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Abstract. The active vision and attention-for-action frameworks pro-
pose that in organisms attention and perception are closely integrated
with action and learning. This work proposes a novel bio-inspired in-
tegrated neural-network architecture that on one side uses attention to
guide and furnish the parameters to action, and on the other side uses
the effects of action to train the task-oriented top-down attention com-
ponents of the system. The architecture is tested both with a simulated
and a real camera-arm robot engaged in a reaching task. The results
highlight the computational opportunities and difficulties deriving from
a close integration of attention, action and learning.

1 Introduction

Consider a primate exposed to a new environment scattered with bushes carrying
red fruits. It might initially look at the bright green foliage and trunks of bushes
popping out of the scene, and try to interact with them without any useful result.
Then it might look at a fruit and then pick and taste it. Now that it understands
that fruits are useful, how can it find more of them? As its gaze often focuses on
the bushes’ foliage, it should learn to look away from them, and below them, as
the fruits of these bushes hang below their leaves. It should also learn to trigger
reaching actions on the basis of the fruits’ sight and to shape actions on the
basis of the gaze direction.

This example shows typical interactions between attention, perception, action
and learning processes taking place in an organism acting in a natural context.
These interactions have often been overlooked by the information-processing
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framework widely used in machine vision, initiated with Marr’s theory of vision
[1]. This framework views attention and vision as processes directed to construct
“objective” detailed general-purpose representations of the environment later
used to guide action and learning [2]. Computationally, building representations
totally detached from the embodiment and the specific needs of the system
tends to produce scene representations containing an overwhelming amount of
non-needed information and hence often computationally heavy or intractable.

The active vision approach [3] introduced action in visual processes to allow
a high-sensitive fovea to scan the scene and perform heavy computations only
on portions of it relevant for the task in hand, similarly to what happens in
human attention [4, 5]. Moreover, it proposed to exploit gaze motion to simplify
representations and learning processes, for example by using “deictic represen-
tations” encoding information with respect to the current state of sensors, or by
applying object or feature recognition processes only to the foveated points [3].

As it emphasizes the importance of action in perception, the active vision per-
spective has been fully embraced by evolutionary robotics [6]. This has proposed
systems that fully integrate actions directed to gather information (epistemic ac-
tions) and actions directed to accomplish the systems’ goals in the environment
(pragmatic actions) [7]. In general, with respect to active vision, evolutionary
algorithms have the advantage of co-evolving complementary fovea movements
and feature detectors [8, 9]. Moreover, they are not affected by the perceptual
aliasing problem [10] introduced by the fovea’s partial view of scenes as rein-
forcement learning algorithms are. In this respect, an important feature of the
architecture proposed here is that, while it uses reinforcement learning to ex-
ploit the advantages of on-line adaptation, it ameliorates the aliasing problem
by using a potential action map (PAM) that stores information on past percepts
in the form of potential actions (memory is a typical solution to aliasing).

Interestingly, within psychology, Allport [11] proposed a new perspective on
attention that, in line with the ideas of active vision, claims that attention serves
primarily to guide organisms’ action, for example by directly setting some of its
parameters [12]. Within the modeling literature, Balkenius [13] echoes this view
and specifies the attention-for-action perspective with four basic principles: (1)
inhibition can be used to disengage the focus of attention from the current loca-
tion; (2) attentive (epistemic) actions can be computationally treated as other
(pragmatic) actions; (3) focussing processes can lead to select targets for (prag-
matic) action; (4) gaze direction can be used to produce implicit arguments
for action. These principles not only emphasize that attention and action are
closely coupled, but they also stress that learning principles generally used to
acquire pragmatic actions can also be used to learn attentive actions (principle
(2)). Indeed, in the past several systems have been proposed that, contrary to
processes that detect information on the basis of intrinsic salience of images’ fea-
tures (bottom-up attention; e.g. [14]), exploit reinforcement learning algorithms
to learn to detect task-relevant information (top-down attention; e.g. [15]).

