

Environmental Reviews Dossiers environnement

Integrating dispersal proxies in ecological and environmental research in the freshwater realm

Journal:	Environmental Reviews
Manuscript ID	er-2016-0110.R1
Manuscript Type:	Review
Date Submitted by the Author:	10-Apr-2017
Complete List of Authors:	Heino, Jani; Finnish Environment Institute, Alahuhta, Janne; Oulun Yliopisto, Geography Research Unit Ala-Hulkko, Terhi; Oulun Yliopisto, Geography Research Unit Antikainen, Harri; Oulun Yliopisto, Geography Research Unit Bini, Luis; Universidade Federal de Goias Bonada, Nuria; Universitat de Barcelona Facultat de Biologia Datry, Thibault; Irstea Centre de Lyon-Villeurbanne Eros, Tibor; Hungarian Academy of Sciences Hjort, Jan; Oulun Yliopisto, Geography Research Unit Kotavaara, Ossi; Oulun Yliopisto, Geography Research Unit Melo, Adriano; Universidade Federal de Goias Soininen, Janne; Helsingin Yliopisto
Keyword:	metacommunity, bioassessment, conservation, connectivity, dispersal
	·

SCHOLARONE[™] Manuscripts

1	Integrating dispersal proxies in ecological and environmental research in
2	the freshwater realm
3	
4	Jani Heino ¹ , Janne Alahuhta ² , Terhi Ala-Hulkko ² , Harri Antikainen ² , Luis Mauricio Bini ³ ,
5	Núria Bonada ⁴ , Thibault Datry ⁵ , Tibor Erős ⁶ , Jan Hjort ² , Ossi Kotavaara ² , Adriano S. Melo ³
6	and Janne Soininen ⁷
7	
8	¹ Finnish Environment Institute, Natural Environment Centre, Biodiversity, Paavo Havaksen
9	Tie 3, FI-90570 Oulu, Finland.
10	² University of Oulu, Geography Research Unit, P.O. Box 3000, FI-90014 Oulu, Finland.
11	³ Departamento de Ecologia, Universidade Federal de Goiás, Goiânia, 74001-970, GO, Brazil.
12	⁴ Grup de Recerca Freshwater Ecology and Management (FEM), Departament d'Ecologia,
13	Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona
14	(UB), Diagonal 643, 08028-Barcelona, Catalonia, Spain.
15 16	⁵ IRSTEA, UR-MALY, 5 rue de la Doua, BP 32108, 69616 VILLEURBANNE Cedex, France.
17	⁶ Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg K. u. 3.,
18	H-8237 Tihany, Hungary.
19	⁷ University of Helsinki, Department of Geosciences and Geography, P.O. Box 64, FI-00014
20	Helsinki, Finland.
21	

23

Email: jani.heino@environment.fi

3

24 ABSTRACT

Dispersal is one of the key mechanisms affecting the distribution of individuals, populations 25 and communities in nature. Despite advances in the study of single species, it has been 26 27 notoriously difficult to account for dispersal in multispecies metacommunities, where it 28 potentially has strong effects on community structure beyond those of local environmental 29 conditions. Dispersal should thus be directly integrated in both basic and applied research by 30 using proxies. Here, we review the use of proxies in the current metacommunity research, 31 suggest new proxies and discuss how proxies could be used in community modelling, 32 particularly in freshwater systems. We suggest that while traditional proxies may still be 33 useful, proxies formerly utilized in transport geography may provide useful novel insights into the structuring of biological communities in freshwater systems. We also suggest that 34 35 understanding the utility of such proxies for dispersal in metacommunities is highly important 36 for many applied fields, such as freshwater bioassessment, conservation planning and 37 recolonization research in the context of restoration ecology. These research fields have often 38 ignored spatial dynamics, and focused mostly on local environmental conditions and changes 39 therein. Yet, the conclusions of these applied studies may change considerably if dispersal is 40 taken into account.

41

Key words: accessibility, bioassessment, connectivity, conservation, dispersal, freshwater,
links, metacommunity, nodes, transport geography.

45

46 Introduction

48	Ever since Charles Darwin, ecologists have been interested in dispersal (Ridley 2004), i.e.,
49	the movement of an organism from one location to another. Dispersal is one of the most
50	important mechanisms affecting the distribution of individuals, populations and communities
51	(Baguette et al. 2013; Lowe and McPeek 2014). At the same time, dispersal is also one of the
52	most difficult phenomena to study even for a single individual or a single species in nature
53	(Bilton et al. 2001; Nathan et al. 2008). The problem is exacerbated for dozens to hundreds of
54	species in a metacommunity, i.e., a set of local communities connected by dispersal (Leibold
55	et al. 2004), making it virtually impossible to account for dispersal directly for such large
56	number of entities in natural settings. Ecologists have therefore relied on various proxies,
57	which are assumed to relate to the effects of dispersal on community structure (Jacobson and
58	Peres-Neto 2010; Jones et al. 2015).
50	Dispersal may mask the importance of purely environmental control of local
23	Dispersar may mask the importance of purery environmental control of local
60	ecological communities (Palmer et al. 1996; Leibold et al. 2004; Brown et al. 2011;
61	Winegardner et al. 2012). This is because very high or very low dispersal rates may interfere
62	with species sorting, decoupling the otherwise strong relationships between biological
63	communities and local environmental factors (Leibold et al. 2004; Ng et al. 2009; Brown and
64	Swan 2010; Winegardner et al. 2012). For instance, in mass effects, very high dispersal from
65	'source' populations may produce a constant flow of migrants that guarantees the
66	maintenance of populations in unsuitable or 'sink' localities (Pulliam 1988), thus interfering
67	with local environmental control (Mouquet and Loreau 2003). On the other hand, species

5

68	may be absent from suitable localities owing to dispersal limitation (Heino et al. 2015a), also
69	contributing to low variation explained by environmental factors in multivariate models.
70	Multivariate models of community structure can typically explain only a small fraction (adj.
71	$R^2 < 50\%$, often varying between 0 and 20%) of community variation (Beisner et al. 2006;
72	Nabout et al. 2009; Alahuhta and Heino 2013; Soininen 2014; Heino et al. 2015b), which
73	may simply be due to unmeasured environmental factors, but also to our inability to
74	adequately account for dispersal in statistical models (Cottenie 2005; Leibold and Loeuille
75	2015; Soininen, 2016). An alternative view suggests that statistical models may also
76	overestimate the spatial component potentially related to dispersal, which may be due to
77	specifics of the spatial methods used (Gilbert and Bennett 2010; Smith and Lundholm 2010).
78	Therefore, refining the spatial methods and various proxies for dispersal should aid in taking
79	dispersal better into account in metacommunity ecology.
80	Understanding the utility of proxies for dispersal is also highly relevant for many
81	applied fields when the focus is on multiple species in freshwater ecosystems. These
82	ecosystems are all of high priority for bioassessment, restoration and conservation because
83	they comprise high levels of biodiversity (Dudgeon et al. 2006; Wiens 2015) and provide
84	crucial ecosystem services to humans (Vörösmarty et al. 2010; Garcia-Llorente at al. 2011;

85 Holland et al. 2011). At the same time, freshwater ecosystems are strongly threatened by

86 anthropogenic impacts such as eutrophication and habitat fragmentation (Dudgeon et al.

87 2006; Erős and Campbell Grant 2015). We emphasize that different types of freshwater

88 ecosystems (e.g. ponds, lakes, streams, rivers, springs) show different interactions among

89 dispersal, anthropogenic impacts and natural environmental factors. Owing to lower

90 connectivity, it may be that organisms in isolated freshwater ecosystems (e.g. ponds and

91 springs) are more severely impacted by the interactions of limited dispersal and

92 anthropogenic effects than those in more continuous ones (e.g. large rivers and large lake

6

93	systems). Similar interactions among dispersal, fragmentation and unexpected effects of
94	stressors may occur in all freshwater, marine and terrestrial ecosystems. Therefore, the use of
95	proxies for dispersal will be essential for applied research in all ecosystems. For example, our
96	typical reasoning is that the success of restoration projects (e.g. recovery from acidification)
97	may be delayed due to dispersal limitation because tolerant species may be absent from
98	ecosystems simply because they have not been able to reach the site. Similarly,
99	biomonitoring programs may be less effective in detecting impaired sites when dispersal from
100	pristine to impacted sites is high.
101	Our aim is to review current use of proxies for dispersal in freshwater ecosystems.
102	Individual sites in freshwater ecosystems are often inherently connected (Tonn and
103	Magnuson 1982; Palmer et al. 1996; Magnuson et al. 1998; Jackson et al. 2001; Olden et al.
104	2001; Grant et al. 2007; Altermatt 2013). It can be assumed that most of the dispersal of
105	obligate freshwater organisms, such as fish, is restricted to the network comprising running
106	and standing waters (Matthews 1998; Olden et al. 2001). However, for other freshwater
107	organisms, such as aquatic insects, dispersal within the network is not the only option, as
108	insect adults may show active and passive out-of-network dispersal (Malmqvist 2002; Smith
109	et al. 2009). Yet other groups of species, such as aquatic macrophytes, algae, mollusks and
110	crustaceans, may disperse passively through waterways, or their seeds, whole cells, fragments
111	or resting stages are carried by winds or animals for long distances (Kristiansen 1996; Bilton
112	et al. 2001; Bohonak and Jenkins 2003; Riis and Sand-Jensen 2006).
113	Variation in dispersal mode and ability among groups of organisms is also
114	exacerbated by the fact that even within a single group, dispersal distances vary greatly
115	among species. Rather than being intimidated by such high degrees of variation, we propose

that it actually provides a number of possibilities for basic and applied research. However,

7

better understanding of dispersal in diverse organisms inhabiting freshwater ecosystems is

118	dependent on the better use of existing proxies and the development of new approaches.
119	Here, we claim that while some traditional proxies are still useful, some proxies applied in
120	transport geography are promising tools for basic and applied metacommunity research.
121	Testing the utility of these proxies is, however, still in its infancy, and further case studies are
122	needed. One of the aims of this review is to provide motivation for such further studies.
123	
124	Past, present and future proxies for dispersal
125	
126	The distance effect: "near things are more related than distant things"
127	
128	According to Tobler's (1970) first law of geography, "Everything is related to everything
129	else, but near things are more related than distant things". Although this law is certainly
130	accurate in geography and ecology (Nekola and White 1999; Hubbell 2001; Soininen et al.
131	2007), it has an inherent emphasis on Euclidean distances between sites. Nature and
132	organisms are, however, more complex. What we define as "near" or "distant" should be
133	understood in the context of ecological, but not necessarily geographical, distances between
134	sites. Ecological distance takes into account structural (e.g. landscape features) and functional
135	(e.g. animal movements) aspects as related to dispersal (McRae 2006; Sutherland et al. 2015).
136	Hence, by necessity, those distances are much more complex than linear distances between
137	sites (Wang et al. 2009; Graves et al. 2014). Also, organisms differ from each other in their
138	dispersal ability (i.e. capacity to move long distances), although we can also state that all

8

organisms are different from other organisms, but phylogenetically closely-related organisms 139 140 are, on average, more similar than distantly-related organisms. Organisms thus also have 141 morphological (e.g. wing morphology in insects) and behavioural (e.g. tendency to fly long 142 distances) characteristics related to dispersal (Hoffsten 2004; Rundle et al. 2007), which are 143 typically phylogenetically conserved (Dijkstra et al. 2014). Below, we will consider pros and 144 cons of organismal, genetic, physical and transport geography (i.e. graph-based) proxies for 145 dispersal distances in a multi-species metacommunity context in freshwater systems (Table 146 1).

147

148 Organismal-based proxies

149

Organismal-based proxies for dispersal are important because they combine species traits and the dispersal process. Typical organismal-based proxies for dispersal include separation of species into more homogeneous groups according to body size (Jenkins et al. 2007; De Bie et al. 2012; Datry et al. 2016a), wing size or wingspan (Hoffsten 2004; Sekar 2012), dispersal mode (active vs passive, aquatic vs aerial) and dispersal ability (Thompson and Townsend 2006; Göthe et al. 2013a, 2013b; Grönroos et al. 2013; Heino 2013b; Cañedo-Argüelles et al. 2015; Heino et al. 2015a).

First, the use of body size divisions typically assumes that very small organisms are easily carried long distances passively by water currents, wind or by animals, and that increasing body size decreases the possibilities for passive long-distance dispersal (Fenchel and Finlay 2004; Shurin et al. 2009). While this idea is partly supported by empirical findings (De Bie et al. 2012; Padial et al. 2014; Datry et al. 2016a), some studies have also found little

9

162	support for it (Jenkins et al. 2007). Body size is also correlated with various life history and
163	ecological traits other than dispersal. For example, regarding freshwater ecosystems, body
164	size may correlate with predation pressure (e.g. Tolonen et al. 2003), number of generations
165	per year (e.g. Zeuss et al. 2017) and more, suggesting that using body size as a dispersal
166	proxy may be compromised by other ecologically-relevant factors.
167	Second unless the dispersed mode is taken into account, bedy size is likely to be a
107	Second, unless the dispersal mode is taken into account, body size is likely to be a
168	poor predictor of dispersal distances. It is likely that very small passively dispersing
169	organisms, such as bacteria, microfungi and microalgae, are able to disperse passively across
170	very long distances (Baas-Becking 1934; Kristiansen 1996). However, intermediate-sized and
171	actively dispersing organisms, such as many aquatic insects (except perhaps dragonflies),
172	may show rather limited dispersal distances (Finn et al. 2011). Also, large-sized actively
173	dispersing organisms, such as some diadromous fish or aquatic birds, may disperse (or rather
174	migrate) very long distances (Matthews 1998). Thus, body size should not be used alone
175	without considering dispersal mode.
176	Third organismal classifications focusing on wing morphology wing size or
2.0	
177	wingspan might add considerably over using body size as a proxy for dispersal (see also
178	Harrison 1980). For example, studying aquatic insects Malmqvist (2002) and Hoffsten (2004)
179	found that larger-winged species had larger distributions that those with smaller wings,

180 suggesting that large wings might facilitate dispersal and lead to broader ranges. Malmqvist

181 (2000) also emphasised that wing size allows to identify poor dispersers among groups of

aquatic insects because it can be assumed that re-colonisation by poor flyers can be very

183 limited and slow after local extinction. This finding has implications for colonization-

184 extinction dynamics in metacommunities and consequent applications in environmental

185 research.

