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Abstract

The processes controlling the abundances of species across multiple sites form the

cornerstone of modern ecology. In these metacommunities, the relative importance of

local environmental and regional spatial processes is currently hotly debated, especially in

terms of the validity of neutral model. I collected 158 published data sets with

information on community structure, environmental and spatial variables. I showed that

approximately 50% of the variation in community composition is explained by both

environmental and spatial variables. The majority of the data sets were structured by

species-sorting dynamics (SS), followed by a combination of SS and mass-effect

dynamics. While neutral processes were the only structuring process in 8% of the

collected natural communities, disregarding neutral dispersal processes would result in

missing important patterns in 37% of the studied communities. Moreover, metacom-

munity characteristics such as dispersal type, habitat type and spatial scale predicted part

of the detected variation in metacommunity structure.
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I N TRODUCT ION

Metacommunities are local communities connected by the

dispersal of multiple species (Hubbell 2001). While the

neutral metacommunity model presented by Hubbell was

important in stressing the importance of spatial processes in

structuring community dynamics, it asserted that species–

environment relations were not important in establishing

some well-known ecological relationships such as the

distribution of abundance or the species–area law. A recent

synthesis of metacommunity dynamics by Leibold et al.

(2004) integrated both environmental heterogeneity with

associated niche explanations and dispersal processes.

Depending on the relative importance of both processes,

they suggested four types of metacommunities: the species-

sorting (SS), the mass-effect (ME), the neutral model (NM)

and patch dynamics (PD) type. The NM assumes ecological

equivalence of species with dispersal-limited communities,

resulting in strong spatial structures (Hubbell 2001; Bell

2001). Sufficient dispersal in a heterogeneous environment

with associated niche differences will promote SS along

resource gradients (Chase & Leibold 2003). Increasing

dispersal in heterogeneous environments will result in local

populations being quantitatively affected by dispersal

through source–sink relations, independent of resource

gradients (ME; Holt 1993; Mouquet & Loreau 2002, 2003).

Patch dynamics are another form of niche differentiation

that does not revolve around habitat. Instead, trade-offs lead

to spatiotemporal niches (Hastings 1980; Tilman 1994).

Although experiments have illustrated several aspects of

metacommunities (Gonzalez et al. 1998; Holyoak 2000;

Forbes & Chase 2002), comprehensive tests with observa-

tional data are limited in information used and extent of the

tests. Only species abundance distributions are checked for

zero-sum multinomial distribution in the context of NM for

a limited number of data sets (Condit et al. 2002; McGill

2003; Etienne & Olff 2005). However, no information on

environmental or dispersal characteristic of the studied

system are used in this method, while conceptually these

processes distinguish the different metacommunity types.

This clearly illustrates the limited power of using species

abundance distributions.
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In a recent review of neutral theory, Chave (2004)

advocated the use of databases and well-designed statistical

methods to test neutral theory, and by extension the other

metacommunity models. Recently, a few studies incorpo-

rated relevant environmental and spatial information

(Duivenvoorden et al. 2002; Cottenie et al. 2003; Tuomisto

et al. 2003; Gilbert & Lechowicz 2004) using powerful

multivariate methods that can actually detect the effects of

these processes. However, the link to the different

metacommunity types is not made explicit in these studies.

This paper is the first to evaluate NM, SS and ME types

from many different natural metacommunities within a

unified framework using standardized statistical methods.

This is a very powerful and encompassing test as (i) it

includes variables related to the processes actually structur-

ing metacommunities, (ii) it provides a test with specific

predictions for three of the four different metacommunity

types, (iii) it assesses the generality or distribution of the

different metacommunity types in observational data sets by

applying it to 158 different data sets, (iv) it provides a

continuous metacommunity score that captures the dynamic

aspect of the different metacommunity types (i.e. they occur

in a continuum with transition zones between the different

types), and (v) it provides a starting point for explaining the

occurrence of the different metacommunity types in certain

systems.

The first objective was to determine the variation in

community composition explained by environmental and

spatial variables. The second objective was to relate these

variation components to metacommunity dynamics. The

third objective was to determine the importance of local and

dispersal processes to four characteristics of a metacom-

munity. This would provide potential causal mechanisms for

explaining a variety of metacommunity models in nature.

