
ral, incurs the complexity of both an SQL engine and a 
full-fledged IR system. Programmers must cope with two 
APIs, which may differ radically in terms of their pro-
gramming philosophies. And, of course, all the perform-
ance drawbacks that result from indexes not being acces-
sible by the application code hold in this architecture, too. 

The IR-via-ADTs approach solves the customizability 
problem “in principle”. Well-designed ADTs that build on 
a core IR engine can potentially allow the programmer to 
hook application-specific scoring and ranking functions 
directly into the query processing engine. However, query 
optimization in the presence of user-defined functions, 
including row-set aggregation functions, is very difficult. 
But even from a programmer viewpoint, the IR-via-ADTs 
architecture is far from ideal: it still has the full complex-
ity of SQL, and performance-conscious coding of ADT 
functions. In most commercial relational systems, only the 
core IR functionality (and no additional support for flexi-
ble ranking) has been made available through this ap-
proach by using a separate IR engine. The IR functional-
ity is programmatically exposed via text as a datatype. 
Extending this approach to support flexible user-definable 
ranking functions is not easy. It is also conceivable to 
extend the SQL engine itself to support IR functionality, 
e.g., by adding new access methods in the core engine. 
We do not favor this approach because SQL systems are 
already complex, and such an extension will lead to sig-
nificant additional complexity while offering limited 
flexibility.   

In summary, we argue that a storage-level core system 
with RISC-style functionality is the right architectural 
approach to explore. Despite its attractiveness, the RISC 
approach raises some challenges as well.  It is no accident 
that no relational vendor uses its native storage engine for 
its text ADT. Trying to use the vanilla B+ tree implemen-
tation and a traditional relational storage layer without 
modification can result in very poor performance charac-
teristics. In fact, the challenges may lead us to architecture 
such as in [Ka03] where interaction between the query 
(DB&IR API) and the storage layer was different from 
that in a traditional relational system. Thus, this conclu-
sion leaves us with the challenge: 
Challenge 3: Design and implement a “core” storage-
level DB&IR platform, with an external API for the query 
layer, and a carefully designed sharing of responsibilities 
between the DB&IR layer and the storage engine.   

4.   Towards an Algebraic DB&IR API 

4.1   Framework and Design Rationale 

In this section we present and discuss three proposals for 
a DB&IR core algebra that would enable customizable 
scoring and ranking, which we regard as the key require-
ment among those identified in Section 2. We cast our 
considerations into an abstract algebraic framework that 
we call SALT for “Scoring Algebra for Lists and Text”.‡ 
As discussed in Section 3, we assume a RISC architecture 
for an integrated DB&IR system. As for the other re-
quirements, such as interoperability with ontologies, cap-
ture and exploitation of usage patterns, etc., we believe 
that these are partly supported already by using an engine 
with basic relational database capabilities, and can be en-
hanced on top of the DB&IR system. For example, we 
can store thesauri, ontologies, corpus statistics, query 
logs, click streams, etc. in relational tables and feed them 
into queries and scoring functions within the DB&IR sys-
tem. We believe that richer NLP and learning techniques 
can be implemented on top without significant loss of 
performance, whereas not including customizable scoring 
in the DB&IR kernel would result in major inefficiencies, 
as discussed in Section 3. 

Conceptually, we view the DB&IR API as an ex-
tended form of relational-style algebra, analogous to a 
storage system providing C++/Java/C# methods for (table 
or index) scan, selection, projection, etc. Our criteria for a 
good algebraic interface are: 1) ease of use, which in-
cludes concise notation/coding, 2) easy composability 
with other methods within applications on top of DB&IR, 
3) efficiency and optimizability, i.e., the capability to re-
write expressions of the extended algebra and map them 
onto efficient evaluation plans, and 4) minimal invasive-
ness with regard to current storage systems. The last point 
is actually a breach with the clean-sheet-design philoso-
phy of this paper, but industrial experience tells us that 
designs have a better chance of making an impact if they 
can be easily combined with existing software and thus 
preserve earlier investments.  