10

186	Given that various whole-organism based proxies have their limitations, researchers
187	should aim at finding a novel proxy or index for dispersal. Among aquatic invertebrates, for
188	example, a suitable index could consist of combined information from traits related to
189	dispersal mode, body size, life span, fecundity and more (e.g. Sarramajane et al. 2017).
190	Constructing such dispersal indices is possible using trait databases available in the literature
191	(Dolédec et al. 2006; Poff et al. 2006; Tomanova et al. 2007; Tachet et al. 2010) or in the
192	Internet (e.g. http://www.freshwaterecology.info/). However, it should be borne in mind that
193	such indices (i) should not be too complex to allow a widespread use, (ii) should account for
194	potential dispersal distances, and (iii) should be related to dispersal rates between sites (of
195	which fecundity and number of generations could be suitable indices). Such dispersal indices
196	should subsequently be tested using empirical datasets in metacommunity and environmental
197	assessment contexts.
198	An additional whole-organism based approach constitutes the use of stable isotopes to
199	mark individuals and measure dispersal (e.g. McNeale et al. 2005). While such an approach
200	may be feasible for a single species, it is increasingly difficult for large numbers of species
201	because recapturing rare species may be laborious or largely impossible. However, stable

202 isotopes can be used in estimating the dispersal distances of common freshwater species,

which could also inform about main patterns in metacommunity structuring.

204

205 Molecular genetic proxies

206

Another group of proxies are provided by advances in molecular biology. These include
population genetics (Hughes, 2007), DNA-barcoding (Cristescu 2014) and environmental

DIL (D. 1

1 001 0 11

Environmental Reviews

11

209	DNA (Bohmann et al. 2014). However, as these advances have been reviewed recently
210	(Manel et al. 2003; Manel and Holderegger 2013), we only mention briefly that they may
211	also be used as proxies for dispersal (Bohonak 1999; Wilcock et al. 2001; Hughes et al.
212	2009). These methods also have some drawbacks, such as "detecting" a species when it is not
213	actually present at a site in the environmental DNA approach (Bohmann et al. 2014). This is
214	probably because the 'signal' of a species' assumed presence may be carried long distances
215	from occupied sites to other sites where they will result in false presences.

216 Population genetic approaches used to infer dispersal are manifold, and they have been available to researchers for decades (see reviews by Manel et al. 2003; Manel and 217 218 Holderegger 2013). They include approaches that inform about past and/or current 219 connections between local populations (Wilcock et al. 2001; Hughes et al. 2009). For 220 example, phylogeography tries to understand the geographic distribution of the different 221 genealogical lineages and can be used to infer past events (including long-term dispersal) by 222 considering the spatial genetic variation of current populations (e.g. Teacher et al. 2009). 223 More generally, genetic variation across populations (i.e. genetic structure) has been 224 traditionally used as an indirect measure of the current movement of individuals between 225 populations based on molecular markers and statistical methods (e.g. F_{ST}). There have been 226 some attempts to relate the genetic structure to the dispersal ability of species, showing that 227 sets of populations exhibiting high genetic diversity are those with low dispersal ability 228 (Bohonak 1999). Genetic structure can be, however, a biased proxy of dispersal because it 229 not only informs about gene flow among populations, but also about mutation, genetic drift, 230 adaptation by natural selection along environmental gradients and colonization history (i.e. 231 founder effects). Different theoretical and empirical models are currently being used to detect 232 these different processes (Orsini et al. 2013). Among them, isolation-by-distance (IBD) models are commonly used to explain spatial genetic variation by gene flow and gradual 233

https://mc06.manuscriptcentral.com/er-pubs

12

234 genetic drift. In this case, genetic similarity is reduced when geographical distance between 235 sites increases (Relethford 2004). However, IBD models are neutral models (Orsini et al. 236 2013) that do not consider changes in the environmental conditions in space and assume that 237 populations are in gene-flow-drift equilibrium, which is probably not the case of most natural 238 populations. In addition, disentangling the relative effects of gene flow from genetic drift is a 239 challenging task. Most direct methods used to measure gene flow require direct estimates of 240 dispersal, whereas indirect methods, which do not require dispersal information, still consider 241 equilibrium conditions. Gene flow is supposed to be more advantageous than traditional 242 dispersal proxies (e.g. mark-recapture methods) because it integrates multiple generations, 243 indicates successful establishment in the target population (in contrast to mark-recapture that 244 only assesses if individuals reached the target site) and can be applied across extensive 245 geographical areas (Bohonak 1999; Baguette et al. 2013). However, even if unbiased gene 246 flow estimates are obtained, they may not always fully represent dispersal because not all 247 dispersers survive and reproduce at a site (Bohonak and Jenkins 2003). Finally, recent 248 advances based on high throughput sequencing may lead to promising methods to measure 249 dispersal at the community level, as they may allow better quantification of genetic structure 250 and its underlying causes (e.g. Tesson and Edelaar 2013).

251

252 Graph-based proxies

253

Modelling is a prerequisite to examine the possible effects of using different dispersal proxies
in ecological research (Rouquette et al. 2013; Weinstein et al. 2014). One of the most
promising approaches is to examine the studied system as a graph, a set of nodes and links, in

13

257 which nodes represent the elements of the system (e.g. habitat patches, individuals, 258 populations or communities) and links specify the connectivity relationships between the 259 elements (Calabrese and Fagan 2004; Urban et al. 2009). In graph-based analyses, spatially 260 explicit data derived from geographic information systems (GIS) can be combined with 261 information on the dispersal of organisms (Calabrese and Fagan 2004). Different distance 262 classes among the nodes can be set up and depicted by adding different weights to the links 263 as a proxy for indicating habitat suitability for the dispersing organisms (e.g. flow and 264 riverbed characteristics for benthic insects) or barriers (e.g. dams or waterfalls for fish). 265 Directed links can refine the graph model representing the importance of upstream vs 266 downstream or watercourse vs overland dispersal (Galpern et al. 2011; Erős et al. 2012). 267 Potential connections between habitat patches (nodes) can be further refined by incorporating 268 information on the dispersal ability of the focal species. For instance, if the distance between 269 a given pair of patches is larger than a given threshold (here, dispersal distance for a species), 270 the patches may be considered unconnected. 271 Overall, graphs are useful for quantifying the physical relationships among the

landscape elements (i.e. structural connectivity; e.g. Saura and Rubio 2010) and how this
topological structure affects the movement of organisms across the landscape (i.e. potential
functional connectivity; e.g. Vasas et al. 2009). Graphs can thus help understanding the role
of dispersal in a diverse array of ecological systems in a flexible, iterative and exploratory
manner with relatively little data requirements (Urban and Keitt 2001; Calabrese and Fagan
2004; Dale and Fortin 2010).

As explained above, the construction of a graph model requires the determination of
links (connections) and their weights. In ecological research, many different
conceptualizations of physical distance can be used for this purpose, such as Euclidean,

14

network, flow and topographical distances (Olden et al. 2001; Beisner et al. 2006; Jacobson 281 282 and Peres-Neto 2010; Landeiro et al. 2011; 2012; Maloney and Munguia 2011; Liu et al. 283 2013; Silva and Hernández 2015; Cañedo-Argüelles et al. 2015; Kärnä et al. 2015; Datry et 284 al. 2016a). Euclidean distance is simply the shortest distance between two sites (Fig. 1). In 285 contrast, network distance takes into account riverine or other ecological corridors and thus 286 measures the shortest route from one site to another via corridors. However, according to 287 Peterson, Theobald and Ver Hoef (2007), "the physical characteristics of streams, such as 288 network configuration, connectivity, flow direction, and position within the network, demand 289 more functional, process-based measures". These authors made a useful distinction between 290 symmetrical distance (i.e. Euclidean and watercourse distance) and asymmetric distance 291 classes, which include upstream and downstream asymmetric flow distance (Peterson et al. 292 2007). This is because upstream dispersal is more difficult than downstream dispersal from 293 one site to another, at least for obligatory aquatic organisms. Finally, topographical distance 294 is built on the notion that altitudinal variation and slope may direct the dispersal of terrestrial 295 organisms, whereby they may choose optimal routes by avoiding steep upward slopes (Fig. 296 1).

297 Besides the traditional measures of between-site physical distances, cost distance is an 298 alternative family of distance metrics. Cost distance is calculated over a cost surface, 299 representing the resistance to an organism's movement. It can be metaphorically called "as the fox runs" (Kärnä et al. 2015), as a wise animal like fox may choose a path of least 300 301 resistance in the landscape. Cost distance can be measured either as a least-cost (optimal) 302 path, or as a range of cumulative costs of landscape resistance between sites. Environmental 303 variables used to produce cost surfaces typically include land use, human constructions and 304 topography (Zeller et al. 2012). This technique has been mostly used to model the movement and dispersal of large land mammal species of conservation concern (Larkin et al. 2004; 305

15

LaRue and Nilsen 2008), but it may also be relevant for the organisms living in freshwater
ecosystems (Kärnä et al. 2015).

308 Previous studies using cost distances have mainly employed categorical variables and 309 have not always taken into account variation in topography. In addition, various other 310 physical structures can be used as costs (Fig. 1). For example, the directional effect caused by 311 prevailing wind or flow conditions could be incorporated as part of cost distances (Horvath et 312 al. 2016). Additional cost can also consist of waterfalls, dams and other physical barriers for 313 fish (Olden et al. 2001; Pelicice and Agostinho 2008; Filipe et al. 2013) or inhospitable routes 314 through the matrix preventing or reducing dispersal, including pools, ponds and lakes for 315 riffle-dwelling species (Erős and Campbell Grant 2015). The same applies for deforested 316 riparian areas for terrestrial adults of freshwater species (Smith et al. 2009; Erős and 317 Campbell Grant 2015).

Although cost distances, least-cost path modelling and other approaches related to 318 319 graph-based modelling have been widely applied in ecology (e.g. Pinto and Keitt 2009), the 320 studies to date have mostly considered one species at a time (see review by Sawyer et al. 321 2011). A problem in the extension of this approach to sets of species is that their dispersal 322 routes and environmental responses likely differ. For instance, it is possible to assign costs to 323 links based on habitat suitability, although the latter likely differ for different species. A first 324 approach would be to split the species in functional sets that respond similarly to 325 environmental conditions and distance between sites. The straightforward extension of this 326 process would be the modelling of each species separately, each one with their costs, and 327 then combine all graphs in a more realistic description of communities. This approach, 328 however, should not be practical for many groups of organisms as we lack information on 329 their natural history.

16

330	The application of graph-based models is still limited in basic and applied
331	metacommunity research (Borthagaray et al. 2015; Layeghifard et al. 2015), and most
332	applications to date have been in the terrestrial realm, whereas the use of spatially explicit
333	graph-based methods in freshwater ecology has lagged far behind (Erős et al. 2012).
334	However, since graph-based modelling is widely used in many disciplines, proxies developed
335	in other fields can also be adopted in ecological research. One such field is transport
336	geography, encompassing various measures of spatial accessibility and interaction, as well as
337	methods for path or route selection in space. Next, we will consider how proxies utilized
338	previously in transport geography might allow modelling dispersal effects on local
339	communities when other approaches are not feasible for studying multiple species at the same
340	time. We suggest that some of these models can also be integrated in metacommunity
341	research in freshwater systems.
341	research in freshwater systems.
341 342	research in freshwater systems. In traditional transport geography, researchers have tried to explain complex human
341 342 343	research in freshwater systems. In traditional transport geography, researchers have tried to explain complex human travel patterns by using spatial and spatio-temporal models (Black 2003). The modelling of
341 342 343 344	research in freshwater systems. In traditional transport geography, researchers have tried to explain complex human travel patterns by using spatial and spatio-temporal models (Black 2003). The modelling of human travel patterns relies, to a large extent, on the notion of accessibility (Table 2, Fig. 2).
 341 342 343 344 345 	research in freshwater systems. In traditional transport geography, researchers have tried to explain complex human travel patterns by using spatial and spatio-temporal models (Black 2003). The modelling of human travel patterns relies, to a large extent, on the notion of accessibility (Table 2, Fig. 2). Accessibility can be defined as "the potential for reaching spatially distributed opportunities",
 341 342 343 344 345 346 	research in freshwater systems. In traditional transport geography, researchers have tried to explain complex human travel patterns by using spatial and spatio-temporal models (Black 2003). The modelling of human travel patterns relies, to a large extent, on the notion of accessibility (Table 2, Fig. 2). Accessibility can be defined as "the potential for reaching spatially distributed opportunities", and its quantification typically includes the physical distance or cost of travel, as well as the
 341 342 343 344 345 346 347 	research in freshwater systems. In traditional transport geography, researchers have tried to explain complex human travel patterns by using spatial and spatio-temporal models (Black 2003). The modelling of human travel patterns relies, to a large extent, on the notion of accessibility (Table 2, Fig. 2). Accessibility can be defined as "the potential for reaching spatially distributed opportunities", and its quantification typically includes the physical distance or cost of travel, as well as the quality and quantity of opportunities that humans want to reach (Páez et al. 2012). In the
 341 342 343 344 345 346 347 348 	research in freshwater systems. In traditional transport geography, researchers have tried to explain complex human travel patterns by using spatial and spatio-temporal models (Black 2003). The modelling of human travel patterns relies, to a large extent, on the notion of accessibility (Table 2, Fig. 2). Accessibility can be defined as "the potential for reaching spatially distributed opportunities", and its quantification typically includes the physical distance or cost of travel, as well as the quality and quantity of opportunities that humans want to reach (Páez et al. 2012). In the ecological context, the quality and quantity of opportunities might translate into habitat
 341 342 343 344 345 346 347 348 349 	research in freshwater systems. In traditional transport geography, researchers have tried to explain complex human travel patterns by using spatial and spatio-temporal models (Black 2003). The modelling of human travel patterns relies, to a large extent, on the notion of accessibility (Table 2, Fig. 2). Accessibility can be defined as "the potential for reaching spatially distributed opportunities", and its quantification typically includes the physical distance or cost of travel, as well as the quality and quantity of opportunities that humans want to reach (Páez et al. 2012). In the ecological context, the quality and quantity of opportunities might translate into habitat quality in terms of water chemistry (e.g. pH or nutrients) and quantity of resources (e.g.
 341 342 343 344 345 346 347 348 349 350 	research in freshwater systems. In traditional transport geography, researchers have tried to explain complex human travel patterns by using spatial and spatio-temporal models (Black 2003). The modelling of human travel patterns relies, to a large extent, on the notion of accessibility (Table 2, Fig. 2). Accessibility can be defined as "the potential for reaching spatially distributed opportunities", and its quantification typically includes the physical distance or cost of travel, as well as the quality and quantity of opportunities that humans want to reach (Páez et al. 2012). In the ecological context, the quality and quantity of opportunities might translate into habitat quality in terms of water chemistry (e.g. pH or nutrients) and quantity of resources (e.g. abundance of prey for predators). These qualities and quantities should be contrasted with the

352 localities in the landscape.