For instance, increase in body size is expected to decrease

local population densities and decrease dispersal rates

(Finlay 2002; Cohen et al. 2003). Increasing the spatial scale

of a system results in both an increase in habitat

heterogeneity and dispersal limitation between the different

sites. This would be expected to increase SS and decrease

ME dynamics. Habitats with different degrees of contiguity

offer different contexts for dispersal limitation, for example,

compare continuous marine environments with discrete

lakes in an uninhabitable terrestrial matrix. Finally, organ-

isms have qualitatively different dispersal types that will

influence spatial scale.

MATER IA L AND METHODS

Data set requirements and acquisition

In order to be included in the analyses, a data set needed:

(i) community composition as either absolute abundances,

relative abundances, or presence–absence of its constituent

taxa; (ii) environmental variables relevant for structuring

that particular community; (iii) spatial configuration of the

sampled sites to be collected within one growing season.

This ensured only direct dispersal interactions between sites,

with no confounding in the data through multiple dispersal

events by, for instance, lumping sites measured for several

seasons or in different seasons.

Data were located by database and literature searches, and

directly contacting other scientists. Authors of relevant

studies were contacted directly for the raw data. Publication

bias is probably not an important problem, as the majority

of these data sets were not collected for testing metacom-

munity theory. However, all the studies did include

environmental data, indicating that the authors expected at

least some sort of environmental structuring. (For descrip-

tion of the different data sets, see Table S1 in Supplement-

ary Material.)

Variation decomposition

I determined the importance of local environmental and

spatial processes (the different competing hypotheses) by

decomposing the total variation in the community matrix

into unique environmental and spatial components with

corresponding P-values using (partial) redundancy analysis

(Borcard et al. 1992; Legendre & Legendre 1998; Cottenie

et al. 2003). This multivariate extension of linear regression

with corresponding R2 measures the amount of variation

(computed as the percentage of the total variation in the

community matrix) that can be attributed exclusively to one

or the other set of explanatory environmental, E, or spatial,

S, variables. The different components are: total explained

variation [E + S], environmental variation [E], spatial

variation [S], environmental variation without a spatial

component [E|S], spatial variation without the environ-

mental component [S|E]. The significance of these com-

ponents was evaluated with a Monte Carlo permutation test

(1999 new values under the null hypothesis). For the partial

RDA analyses [E|S] and [S|E], residuals under the

�reduced� model were permuted; for the other RDA analyses

([E + S], [E], and [S]), residuals under the �full� model were

permuted (Legendre & Legendre 1998). I computed two

other fractions: (i) the unexplained variation (1 ) [E + S])

and (ii) the variation from correlations between environ-

mental and spatial variables ([E with S] ¼ [E] ) [E|S] ¼
[S] ) [S|E]). It is important to stress that this approach is

essentially correlative, with the different components and

associated P-values considered as estimates for the obser-

vational evidence that a certain process (environmental,

dispersal, or a combination of both) is important in

determining community structure. As such, I did not adjust

the P-values for multiple testing (Cottenie et al. 2003).
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Construction of initial data sets per study

Community data expressed in absolute abundances were

fourth-root transformed to normalize these skewed density

data (similar to the logarithmic transformation, without the

need to add a constant to zero abundances), while presence/

absence data and community data expressed as percentage

relative to total density per site were not transformed. The

initial set of environmental variables consisted of all

environmental variables provided by the original authors.

Spatial variables were provided in three basic forms:

latitude–longitude coordinates, X–Y coordinates with kilo-

metre units based on digitizing map of the different sites

with a scale bar, and for sites in a single river or estuary as

distance along the river to the most downstream site. The

latitude–longitude were converted into projected coordi-

nates. For data sets with projected latitude–longitude or

X–Y coordinates, the initial set of spatial variables consisted

of all third-order polynomials of these two coordinate

variables. For data sets with only linear distances, the initial

and final spatial data set consisted of this one distance

variable.

Standardization

For the meta-analysis, this (partial) RDA approach has the

advantage that it provides a standard and comparable

measure, percentage of explained variation, to describe the

information present in studies with very different types of

variables. However, similar to linear regression, increasing

the number of explanatory variables results in an increase of

explained variation, while increasing the number of sites will

result in a decrease of explained variation. Thus, to remove

these potential methodological influences, it was important

to standardize across the different data sets by (i) using

redundancy analysis for all the analyses, (ii) limiting the two

groups of environmental and spatial third degree polynomial

variables to the most parsimonious subset of £ 4 significant

variables each with a forward selection procedure (and this

also eliminated overfitting and problems with co-linear

variables), (iii) limiting the number of sites per data set to a

maximum of 30. For data sets with information on > 30

sites, the parsimonious environmental and spatial variables

were determined for all the sites; for 50 random subsets of

30 sites each, I computed all the different components and

the associated P-values; the final variation components and

P-values were obtained by averaging these 50 values.