This work proposes a novel neural-network architecture where perception,
attention (bottom-up and top-down), action, and learning are integrated to an



extent that goes well beyond what is done in existing models. The architecture
is tested both with a simulated and with a real camera-arm robot engaged in a
reaching task. As we shall see, Sect. 2 on methods and Sect. 3 on results show
that the principles of attention-for-action proposed in [13] are fully integrated in
the system, either by design or as features emerging from the learning processes.
The overall value of this research resides not only in the mechanisms that are
proposed to implement the aforementioned integration, but also in the analysis
of the system that shows the computational advantages that derive from it.

2 Methods

This section first overviews the system and then explains in detail its compo-
nents’ functioning. The system (Fig. 1b) integrates two previous models: (1) a
bottom-up and top-down attention model [16]; (2) an arm control model [17].
These models are based on common computational principles: population codes
(here 2D neural maps) to represent sensorimotor information and probability dis-
tributions of variables controlling eye/arm behavior [18, 19]; dynamic neural-field
networks to integrate information and select actions through biased competition
mechanisms [20, 21]; a progressive developmental of skills of the neural com-
ponents (cf. [17]). These principles were chosen for their biological plausibility.
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Fig. 1. (a) Robotic setup. (b) Model’s architecture. (c) Examples of input images.

The simulated/hardware experimental setup is formed by a down-looking
webcam set above a robotic arm (Fig. 1a). The arm’s working plane is a CRT
monitor. A host computer grabs the camera images, runs the robot’s controller,
issues motor commands to the arm, and controls the images of the monitor
(task). A moving sub-image (input image) is extracted from the camera image
to simulate eye movements. The input image is used by a periphery map that



implements bottom-up attention. The central part of input image (fovea) is the
input of reinforcement-learning actor-critic component that learns to predict the
spatial position of the rewarded arm targets with respect to the foveated cues
(top-down attention). A potential action map (PAM) accumulates this evidence
while the fovea explores various cues. A saliency map integrates information
from the periphery map and the PAM to select the next eye movement using a
biased competition. Each fixation point, encoded in a eye posture map, suggests
a potential arm target to a arm posture map: when the eye fixates a location
for long, the arm posture map triggers a related action on the basis of a biased
competition. If the reached target is a “fruit”, the system gets rewarded otherwise
it gets slightly punished (energy consumption).

2.1 Robotic Setup and Task

In the following, with the exception of some weight matrices, the bold symbols
of mathematical notations represent column vectors.

Camera. A low cost Spacecam 150 Live webcam (by Trust; see Fig. 1) was
used to acquire visual information from the environment. The webcam grabs
ten RGB images per second with a 240×320 pixel definition (24 bit/pixel). The
webcam is set above the robotic arm with its view field covering exactly the
monitor’s screen forming the arm’s working plane. The webcam is connected to
the host computer via a USB port and is interfaced with software built with Java
Multimedia Framework libraries (by SUN). In the tests running in simulation,
the camera is simulated by directly using the task’s monitor images.

Robotic Arm. The robotic arm was built using low cost components (e.g. by
Lynxmotion). The arm (Fig. 1) is composed of a base and 3 segments (upper
arm 15.9cm, forearm 17.5cm, and “hand” 9.5cm). The arm has four degrees of
freedom: two at the shoulder (planar rotation, 15◦− 165◦, and vertical rotation,
20◦ − 140◦), one at the elbow (35◦ − 145◦), and one at the wrist (110◦ − 220◦).
Each joint is powered by one digital servo (by Hitech) with the exception of the
shoulder vertical-rotation joint having two servos. The servos are controlled by
a servo controller SSC32 (by Lynxmotion) connected to the host computer via
a serial port. The simulated version of the arm is a simplified kinematic plant
with segments’ size and degrees of freedom like those of the real arm.