353	A number of measures have been devised for describing transport accessibility. These
354	can be broadly divided into connectivity, accessibility of nearest object, cumulated
355	opportunities, gravity and utility measures (Kwan 1998; Rietveld and Bruinsma 1998; Páez et
356	al. 2012). Connectivity measures describe the number or rate of connections for a specific
357	site, such as interconnectivity of a location to other locations within varying topology of a
358	road network (Xie and Levinson 2007). Accessibility of nearest object is measured as least-
359	cost path, for example, by applying street network travel distances to measuring the reach of
360	service facilities (Smoyer-Tomic et al. 2006). Cumulated opportunities measure the number
361	of opportunities (e.g. "available" sites for a species in ecological terms) reached within a
362	certain travel cost, which can be applied to indicate amount of reachable services in an urban
363	environment (Páez et al. 2012). While these measures mostly deal with the presence of a
364	connection between any two sites or the distance separating them, the purpose of gravity
365	measures is to express spatial interactions between sites. Drawing directly on the principles of
366	the law of gravity in physics, gravity measures assume that the attraction of a site increases
367	with size (or any other attribute) and declines with distance, travel time or cost. This is easily
368	translated into dispersal of species between localities in a metacommunity, whereby some
369	sites attract more individuals and species than others given the same dispersal distances, time
370	or cost. Also, for example, potential of human social interaction can be estimated within
371	urban and regional structures by applying daily time and travel constraints of people in
372	relation to residential, work and other activities (Farber et al. 2013). In freshwater systems,
373	this approach can include evaluation of species dispersal with different dispersal abilities
374	within a metacommunity and can be incorporated into the gravity models. Utility measures
375	are similar to gravity measures, but they are based on individual-related choices aiming to
376	maximize utility in the selection of the destination (Geurs and van Wee 2004). This can be

Page 18 of 70

18

377 seen as a kind of habitat selection by individual organisms (e.g. oviposition by female insects378 and nest-site selection by birds), which in turn affects local community structure.

While transport geography is an interesting source of proxies to be conflated with ecological approaches, there is some overlap in the graph-based proxies used in transport geography and metacommunity research. Such overlap is not always easy to detect since vocabulary is not fully consistent across disciplines. Nevertheless, although some of the proxies and terms have been used in metacommunity ecology before, transport geography provides explicit formulas for further ecological applications and defines complex issues in general terms.

386 There is one potential limitation with the use of physical and transport geography 387 proxies: the lack of suitable landscape-level environmental data in some regions. However, 388 our premise is that when environmental data are needed, they could be acquired from existing 389 databases or using modern geospatial data compilation techniques. These include land use 390 and land cover information using vast sets of airborne or spaceborne remote sensing sensors 391 and topographic information (including delineation of stream networks) from high-resolution 392 digital elevation models. Naturally, micro-scale explorations would require more accurate 393 spatial data than available in most of the global data banks. However, similar remote sensing-394 based acquisition techniques (e.g. terrestrial hyperspectral and LiDAR imaging) could be applied in fine-scale investigations using the physical and transport geography proxies. 395

Another caveat in applying all physical and transport geography proxies is that although they describe 'physical connectivity' between sites, they do not necessarily translate easily into 'biological connectivity'. Hence, researchers should keep this limitation in mind and try combining organismal proxies with physical connectivity among sites. One approach is also to take into account biological similarity between sites, with the assumption that

19

401 biological dissimilarity provides information about the biological connectivity between sites402 (Layeghifard et al. 2015; Monteiro et al. 2017; see below).

403

404 Use of different proxies for dispersal in the literature

406	In order to roughly estimate the frequency of usage of different proxies for dispersal, we
407	conducted a literature search using the Web of Science database (from 2004 to August 26,
408	2016) and the terms (Dispers* AND metacommunity*), in the field TOPIC. These terms
409	were combined, also in field TOPIC and using the Boolean operator "AND", with keywords
410	related to the different proxies evaluated in this review (Table 3). Thus far, terms related to
411	organismal-based proxies were the most frequent, followed by physical distance-based
412	proxies. However, we did not find articles using terms that would indicate the use of transport
413	geography proxies in metacommunity ecology.
414	In studies using organismal-based proxies, a possible analytical approach consists of
415	the creation of different matrices comprising taxa with different (yet typically inferred)
416	dispersal abilities. These matrices may then be analyzed using variation partitioning methods
417	(see examples below). The frequency of usage of spatial eigenfunction analysis and simple
418	polynomials of geographic coordinates (i.e. distance-based proxies) was likely
419	underestimated in our search. For example, Soininen (2014; 2016) found a total of 322 data
420	sets, which were analyzed with variation partitioning methods (most of which were from
421	lakes and streams). However, many data points in Soininen's (2014; 2016) studies originated
422	from one paper (Cottenie 2005), which was also counted as a single paper in our literature
423	searches. We thus believe that our keyword analysis confidently reveals that use of more

elaborate proxies for dispersal (considering, for instance, transport geography proxies) are

425	less frequent than simple and possibly too simplistic proxies. In summary, our keyword
426	analysis indicates the need for further comparative studies to better take dispersal into
427	account in metacommunity studies.
428	
429	Statistical approaches to model dispersal influences on biological communities
430	
431	There are many spatial statistical approaches to study species distributions and community
432	structure that incorporate physical distance proxies, including the Mantel test (Mantel 1967),
433	eigenfunction spatial analysis (Borcard and Legendre 2002) and related methods (for a
434	comprehensive review, see Legendre and Legendre 2012). For example, the flexibility and
435	usefulness of eigenfunction spatial analysis and other similar methods in spatial modelling
436	have been stressed elsewhere (Griffith and Peres-Neto 2006; Dray et al. 2006; Dray et al.
437	2012), and we briefly emphasize that they deserve their place in community ecologists'
438	toolbox. Eigenfunction spatial analyses allow one to use different types of distance (e.g.
439	overland, watercourse and flow distance), geographic connectivity matrices and information
440	about directional spatial processes (Blanchet et al. 2008; 2011; Landeiro et al. 2011; Göthe et
441	al. 2013a; Grönroos et al. 2013) as inputs to compute eigenvectors (i.e. spatial predictors for
442	univariate regression or multivariate constrained ordination analyses). This offers important
443	flexibility to model complex spatial phenomena (Griffith and Peres-Neto 2006), such as
444	variation of community structure (Dray et al. 2012). However, it has also been suggested that
445	the explanatory variables derived from spatial eigenfunction analysis may overestimate
446	spatial structure and the potential effects of dispersal on biological communities (Bennett and

447	Gilbert 2010; Smith and Lundholm 2010). Also, spatial patterns in metacommunity structure
448	may have emerged due to the effects of environmental variables, which are themselves
449	spatially patterned and, more importantly considering the scope of this review, due to
450	dispersal processes. In short, after controlling for the effects of environmental variables (e.g.
451	using variance partitioning; see Peres-Neto et al. 2006; Legendre and Legendre 2012), the
452	spatial variables can be used to infer the relative role of dispersal processes. In studies of
453	metacommunity structure, this inference is valid only if one assumes that no relevant
454	environmental variables have been overlooked and that the effects of biotic interactions on
455	the spatial patterns of community structure are negligible (Peres-Neto and Legendre 2010;
456	Vellend et al. 2014).
457	Layeghifard et al. (2015) suggested weighting a spatial matrix (be it overland or not)
458	by a dissimilarity matrix derived from a community data matrix. Accordingly, connectivity
459	between a focal site and two other equally-distant sites will not be identical, but are
460	dependent on biological dissimilarity. The more similar the focal site is to one of the sites, the
461	higher is their assumed connectivity (Layeghifard et al. 2015). It is probably possible to
462	modify these methods to accompany more complex relationships between sites in space. For
463	instance, it could be possible to use the suite of distance classes referred to earlier in this
464	review (Table 1). Also, if a gravity model of connectivity is hypothesized to represent
465	dispersal, for instance, from headwaters to mainstreams and the latter accumulates more
466	species, a suitable dissimilarity index may be one that measures species turnover only and not
467	species richness differences (Lennon et al. 2001; Baselga 2010; Legendre 2014).

468

469 *Combining organismal and physical distance proxies in the same modelling study*

470

471	A few studies have considered simultaneously organismal and physical distance proxies. For
472	example, Kärnä (2014) and Kärnä et al. (2015) studied a stream insect metacommunity in a
473	subarctic drainage basin in Finland and examined how physical distance proxies affect
474	different groups of insects defined by body size and dispersal mode. As physical distances,
475	they used (1) overland, (2) watercourse, (3) least-cost path (i.e. optimal routes between sites
476	in landscape) and (4) cumulative cost (i.e. cumulative landscape resistance between sites
477	along the optimal route) distances (Kärnä 2014; Kärnä et al. 2015). They calculated Mantel
478	correlations and partial Mantel correlations between Bray-Curtis biological community
479	dissimilarities and environmental distances or each of the four types of physical distances. In
480	these data, environmental and spatial distances were not strongly correlated, and the results of
481	partial Mantel test were hence very similar to the Mantel tests shown here (Fig. 3). Kärnä et
482	al. (2015) found that environmental distances between sites were most strongly correlated
483	with all biological dissimilarity matrices, as has been shown previously for stream
484	metacommunities (Heino et al. 2015b). However, different types of physical distances were
485	also often significant for different subsets of stream insect assemblages, even when
486	environmental effects were controlled for. A similar pattern has also been found in streams of
487	other climatic zones (Cañedo-Argüelles et al. 2015; Datry et al. 2016b). What is more
488	important is that the more complex cumulative cost distances were either equally good or
489	sometimes even outperformed the typically-used overland and watercourse distances in
490	accounting for variation in biological community dissimilarities between sites, although this
491	varied between different subsets of stream insect assemblages (Kärnä et al. 2015).
492	The approaches using cost distance-based modelling could also be strengthened by

493 the use transport geography proxies. For example, Cañedo-Argüelles et al. (2015), Kärnä et

494	al. (2015) and Datry et al. (2016b) could also have used measures related to 'cumulative
495	opportunities', 'population attraction and competition between destinations' or 'gravity'
496	measures (Table 2) when examining metacommunity organization in streams. For instance, in
497	terms of gravity, nodes in the mainstem of a basin may support large population sizes and,
498	thus, provide much more migrants than small tributaries. We are currently striving to begin
499	applying these measures in our studies of stream metacommunity organization and
500	environmental assessment, and also urge other researchers to focus on these and other
501	relevant proxies in various ecosystem types.
502	
503	Applications of proxies for dispersal
504	
505	Applied research benefitting from use of dispersal proxies
506	
507	While the importance of dispersal is well appreciated in fundamental ecology, applied
508	research has lagged behind in integrating dispersal effects on biological communities
509	(Bengtsson 2010; Heino 2013a). For example, current bioassessment approaches infer effects
510	of environmental changes using the responses of bioindicators to environmental factors

511 (Hawkins et al. 2000a; Friberg et al. 2011). However, sole reliance on local environmental

- control (i.e. species sorting) may be misleading (Heino 2013a; Friberg 2014). In species
- 513 sorting, adequate dispersal guarantees that all species are available at a locale to be filtered by
- local environmental factors (Leibold et al. 2004; Holyoak et al. 2005). However, high
- dispersal rates from unpolluted to polluted sites as in source-sink dynamics (Pulliam 1988)

24

516 may decrease our ability to detect environmental change through the use of bioindicators. 517 Some species indicative of pristine conditions may occur at the polluted site owing to high 518 dispersal rates, even if that site is not favourable for them in the long term, thus masking the 519 influence of anthropogenic changes on local biota. In contrast, owing to dispersal limitation, 520 some pristine reference sites may also lack species that would otherwise occur there, thus 521 affecting bioassessment results. Hence, we support the idea derived from simulation analyses 522 (Siqueira et al. 2014) that potential dispersal effects should be directly integrated in aquatic 523 bioassessment studies (Heino 2013a; Alahuhta and Aroviita 2016). 524 Restoration ecology is another field that might benefit from greater insights about

525 dispersal. Restored sites may lack many species simply because potential donor communities 526 were all impacted by pollution or habitat degradation in a region, and colonization will thus 527 be slow and initially composed mostly of dispersal-prone species (Bond and Lake 2003). 528 Another possibility in this context relates to delayed recolonization of ecosystems that are 529 recovering from anthropogenic stressors due to dispersal limitation (Blakely et al. 2006; Gray 530 and Arnott 2011; 2012). Restoration ecology should thus take into account ecological 531 corridors for dispersal, which might facilitate the recolonization of previously denuded or 532 restored sites (Tonkin et al. 2014). The efficiency of ecological corridors is also dependent on 533 dispersal ability and the spatial configuration of these corridors in the landscape (Joly et al. 534 2001). Hence, rather than restoring only local sites, restoration of connectivity is also a 535 prerequisite for successful local restoration outcomes (see also McRae et al. 2012).

Conservation planning is a third field of applied research that should take dispersal directly into consideration. This is because dispersal within and between protected areas should be guaranteed (Jaeger et al. 2014; Barton et al. 2015a), and the network of protected areas should be planned such that they can act as stepping-stones to allow organisms to

540	respond to environmental change (Fahrig and Merriam 1994; Margules and Pressey 2000;
541	Lechner et al. 2015). However, conservation planning is also challenged by the vast numbers
542	of species that should be monitored over broad metacommunities (e.g. Heino 2013a) and
543	macrosystems levels (e.g. Heffernan et al. 2014), which is also exacerbated by the difficulties
544	to measure dispersal over broad spatial scales. As a "science of crisis" (Soulé 1985),
545	conservation biology cannot wait for the development and application of sophisticated, time-
546	consuming and expensive methods of measuring dispersal directly for hundreds to thousands
547	of species and, at least in the short-term, the best we can do is to rely on proxies for dispersal.
548	
549	The importance of integrating dispersal in predictive models of global change
550	
551	Dispersal should be directly considered in predictive models in ecological research. Ecology
552	has become increasingly predictive, most likely due to the need to forecast the effects of the
553	ongoing global change (Evans et al. 2012; Petchey et al. 2015). Over the past decades,
554	several models have been designed to predict how populations, communities or ecosystems
555	will respond to ecological changes in time and space. Predictive models have been used to
556	forecast distributions of species based on their climatic niches using Species Distribution
557	Models (SDMs; Guisan and Zimmerman 2000; Chu et al. 2005) and, for example, to assess
558	ecological status by comparing the observed community in a water body with the one
559	expected under reference conditions (Hawkins et al. 2000a; Clarke et al. 2003). However,
560	despite the wide use of both approaches, predictions can be biased if dispersal is not
561	considered. Suitable habitats can be available for a species, but its real occurrence will
562	ultimately depend on its ability to reach the site.