Metacommunity types

The significance structure of the variation components,

based on a a level of 0.05, determined the metacommu-

nity type for each data set (Table 1). In the NM/PD

perspective, species and habitats are similar such that only

dispersal and not environmental processes will relate to

community structure. This will result in only spatial

patterns in community structure. The PD type is

dynamically different from the NM with species experi-

encing trade-offs between competitive ability and disper-

sal. However, because of the limitations of my data

search with the restriction to time-limited spatial data sets,

the used methodology cannot distinguish these two types.

SS on the contrary, describes communities where resource

gradients or patch types cause sufficiently strong differ-

ences in the local demography of species and the

outcomes of local species interactions. Thus patch quality

and dispersal jointly affect local community structure.

Dispersal is important because it allows compositional

changes to track changes in local environmental condi-

tions. However, it will not result in spatial patterns

independent of the environmental variables as its effect is

completely confounded within the environmental proces-

ses. ME emphasize the role of spatial dynamics on

community structure in a system where species can be

rescued from local competitive exclusion in such com-

munities where they are bad competitors by immigration

from communities where they are good competitors. This

will result in spatial patterns occurring independently of

environmental patterns. In the ME context, environmental

heterogeneity with corresponding SS dynamics is however

present and important in structuring local communities,

but its effect is modulated by an independent dispersal

effect. While this is implicitly pointed out in Leibold et al.

(2004), I indicated this explicitly as SS + ME. Theoret-

ically, it is possible that dispersal is so high that it

completely overrides SS dynamics, but conceptually such a

metacommunity becomes an NM.

Table 1 Decision tree for relationship between significance struc-

ture and metacommunity types

[E] [S] [E|S] [S|E]

Metacommunity

type

(not) sig. (not) sig. sig. not sig. SS

(not) sig. (not) sig. sig. sig. SS + ME

(not) sig. (not) sig. not sig. sig. NM/PD

(not) sig. (not) sig. not sig. not sig. Undetermined

not sig. not sig. not sig. not sig. No found

Relationship between significance structure of the four important

variation components and associated metacommunity types. The

components are environment [E], space [S], environment inde-

pendent of space [E|S], and space independent of environment

[S|E]. sig., variation component explains a significant part of the

variation in community structure; not sig., no significant part; (not)

sig., either.
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Metacommunity axis

From the above discussion of the relation between

variation components and metacommunity types, it is

obvious that metacommunity types do not have clear cut

boundaries, but form a continuum with transition zones

possible between, for example, SS and NM dependent on

the amount of environmental heterogeneity for a given

amount of dispersal, and between SS and SS + ME

dependent on the amount of dispersal for a given amount

of environmental heterogeneity. So metacommunity type is

probably a continuous characteristic (Leibold et al. 2004),

while using the significance structure of the different

variation components as in Table 1 ignores this important

aspect. However, the variation components themselves

cannot be directly used as large variation components

might not be significant. Therefore, a synthetic metacom-

munity axis was constructed by combining both the

significance structure and the corresponding metacommu-

nity perspective with the different variation components

using linear discriminant analysis (Legendre & Legendre

1998). More specifically, it tested whether the four

variation components [E], [S], [E|S], and [S|E] can

discriminate among the different metacommunity perspec-

tives for data sets that corresponded to the SS, NM/PD,

and SS + ME perspective with more than 25 sites (n ¼
91). Moreover, the linear discriminant analysis also

estimates the parameters of a predictive linear model of

the variation components for discriminating the three

metacommunity perspectives. The first linear discriminant

axis was termed the �metacommunity axis�, and the

position of the different data sets along this metacommu-

nity axis the �metacommunity scores�.

Important metacommunity variables

Average metacommunity scores were computed for

systems with multiple data sets (number of independent

systems is 52) to avoid pseudoreplication. These system

metacommunity scores were then related to spatial scale

and habitat type of the study site, and main dispersal

mechanism and body size of the species. See Supple-

mentary Material (Appendix S1) for the definitions of the

variables and input values of the different systems.