The SALT algebras operate on lists of tuples for two 
main reasons. First, as discussed in Section 2, lists are 
more appropriate than sets for modelling the sequencing 
in text documents.§ Second, and equally important, as 
many queries are interested only in the top k elements of a 
ranked result list, the query processor should be able to 
stop computations early, rather than first computing entire 
results and then scoring and sorting them.  

So the basic framework should have list-oriented ver-
sions of selection σ, join |×|, union ∪, difference −, and an 

                                                           
‡ Salt was used as a currency before coins became more popu-
lar, so it is a traditional means of scoring. Also, the name re-
minds us of Gerald Salton, the IR pioneer. 
§ It would be tempting to allow nesting of lists, leading to an 
XML-style data model, but we do not fully understand the rami-
fications and would like to keep our proposal simple. 



additional sort operator to produce lists with specific or-
ders as well as some auxiliary operators like prefix. Note 
that order-preservation is a key issue to be defined for list 
versions of the above operators. For binary operations 
such as join we have to distinguish left-order-preservation 
and right-order-preservation; in special cases the order of 
both inputs may be preserved. Further, all operators may 
have both an order-preserving style and a style with arbi-
trarily (un)ordered output. This allows for alternative im-
plementations with different run-time costs; for example, 
a hash join would implement a non-order-preserving equi-
join whereas index nested-loop join would provide a left-
order-preserving equijoin. 

We consider three alternative SALT algebras: 1) add-
ing top-k and at-least-k operators, 2) an extended rela-
tional algebra with scoring/ranking modalities for each 
operator, 3) an extended algebra for lists with a single 

extra operator Σ  for customizable scoring and ranking.  
Note that all major vendors of SQL engines provide a 

form of top-k syntax for queries with sorted output, e.g., 
in the form “… order by 2*R.A + 3*S.B stop after 10”. 
This, in combination with user-defined functions, e.g., for 
specifying “… order by myfunction(R.A, S.B) …”, seems 
to be fully sufficient. Indeed, this approach may be ex-
pressive enough, but the crux is in the difficulty of opti-
mizing such queries using the vanilla relational algebraic 
infrastructure.  The point of our discussion is exactly how 
to package flexible scoring in a way that exposes oppor-
tunities to handle top-k queries more efficiently.  

4.2   Top-k and At-least-k  Operators 

The top-k operator proposed by [CK97, CK98] can be 
generalized to specify how many answers a user wants, 
but in the context of text, the ranking function can be 
quite complex. Given a query with a final top-k clause 
based on an application-specific scoring function, we 
could derive additional filters for the attributes used in the 
scoring function. This amounts to mapping top-k queries 
into multidimensional selections with speculative filters 
[BCG02, CG96, CK98, DR99]. For example, the system 
could automatically rewrite a top-k query about recent 
sports news in Paris into  

       σ[Category=”sport” ∧ Date ≥ 15-March-2004  
           ∧ distance(Location, “Paris”) ≤ 200km] (News) 

where Category, Date, and Location are attributes of a 
News table, and distance is a user-defined function.  

The difficulties with this approach are threefold. First, 
while numerical attributes are straightforward to handle, it 
is unclear how to deal with categorical attributes and simi-
larity scores that are highly application-dependent. For 
Location we resort to a distance function above, but the 
application may prefer scores derived from an ontological 
generalization hierarchy so that, for example, Location 
“Isle de France” is considered a good match to the query 
condition. Second, it is extremely difficult to derive suit-
able filter predicates from an arbitrary score aggregation 

function, which may be more complex than merely a 
weighted sum. Selectivity estimation would have to con-
sider correlations among the attributes in the filter but also 
with non-relaxed attributes (e.g., between Category and 
Date) and text attributes (e.g., the occurrence of words 
“soccer”, “cup”, “champion” in a Headline attribute). If 
selectivities are overestimated, the query produces too 
few results and has to be restarted. Third, it is unclear how 
speculative filters should be generated for more complex 
query expression that involve unions, differences, outer 
joins, grouping, etc.  