563	SDMs have been criticized because most of them only consider niche characteristics
564	of species and neglect biotic interactions (Wisz et al. 2013), evolutionary changes (Thuiller et
565	al. 2013) or dispersal processes. Several attempts have been made to incorporate dispersal
566	into SDMs (e.g. Araújo et al. 2006). This is usually done by considering two extreme degrees
567	of dispersal limitation (e.g. no dispersal vs unlimited dispersal) or intermediate situations
568	using probabilistic methods when data on the dispersal abilities of the species are available
569	(Barbet-Massin et al. 2012). Some modelling endeavours have also acknowledged the need to
570	consider barriers to dispersal (e.g. dams) to improve model accuracy (Filipe et al. 2013).
571	Information on current spatial connectivity across populations based on genetic approaches
572	could also be used in SDMs to improve model accuracy (Duckett et al. 2013).
573	A possibility to construct models encompassing responses of multiple species at the
574	same time include the River InVertebrate Prediction And Classification System (RIVPACS),
575	first applied in riverine ecosystems (Wright et al. 2000; Clarke et al. 2003), but which can
576	also be applied in other freshwater, marine and terrestrial ecosystems. There have been no
577	empirical attempts to include dispersal in the practical applications of RIVPACS-type
578	models, but simulations have shown the potential importance of dispersal for bioassessment
579	(Siqueira et al. 2014). At best, some of these types of models consider spatial coordinates (i.e.
580	latitude and longitude) as model predictors, but are usually based on assumptions about the
581	niche characteristics of species (i.e. environmental filtering; Friberg et al. 2011). The
582	importance of using dispersal proxies as predictor variables in bioassessment models is of
583	particular significance in the context of metacommunities (Heino 2013a). This is because the
584	spatial connectivity of sites and the dispersal abilities of the species may hinder the ability of
585	models to detect an impact (Alahuhta and Aroviita 2016). This is especially relevant in less
586	impacted and highly isolated sites (Siqueira et al. 2014). In addition, these sites (e.g. isolated
587	headwater streams) usually host species with narrow ecological niches and distribution

588	ranges, which can also have limited dispersal abilities (Finn et al. 2011). Incorporating
589	organismal and physical distance proxies for dispersal in the metacommunity-level
590	bioassessment could help to increase the accuracy of these models and thus the management
591	of constituent freshwater ecosystems.
592	
593	Questions for further freshwater research
594	
595	The importance of dispersal proxies can be revealed by a number of questions that should be
596	considered in basic and applied freshwater ecology. Although these ideas are somewhat
597	speculative at present, they may provide useful roadmaps for further studies on dispersal
598	proxies in bioassessment, restoration and conservation biology.
599	
600	How important are stepping-stones for dispersal and how they can be recognized?
600 601	How important are stepping-stones for dispersal and how they can be recognized?
600 601 602	How important are stepping-stones for dispersal and how they can be recognized? Ecological stepping-stones can be defined as sites or areas that help species to disperse from
600 601 602 603	How important are stepping-stones for dispersal and how they can be recognized? Ecological stepping-stones can be defined as sites or areas that help species to disperse from a site to other suitable sites across inhospitable landscapes. Stepping-stones can be expected
600 601 602 603 604	How important are stepping-stones for dispersal and how they can be recognized? Ecological stepping-stones can be defined as sites or areas that help species to disperse from a site to other suitable sites across inhospitable landscapes. Stepping-stones can be expected to be very important for species dispersal (Saura et al. 2014; Barton et al. 2015a), but their
600 601 602 603 604 605	How important are stepping-stones for dispersal and how they can be recognized? Ecological stepping-stones can be defined as sites or areas that help species to disperse from a site to other suitable sites across inhospitable landscapes. Stepping-stones can be expected to be very important for species dispersal (Saura et al. 2014; Barton et al. 2015a), but their recognition may be difficult. If we can recognize such sites in landscapes by applying
600 601 602 603 604 605 606	How important are stepping-stones for dispersal and how they can be recognized? Ecological stepping-stones can be defined as sites or areas that help species to disperse from a site to other suitable sites across inhospitable landscapes. Stepping-stones can be expected to be very important for species dispersal (Saura et al. 2014; Barton et al. 2015a), but their recognition may be difficult. If we can recognize such sites in landscapes by applying organismal and physical distance proxies in combination or based on transport geography
600 601 602 603 604 605 606 607	How important are stepping-stones for dispersal and how they can be recognized? Ecological stepping-stones can be defined as sites or areas that help species to disperse from a site to other suitable sites across inhospitable landscapes. Stepping-stones can be expected to be very important for species dispersal (Saura et al. 2014; Barton et al. 2015a), but their recognition may be difficult. If we can recognize such sites in landscapes by applying organismal and physical distance proxies in combination or based on transport geography measures, there are better possibilities to plan the conservation of metapopulations and

for multiple species and subsequently plan a network of such sites across a broaderlandscape.

611	Graph-based modelling can also help if field-based measures fail to highlight the
612	importance of stepping-stones for dispersal (Galpern et al. 2011). For example, network
613	analyses can reveal how connectivity relationships change in the landscape if stepping-stones
614	are deleted from the network of habitat patches. The importance of stepping-stones and other
615	patches can be prioritized using different indices (e.g. Rayfield et al. 2011), which quantify
616	the importance of the focal habitat to maintaining connectivity between the patches (e.g.
617	Pereira et al. 2011). Their more widespread application is warranted, especially for network-
618	like stream systems, where habitat patches and their boundaries may be not so easily
619	recognized (Erős and Campbell Grant 2015).
620	

621 *Are very low or very high dispersal rates affecting bioassessment?*

622

623 Dispersal limitation may lead to a situation where not all species are available in reference 624 sites (Pärtel et al. 2011; Cornell and Harrison 2014). A traditional approach has been to use a 625 regional stratification to focus on smaller geographical areas, which could ensure that all 626 species are able to reach all sites within a relatively small region (e.g. Hawkins et al. 2000b) 627 and persist on them (e.g. Cornell and Harrison 2014). This should facilitate the detection of 628 species sorting mechanisms and help define reference conditions. However, temporary local 629 extinctions at suitable sites may not always be counterbalanced by immediate colonization if 630 other suitable sites are located far away from the focal site even within a small region (Heino, 631 2013a) and/or if species have weak dispersal ability. In this case, we may classify sites in the 632 wrong reference site group (or as impacted) if some species that should occur according to 633 environmental conditions are absent from a site. It might be possible to adjust our predictive

29

634	modelling efforts by using physical distance proxies (see Table 2), which might lead to a
635	better prediction success. Alternatively, we could focus on a subset of good dispersers in our
636	dataset, which should show minor effects of dispersal limitation, or focus on resident species
637	(i.e. those species that do not show strong propensity for migration), which may show
638	stronger associations with environmental gradients than entire assemblages (Bried et al.
639	2015).
640	The mass effects perspective in metacommunity ecology (Mouquet and Loreau 2003)
641	suggests that high dispersal between localities may homogenize, at least to some degree,
642	community structure in adjacent sites. On the other hand, some species may be absent from a
643	site owing to not having been able to reach the site yet due to low dispersal rates or small
644	source population size (Leibold et al. 2004). Either way, it may be difficult to assess if
645	anthropogenic stressors have impacted a site, as extra species may be present or some
646	expected species are missing (Siqueira et al. 2014). This limits our bioassessment by not
647	detecting change correctly. Using information about the species composition of nearby sites
648	might help us to decipher if either high or limited dispersal is affecting our bioassessment and
649	restoration endeavours (Tonkin et al. 2014). These could be quantified by taking
650	simultaneously into account a site's accessibility and relative quality in the landscape, and
651	how it attracts dispersers from the surrounding metacommunity. For instance, the measures
652	from transport geography described above (e.g., gravity or utility measures, Table 2) could be
653	used to show that the lower than expected biological differences between reference and
654	impacted sites are due to their strong spatial connectivity and species exchange in terms of
655	high dispersal.

656

657 Will species reach all potential future habitats in the face of global environmental changes?658

659	Even though environmental conditions change, not all species may be able to track those
660	changes (Heino et al. 2009; Poff et al. 2012). Poor dispersers or those with small source
661	populations may not be able to disperse to suitable new habitats in other areas, at least if not
662	assisted by humans. If such poorly-dispersing species can be identified based on their
663	organismal traits, there are more possibilities for success (Bhowmik and Schäfer 2015). Also,
664	if their actual dispersal routes can be approximated using physical distance proxies, the
665	success of the species for founding self-maintaining metapopulations and metacommunities
666	may be better in the face of global change. For example, global change may lead to increase
667	in temporal fragmentation of river networks, i.e., the degree of intermittency, which should
668	affect the connectivity between stream sites (Datry et al. 2014). Improving our ability to
669	predict changes in stream communities using distance-based proxies accounting for this
670	fragmentation will improve our capacity to assess, estimate and mitigate the effects of global
671	changes on intermittent streams (Datry et al. 2016c).

672

673 How can the dispersal of invasive species be predicted using proxies?

674

675 Knowing the dispersal ability of an invasive species (i.e. an organismal-based proxy) helps to 676 predict its rate and potential to spread over large areas. Furthermore, knowing how landscape resistance (i.e. a physical distance proxy) may hinder its spread may have obvious benefits 677 678 for predicting or preventing its dispersal. In this case, applications of the gravity or utility 679 measures originated from the transport geography might also be useful, as the accessibility 680 and attraction of sites for invasive species could be revealed using suitable proxy measures. 681 Hypothetically, some widely recognized man-made structures that impair dispersal of native 682 species such as dams (Winemiller et al. 2016) might, at the same time, boost the spread of 683 invasive species (Havel et al. 2005).

684	
685	How can we best detect and restore dispersal routes between near-pristine sites?
686	
687	Local populations and communities at near-pristine or pristine sites need to be connected by
688	gene and organism flows in order to remain viable (Fahrig 2003). Conservation and
689	restoration efforts should also target the maintenance of the most efficient dispersal routes to
690	and from these pristine sites, although identifying these routes remains a challenge. Dispersal
691	proxies could offer an efficient tool to identify these routes for all types of species, from poor
692	to strong dispersers, and therefore provide insights to ecosystem managers for designing
693	restoration and conservation projects (Tonkin et al. 2014; Cañedo-Arguelles et al. 2015;
694	Kärnä et al. 2015; Datry et al. 2016a).
695	
696	Can restoration measures fail due to lack of dispersers from neighbouring sites?
697	
698	Restoration practices may not attain the planned objectives, or only attain them after long
699	periods, if species are not able to colonize restored habitats in a strongly human-impacted
700	landscape (Bond and Lake 2003; Tonkin et al. 2014; Barton et al. 2015b). Accordingly,
701	restoration measures should be initially focused on sites connected to non-impacted source
702	habitats or be planned to encompass entire landscapes or catchments that include some source
703	localities (Bond and Lake 2003). Also, restoration practices should be coupled with the
704	restoration of adjacent ecosystems to enhance suitable habitat corridors for dispersing species
705	(Smith et al. 2009). Identifying such habitat corridors using the physical-based or transport
706	geography proxies might be useful in this context.

707

708 Where to go from here?

710	Barton et al. (2015a) suggested that ecologists have made little effort to validate the use of
711	proxies in ecology. For example, from a bioassessment perspective, the generally assumed
712	conceptual model (e.g. environmental change \rightarrow local community structure) suggests that a
713	change in the environment (e.g. pollution) causes a change in local community structure (e.g.
714	changes in species composition and relative abundances of species). However, dispersal
715	disrupts this basic model and, to tease apart this effect, one needs a proxy for dispersal, which
716	would function as a covariate (e.g. environmental change \rightarrow local community structure \leftarrow
717	proxy for dispersal). This covariate should, for instance, take mass effects or dispersal
718	limitation into account. As shown in this essay, there are a number of ways to express the
719	level of spatial relationships between sites and the best way may well be case-specific,
720	depending on a study system, regional environmental conditions, between-site connectivity
721	and characteristics of biotas. Thus, we propose that freshwater ecologists should evaluate and
722	quantify the relationship between the biological dataset at hand and different proxies for
723	dispersal (e.g. organismal-based dispersal traits, Euclidean, watercourse, least-cost path
724	distances, and more). However, for the sake of generality, testing the predictability of
725	different proxies in different regions, with different groups of organisms and in different
726	points in time is also warranted (Barton et al. 2015a). In this context, a promising direction
727	for future work would be to utilize the data from previous studies on bioassessment,
728	restoration, conservation biology and community ecology, with the objective of quantifying
729	the relative importance of different proxies for dispersal using a meta-analytical approach. A
730	second objective would be, after knowing which proxy to use, how to integrate a proxy into

33

practical management of biodiversity. This is an open call for researchers interested in suchproxies for dispersal.

733

734 Conclusions

735

736 Dispersal proxies include traditional physical distances used in ecological research, such as 737 Euclidean distances, network distances, and various organismal-based proxies, such as body 738 size, dispersal mode and dispersal ability. More recent approaches include graph-based 739 methods, which show considerable promise for freshwater research. Future studies should 740 also consider applying methods developed in other disciplines, such as transport geography. 741 Application of these proxies should not be limited to fundamental ecological research, but 742 they should also be widely considered in applied fields, such as bioassessment, conservation 743 and restoration ecology. As dispersal is an essential element affecting species distributions, it 744 should be communicated to environmental managers and policy makers responsible for 745 practical conservation, management and assessment issues (Barton et al. 2015b). Hence, 746 while dispersal proxies should be efficient enough in capturing dispersal as a phenomenon, 747 they should also be simple enough to be useful in practical solutions. We propose that 748 organismal, physical and transport geography proxies for dispersal should be widely 749 considered as tools guiding environmental management and decision making.

750

751 Acknowledgments

34

The writing of this essay was supported by grants from the Academy of Finland to J. Heino,

- 754 J. Hjort and J. Soininen. T. Datry and N. Bonada were supported by the French Foundation
- for Research on Biodiversity and the French National Agency for Water and Aquatic
- 756 Environments in the context of the CESAB project "Intermittent River Biodiversity Analysis
- and Synthesis" (IRBAS; <u>http://irbas.cesab.org/</u>). A.S. Melo and L.M. Bini received research
- 758 fellowships from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq,
- 759 grants 309412/2014-5 and 304314/2014-5, respectively). T. Erős was supported by the
- 760 OTKA K104279 grant.

761

762 Refe	rences
-----------------	--------

- Alahuhta, J., and Aroviita, J. 2016. Quantifying the relative importance of natural variables,
 human disturbance and spatial processes in ecological status indicators of boreal
 lakes, Ecol. Ind. 63: 240-248.
- Alahuhta, J., and Heino, J. 2013. Spatial extent, regional specificity and metacommunity
 structuring in lake macrophytes. J. Biogeogr. 40: 1572-1582.
- Altermatt, F. 2013. Diversity in riverine metacommunities: a network perspective. Aquat.
 Ecol. 47: 365-377.
- Araújo, M. B., Thuiller, W., and Pearson, R. G. 2006. Climate warming and the decline of
 amphibians and reptiles in Europe. J. Biogeogr. 33: 1712-1728.
- 773 Baas-Becking, L. G. M. 1934. Geobiologie of inleiding tot de milieukunde. The Hague, the
- 774 Netherlands: W.P. Van Stockum and Zoon.