However, combining the different explanatory variables

in one analysis using a linear model is impossible as

several combinations of dispersal type are nested in

habitat type, and the spatial scale and body size ranges

differ in the different groups. Therefore, a regression tree

(De’Ath & Fabricius 2000) was used to determine the

important variables associated with metacommunity

structure. This method can handle both continuous and

categorical explanatory variables, is invariant to monotonic

transformations, and can deal with nonlinear relationships

and high-order interactions (De’Ath & Fabricius 2000).

The regression tree method explained variation in the

metacommunity axis by repeatedly splitting the data into

more homogeneous groups, using combinations of the

selected important explanatory variables.

Statistical package

All analyses were carried out in R (R Development Core

Team 2004) with the following packages: MASS (Venables

& Ripley 2002) for the discriminant analysis, mapproj

(McIlroy 2004) for converting latitude–longitude coordi-

nates into projected coordinates, vegan (Oksanen 2005) for

the variation decomposition, and rpart (Therneau &

Atkinson 1997) for the regression tree analysis.

RESUL T S

I collected 158 data sets spanning a broad range of taxa,

habitats, spatial scales, body sizes and dispersal mechanisms

(Table S1). Most data sets were from northern temperate

regions in North America and Europe, and three from

Australia and New Zealand (see Figure S2 in Supplementary

Material).

Redundancy analysis decomposed the total variation in

community structure into variation explained by environ-

mental and spatial variables using a standardized protocol

(Fig. 1); 48% of the total variation in community structure

was explained by environmental and spatial variables

together, 22% by the pure environmental fraction, 16% by

the pure spatial component and 10% by the spatially

structured environmental fraction.

Moreover, three metacommunity types were distinguish-

able based on the significance of the environmental and

spatial components in the analyses (Table 1). Of these 158

data sets, 69 (44%) best fit the SS type, 46 (29%) a mixed

SS + ME type and only 13 (or 8%) the NM/PD type,

19 data sets could not be uniquely associated with these

three types, and 11 had no significant components.

As the metacommunity type is probably not a discrete

character, metacommunity types of each data set were

converted to a continuous score with discriminant analysis.

The first linear discriminant axis significantly discriminated

the SS, SS + ME and NM/PD types based on variation

components. Figure 2 shows the distribution of the

different metacommunity types along the axis obtained

through linear discriminant analysis, with metacommunities

structured by environmental processes having negative

scores and metacommunities with an important independ-

ent spatial component more positive scores. This meta-

community axis can thus be synthesized as a environment

vs. space axis, and the position along this axis indicates the

1178 K. Cottenie

�2005 Blackwell Publishing Ltd/CNRS



relative importance of local environmental and neutral

dispersal processes.

I tested the relationship between the metacommunity

scores (or the relative importance of local environmental

and neutral dispersal processes) and the four potentially

determining characters. All the univariate relationships

were significant (see Figures S3–S6 in Supplementary

Material). To study potential interactions, I constructed

a regression tree by repeatedly splitting the scores into

more homogeneous groups, using combinations of the

selected important explanatory variables. The final model

(Fig. 3) explained 40% of the variation in the metacom-

munity axis. The first split associated predominantly SS

dynamics to systems with organisms displaying passive

dispersal modes (17 data sets). The second split divided

the other dispersal types into lake and marine habitats,

with a mixture of SS and SS + ME (nine data sets), from

estuary, stream and terrestrial habitats. This last group was

then subdivided into metacommunities with a spatial scale

smaller than 948 km, with SS + ME (19 data sets), and at

spatial scales bigger than 948 with predominantly spatial

processes (seven data sets).