Solutions to these problems are not out of the ques-
tion, but pose major research challenges, such as: 
Challenge 4: How can we accurately predict the effect of 
speculative filters on result sizes for arbitrarily complex 
queries and application-specific scoring functions? 

The top-k clause allows the programmer to request the 
most interesting few results, but what if there are fewer 
than the desired number of answers? We can extend every 
operator of a core relational algebra like selection σ, un-

ion ∪, intersection ∩, difference −, equijoin |×|, etc. to 
become a stretchable operator so that it returns at least k 
(or, ideally, exactly k) result tuples, where k can be set by 
the programmer.  

For example, we would write σ~[k,F](R) for a stretch-
able top-k selection on input R with filter formula F, 
∩~[k](R,S) for a stretchable intersection, and so on. The 
semantics is that such an operator returns the best k ap-

proximate results if the corresponding exact-match opera-
tor returns fewer than k results. So the stretchable opera-
tors serve to guard against empty or almost empty results 
by relaxing filter conditions, join conditions, intersection 
semantics, etc. Every stretchable operator could be pa-
rameterized with a similarity measure on the correspond-
ing domains, for example, on a Genre domain in the case 
of query σ~[k,Genre=”Science Fiction”] (Movies) or on 
the Cartesian product of the attribute domains for two 

schema-compatible relations in the case of query  ∩~[k] 
(Books1, Books2) with a similarity function that takes 
into account misspellings, synonyms, etc.  

This idea is appealing at first glance, but becomes 
fairly complex upon deeper thought. First, each operator 
would have to provide scored result tuples, as the applica-
tion programmer may want to combine scores from dif-
ferent expressions, and it is not clear how to make this 
composable. Likewise, it is unclear how the programmer 
should choose the parameter k for different operators in a 
composite expression. Ideally, the programmer would like 
to specify k only for the outermost operator and leave the 
optimizer to “fill in” the scoring parameters for all the 
inner operators. For example, a query on a movie database 
that includes IR search conditions on both structured at-
tributes like year and text data like customer reviews 
could look as follows: 

σ~[k,True] (|×|~[k3, Movies.Title=Reviews.Title] 
               (σ~[k1,Movies.Year=1999](Movies), 



                σ~[k2,Reviews.Text like “…”](Reviews) ) ) 

This requires fine-tuning the k1, k2, and k3 parameters in 

order to ensure that the outermost selection σ~[k,True] 
can return k results. Note that we need this outermost se-
lection, with a trivial filter condition, for the final combi-
nation of scores. Further, note that the equijoin needs to 
be stretchable, too, in the sense that it considers tuples as 
approximately matching even if their titles differ slightly.  

The proper choice of the target size for intermediate 
results is intrinsically related to the difficult issue of accu-
rately estimating query result cardinalities and value dis-
tributions (e.g., using advanced histograms or other forms 
of data synopses). Despite the rich body of research on 
approximate query processing there is no satisfactory an-
swer yet to these kinds of estimation problems, and the 
additional aspect of flexible scoring functions makes the 
problem even harder. 

In summary, the stretchable operator approach leaves 
us with the following major research issues: 
Challenge 5: How are result-size targets propagated be-
tween operators in a complex query execution plan? If 
some top-level operator should produce k results, how can 
we estimate the desired number of results k’ > k that the 
various subordinate operators need to deliver?  

4.3   Operators with Scoring Modalities 

The scoring function can be viewed as a modality that can 
be attached to any relational operator.** If the scoring de-
pends only on the output of the regular operator, e.g., 
scoring the result of a selection, then it suffices to con-
sider scoring as just another operator. However, if scores 
may depend on input as well as output tuples of a regular 
operator, then viewing scoring as a modality of the opera-
tor seems a natural approach. 