Environment and Task. The horizontal working plane of the arm is a CRT
monitor screen (37×28cm) connected to the host computer. The monitor gener-
ates the images of the task used to test the system. These images are formed by
red, green and blue squares set on the vertexes of a 5×5 grid covering the whole
screen. In particular, the images form stylized “trees” (see Fig. 1) with 2-5 green
blocks representing the foliage (100% luminosity), 1-4 blue blocks representing
the trunk (80% luminosity), and 1 red block representing a fruit (80% luminos-
ity). After each reaching action, the system gets a reward of 1 if it touches a
fruit and a punishment of -0.05 otherwise. Saccades are not directly rewarded
or punished. A new tree randomly structured and positioned in the image is
generated after the execution of each reaching action.



2.2 Attention Control Components

Preprocessing Filters. The 240 × 320 pixel RGB image of the webcam is noisy
and contains reflections, so it is first subtracted by an image grabbed by the
camera with the screen switched off (black image), and then it is filtered into
main-color components. The resulting image in copied into the centre of a bigger
480× 640 pixel black image, and a 240× 320 pixel image is extracted from this
to simulate the system’s input image grabbed by a moving eye.

Periphery Map (Bottom-Up Attention). The 30 × 40 periphery map pm is
activated with a grayscale image: first the input image is divided into 30 × 40
blocks of 8×8 pixels each, then the RGB color values of the pixels of each block
are averaged to obtain a gray value. A more sophisticated bottom-up saliency
(e.g. as in [14]) is not needed as this research focuses on top-down attention.

Actor-Critic Component (Top-Down Attention). The fovea is simulated with
an image f of 2×2 RGB pixels taken from the input image centre. This image is
fed into two feedforward neural networks forming a reinforcement-learning actor-
critic architecture [22]. The critic is a network with a linear output unit vt which
learns to evaluate the current state on the basis of the expected future discounted
rewards. The system gets a reward rt after the execution of a reaching action,
and this, together with vt, is used to compute the surprise signal st [22] used to
update both the critic’s weights wc and the actor’s weights Wa. The actor is a
network whose output layer is a vote map vm of 60× 80 sigmoid neurons which
signal to the PAM the possible positions of rewarded targets with respect to the
currently foveated visual cue (γ = 0.9; T is the transpose operator):

vt = wcT f st = (rt + γ vt)− vt−1 vm = g [Waf ] g[x] = 1/(1 + e−x) (1)

The critic is trained on the basis of st, used as error signal, and the input signal f
[22]. The actor is trained with a Hebb rule involving the activation of the saliency
map smt (encoding the last eye displacement, see below) and the input signal f
so as to increase or decrease the probability of doing the same saccadic movement
again on the basis of the surprise signal st [16] (ηc = 10−7, ηa = 10−5):

wc
t+1 = wc

t + ηc st ft Wa
t+1 = Wa

t + ηa st smt • (vmt • (1− vmt)) fT
t (2)

where • is the entrywise product operator.
Potential Action Map (Top-Down Attention Memory). The PAM pam is

formed by 60 × 80 leaky neurons and accumulates evidence, furnished by the
vote map vm via topological connections, on the possible positions of rewarded
targets. During each saccade the map’s activation is shifted in the direction
opposite to the eye’s motion to maintain eye-centred representations (as it might
happen in real organisms [23]). The PAM is reset each time the tree image from
the camera changes (also this might happen in real organisms [24]).

Saliency Map. The 60 × 80 saliency map sm selects saccade movements on
the basis of the sum of the topological input signals pm and pam. The saccade
movement is selected by first identifying the unit with the maximum activation
and then by activating the map with a Gaussian population code centred on it



(σ = 1). The eye movement is the winning neurons’ preferred eye displacement
(∆x,∆y). This selection mechanism is a computationally fast approximation of
a biased dynamic competition process as the one reported in [21] (cf. Eq. 3).

2.3 Arm Control Components

Eye Posture Map. This 30× 40 neuron map encodes the current eye posture as
a Gaussian population code emp (σ = 0.3).