NM/PD SSSS + ME
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Metacommunity axis
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Figure 2 Distribution of metacommunity types along the first

linear discriminant axis. This axis was highly significant (Pillai’s

trace ¼ 0.67, F-value ¼ 10.71, P-value < 0.001), and explained

73% of the differences between the three metacommunity

perspectives. The boxes represent the 25, 50 and 75 quartiles,

the whiskers the minimum and maximum values excluding the

outliers, values outside 1.5 times the interquartile range. The SS

data sets are the mainly negative values, the NM/PD data sets are

the positive values, and the SS + ME are situated around zero.

|

Disp.type = PA

Habitat = L, M

Sp.scale < 949.7

Disp.type = FL, MO, MI, PL

Habitat = E, S, T

Sp.scale ≥ = 949

−0.99

−0.83

0.27 1.3
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Figure 3 Regression tree results. Final regression tree results

showing the successive splitting and associated splitting criteria,

together with the final nodes and the average metacommunity

score per final node. To relate those metacommunity scores with

metacommunity types, drop scores to the metacommunity axis in

Fig. 2. sp.scale, spatial scale; the different habitat codes are: E,

estuary; S, stream; T, terrestrial; L, lake; M, marine habitats.

disp.type, dispersal type and the codes are: FL, flying; MO,

mobility; PL, pelagic larvae; PA, passive; MI, mixed dispersal types.
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Figure 1 Variation in community structure explained by environ-

mental and spatial variables. The components are both environ-

ment and space [E + S], unexplained variation 1 ) [E + S],

environment [E], space [S], environment independent of space

[E|S], space independent of environment [S|E], the spatially

structured environmental effect [E with S]. The boxes represent

the 25, 50 and 75 quartiles, the whiskers the minimum and

maximum values, the outliers are values outside 1.5 times the

interquartile range.
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D I SCUSS ION

This meta-analysis of metacommunities, the first to study

metacommunity dynamics with a standard and synthetic

method using a broad spectrum of data sets, has several

implications. The results form a bench mark study into

variation in community composition that is currently

explained by environmental, spatial and interactive compo-

nents, using standardized methods. There is a rich literature

on the association between environmental variables and

community composition, but comparing different studies

was hindered by different statistical methods used, and

varying numbers of sites, environmental and spatial variables

included. To make meaningful comparisons across different

systems, these methodological aspects should be standard-

ized. Moreover, recent theoretical advancements stressed the

importance of spatial processes such as dispersal. There is a

rich body of literature on the relationship between environ-

mental variables and community structure, but either spatial

processes are not incorporated or treated as a �nuisance�
variable that should be eliminated from the analyses

(Liebhold & Gurevitch 2002). My result illustrated that in

systems with up to 30 sites, the independent variables

included in the linear methods explained between 20% and

80% of the variation present in the community composition.

Moreover, investigation of the relative importance of

local and regional processes showed the prevalence of three

theoretical metacommunity types for real systems in a

unified framework (Leibold et al. 2004). The important

conclusion was that most communities had a significant

environmental component, thus habitat heterogeneity and

associated SS dynamics were dominant. Importantly, this

does not imply that spatial dispersal processes are not

present. A necessary underlying assumption for environ-

mental processes to structure communities is that dispersal

is sufficient to deliver species to the sites with the correct

environmental conditions, that is, dispersal is not limiting

(Fuentes 2002).

A second important subset of data sets consisted of

metacommunities structured by both environmental and

spatial variables, independent of each other, suggesting

SS + ME dynamics. This is also an important conclusion as

it illustrates the necessity of including spatial processes in

community ecology (Levin 1992). Spatial dispersal processes

should thus be part of every study in (community) ecology,

and should be explicitly modelled in the analyses (Liebhold

& Gurevitch 2002). Disregarding neutral dispersal processes

in our analyses would have resulted in missing important

patterns in 37% of the studied communities: 46 (29%)

communities were of mixed SS + ME type and 13 (or 8%)

of the NM/PD type.

Only a small fraction of the data sets are structured

by only NM/PD dynamics. Despite the considerable

controversy surrounding neutral theory in community

ecology, it seems to be important in only a limited fraction

of real metacommunities in temperate ecosystems. This

study did not include tropical data sets, claimed to be an

textbook example of NM dynamics (Hubbell 2001). Several

tropical rain forest studies that I know of (Duivenvoorden

et al. 2002; Duque et al. 2002; Tuomisto et al. 2003; Cannon

& Leighton 2004; Vormisto et al. 2004), however, per-

formed a similar study. Interpreting their results in the

framework of this article, it is also a combination of

environmental and spatial dynamics that structure these

tropical communities concurrently, and not only neutral

dynamics.