775	Baguette, M., Blanchet, S., Legrand, D., Stevens, V. M., and Turlure, C. 2013. Individual
776	dispersal, landscape connectivity and ecological networks. Biol. Rev. 88: 310-326.
777	Barbet-Massin, M., Thuiller, W. and Jiguet, F. 2012. The fate of European breeding birds
778	under climate, land-use and dispersal scenarios. Glob. Chang. Biol. 18: 881-890.
779	Barton, P. S., Lentini, P. E., Alacs, E., Bau, S., Buckley, Y. M., Burns, E. L., Driscoll, D. A.,
780	Guja, L. K., Kujala, H., Lahoz-Monfort, J. J., Mortelliti, A., Nathan, R., Rowe, R.,
781	and Smith, A. L. 2015a. Guidelines for using movement science to inform
782	biodiversity policy. Env. Manag. 56: 791-801.
783	Barton, P. S., Pierson, J. C., Westgate, M. J., Lane, P. W., and Lindenmayer, D. B. 2015b.
784	Learning from clinical medicine to improve the use of surrogates in ecology. Oikos
785	124 : 391–398.
786	Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity.
786 787	Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19 : 134-143.
786 787 788	Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity.Glob. Ecol. Biogeogr. 19: 134-143.Beisner, B. E., Peres-Neto, P. R., Lindstrom, E., Barnett, A., and Longhi, M. L. 2006. The
786 787 788 789	 Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19: 134-143. Beisner, B. E., Peres-Neto, P. R., Lindstrom, E., Barnett, A., and Longhi, M. L. 2006. The role of dispersal in structuring lake communities from bacteria to fish. Ecology 87:
786 787 788 789 790	 Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19: 134-143. Beisner, B. E., Peres-Neto, P. R., Lindstrom, E., Barnett, A., and Longhi, M. L. 2006. The role of dispersal in structuring lake communities from bacteria to fish. Ecology 87: 2895-2991.
786 787 788 789 790 791	 Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19: 134-143. Beisner, B. E., Peres-Neto, P. R., Lindstrom, E., Barnett, A., and Longhi, M. L. 2006. The role of dispersal in structuring lake communities from bacteria to fish. Ecology 87: 2895-2991. Bengtsson, J. 2010. Applied (meta)community ecology: diversity and ecosystem services at
786 787 788 789 790 791 792	 Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19: 134-143. Beisner, B. E., Peres-Neto, P. R., Lindstrom, E., Barnett, A., and Longhi, M. L. 2006. The role of dispersal in structuring lake communities from bacteria to fish. Ecology 87: 2895-2991. Bengtsson, J. 2010. Applied (meta)community ecology: diversity and ecosystem services at the intersection of local and regional processes. In Community Ecology. Processes,
786 787 788 789 790 791 792 793	 Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19: 134-143. Beisner, B. E., Peres-Neto, P. R., Lindstrom, E., Barnett, A., and Longhi, M. L. 2006. The role of dispersal in structuring lake communities from bacteria to fish. Ecology 87: 2895-2991. Bengtsson, J. 2010. Applied (meta)community ecology: diversity and ecosystem services at the intersection of local and regional processes. In Community Ecology. Processes, Models, and Applications. (eds. Verhoef H.A. and Morin P.J.). Oxford University
786 787 788 789 790 791 792 793 794	 Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19: 134-143. Beisner, B. E., Peres-Neto, P. R., Lindstrom, E., Barnett, A., and Longhi, M. L. 2006. The role of dispersal in structuring lake communities from bacteria to fish. Ecology 87: 2895-2991. Bengtsson, J. 2010. Applied (meta)community ecology: diversity and ecosystem services at the intersection of local and regional processes. In Community Ecology. Processes, Models, and Applications. (eds. Verhoef H.A. and Morin P.J.). Oxford University Press, New York, pp. 115–130.
786 787 788 789 790 791 792 793 794 795	 Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19: 134-143. Beisner, B. E., Peres-Neto, P. R., Lindstrom, E., Barnett, A., and Longhi, M. L. 2006. The role of dispersal in structuring lake communities from bacteria to fish. Ecology 87: 2895-2991. Bengtsson, J. 2010. Applied (meta)community ecology: diversity and ecosystem services at the intersection of local and regional processes. In Community Ecology. Processes, Models, and Applications. (eds. Verhoef H.A. and Morin P.J.). Oxford University Press, New York, pp. 115–130. Bhowmik, A. K., and Schäfer, R. B. 2015. Large scale relationship between aquatic insect

- Bilton, D.T., Freeland, J.R., and Okamura, B. 2001. Dispersal in freshwater invertebrates.
- Annual Review of Ecology and Systematics **32**: 159–181.
- Black, W.R. 2003. Transportation: A geographical analysis. Guilford Press.
- Blakely, T. J., Harding, J. S., Mcintosh, A. R., and Winterbourn, M. J. 2006. Barriers to the
 recovery of aquatic insect communities in urban streams. Freshwat. Biol. 51: 16341645.
- Blanchet, F.G., Legendre, P., and Borcard, D. 2008a. Forward selection of explanatory
 variables. Ecology 89: 2623–2632.
- Blanchet, F. G., Legendre, P., and Borcard, D. 2008b. Modelling directional spatial processes
 in ecological data. Ecol. Model. 215: 325-336.
- Blanchet, F. G., Legendre, P., Maranger, R., Monti, D., and Pepin, P. 2011. Modelling the
 effect of directional spatial ecological processes at different scales. Oecologia 166:
 357-368.
- Bohmann, K., Evans, A., Gilbert, M. T., Carvalho, G. R., Creer, S., Knapp, M. 2014.
- Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol.
 Evol. 29: 358–367.
- Bohonak, A. J. 1999. Dispersal, gene flow, and population structure. Quart. Rev. Biol. 74:
 21-45.
- Bohonak A. J., and Jenkins D. G. 2003. Ecological and evolutionary significance of dispersal
 by freshwater invertebrates. Ecol. Lett. 6: 783-796.
- 817 Bond, N. R., and Lake, P. S. 2003. Local habitat restoration in streams: Constraints on the
- effectiveness of restoration for stream biota. Ecol. Manag. Rest. 4: 193-198.

819	Borcard, D., and Legendre, P. 2002. All-scale spatial analysis of ecological data by means of
820	principal coordinates of neighbour matrices. Ecol. Model. 153: 51-68.
821	Borthagaray, A.I., Berazategui, M., and Arim, M. 2015. Disentangling the effects of local and
822	regional processes on biodiversity patterns through taxon-contingent metacommunity
823	network analysis. Oikos 124: 1383-1390.
824	Bried, J. T., McIntyre, N. E., Dzialowski, A. R., and Davis, C. A. 2015. Resident-immigrant
825	dichotomy matters for classifying wetland site groups and metacommunities.
826	Freshwat. Biol. 60: 2248–2260.
827	Brown, B. L., and Swan, C. M. 2010. Dendritic network structure constrains metacommunity
828	properties in riverine ecosystems. J. Anim. Ecol. 79 : 571–580.
829	Brown, B. L., Swan, C. M., Auerbach, D. A., Grant, E. H. C., Hitt, N. P., Maloney, K. O.,
830	and Patrick, C. 2011. Metacommunity theory as a multispecies, multiscale framework
831	for studying the influence of river network structure on riverine communities and
832	ecosystems. J. N. Amer. Benthol. Soc. 30 : 310-327.
833	Calabrese, J. M., and Fagan, W. F. 2004. A comparison-shopper's guide to connectivity
834	metrics. Front. Ecol. Environ. 2: 529-536.
835	Cañedo-Argüelles, M., Boersma, K. S., Bogan, M. T., Olden, J. D., Phillipsen, I., Schriever,
836	T. A., and Lytle, D. A. 2015. Dispersal strength determines meta-community structure
837	in a dendritic riverine network. J. Biogeogr. 42: 778–790.
838	Chu, C., Mandrak, N. E., and Minns, C. K. 2005. Potential impacts of climate change on the
839	distributions of several common and rare freshwater fishes in Canada. Diver. Distr.
840	11: 299–310.

Clarke R.T., Wright J.F., and Furse M.T. 2003. RIVPACS models for predicting the expected
macroinvertebrate fauna and assessing the ecological quality of rivers. Ecol. Model.

160: 219-233.

- Cornell H. V., and Harrison S. P. 2014. What are species pools and when are they important?
 Annu. Rev. Ecol. Evol. Syst. 45: 45-67.
- Cottenie, K. 2005. Integrating environmental and spatial processes in ecological community
 dynamics. Ecol. Lett. 8: 1175–1182.
- 848 Cristescu, M. E. 2014. From barcoding single individuals to metabarcoding biological
- communities. Trends Ecol. Evol. **29:** 566-571.
- Dale, M. R. T., and Fortin, M.-J. 2010. From graphs to spatial graphs. Annu. Rev. Ecol. Evol.
 Syst. 41: 21-38.
- Datry, T., Bonada, N., and Heino, J. .2016c. Towards understanding the organisation of
 metacommunities in highly dynamic ecological systems. Oikos 125: 149-159.
- Datry, T., Larned, S. T., and Tockner, K. 2014. Intermittent rivers: a challenge for freshwater
 ecology. BioScience 64: 229-235.
- Botry, T., Pella, H., Leigh, C., Bonada, N., and Hugueny, B. 2016a. A landscape approach to
 advance intermittent river ecology. Freshwat. Biol. 61: 1200–1213.
- B58 Datry, T., Melo, A. S., Moya, N., Zubieta, J., De la Barra, E., and Oberdorff, T. 2016b.
- 859 Metacommunity patterns across three Neotropical catchments with varying 860 environmental harshness. Freshwat. Biol. **61:** 277-292.
- B61 De Bie, T., De Meester, L., Brendonck, L., Martens, K., Goddeeris, B., Ercken, D., Hampel,
- H., Denys, L., Vanhecke, L., Van der Gucht, K., Van Wichelen, J., Vyverman, W.,
- and Declerck, S. A. J. 2012. Body size and dispersal mode as key traits determining
- metacommunity structure of aquatic organisms. Ecol. Lett. **15**: 740–747.

865	Dijkstra, K. D. B., Monaghan, M. T., and Pauls, S. U. 2014. Freshwater biodiversity and
866	aquatic insect diversification. Annu. Rev. Entomol. 59: 143-163.
867	Dolédec, S., Philips, N., Scarbrook, M., Riley, R.H., and Townsend C.R. 2006. Comparison
868	of structural and functional approaches to determining land use effects on grassland
869	stream invertebrate communities. J. N. Amer. Benthol. Soc. 25: 44-60.
870	Dray, S., Legendre, P., and Peres-Neto, P. R. 2006. Spatial modelling: a comprehensive
871	framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol.
872	Model. 196 : 483-493.
873	Dray, S., Pélissier, R., Couteron, P., Fortin, M. J., Legendre, P., Peres-Neto, P. R., Bellier, E.,
874	Bivand, R., Blanchet, F. G., De Cáceres, M., Dufour, A. B., Heegaard, E., Jombart,
875	T., Munoz, F., Oksanen, J., Thioulouse, J., and Wagner, H. H. 2012. Community
876	ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr. 82: 257-
877	275.
877 878	275. Duckett, P. E., Wilson, P. D., and Stow, A. J. 2013. Keeping up with the neighbours: using a
877 878 879	275. Duckett, P. E., Wilson, P. D., and Stow, A. J. 2013. Keeping up with the neighbours: using a genetic measurement of dispersal and species distribution modelling to assess the
877 878 879 880	275. Duckett, P. E., Wilson, P. D., and Stow, A. J. 2013. Keeping up with the neighbours: using a genetic measurement of dispersal and species distribution modelling to assess the impact of climate change on an Australian arid zone gecko (<i>Gehyra variegata</i>).
877 878 879 880 881	 275. Duckett, P. E., Wilson, P. D., and Stow, A. J. 2013. Keeping up with the neighbours: using a genetic measurement of dispersal and species distribution modelling to assess the impact of climate change on an Australian arid zone gecko (<i>Gehyra variegata</i>). Divers. Distr. 19: 964-976.
877 878 879 880 881 882	 275. Duckett, P. E., Wilson, P. D., and Stow, A. J. 2013. Keeping up with the neighbours: using a genetic measurement of dispersal and species distribution modelling to assess the impact of climate change on an Australian arid zone gecko (<i>Gehyra variegata</i>). Divers. Distr. 19: 964-976. Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, ZI., Knowler, D. J., Lévêque,
877 878 879 880 881 882 883	 275. Duckett, P. E., Wilson, P. D., and Stow, A. J. 2013. Keeping up with the neighbours: using a genetic measurement of dispersal and species distribution modelling to assess the impact of climate change on an Australian arid zone gecko (<i>Gehyra variegata</i>). Divers. Distr. 19: 964-976. Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, ZI., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, AH., Soto, D., Stiassny, M. L. J., and Sullivan, C.
877 878 879 880 881 882 883 883	 275. Duckett, P. E., Wilson, P. D., and Stow, A. J. 2013. Keeping up with the neighbours: using a genetic measurement of dispersal and species distribution modelling to assess the impact of climate change on an Australian arid zone gecko (<i>Gehyra variegata</i>). Divers. Distr. 19: 964-976. Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, ZI., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, AH., Soto, D., Stiassny, M. L. J., and Sullivan, C. A. (2006) Freshwater biodiversity: importance, threats, status and conservation
877 878 879 880 881 882 883 884 885	 275. Duckett, P. E., Wilson, P. D., and Stow, A. J. 2013. Keeping up with the neighbours: using a genetic measurement of dispersal and species distribution modelling to assess the impact of climate change on an Australian arid zone gecko (<i>Gehyra variegata</i>). Divers. Distr. 19: 964-976. Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, ZI., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, AH., Soto, D., Stiassny, M. L. J., and Sullivan, C. A. (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81: 163–182.
877 878 879 880 881 882 883 884 885 886	 275. Duckett, P. E., Wilson, P. D., and Stow, A. J. 2013. Keeping up with the neighbours: using a genetic measurement of dispersal and species distribution modelling to assess the impact of climate change on an Australian arid zone gecko (<i>Gehyra variegata</i>). Divers. Distr. 19: 964-976. Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, ZI., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, AH., Soto, D., Stiassny, M. L. J., and Sullivan, C. A. (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81: 163–182. Erős, T., and Campbell Grant, E. H. 2015. Unifying research on the fragmentation of
877 878 879 880 881 882 883 884 885 885 886 887	 275. Duckett, P. E., Wilson, P. D., and Stow, A. J. 2013. Keeping up with the neighbours: using a genetic measurement of dispersal and species distribution modelling to assess the impact of climate change on an Australian arid zone gecko (<i>Gehyra variegata</i>). Divers. Distr. 19: 964-976. Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, ZI., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, AH., Soto, D., Stiassny, M. L. J., and Sullivan, C. A. (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81: 163–182. Erős, T., and Campbell Grant, E. H. 2015. Unifying research on the fragmentation of terrestrial and aquatic habitats: patches, connectivity and the matrix in riverscapes.