For example, consider a union operator which we 
want to extend with scoring as follows: tuples that appear 
in both input relations obtain score 2 and all other result 
tuples obtain score 1. This scheme could be generalized in 
many ways. For example, both inputs could already carry 
scores, and a result tuple that appears in both inputs is 
assigned the average of its input scores, whereas a result 
tuple that appears in only one input is assigned the score 
from that input minus some constant penalty c. The point 
is that it is impossible to compute this kind of scoring 
after we have computed the result of the union (unless we 
access additional data like the intersection result). Rather, 
the scoring must be tied in with the union operator itself 
and see the input tuples of ∪, too. A conceivable solution 
is to have a scoring function invoked on each of the two 
inputs and an additional score aggregation function on the 
output tuples that are produced. The latter would simply 
sum up the scores for those tuples that appear in both in-
puts. In ad-hoc notation this modality-based scoring 
would look as follows: 

                                                           
** The use of the term “modality” is analogous to modal logics, 
e.g., CTL, where modalities are associated with quantifiers.  

∪[score(t) = if t ∈ R∪S then scoreR(t) + scoreS(t) 
                     else if t ∈ R then scoreR(t) – c 
                     else if t ∈ S then scoreS(t) – c ]  
    ( R[scoreR(t) = … ], S[scoreS(t) = … ] ) 

The function definitions in squared brackets are the mo-
dalities of the operators; for the two union operands we 
could also have algebraic expressions rather than base 
tables, e.g., σ[F][scoreσR(t)=…](R[scoreR=…]). Note 
that the key point of this approach is that we can apply 
these considerations to each and every basic operator that 
our regular, exact-match, algebra provides. Further, we 
can customize the scoring modalities to each operator, 
even every invocation of an operator, in an application 
program. A scoring function may even invoke another 
database query to access score-relevant auxiliary informa-
tion, such as idf values or synonyms for query terms.  

The elegance of the approach lies in the fact that scor-
ing is added to the original application queries in a per-
fectly orthogonal manner; dropping the modalities results 
in an exact-match query without leaving traces such as 
auxiliary operations that were introduced solely for the 
purpose of similarity search. Thus, an application could 
easily switch between exact-match evaluation mode and 
similarity-search mode, by recompiling queries. Making 
this idea practical requires us to provide a formalization of 
scoring modalities for relational operators that is at once 
expressive and intuitive, leading to our next challenge: 
Challenge 6: Develop a full-fledged formal semantics for 
the scoring modality model. Develop typical use-case 
templates to guide programmers towards readable and 
correct usage. 

4.4   The Σ Operator 

In this section, we present the third approach towards a 
SALT algebra: the Σ operator, a generalization of rela-
tional selection σ. The Σ operator takes a single input list 
and produces a single output list. The output may be 
shorter than the input and its schema is extended by a 
score attribute which is uniquely named. Σ has four pro-
grammable and thus customizable arguments:  
1. A set α of simple aggregation functions, where each 

function is restricted to be an accumulator whose 
value can be computed by linear recursion over pre-
fixes of the input list.†† Thus, every accumulator 
function has time complexity O(n) where n is the size 
of the input list, and its space complexity is required 
to be O(1); that is, it can use only constant working 
memory. (We will explain below the rationale for 
these restrictions.) 

                                                           
†† We note that LDL++  [ZAO93, WZ00] proposed a recursive 
approach to new user-defined aggregate operations, similar to 
our proposal for user-defined scoring operators. However, they 
produce one aggregate result per input collection, whereas we 
consider prefixes of lists. Also, they did not consider algebraic 
compositionality, or mechanisms to facilitate early termination. 



2. A scoring function ρ from dom(R)×out(α) to real 
numbers (or non-negative real numbers or the inter-

val [0,1] if normalization is desired). Here out(α) de-
notes the Cartesian product of the result domains of 
the accumulators in α. The result of ρ depends only 
on the values in a given tuple and the values of the 
accumulators when seeing this tuple. Note that we do 
not a priori rule out negative scores, for this might be 
useful to express anti-preferences. 

3. A filter condition F, which can be a Boolean combi-
nation of elementary comparisons of the form attrib-

ute θ constant or attribute θ attribute, the same kind 
of formulas that we are allowed to use in selections. F 
refers to a single tuple only, that is, it must be com-
pletely evaluable without accessing other tuples. 
However, a point specific to Σ is that F may refer to 
the values of the accumulators in α.  