Arm Posture Map. This 40 × 40 map apm is the output layer of a neural
network pre-trained with a Kohonen algorithm (see below and [17]) and encodes
arm postures in the 2D map space. During the tests reported in Sect. 3, a neural
biased competition [21] takes place in the map (similarly to what happens in real
organisms [20]) in order to select a target for reaching actions when any neuron
achieves a threshold th (th = 0.3; δ = 0.1):

apmt+1 = max
[
(1− δ)apmt + Wapm lapmt + Wapmepmt, 0

]
(3)

where Wapm l are the weights of lateral close-excitatory far-inhibitory connec-
tions having a Gaussian distribution dependent on the distance between neurons
(see [17] for details), and Wapm are the weights from the eye posture map.

Arm Posture Readout Layer. This is a layer of four sigmoid neurons aprl that
encode the desired arm joint angles issued to the arm real/simulated servos. The
map is activated by the arm posture map through the weights Waprl.

Training. The weights Waprl and Wapm are trained using the simulated arm
to avoid stressing the hardware robot. Training is composed of three succeeding
learning phases based on random movements of the arm (motor babbling). To
avoid redundancy problems during training, the hand segment is kept parallel to
the working plane at a fixed distance from it (see Fig. 1a; see [25] for a version of
the model addressing redundancy issues). In these phases the system (see [17] for
details): (a) performs a vector quantization of postures, within the arm posture
map, on the basis of a Kohonen algorithm; (b) learns the inverse kinematic
mapping (Wapm) between the gaze directions corresponding to the seen hand
(epm) and the corresponding arm posture (apm) with supervised learning; (c)
trains the arm posture readout map (Waprl) with supervised learning.

3 Results

This section analyses the behavior of the system tested in the simulated and
real robot and the functioning of its neural components emerged with learning.
Fig. 2.a shows the reward received by the robot for every reaching action during
learning. After the first reward, the performance of both the simulated and real
robot increases rapidly and soon reaches a near-optimal steady state. Fig. 2.b
shows the average distance between reaching actions’ targets and the τ th sac-
cade’s target executed before such actions during learning. For τ = 1 the distance
initially increases from 2cm to 4cm and then goes back to 2cm, for τ = 2, 3, 4
the distance goes from 4 − 8cm to 2cm, for τ = 5 the distance decreases from



6 − 8cm to 3cm and then goes to 3 − 4cm. This data indicate that initially
only the last saccade (τ = 1) is related to the reaching target but with learn-
ing the attention-action coordination increases until the last four/five saccades
are focussed on the target. Fig. 2.c shows how the average number of saccades
per reaching action evolves during learning. Initially this number is about 20
but then increases to 50 in correspondence to the maximum learning progress
in reaching (Fig. 2.a), and finally stabilises at about 10. This dynamics is due
to the fact that the system initially tends to trigger reaching actions directed
to bushes’ foliage (which has a high salience) or trunk, then it learns to inhibit
these actions so that eye exploration increases, and finally it learns to anticipate
the position of fruits so that saccades become very efficient in localising fruits
and in triggering correct reaching actions.
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Fig. 2. Learning dynamics during 1000 reaching actions of the simulated and real robot.
(a) Moving average of reward. (b) Moving average of the distance between the targets
of the last five saccades (τ) and the reaching targets. (c) Moving average of saccades
per reaching action. All moving averages have a 50-step window.

This interpretation is corroborated by data reported in Fig. 3 that shows the
20 most frequent sequences of objects foveated by the trained simulated and real
robots in 1000 reaching actions. In both cases, the two most frequent sequences
start with a saccade on foliage followed by 4-5 saccades on fruit that trigger
action: the system has learned to suitably inhibit the high-saliency foliage cues
and to stay on the fruit once found. Other sequences focus only on fruit: these
are the “lucky” cases where the eye is already on the fruit in the new tree image.
Finally, other sequences are those that start with a foliage saccade followed by a
trunk saccade and then a fruit: they indicate that the PAM retains information
on the first “ambiguous” saccade target and integrates it with the information
from the second saccade target, so in part solving the partial observability prob-
lem caused by the limited view of the fovea (see Sect. 1). Note that the most
frequent sequences are quite similar for the simulated and real robot. However,
the number of total sequences in general is higher for the real robot (53) than
for the simulated one (391) due to a higher noise which in the latter case tends
to lead saccades to the background.