- Erős, T., Olden, J., Schick, S., Schmera, D., and Fortin, M.-J. 2012. Characterising
- connectivity relationships in freshwaters using patch-based graphs. Lands. Ecol. 27:
 303-317.
- Evans, M. R., Norris, K. J., and Benton, T. G. 2012. Predictive ecology: systems approaches.
 Phil. Trans. Royal Soc. B 367: 163-169.
- Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol.
 Syst. 34: 487-515.
- Fahrig, L., and Merriam, G. 1994. Conservation of fragmented populations. Cons. Biol. 8:
 50-59.
- Farber, S., Neutens, T., Miller, H. J., and Li, X. 2013. The social interaction potential of
 metropolitan regions: A time-geographic measurement approach using joint
 accessibility. Ann. Assoc. Amer. Geogr. 103: 483-504.
- 901 Fenchel, T., and Finlay B. J. 2004. The ubiquity of small species: Patterns of local and global
 902 diversity. Bioscience 54: 777-784.
- 903 Filipe, A.F., Markovic, D., Pletterbauer, F., Tisseuil, C., De Wever, A., Schmutz, S., Bonada,
- N. and Freyhof, J. (2013) Forecasting fish distribution along stream networks: brown
 trout (*Salmo trutta*) in Europe. Divers. Distr. 19: 1059-1071.
- Finn, D. S., Bonada, N., Múrria, C., and Hughes, J. M. 2011. Small but mighty: headwaters
 are vital to stream network biodiversity at two levels of organization. J. N. Amer.
 Benthol. Soc. 30: 963-980.
- 909 Friberg, N. 2014. Impacts and indicators of change in lotic ecosystems. WIREs Water
 910 1: 513–531.

911	Friberg, N., Bonada, N., Bradley, D.C., Dunbar, M.J., Edwards, F.K., Grey, J., Hayes, R.B.,
912	Hildrew, A.G., Lamouroux, N., Trimmer, M., and Woodward, G. 2011.
913	Biomonitoring of human impacts in freshwater ecosystems: the good, the bad and the
914	ugly. Adv. Ecol. Res. 44: 1–68.
915	Galpern, P., Manseau, M., and Fall, A. 2011. Patch-based graphs of landscape connectivity: a
916	guide to construction, analysis and application for conservation. Biol. Cons. 144: 44-
917	55.
918	Garcia-Llorente, M., Martin-Lopez, B., Diaz, S., and Montes, C. 2011. Can ecosystem
919	properties be fully translated into service values? An economic valuation of aquatic
920	plant services. Ecol. Appl. 21: 3083-3103.
921	Geurs, K. T., and van Wee, B. 2004. Accessibility evaluation of land-use and transport
922	strategies: review and research directions. J. Trans. Geogr. 12: 127-140.
923	Gilbert, B., and Bennett, J. R. 2010. Partitioning variation in ecological communities: do the
924	numbers add up? J. Appl. Ecol. 47: 1071–1082.
925	Göthe, E., Angeler, D. G., and Sandin, L. 2013a. Metacommunity structure in a small boreal
926	stream network. J. Anim. Ecol. 82: 449–458.
927	Göthe, E., Angeler, D. G., Gottschalk, S., Löfgren, S., and Sandin, L. 2013b. The influence of
928	environmental, biotic and spatial factors on diatom metacommunity structure in
929	Swedish Headwater streams. PLoS One 8: e72237.
930	Grant, E. H. C., Lowe, W. H., and Fagan, W. F. 2007. Living in the branches: population
931	dynamics and ecological processes in dendritic networks. Ecol. Lett. 10: 165-175.
932	Graves, T., Chandler, R. B., Royle, J. A., Beier, P., and Kendall, K. C. 2014. Estimating
933	landscape resistance to dispersal. Lands. Ecol. 29: 1201-1211.

- Gray, D. K., and Arnott, S. E. 2011. Does dispersal limitation impact the recovery of
 zooplankton communities damaged by a regional stressor? Ecol. Appl. 21: 1241–
 1256.
- Gray, D. K., and Arnott, S. E. 2012. The role of dispersal levels, Allee effects and community
 resistance as zooplankton communities respond to environmental change. J. Appl.
- 939 Ecol. **49**: 1216–1224.
- Griffith, D. A., and Peres-Neto, P. R. 2006. Spatial modeling in ecology: the flexibility of
 eigenfunction spatial analyses. Ecology 87: 2603–2613.
- 942 Grönroos, M., Heino, J., Siqueira, T., Landeiro, V. L., Kotanen, J., and Bini, L. M. 2013.
- 943 Metacommunity structuring in stream networks: roles of dispersal mode, distance
 944 type and regional environmental context. Ecol. Evol. 3: 4473-4487.
- Guisan, A., and Zimmermann, N.E. 2000. Predictive habitat distribution models in ecology.
 Ecol. Model. 135: 147-186.
- Havel, J. E., Lee, C. E., and Vander Zanden, J. M. 2005. Do reservoirs facilitate invasions
 into landscapes? BioScience 55: 518-525.
- Harrison, R.G. 1980. Dispersal polymorphism in insects. Annu. Rev. Ecol. Syst. 11: 95–118.
- 950 Hawkins, C. P., Norris, R. H., Hogue, J. N., and Feminella, J.W. 2000a.
- 951 Development and evaluation of predictive
- 952 models for measuring the biological integrity of streams. Ecological Applications953 10: 1456-1477.
- 954 Hawkins, C. P., Norris, R. H., Gerritsen, J., Hughes, R. M., Jackson, S. K., Johnson, R. H.,
- and Stevenson, R. J. 2000b. Evaluation of landscape classifications for biological

956	assessment of freshwater ecosystems: synthesis and recommendations.
957	J. N. Amer. Benthol. Soc. 19: 541-556.
958	Heffernan, J. B., Soranno, P. A., Angilletta Jr, M.J., Buckley, L. B., Gruner, D. S., Keitt, T.
959	H., Kellner, J. R., Kominoski, J. S., Rocha, A. V., Xiao, J., Harms, T. K., Goring, S.
960	J., Koenig, L. E., McDowell, W. H., Powell, H., Richardson, A. D., Stow, C. A.,
961	Vargas, R., and Weathers, K. C. 2014. Macrosystems ecology: Understanding
962	ecological pattern and process at continental scales. Front. Ecol. Env. 12: 5-14
963	Heino, J. 2013a. The importance of metacommunity ecology for environmental assessment
964	research in the freshwater realm. Biological Reviews 88: 166-178.
965	Heino, J. 2013b. Does dispersal ability affect the relative importance of environmental
966	control and spatial structuring of littoral macroinvertebrate communities? Oecologia
967	171 : 971-980.
968	Heino, J., Melo, A. S., Siqueira, T., Soininen, J., Valanko, S., and Bini, L. M. 2015a.
969	Metacommunity organisation, spatial extent and dispersal in aquatic systems:
970	patterns, processes and prospects. Freshwat. Biol. 60: 845-869.
971	Heino, J., Melo, A. S., Bini, L. M., Altermatt, F., Al-Shami, S. A, Angeler, D., Bonada, N.,
972	Brand, C., Callisto, M., Cottenie, K., Dangles, O., Dudgeon, D., Encalada, A., Göthe,
973	E., Grönroos, M., Hamada, N., Jacobsen, D., Landeiro, V. L., Ligeiro, R., Martins, R.
974	T., Miserendino, M. L., Md Rawi, C. S. Rodrigues, M., Roque, F. O., Sandin, L.,
975	Schmera, D., Sgarbi, L. F., Simaika, J., Siqueira, T., Thompson, R. M., and
976	Townsend, C. R. 2015b. A comparative analysis reveals weak relationships between
977	ecological factors and beta diversity of stream insect metacommunities at two spatial
978	levels. Ecol. Evol. 5: 1235-1248.

979	Heino, J., Virkkala, R., and Toivonen, H. (2009) Climate change and freshwater biodiversity:
980	detected patterns, future trends and adaptations in northern regions. Biol. Rev. 84: 39-
981	54.
982	Hoffsten, PO. (2004) Site-occupancy in relation to flight-morphology in caddisflies.
983	Freshwat. Biol. 49: 810–817.
984	Holland, R. A., Eigenbrod, F., Armsworth, P. R., Anderson, B. J., Thomas, C. D.,
985	Heinemeyer, A., Gillings, S., Roy, D. B., and Gaston, K. J. (2011) Spatial
986	covariation between freshwater and terrestrial ecosystem services. Ecol. Appl. 21:
987	2034–2048.
988	Holyoak, M., Leibold, M.A., Mouquet, N.M., Holt, R.D., and Hoopes, M.F. 2005.
989	Metacommunities: A framework for large-scale community ecology. In: M. Holyoak,
990	M.A. Leibold, and R. D. Holt (Eds) Metacommunities: Spatial Dynamics and
991	Ecological Communities. University of Chicago Press, Chicago, pp. 1-31.
992	Horváth, Z., Vad, C. F., and Ptacnik, R. 2016. Wind dispersal results in a gradient of
993	dispersal limitation and environmental match among discrete aquatic habitats.
994	Ecography 39: 726–732.
995	Hubbell, S.J. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton
996	University Press, Princeton.

- Huff, D. L. 1963. A probabilistic analysis of shopping center trade areas. Land Economics
 39: 81-90.
- Hughes, J. M. 2007. Constraints on recovery: using molecular methods to study connectivity
 of aquatic biota in rivers and streams. Freshwat. Biol. 52: 616-631.

1001	Hughes, J. M., Schmidt, D. J., and Finn, D. S 2009. Genes in streams: Using DNA to
1002	understand the movement of freshwater fauna and their riverine habitat. BioScience
1003	59 : 573-583.
1004	Jackson, D. A., Peres-Neto, P. R., and Olden, J. D. 2001. What controls who is where in
1005	freshwater fish communities -the roles of biotic, abiotic and spatial factors. Can. J.
1006	Fish. Aquat. Sci. 58: 157-170.
1007	Jacobson, B., and Peres-Neto, P. R. (2010) Quantifying and disentangling dispersal in
1008	metacommunities: how close have we come? How far is there to go? Lands. Ecol. 25:
1009	495-507.
1010	Jaeger, K. L., Olden, J. D., and Pelland, N. A. (2014) Climate change poised to threaten
1011	hydrologic connectivity and endemic fishes in dryland streams. Proc. Nat. Acad. Sci.
1012	111: 13894-13899.
1013	Jenkins, D.G., Brescacin, C.R., Duxbury, C.V., Elliott, J.A., Evans, J.A., Grablow, K.R.
1014	2007. Does size matter for dispersal distance? Glob. Ecol. Biogeogr. 16: 415-425.
1015	Joly, P., Miaud, C., Lehmann, A., and Grolet, O. 2001. Habitat matrix effects on pond
1016	occupancy in newts. Conserv. Biol. 15: 239-248.
1017	Jones, N. T., Germain, R. M., Grainger, T. N., Hall, A. M., Baldwin, L., and Gilbert, B. 2015.
1018	Dispersal mode mediates the effect of patch size and patch connectivity on
1019	metacommunity diversity. J. Ecol. 103: 935–944.
1020	Kärnä, OM. 2014. Effects of spatial location, environmental factors and species dispersal
1021	ability on invertebrate community structure in subarctic streams. MSc thesis,
1022	Department of Geography, University of Oulu. [In Finnish]

1023	Kärnä, OM., Grönroos, M., Antikainen, H., Hjort, J., Ilmonen, J., Paasivirta, L., and Heino,
1024	J. 2015. Inferring the effects of potential dispersal routes on the metacommunity
1025	structure of stream insects: as the crow flies, as the fish swims or as the fox runs? J.
1026	Anim. Ecol. 84: 1342-1353.
1027	Kristiansen, J. 1996. Dispersal by freshwater algae – a review. Hydrobiologia 336: 151–157.
1028	Kwan, M. P. 1998. Space-time and integral measures of individual accessibility: a
1029	comparative analysis using a point-based framework. Geogr. Anal. 30 : 191-216.
1030	Landeiro, V. L., Magnusson, W. E., Melo, A. S., Espirito-Santo, H. M. V., and Bini L. M.
1031	2011. Spatial eigenfunction analyses in stream networks: do watercourse and overland
1032	distances produce different results? Freshwat. Biol. 56: 1184-1192.
1033	Landeiro, V.L., Bini, L.M., Melo, A.S., Pes, A.M.O., and Magnusson, W.E. 2012. The roles
1034	of dispersal limitation and environmental conditions in controlling caddisfly
1035	(Trichoptera) assemblages. Freshwat. Biol. 57: 1554-1564.
1036	Larkin, J. L., Maehr, D. S., Hoctor, T. S., Orlando, M. A., and Whitney, K. 2004. Landscape
1037	linkages and conservation planning for the black bear in west-central Florida. Anim.
1038	Conserv. 7: 23-34.
1039	LaRue, M.A., and Nielsen, C.K. 2008. Modelling potential dispersal corridors for cougars in
1040	midwestern North America using least-cost path methods. Ecol. Model. 212: 371-
1041	381.
1042	Layeghifard, M., Makarenkov, V., and Peres-Neto, P. R. 2015. Spatial and species
1043	compositional networks for inferring connectivity patterns in ecological communities.
1044	Glob. Ecol. Biogeogr. 24: 718-727.

1045	Lechner, A. M., Doerr, V., Harris, R. M., Doerr, E., and Lefroy, E. C. 2015. A framework for
1046	incorporating fine-scale dispersal behaviour into biodiversity conservation planning.
1047	Lands. Urb. Plan. 141: 11-23.
1048	Legendre, P. 2014. Interpreting the replacement and richness difference components of beta
1049	diversity. Glob. Ecol. Biogeogr. 23: 1324-1334.
1050	Legendre, P., and Legendre, L. 2012. Numerical Ecology. Third Edition. Elsevier,
1051	Amsterdam.
1052	Leibold, M.A. Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M. F.,
1053	Holt, R.D., Shurin, J.B., Law, R., Tilman, D., Loreau, M., and Gonzalez, A. 2004.
1054	The metacommunity concept: a framework for multi-scale community ecology.
1055	Ecol. Lett. 7: 601-613.
1056	Leibold, M. A., and Loeuille, N. 2015. Species sorting and patch dynamics in harlequin
1057	metacommunities affect the relative importance of environment and space. Ecology
1058	96: 3227-3233.
1059	Lennon, J. J., Koleff, P., Greenwood, J. J. D., and Gaston, K. J. 2001. The geographical
1060	structure of British bird distributions: diversity, spatial turnover and scale. J. Anim.
1061	Ecol. 70 : 966-979.
1062	Liu, J., Soininen, J., Han, B-P., and Declerck, S. A. J. 2013. Effects of connectivity, dispersal
4000	
1063	directionality and functional traits on the metacommunity structure of river benthic
1063	directionality and functional traits on the metacommunity structure of river benthic diatoms. J. Biogeogr. 40 : 2238–2248.
1063 1064 1065	directionality and functional traits on the metacommunity structure of river benthic diatoms. J. Biogeogr. 40: 2238–2248.Logue, J. B., Mouquet, N., Peter, H., Hillebrand, H. and The Metacommunity Working
1063 1064 1065 1066	 directionality and functional traits on the metacommunity structure of river benthic diatoms. J. Biogeogr. 40: 2238–2248. Logue, J. B., Mouquet, N., Peter, H., Hillebrand, H. and The Metacommunity Working Group. 2011. Empirical approaches to metacommunities: a review and comparison
1063 1064 1065 1066 1067	 directionality and functional traits on the metacommunity structure of river benthic diatoms. J. Biogeogr. 40: 2238–2248. Logue, J. B., Mouquet, N., Peter, H., Hillebrand, H. and The Metacommunity Working Group. 2011. Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol. Evol. 26: 482-91.