4. A stopping condition T, which is of the same format 
and complexity as F. 

 
When applied to input list R, we may write 
Σ[α;ρ;F;T](R). For example, a ranked search for movies 
that appeared in or around a given year and obtained re-
views with certain indicative terms could be phrased as 
follows: 

sort[k, Score, desc] ( 
     Σ[α: min := min{Score of best k tuples so far}; 
              threshold := best possible Score of 
                                  candidates not yet seen at all; 
              count := length of current prefix; 
         ρ(t) := sum(MoviesScore, ReviewsScore); 
         F: Score > min ∨ count < k;  
         T: (min ≥ threshold  ∧ count ≥ k]  ( 
            merge (sort[MoviesScore] (Σ[...](Movies)), 
                         sort[ReviewsScore] (Σ[...](Reviews)) 
                        ) ) )       
 
Here an appropriate threshold is computed for early stop-
ping, such as the threshold of the TA method. This illus-
trates the versatility of the accumulator and stopping-
condition concepts. Note that Σ is applied in a nested way, 
computing the sub-scores MoviesScore and ReviewsScore 
on the two lists that form the merged input stream to the 
outer Σ. This illustrates the easy composability of the Σ 
operator. All operators consume lists in a pipelined man-
ner. The outermost sort operator is needed because the 
filter F is passed by top-k candidates that may later be 
superseded by better results. Note, however, that this sort-
ing can be implemented by a bounded priority queue, so it 
is very space-efficient and does not block the pipeline. 

All four building blocks α, ρ, F, and T are applied to 

each prefix of the input list R. We describe the semantics 
of Σ in the following procedural manner: 

Step 1: Accumulator computation. For prefix p of R 
with t being the currently seen tuple (i.e., p’s suffix of 
length 1), the accumulators in α are computed. Because of 

their linear-recursion property, this can be done with the 
previous accumulator values and t as the only inputs. One 
possible purpose of the accumulators is to track threshold-
ing values such as higher and lower bounds for scores of 
interesting tuples, e.g., the current top-k tuples. Note that 
it is crucial to limit the space complexity of α to O(1), 
with k for top-k being viewed as a constant, but the length 
of the current prefix would violate the O(1) restriction. 
Otherwise, scoring would be a treacherous backdoor for 
inefficient queries, an aspect that would be awfully hard 
for the query optimizer to deal with. In fact, this is exactly 
the kind of trapdoor that we see in the IR-via-ADTs ap-
proach of Section 3 and have criticized there. 

Step 2: Scoring. Next we compute the actual score of 
the current tuple t, based on t’s attribute values and the 
values of the accumulators. The latter are simply treated 
as if they were additional virtual attributes of t. Note that 
the computation of ρ cannot use any global information 
that is not carried in t or the accumulators. This rules out, 
for example, accessing some global statistics for obtaining 
idf values and factoring them into a list of tf-scored docu-
ments. To achieve this effect, the programmer would first 
have to construct input tuples to Σ that already carry the 
idf values with them (using the SALT algebra). The ra-
tionale for this restriction is to make expensive operations 
(e.g., joins in this case) explicit to the programmer and 
explicitly known to the query optimizer. 

Step 3: Result tuple preparation. The result of the 
scoring function ρ is made available in the output tuples 
of Σ in the form of an additional attribute “Score” whose 
actual name can either be chosen by the programmer by 
an “As <Name>” clause or is automatically generated. 
We assume that the names of such virtual attributes pro-
duced during query processing are unique within the 
given query.  Analogously, results of accumulator func-

tions in α could be made available in output tuples, too. 
Step 4: Filter test. For each prefix the current tuple is 

tested against the filter condition F. It is output by the Σ 
operator only if it passes the test; otherwise it is discarded. 
Note that the filter test is applied after the result tuple is 
prepared so that it can more easily refer to accumulator 
and scoring values by named attributes.  