Finally, the diversity in metacommunity types (or the

relative importance of local environmental vs. neutral

dispersal processes) could be partly explained by determi-

nants such as spatial scale, habitat type, organism size and

dispersal type. The regression tree results suggested that

dispersal type was the most important determinant of

metacommunity type. Dispersal type is obviously associated

with dispersal rates, and as such it is not surprisingly an

important determinant of metacommunity type. Passive

dispersal, mainly freshwater plankton and terrestrial plants,

results in species composition tracking environmental

heterogeneity, even across larger spatial scales. Surprisingly,

although marine and lake habitats impose a very different

set of dispersal limitations on its constituting species, they

resulted in similar metacommunity dynamics. Active dis-

persers in these two habitats were also strongly related to

environmental dynamics, with little evidence for independ-

ent spatial dynamics. Active dispersers in estuarine, stream

and terrestrial systems finally were split according to spatial

scale. However, the results did not support the hypothesized

increase of SS dynamics with increased spatial scale. At small

spatial scales, SS and NM dynamics were important, while at

high spatial scales, an increase of only spatial dynamics

becomes apparent. This is probably more the result of

limiting dispersal, with suitable sites not colonized by

suitable taxa, and thus more neutral dynamics (Fuentes

2002).

As with any meta-analysis, there are several methodolo-

gical design decisions that could influence some of the

results. The first is the nature of space in the above analyses,

at three different levels. I decided to treat space as

potentially structuring variable as it can both effect

environmental heterogeneity and dispersal limitation. This

made it fundamentally different from other methodological

variables such as the number of sites or variables included in

the variation decomposition that I tried to standardize as

much as possible. The second level concerns the interpret-

ation of the pure spatial component ([E|S]). As it is highly

unlikely that authors measured all the relevant environmen-

tal variables, it is probable that this spatial component
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captured part of the environmental variation not measured

by the environmental variables included in the study.

However, this would only influence the results in the

direction of the importance of SS (and ME) dynamics, and

diminish even more the prevalence of neutral dynamics. The

third problem with space is that it is treated as a crude proxy

for dispersal limitation between the sites in a metacommu-

nity. While third order polynomials of site coordinates

can adequately model broad-scale spatial trends in data

(Legendre & Legendre 1998), it will potentially miss to

include local dispersal patterns and thus potential neutral

dynamics. However, the result showed that a large range of

metacommunity dynamics were present, but with a tendency

for the importance of environmental heterogeneity and SS,

at small spatial scales.

A second methodological problem bears upon the

standardization to a maximum of four explanatory environ-

mental and spatial variables. While, in general, forward

selection without this standardization would have resulted in

the inclusion of more environmental than spatial variables, it

would have been difficult to compare among studies, with

methodological issues confounding the structuring process

variables. This would result in a bias towards a higher

prevalence of spatial and neutral dynamics. As the results

clearly showed the opposite effect, they are probably robust

enough, despite this potential bias.

A third methodological problem stems from potential

biases in obtaining the different studies. This is for instance

obvious in the unintended restriction to north temperate

systems (see above). This limits all generalizations of the

results to temperate ecosystems. However, most, if not all,

data sets were initially collected for other purposes than

determining metacommunity structure in the study system.

Thus biases of the results towards one of the metacommu-

nity perspectives within the temperate ecosystems will be

limited. One could argue that investigators only incorporate

environmental variables if they consider them to be

important in structuring communities, and as such biased

the results towards SS dynamics. However, as the commu-

nities included in this meta-analysis are common and well-

studied communities, these results imply that neutral

dynamics will only be important in limited (sub-)sets of

communities with, for instance, very restricted dispersal

capabilities (Hubbell 2005).

The presented results clearly illustrated the necessity to

include both local environmental and regional dispersal

dynamics in metacommunities. The majority of the data sets

included relationships with both environmental variables

and spatial variables (either directly on indirectly). Only a

small subset experienced only neutral dynamics. The next

important step in metacommunity theory is to explain the

diversity in metacommunity dynamics. While the current

analyses succeeded in establishing some broad scale

patterns, the number of individual data sets per final

subgroup was still low (on average 14), and confounding

several explanatory variables still an issue. With more data

sets per system, and including more relevant information on,

for instance, species-specific dispersal characteristics, short-

range dispersal, seasonal patterns, our understanding of

metacommunity dynamics and ecology in general will greatly

improve.
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Manuscript received 13 May 2005

First decision made 13 June 2005

Manuscript accepted 22 July 2005

1182 K. Cottenie

�2005 Blackwell Publishing Ltd/CNRS