• •

1069	Macneale, K.H.; Peckarsky, B.L, and Likens, G.E. 2005. Stable isotopes identify dispersal
1070	patterns of stonefly populations living along stream corridors. Freshwat. Biol. 50:
1071	1117-1130.
1072	Magnuson, J. J., Tonn, W. M., Banerjee, A., Toivonen, J., Sanchez, O., and Rask, M. 1998

1073 Isolation vs. extinction in the assembly of fishes in small northern lakes. Ecology 79:
1074 2941–2956.

- Malmqvist, B. 2000. How does wing length relate to distribution patterns of stoneflies
 (Plecoptera) and mayflies (Ephemeroptera)? Biol. Cons. 93: 271–276.
- Malmqvist, B. 2002. Aquatic invertebrates in riverine landscapes. Freshwat. Biol. 47: 679–
 694.
- Maloney, K. O., and Munguia, P. 2011. Distance decay of similarity in temperate aquatic
 communities: effects of environmental transition zones, distance measure, and life
 histories. Ecography 34: 287–295.
- Manel, S., and Holderegger, R. 2013. Ten years of landscape genetics. Trends Ecol. Evol. 28:
 614-621.
- Manel, S., Schwartz, M., Luikart, G., and Taberlet, P. 2003. Landscape genetics: combining
 landscape ecology and population genetics. Trends Ecol. Evol. 20: 136-142.
- Mantel, N. 1967. The detection of disease clustering and a generalized regression approach.
 Canc. Res. 27: 209–220.
- Margules, C. R., and Pressey, R. L. 2000. Systematic conservation planning. Nature 405:
 243-253.
- 1090 Matthews, J. W. 1998. Patterns in Freshwater Fish Ecology. Chapman and Hall, New York.

1091 McRae, B. H. 2006. Isolation by landscape resistance. Evolution 60: 1551-1561.

- McRae, B. H., Hall, S. A., Beier, P., and Theobald, D. M. 2012. Where to restore ecological
 connectivity? Detecting barriers and quantifying restoration benefits. PLoS ONE 7:
 e52604.
- Merritt, R. W., Cummins, K. W., and Berg, M. B. 2008. An Introduction to the Aquatic
 Insects of North America. Fourth Edition. Kendall/Hunt Publishing Company,
 Dubuque.
- 1098 Monteiro, V. F., Paiva, P. C., and Peres-Neto, P. R. 2017. A quantitative framework to
- 1099 estimate the relative importance of environment, spatial variation and patch

1100 connectivity in driving community composition. J. Anim. Ecol. **86:** 316–326.

Mouquet, N., and Loreau, M. 2003. Community patterns in source-sink metacommunities.
Am. Nat. 162: 544-557.

1103 Nabout, J.C., Siqueira, T., Bini, L.M., and Nogueira, I.S. (2009) No evidence for

- environmental and spatial processes in structuring phytoplankton communities. Acta
 Oecol. 35: 720-726.
- 1106 Nathan, R., Getz, W. M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., and Smouse, P. E.
- 2008. A movement ecology paradigm for unifying organismal movement research.
 Proc. Nat. Acad. Sci. 105: 19052-19059.
- 1109 Nekola, J. C., and White, P. S. 1999. The distance decay of similarity in biogeography and
 1110 ecology. J. Biogeogr. 26: 867-878.
- 1111 Ng, I. S. Y., Carr, C., and Cottenie, K. (2009) Hierarchical zooplankton metacommunities:
- distinguishing between high and limiting dispersal mechanisms. Hydrobiologia 619:
 1113 133-143.

- Olden, J., Jackson, D. A., and Peres-Neto, P. R. 2001. Spatial isolation and fish communities
 in drainage lakes. Oecologia 127: 572-585.
- 1116 Orsini, L., Vanoverbeke, J., Swillen, I., Mergeay, J., and De Meester, L. (2013) Drivers of
- 1117 population genetic differentiation in the wild: isolation by dispersal limitation,
- isolation by adaptation and isolation by colonization. Mol. Ecol. **22**: 5983-5999.
- 1119 Padial, A.A., Ceschin, F., Declerck, S.A.J., De Meester, L., Bonecker, C.C. 2014. Dispersal
- ability determines the role of environmental, spatial and temporal drivers of
- 1121 metacommunity structure. PLoS ONE 9: e111227.
- Páez, A., Scott, D. M., and Morency, C. 2012. Measuring accessibility: positive and
 normative implementations of various accessibility indicators. J. Trans. Geogr. 25:
- 1124 141-153.
- 1125 Palmer, M. A., Allan, J. D., and Butman, C. A. 1996. Dispersal as a regional process
- affecting the local dynamics of marine and stream benthic invertebrates. Trends Ecol.
 Evol. 11: 322–326.
- Pärtel, M., Szava-Kovats, R., and Zobel, M. 2011. Dark diversity: shedding light on absent
 species. Trends Ecol. Evol. 26: 124–128.
- Pelicice, F. M., and Agostinho, A. A. 2008. Fish-passage facilities as ecological traps in large
 Neotropical rivers. Cons. Biol. 22: 180-188.
- 1132 Pereira, M., Segurado, P., and Neves, N. 2011. Using spatial network structure in landscape
- management and planning: A case study with pond turtles. Lands. and Urb. Plan. 100:67-76.

1135	Peres-Neto, P. R., Legendre, P., Dray, S., and Borcard, D. 2006. Variation partitioning of
1136	species data matrices: estimation and comparison of fractions. Ecology 87: 2614-
1137	2625.
1138	Peres-Neto, P. R., and Legendre, P. 2010. Estimating and controlling for spatial structure in
1139	the study of ecological communities. Glob. Ecol. Biogeogr. 19: 174-184.
1140	Petchey, O. L., Pontarp, M., Massie, T.M., Kéfi, S., Ozgul, A., Weilenmann, M., Palamara,
1141	G. M., Altermatt, F., Matthews, B., Levine, J. M., Childs, D. Z., McGill, B. J.,
1142	Schaepman, M. E., Schmid, B., Spaak, P., Beckerman, A. P., Pennekamp, F., and
1143	Pearse, I. S. 2015. The ecological forecast horizon, and examples of its uses and
1144	determinants. Ecol. Lett. 18: 597-611.
1145	Peterson, E. E., Theobald, D. M., and Ver Hoef, J. M. 2007. Geostatistical modelling on
1146	stream networks: developing valid covariance matrices based on hydrological
1147	distance and stream flow. Freshwat. Biol. 52: 267-279.
1148	Pinto, N., and Keitt, T. H. 2009. Beyond the least-cost path: evaluating corridor redundancy
1149	using a graph theoretic approach. Lands. Ecol. 24: 253-266.
1150	Poff, N. L., Olden, J. D., and Strayer, D. L. 2012. Climate change and freshwater fauna
1151	extinction risk. In Saving A Million Species. Extinction Risk From Climate Change.
1152	Washington, DC, Island Press, pp. 309-336.
1153	Poff, N.L., Olden, J.D., Vieira, N.K.M., Finn, D.S., Simmons, M.P., and Kondratieff, B.C.
1154	2006. Functional trait niches of North American lotic insects: trait-based ecological
1155	applications in light of phylogenetic relationships. J. N. Amer. Benthol. Soc. 25: 730-
1156	755.
1157	Pulliam, H. R. 1988. Sources, sinks, and population regulation. Am. Nat. 132: 652-661.

- 1158 Rayfield, B., Fortin, M.-J., and Fall, A. 2011. Connectivity for conservation. A framework to
 1159 classify network measures. Ecology 92: 847-858.
- 1160 Relethford, J. H. 2004. Boas and beyond: Migration and craniometric variation. American J.
 1161 Hum. Biol. 16: 379–386.
- 1162 Ridley, M. 2004. Crick and Darwin's shared publication in Nature. Nature 431: 244-244.
- 1163 Rietveld, P., and Bruinsma, F. R. 1998. Is Transport Infrastructure Effective? Transport
- 1164 Infrastructure and Accessibility: Impacts on the Space Economy. Springer.
- 1165 Riis, T., and Sand-Jensen, K. 2006. Dispersal of plant fragments in small streams. Freshwat.
- 1166 Biol. **51**: 274-286.
- 1167 Rouquette, J. R., Dallimer, M., Armsworth, P. R., Gaston, K. J., Maltby, L., and Warren, P.
- H. 2013. Species turnover and geographic distance in an urban river network. Divers.
 Distr. 19: 1429-1439.
- 1170 Rundle, S. D., Bilton, D. T., and Foggo, A. 2007. By wind, wings or water: body size,
- dispersal and range size in aquatic invertebrates. Body size: The Structure and
- 1172 Function of Aquatic Ecosystems (ed. by A. G. Hildrew, D. G. Raffaelli and R.
- Edmonds-Brown), pp. 186-209. Cambridge University Press, Cambridge.
- 1174 Sarremejane, R., Mykrä, H., Bonada, N., Aroviita J., and Muotka, T. (2017) Habitat
- 1175 connectivity and dispersal ability drive the assembly mechanisms of
- 1176 macroinvertebrate communities in river networks. Freshwat. Biol.
- 1177 <u>https://doi.org/10.1111/fwb.12926</u>.
- 1178 Saura, S., Bodin, Ö., and Fortin, M.-J. 2014. Stepping stones are crucial for species' long-
- distance dispersal and range expansion through habitat networks. J. Appl. Ecol. **51**:
- 1180 171–182.

1181	Saura, S., and Rubio, L. 2010. A common currency for the different ways in which patches
1182	and links can contribute to habitat availability and connectivity in the landscape.
1183	Ecography 33: 523-537.
1184	Sawyer, S. C., Epps, C. W., and Brashares, J. S. 2011. Placing linkages among fragmented
1185	habitats: do least-cost models reflect how animals use landscapes? J. Appl. Ecol.
1186	48: 668–678.
1187	Sekar, S. 2012. A meta-analysis of the traits affecting dispersal ability in butterflies: can
1188	wingspan be used as a proxy? J. Anim. Ecol. 81: 174-184.
1189	Shurin, J. B., Cottenie, K., and Hillebrand, H. 2009. Spatial autocorrelation and dispersal
1190	limitation in freshwater organisms. Oecologia 159: 151-159.
1191	Silva, P. G. da, and Hernández, M. I. M. 2014. Local and regional effects on community
1192	structure of dung beetles in a mainland-island scenario. PLoS ONE 9: e111883.
1193	Siqueira, T., Durães, L. D., and Roque, F. O. 2014. Predictive modelling of insect
1194	metacommunities in biomonitoring of aquatic networks. In C. P. Ferreira and W. A.
1195	C. Godoy (Eds). Ecological modelling applied to entomology. Springer.
1196	Smith, R. F., Alexander, L. C., and Lamp, W. O. 2009. Dispersal by terrestrial stages of
1197	stream insects in urban watersheds: a synthesis of current knowledge. J. N. Amer.
1198	Benthol. Soc. 28: 1022-1037.
1199	Smith, T. W., and Lundholm, J. T. 2010. Variation partitioning as a tool to distinguish
1200	between niche and neutral processes. Ecography 33: 648-655.
1201	Smoyer-Tomic, K. E., Spence, J. C., and Amrhein, C. 2006. Food deserts in the prairies?
1202	Supermarket accessibility and neighborhood need in Edmonton, Canada. Prof. Geogr.
1203	58: 307-326.

1204 Soininen, J. 2014. A quantitative analysis of species sorting across organisms and

- 1205 ecosystems. Ecology **95**: 3284-3292.
- Soininen, J. 2016. Spatial structure in ecological communities–a quantitative analysis. Oikos
 1207 125: 160-166.
- Soininen, J., McDonald, R., and Hillebrand, H. (2007) The distance decay of similarity in
 ecological communities. Ecography 30: 3-12.
- 1210 Soulé, M. E. 1985. What is conservation biology? BioScience 35: 727–734.
- 1211 Sutherland, C., Fuller, A. K., and Royle, J. A. 2015. Modelling non-Euclidean movement and
- 1212 landscape connectivity in highly structured ecological networks. Methods Ecol. Evol.
 1213 6, 169–177.
- Tachet, H., Richoux, P., Bournaud, M., and Usseglio-Polatera, P., 2010. Invertébrés d'eau
 douce: Systématique, biologie, écologie, 3rd ed. CNRS éditions, Paris.
- Tesson, S.V.M., and Edelaar, P. 2013. Dispersal in a changing world: opportunities, insightsand challenges. Mov. Ecol. 1: 10.
- 1218 Thompson, R.M., and Townsend, C.R. 2006. A truce with neutral theory: local deterministic
- factors, species traits and dispersal limitation together determine patterns of diversity
 in stream invertebrates. J. Anim. Ecol. **75:** 476-484.
- 1221 Thuiller, W., Münkemüller, T, Lavergne, S., Mouillot, D., Mouquet, N., Schiffers, K., and
- 1222 Gravel, D. 2013. A road map for integrating eco-evolutionary processes into
- biodiversity models. Ecol. Lett. 16: 94-105.
- 1224 Tobler, W. 1970. A computer movie simulating urban growth in the Detroit region. Econ.
- 1225 Geogr. **46**: 234-240.