Step 5: Stopping test. For each prefix, the stopping 
test T is executed. Like the filter test, it can refer to the 
values of the current tuple and the named results of accu-
mulators and scoring. If the stopping test yields true, the 
entire operator execution is terminated. The role of T is 
obviously to provide the programmer with flexible ways 
of threshold-driven (or other, provably safe or heuristic, 
approaches to) early termination. After all, top-k similar-
ity queries are heuristic by their very nature: users rarely 
look at all top k results in detail but would merely like to 
spot one or two good results among the top k. This may 
justify all kinds of application-specific pruning tricks for 
efficiency. Recall that the SALT framework is designed to 



accommodate customizable pruning, but by itself provides 
only mechanisms to this end and no pruning strategies. 

The mechanisms we described for the Σ operator re-
semble the rank( ) function of SQL:1999 in combination 
with user-defined aggregation functions for scoring. In-
deed, all user-defined aggegation in SQL follows the 

same initialize-accumulate-terminate steps that Σ uses. 
However, Σ is more powerful as it supports filter condi-
tions that can depend on accumulator values and, most 
importantly, allows early termination by the programma-
ble stopping test. 

We believe that we have identified a valuable set of 
features and packaged them into the relatively lightweight 
Σ operator, which offers flexibility while allowing for 
integration into a relational engine with modest effort. 
However, we invite the reader to disagree and tackle: 
Challenge 7: Apply Occam’s razor to the Σ operator and 
identify core functionality such that we ideally achieve 80 
percent of the benefits with 20 percent of the current 

complexity. Or design an alternative to Σ! 

4.5   Discussion 

It is not easy to compare our proposals for a SALT alge-
bra; they have very different appeals and pitfalls, and 
above all, we have only a preliminary and fairly superfi-
cial understanding of their properties. Table 1 depicts our 
immature and vague assessments in a simplified manner, 
using the qualitative ratings +, 0, - from good to bad. We 
break down the ease-of-use criterion into two separate 
aspects: how easy it is for the programmer to write rea-
sonable code for simple tasks using the SALT algebra, 
and how easy it is to fully understand the SALT concepts 
and program difficult tasks with high confidence in the 
correctness of the solution. In a similar vein, we decom-
pose the system complexity and performance issue into 
two aspects: how easy it is to implement the SALT alge-
bra in a storage-level system, and how easy it is to reflect 
its impact in the query optimizer. 
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Top-k & at-least-k operators + 0 − + − 
Modalities 0 − + 0 − 
Σ operator 0 0 + + 0 

Table 1: Comparison of SALT algebras 

Speculative filters for top-k operators are easy to use, ide-
ally transparent to the programmer if automatically gener-
ated, but query results may not be easily explainable to 
the programmer and it is unclear how to incorporate arbi-
trary scoring functions. Moreover, selectivity estimation 
is still a big open issue for speculative filters. Stretchable 
at-least-k operators are a reasonably straightforward ab-

straction for simple tasks. However, their limits in terms 
of expressiveness are unclear, and the query optimizer 
faces very difficult result-size estimation problems. Mo-
dalities for every operator seem to have the highest con-
ceptual complexity; writing programs may still be man-
ageable by many but fully understanding all potential in-
tricacies seems challenging. How to efficiently implement 
and optimize modalities is a widely open issue. The Σ 
operator is in some sense a light-weight, more easily di-
gestible variant of the modalities approach, and we 
fleshed it out in more detail than the other proposals. It 
compares favorably to modalities in terms of program-
ming complexity, and we believe that it is better suited for 
DB-style query optimization than  the other approaches. 