Fig. 4 shows the activation of the vote map, the PAM and the saliency map
in a sequence of three saccades targeted respectively to the foliage, trunk and
fruit. While foveating the foliage (or the trunk), the vote map activates as follows
(Fig. 4a-c): (a) a cluster of neurons activates below 0.5 in correspondence to the
whole row of foliage elements (or the column of trunk elements): this biases
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Fig. 3. Most frequent sequences of targets foveated in 1000 reaching actions by the
simulated (a) and real robot (b), and corresponding frequencies (c).

the eye to move away from them and constitutes an emergent form of self-tuned
inhibition of return related to visual cues (as in organisms [24]) and not to spatial
locations, as in the hardwired implementations of it of previous models (e.g. [14,
16]); (b) a cluster of neurons activates above 0.5 in correspondence to the row
of elements below the foliage (or left and right to the trunk): this biases the eye
to move there and captures the spatial relations existing between the foliage (or
trunk) and the fruit. While foveating the fruit, the vote map exhibits a high-
contrast Mexican-hat-shaped activation formed by a cluster of neurons activated
above 0.5, surrounded by neurons activated below 0.5, in correspondence to the
centre: this bias the eye to stay on the target. The activations of the PAM
(Fig. 4d-f) show how this memory plays an important function in integrating
information in time (the system’s performance decreases of 50% without this
memory, see [17]). In particular, Fig. 4e shows that if the system first foveates
the foliage and then, by chance, the trunk it maintains a strong inhibition in
correspondence to the foliage and sums up the bias to go on the fruit (below the
foliage and laterally to the trunk) coming from both the foliage and trunk cues.
Last, the saliency map (Fig. 4g-i) shows how top-down information is suitably
integrated with bottom-up information in order to select the most promising
locations. For example, notice the strong activation in correspondence to the
fruit, laterally to the trunk, in Fig. 4h compared to Fig. 4e.

4 Conclusions and Future Work

This paper presented an architecture for controlling a camera-arm robot that in-
tegrates attention, perception, action and learning well beyond existing models.
The integrated nature of the system allows it to instantiate the four principles
of attention-for-action [13], and this gives the system several interesting prop-
erties and strengths: (1) it leads the system to learn self-tuned object-related
inhibitions that allow it to disengage attention from scanned or non-relevant
visual cues: this can be considered as an emergent inhibition-of-return mech-
anism commonly hardwired in attentional systems (e.g. [14, 16]); (2) it allows
using similar neural structures and algorithms, such as reinforcement learning,
to train both epistemic and pragmatic actions [13]; (3) it allows selecting the
targets of pragmatic action, and triggering the latter, on the basis of attention
processes: this lead to a strong integration of the decision and parametrisation of
actions, as observed in real organisms’ brains [20]; (4) it allows using the direc-
tion of gaze to furnish an implicit parameter to reaching actions: this simplifies
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Fig. 4. Activation of the vote map (a-c), PAM (d-f), and saliency map (g-i) in a
sequence of three saccades targeted to the foliage (a, d, g), trunk (b, e, h), and fruit
(c, f, i) of the tree of the top graph of Fig. 1.c. White and black dots indicate neurons
activated respectively above and below 0.5 (a-c) or above and below 0 (d-i).

computations as it allows extracting a simple and clean information for guiding
action (the “where” of targets) from complex visual scenes [11, 12]. A further
advantage produced by the integration is that the architecture does not need to
be furnished the representation of “target objects” to which associate a reward
signal, as it usually happens (cf. [8]) in other top-down attention learning sys-
tems (e.g., [15]). In fact. the reward produced by behaviour allows the system
to autonomously build representations of objects that should trigger actions.

Notwithstanding its strengths, the model has various limits: a simplified
feature extraction component, based on simple colour-detection, a simplified
bottom-up attention component, based only on luminosity (see the components
used in [14]), and a hardwired reset of the PAM memory when the scene changes
(cf. [24]). However these limits, which will be tackled in future work, concern
the specific system’s components used here and not its overall architecture.
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