1226	Tolonen, K.T., Hämäläinen, H., Holopainen, I.J., Mikkonen, K., and Karjalainen, J. 2003.
1227	Body size and substrate association of littoral insects in relation to vegetation
1228	structure. Hydrobiologia 499: 179-190.
1229	Tomanova, S., and Usseglio-Polatera, P. 2007. Patterns of benthic community traits in
1230	neotropical streams: relationship to mesoscale spatial variability. Fund. Appl. Limnol.
1231	170: 243–255.
1232	Tonkin, J. D., Stoll, S., Sundermann, A., and Haase, P. 2014. Dispersal distance and the pool
1233	of taxa, but not barriers, determine the colonisation of restored river reaches by
1234	benthic invertebrates. Freshwat. Biol. 59: 1843–1855.
1235	Tonn, W. M., and Magnuson, J. J. 1982. Patterns in the species composition and richness of
1236	fish assemblages in Northern Wisconsin lakes. Ecology 63: 1149–1166.
1237	Urban, D., and Keitt, T. (2001) Landscape connectivity: a graph-theoretic perspective.
1238	Ecology 82 : 1205-1218.
1239	Urban, D. L., Minor, E. S., Treml, E. A., and Schick, R. S. 2009. Graph models of habitat
1240	mosaics. Ecol. Lett. 12: 260-273.
1241	Vellend, M., Srivastava, D. S., Anderson, K. M., Brown, C. D., Jankowski, J. E., Kleynhans,
1242	E. J. 2014. Assessing the relative importance of neutral stochasticity in ecological
1243	communities. Oikos 123: 1420-1430.
1244	Vasas, V., Magura, T., Jordan, F., and Tothmérész, B. 2009. Graph theory in action:
1245	evaluating planned highway tracks based on connectivity measures. Lands. Ecol. 24:
1246	
	581-586.
1247	581-586. Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P.,
1247 1248	581-586. Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., and Davies, P. M. 2010.

1250	Wang I. J., Savage W. K., and Shaffer H. B. 2009. Landscape genetics and GIS least cost
1251	path analysis reveal unexpected dispersal routes in the California tiger salamander,
1252	Ambystoma californiense. Mol. Ecol. 18: 1365-1374.
1253	Weinstein, B. G., Tinoco, B., Parra, J. L., Brown, L. M., McGuire, J. A., Stiles, F. G., and
1254	Graham, C. H. (2014) Taxonomic, phylogenetic, and trait beta diversity in South
1255	American hummingbirds. Am. Nat 184: 211-224.
1256	Wiens, J. J. 2015. Faster diversification on land than sea helps explain global biodiversity
1257	patterns among habitats and animal phyla. Ecol. Lett. 18: 1234-1241.
1258	Wilcock, H. R., Hildrew, A. G., and Nichols, R. A. 2001. Genetic differentiation of a
1259	European caddisfly: Past and present gene flow among fragmented larval habitats.
1260	Mol. Ecol. 10 : 1821–1834.
1261	Winegardner, A. K., Jones, B. K., Ng, I. S. Y., Siqueira, T., and Cottenie, K. 2012. The
1262	terminology of metacommunity ecology. Trends Ecol. Evol. 27: 253-254.
1263	Winemiller, K.O., McIntyre , P.B., Castello, L., Fluet-Chouinard, E., Giarrizzo, T., Nam, S.,
1264	Baird, I.G., Darwall, W., Lujan, N.K., Harrison, I., Stiassny, M.L.J., Silvano, R.A.M.,
1265	Fitzgerald, D.B., Pelicice, F.M., Agostinho, A.A., Gomes, L.C., Albert, J.S., Petrere
1266	Jr., M., Zarfl, C., Mulligan, M., Sullivan, J.P., Arantes, C., Sousa, L.M., Koning,
1267	A.A., Hoeinghaus, D.J., Sabaj, M., Lundberg, J.G., Armbruster, J., Petry, P., Zuanon,
1268	J., Torrente Vilara, G., Snoeks, J., Ou, C., Pavanelli, C.S., Akama, A., van
1269	Soesbergen, A. and Sáenz, L. 2016. Balancing hydropower and biodiversity in the
1270	Amazon, Congo, and Mekong. Science 351: 128-129.
1271	Wisz, M. S., Pottier, J., Kissling, W. D., Pellissier, L., Lenoir, J., Damgaard, C. F., Dormann,
1272	C. F., Forchhammer, M. C., Grytnes, JA., Guisan, A., Heikkinen, R. K., Høye, T. T.,
1273	Kühn, I., Luoto, M., Maiorano, L., Nilsson, MC., Normand, S., Öckinger, E.,

1274	Schmidt, N. M., Termansen, M., Timmermann, A., Wardle, D. A., Aastrup, P., and
1275	Svenning, JC. 2013. The role of biotic interactions in shaping distributions and
1276	realised assemblages of species: implications for species distribution modelling. Biol.
1277	Rev. 88 : 15–30.
1278	Wright, J. F., Sutcliffe, D. W., and Furse, M. T. (Eds) 2000. Assessing the biological quality
1279	of fresh waters: RIVPACS and other techniques. Freshwater Biological Association,
1280	Ambleside, UK.
1281	Xie, F., and Levinson, D. 2007. Measuring the structure of road networks. Geogr. Anal. 39,
1282	336-356.
1283	Zeller, K.A., McGarical, K., and Whiteley, A. R. 2012. Estimating landscape resistance to
1284	movement: a review. Lands. Ecol. 27: 777-797.
1285	Zeuss, D., Brunzel, S., and Brandl, R. 2017. Environmental drivers of voltinism and body
1286	size in insect assemblages across Europe. Global Ecol. Biogeogr. 26: 154-165.

Table 1. Comparisons of the pros and cons of different dispersal proxies available to study metacommunities.

Dispersal proxy	Pros	Cons
Organismal-based proxies	More closely related to organisms' traits and thus dispersal	Often very coarse measures, as sufficient
	per se than physical distances between sites.	autecological information is available only for a
		few species or a few organismal groups.
1. Body size	Very easily obtainable for most organismal groups.	Although body size may be related to dispersal
		mode and capacity, it is also related to many, if
		not most, other organismal characteristics and
		functions.
2. Dispersal mode	Rather easily available information for comparisons of	Dispersal mode may not effectively relate to
	broad organismal groups.	actual dispersal distances or dispersal rates
		between sites.
3. Dispersal ability	Has a strong link to dispersal distances of organisms among	Difficult to obtain information for most
	sites.	organismal groups that cannot be easily tracked.
4. Population genetic structure	Are more direct measures than other organismal-based	Genetic structure can be a biased proxy of
	proxies, and may reveal complex dispersal routes between	dispersal because it not only informs about gene
	sites.	flow among populations, but also about
		mutation, genetic drift, adaptation by natural
		selection along environmental gradients and
		colonization history (i.e. founder effects). Hardly

feasible for a high number of species at the same time.

Graph-based pro	oxies
-----------------	-------

A. Physical distance-based proxies	Easily measurable from maps when available.	Are coarse proxies that may not always portray
		true dispersal routes for many species.
1. Euclidean distance	Very easily measurable as shortest linear distance between	Not applicable for organisms, such as fish,
	sites.	relying exclusively on riverine corridors for
		dispersal.
2. Network distance	Distance between sites in a network may be useful if	Some species may show more or less unexpected
	dispersal is restricted to such networks (e.g. riverine	'out-of-network' dispersal, which cannot be
	networks for obligatory aquatic organisms).	portrayed by network distances between sites.
3. Flow distance	May well model a) upstream vs downstream dispersal in	It is not always known for how large a portion of
	riverine systems or b) headwind vs. tailwind dispersal in	species upstream/headwind dispersal is more
	terrestrial systems.	costly than downstream/tailwind dispersal.
4. Topographical distance	May sometimes model well altitudinal features that may	Topographic features in a landscape may be
	either prevent or facilitate dispersal. Rather easy to obtain	important for terrestrial animals, but may be less
	from maps using geographic information systems (GIS).	important for those able to fly and cross higher
		landscape features.
5. Cost distances	May be used to model more complex landscape features	Sometimes lack of suitable maps may prevent

than just topographic characteristics in a landscape.Potentially may be well used to model dispersal routes in heterogeneous landscapes.

calculating more complex cost distances between sites. Also, what, how and when to consider a landscape feature suitable or not suitable for dispersal may be difficult.

B. Transport geography proxies	Network-specific proxies which can be enhanced by route geometry, travel cost attributes, and pulling and pushing factors, when suitable data are available	Needs topologically correct data and careful calibration of routing data or algorithm, when environment or population specific attributes are
1. Access to network	A simple, binary indicator.	applied. A highly coarse indicator, dependent on how network geometry and connectivity are defined and specified in the first place
2. Direct network connections or links	A comprehensible indicator expressing the presence of neighbouring localities which can be accessed without passing through other location.	A coarse indicator which does not indicate the distances that need to be travelled.
3. Travel cost to (nearest) destination	A comprehensible indicator expressing the proximity to other locations.	Cannot consider the quality and quantity of accessed locations.
4. Cumulated opportunities	Represents the quantity of accessible locations within a predefined network distance.	The indicator is strongly dependent on the threshold value, and does not take gradual distance decay into account.
5. Potential accessibility, gravity-based	Represents the quantity of accessible locations while taking	The definition of the distance decay function and

https://mc06.manuscriptcentral.com/er-pubs

6	1
υ	т

measures	into account the distance decay associated with travelling in	the attraction values may be difficult.
	the network, and the attraction of the location.	
6. Population attraction and competition	Allows the determination of the probability for selecting a	The definition of the distance decay function and
between destinations	given destination while taking the distance decay	the attraction values may be difficult.
	associated with traversal in the network into account.	

Table 2. Characteristics of transport geographic accessibility measures (for additional information, see Huff 1963; Kwan 1998; Rietveld and Bruinsma 1998; Páez et al. 2012) and their potential applicability as dispersal proxies in metacommunity ecology.

Accessibility	Description	Formulae* for accessibility	Example case in transport geographic	Examples of potential applications in
measure/index			context	metacommunity ecology
(Reference in				
figure 2)				
Access to network (A)	Access or connectivity	$c = \begin{cases} 0 \text{ if not connected} \\ 1 \text{ if connected} \end{cases}$	To get value 1, city has to be connected to railway network.	Value 1 indicates that the ecological entity** of a locality is connected to the network.
	exists or not			
Direct network	Number of	$\sum_{n=1}^{n}$	Amount of direct railway links that	Number of direct links connecting particular
connections or	direct	$a = \sum_{i=1}^{n} c_{ij},$	$=\sum_{i=1}^{n} c_{ij}$, connect city to other cities.	ecological entity** to other communities.
links (B)	connections or links to other nodes in the network	$c = \begin{cases} 0 & if c is indirect \\ 1 & if c is direct \end{cases}$		E.g. number of species' direct connections to other populations in the dispersal network, which can, for example, consist of streams or terrestrial paths. Value 0 indicates isolated populations, having no direct connections. E.g. headwater streams are linked simply to

the downstream reach, whereas confluences are linked to three stream reaches (two upstream and one downstream reaches).

64

measures (E)	provide better potential for interaction in comparison to low and/or distant opportunities		and interests to move.	can be understood as a species' ability or interest to move in relation to travel cost that can vary during a season (term β in formula).
Population attraction and competition between destinations (F)	Probability for selecting an attraction amongst all attractions in the space in competitive situation	$P_{ij} = \frac{A_j^{\alpha} d_{ij}^{-\beta}}{\sum_{j=1}^n A_j^{\alpha} d_{ij}^{-\beta}}$	Amount of interaction with a specific city in relation to other cities, by taking distance, attraction attribute and interests to move into account.	Amount of interaction among habitats with variable environmental quality for female insect or migratory bird individuals from a certain population in relation to travel cost within its lifespan. Here, lifespan can be understood as a species' ability or interest to move in relation to travel cost that can vary during a season (term β in formula).

* Explanation of terms used in formulations: **a** is accessibility related for each origin, c is connecting link between origin and destination nodes, *d* is travel cost (e.g. distance, time or other measurable friction) between origin and destination nodes, *n* is number of destination nodes, A_j is attribute wanted to be accessed in destination(s) (e.g. quantified habitat attraction), *i* refers to (number of) origin and *j* to destination and β is parameter for interest to move in relation to travel cost.

65

** May be an organism, a species, a group of species (i.e. a community), a specific habitat or a biome.

Table 3. Number of articles (*n*) retrieved according to the Web of Science database (from 01/01/2004 to 26/08/2016) using different combinations of keywords related to the use of dispersal proxies in metacommunity studies.

Proxies	keywords	п
Organismal-based proxies	"Body size*" AND Dispers* AND metacommunit*	41
	"Dispersal mode*" AND Dispers* AND metacommunit*	43
	"Dispersal capacit*" OR "Dispersal abilit*" AND Dispers* AND metacommunit*	94
	genetic* AND Dispers* AND metacommunit*	45
Physical distance-based proxies	"euclid* distance*" AND Dispers* AND metacommunit*	6
	"network* distance*" AND Dispers* AND metacommunit*	0
	"watercourse distance*" AND Dispers* AND metacommunit*	9
	"flow distance*" AND Dispers* AND metacommunit*	0
	"Topographic* distance*" AND Dispers* AND metacommunit*	0
	"cost distance*" AND Dispers* AND metacommunit*	2
	Mantel AND Dispers* AND metacommunit*	22
	"Spatial eigenfunction*" AND Dispers* AND metacommunit*	5
	"Moran* Eigenvector*" AND Dispers* AND metacommunit*	3
	"principal coordinates of neighbor matrices" AND Dispers* AND metacommunit*	1
Transport geography proxies	"Access to network*" AND Dispers* AND metacommunit*	0
	"Direct network* connection*" AND Dispers* AND metacommunit*	0
	"Travel* cost*" AND Dispers* AND metacommunit*	0
	"Cumulat* opportunit*" AND Dispers* AND metacommunit*	0
	"Potential accessibility" AND Dispers* AND metacommunit*	0

Figure captions

Fig. 1. A schematic figure of potential dispersal routes for species in dendritic systems (light blue colour) among three sites (red dots). A describes Euclidean (orange), overland (green) and watercourse (blue) distances; **B** describes cost distance as related to topography (brown) and stream flow resistance (blue); **C** describes two species (light green vs dark green) which have different optimal dispersal routes between sites in relation to the cost imposed by land cover or land use; and **D** describes two optimal dispersal routes for a species in response to the dominant wind direction. Background map contains data from the National Land Survey of Finland Topographic Database (04/2015) and Elevation model 10 m (04/2015), licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Fig. 2. A schematic figure of transport geographic accessibility measures (Huff 1963; Kwan 1998; Rietveld and Bruinsma 1998; Páez et al. 2012) and their potential applicability as ecological dispersal proxies. The letters (A-F) correspond to the description of the measures of accessibility in Table 2.

Fig. 3. An example of different physical and organismal dispersal proxies in stream insect research (figures redrawn based on results in Kärnä, 2014 and Kärnä et al. 2015). Mantel correlations between Bray-Curtis biological community dissimilarities and environmental distances (based on various local environmental variables) or each of the four types of physical distances are shown. Separate analyses were run for all species, different body size classes and dispersal modes (active or passive). Asterisk indicates a significant correlation. In these data, environmental and physical distances were not strongly correlated, and partial Mantel test were hence very similar to these Mantel tests shown here. See text for further information.

Fig. 1.

Fig. 2.

Fig. 3.