5.   Optimization Issues 

One of the cornerstones of efficient query processing is 
pipelining between operators, to avoid materializing big 
intermediate results. This is of utmost importance for 
ranking queries where we only want the k best results, and 
would like to stop all query processing as early as possi-
ble. Fortunately, all three of our proposals for SALT alge-
bras are well behaved with regard to pipelining; in fact, 
they were designed with this in mind. Thus, when a SALT 
expression requires sorted input to a stretchable operator, 
an operator with scoring modality, or the Σ operator (even 
if this input has to be joined with big tables), the scoring 
part of the expression can consume the input incremen-
tally and stop as soon as it is sure it has found the top k 
results. With sorting as a subordinate operator, this is, of 
course, only feasible if the sorted stream can be produced 
by an index or table scan without explicit sorting. The 
speculative filter approach behaves just like any other 
selection and so is naturally pipeline-enabled.  

Orthogonal to pipelining is the ability of a query opti-
mizer to push selective operators toward the leaves of an 
operator tree and, more generally, reorder expensive op-
erators so as to minimize total execution costs. This is 
done through algebraic equivalences that serve as rewrite 
rules. For example, when a scored result is order-
correlated to the input sorted by certain attributes, and this 
sort order can be produced by an inexpensive index scan, 
then we would like to commute sorting and scoring in an 
expression such as sort[…] (Σ[…] (…)). Or we would 
like to commute selection and scoring in σ~[k, F] (σ[f(…) 
As Score] (…)), with the stretchable operator approach, if 
the filter predicate F is highly selective.   

Unfortunately, there are few algebraic equivalences 

for our SALT algebras.  For example, σ and Σ are not 
commutative, unless the score function and the stopping 
condition were restricted to allow only trivial and useless 
cases. Likewise, none of the scoring or stretchable opera-
tors commute with sorting. Does this mean that our vari-
ous SALT algebras are not well designed, and that we 
should look for better alternative algebras? Perhaps, but 
we believe, rather, that it reveals an inherent difficulty in 



the nature of scoring and ranking operators in general. In 
formalizing algebraic properties, we had to deal with lists 
and bags and order-preserving or non-order-preserving 
relational operators, and we realized that the literature is 
very scarce on truly rigorous results for ordered bags (a 
notable exception being [SJS01]). This leads us to: 
Challenge 8: Develop a comprehensive set of algebraic 
equivalences for a SALT-like DB&IR algebra, in particu-
lar, equivalences that facilitate early termination. If the 
algebra exhibits only weak properties in terms of rewrita-
bility, develop useful sub-algebras and specialized, re-
stricted variants of operators that are sufficiently expres-
sive and have better opportunities for rewriting.  

An alternative is to relax the operators’ semantics of 
being exact computations. Instead, we could consider 
them as merely approximative, in the sense of contribut-
ing to a correct top-k query result only with high probabil-

ity. We believe that most target applications of a DB&IR 
system would justify such a relaxation, but it is important 
to be precise about the nature of such approximability.  
Challenge 9: Develop a notion of “approximative equiva-
lences” and “approximative orders” that hold with high 
probability (and controllable error bounds). Study how 
this would affect the rewriting capabilities of a DB&IR 
query optimizer. 

The last challenge may build on earlier work about 
data synopses and approximate query processing (e.g., 
[AGP99, Ch01, CDN01, HH01]), but it aims at a wider 
and more demanding target and it may perhaps be better 
to pursue radical departures from these earlier approaches.  

6.   Conclusion 

This paper is a high-level attempt to lay out a research 
agenda for integrating DB and IR technologies, with par-
ticular emphasis on the tradeoffs between customizable 
scoring and optimizability. We believe we have pointed 
out a number of interesting research opportunities, even 
though—or perhaps because—our concrete proposals (in 
particular, the various algebras) are clearly far from con-
clusive. Some of the challenges that we pose throughout 
the paper require major community efforts, but some may 
be tackled at the level of individual doctoral theses. We 
think that Challenges 4 through 8 are in the latter cate-
gory, whereas the other challenges are at a more strategic 
level. In conclusion we add a final community-scale issue: 
Challenge 10: How can we foster better interaction be-
tween, and eventually integration of, the sociologically 
separated DB and IR research communities? 

The challenges raised here are central to understand-
ing whether DB and IR are destined to forever be on two 
separate islands, or whether they share far more synergy 
than is apparent today.  
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