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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Three key components of an autonomous intelli- 

gent system are planning, execution, and learning. 

This paper describes how the Soar architecture 

supports planning, execution, and learning in un- 

predictable and dynamic environments. The tight 

integration of these components provides reactive 

execution, hierarchical execution, interruption, on 

demand planning, and the conversion of deliber- 

ate planning to reaction. These capabilities are 

demonstrated on two robotic systems controlled 

by Soar, one using a Puma robot arm and an 

overhead camera, the second using a small mobile 

robot with an arm. 

Introduction 

The architecture of an intelligent agent that interacts 

with an external environment has often been decom- 

posed into a set of cooperating processes including 

planning, execution and learning. Few AI systems 

since STRIPS [Fikes e2 al., 19721 have included all 

of these processes. Instead, the emphasis has often 

been on individual components, or pairs of compo- 

nents, such as planning and execution, or planning 

and learning. Recently, a few systems have been im- 

plemented that incorporate planning, execution, and 

learning [Blythe & Mitchell, 1989; Hammond, 1989; 

Langley et al., 19891. 

Soar [Laird et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal., 19871 is one such system. It tightly 

couples problem solving and learning in every task it 

attempts to execute. Problem solving is used to find 

a solution path, which the learning mechanism gener- 

alizes and stores as a plan in long-term memory. The 

generalized plan can then be retrieved and used during 

execution of the task (or on later problems). This ba- 

sic approach has been demonstrated in Soar on a large 

number of tasks [Rosenbloom et ai., 19901; however, 

all of these demonstrations are essentially internal - 

both planning and execution occur completely within 
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the scope of the system. Thus they do not involve di- 

rect execution in a real external environment and they 

safely ignore many of the issues inherent to such envi- 

ronments. 

Recently, Soar has been extended so that it can in- 

teract with external environments [Laird et al., 1990b]. 

What may be surprising is that Soar’s basic structure 

already supports many of the capabilities necessary to 

interact with external environments - reactive execu- 

tion, hierarchical execution, interruption, on demand 

planning, and the conversion of deliberate planning to 

reaction. 

In this paper, we present the integrated approach 

to planning, execution, and learning embodied by the 

Soar architecture. We focus on the aspects of Soar 

that support effective performance in unpredictable en- 

vironments in which perception can be uncertain and 

incomplete. Soar’s approach to interaction with ex- 

ternal environments is distinguished by the following 

three characteristics: 

Planning and execution share the same architecture 

and knowledge bases. This provides strong con- 

straints on the design of the architecture - the reac- 

tive capabilities required by execution must also be 

adequate for planning - and eliminates the need to 

explicitly transfer knowledge between planning and 

execution. 

External actions can be controlled at three levels, 

from high-speed reflexes, to deliberate selection, to 

unrestricted planning and problem solving. 

Learning automatically converts planning activity 

into control knowledge and reflexes for reactive exe- 

cution. 

Throughout this presentation we demonstrate these 

capabilities using two systems. The first is called Robo- 

Sour [Laird et al., 1989; Laird et al., 199Oa]. Robo-Soar 

controls a Puma robot arm using a camera vision sys- 

tem as shown in Figure 1. The vision system provides 

the position and orientation of blocks in the robot’s 

work area, as well as the status of a trouble light. 

Robo-Soar’s task is to align blocks in its work area, 

unless the light goes on, in which case it must immedi- 

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. 
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Figure 1: Robo-Soar system architecture. 

ately push a button. The environment for Rob&oar 

is unpredictable becaqse the light can go on at any 

time, and an outside agent may intervene at any time 

by moving blocks in the work area, either helping or 

hindering Robo-Soar’s efforts to align the blocks. In 

addition, Robo-Soar’s perception of the environment 

is incomplete because the robot arm occludes the vi- 

sion system while a block is being grasped. There is 

no feedback as to whether a block has been picked up 

until the arm is moved out of the work area. 

The second system, called Hero-Soar, controls a 

Hero 2000 robot. The Hero 2000 is a mobile robot 

with an arm for picking up objects and sonar sensors 

for detecting objects in the environment. Hero-Soar’s 

task is to pick up cups and deposit them in a waste 

basket. Our initial demonstrations of Soar will use 

Robo-Soar. At the end of the paper we will return to 

Hero-Soar and describe it more fully. 

Execution 

In Soar, all deliberate activity takes place within the 

context of goals or subgoals. A goal (or subgoal) is at- 

tempted by selecting and applying operators to trans- 

form an initial state into intermediate states until a 

desired state of the goal is reached. For Robo-Soar, 

one goal that arises is to align the blocks in the work 

area. A subgoal is to align a pair of blocks. Within 

a goal, the first decision is the selection of a problem 

space. The problem space determines the set of oper- 

ators that are available in a goal. In Robo-Soar, the 

problem space for manipulating the arm consists of op- 

erators such as open-gripper and move-gripper. 

The second decision selects the initial state of the 

problem space. For goals requiring interaction with an 

external environment, the states include data from the 

system sensors, as well as internally computed elabora- 

tions of this data. In Robo-Soar, the states include the 

position and orientation of all visible blocks and the 

gripper, their relative positions, and hypotheses about 

the positions of occluded blocks. Once the initial state 

is selected, decisions are made to select operators, one 

after another, until the goal is achieved. 

Every decision made by Soar, be it to select a prob- 

lem space, initial state, or operator for a goal, is based 

on preferences retrieved from Soar’s long-term produc- 

tion memory. A preference is an absolute or relative 

statement of the worth of a specific object for a spe- 

cific decision. The simplest preference, called uccept- 

able, means that an object should be considered for a 

decision. Other preferences help distinguish between 

the acceptable objects. For example, a preference in 

Robo-Soar might be that it is better to select operator 

move-gripper than operator close-gripper. 

A preference is only considered for a decision if it has 

been retrieved from the long-term production memory. 

Productions are continually matched against a work- 

ing memory - which contains the active goals and 

their associated problem spaces, states, and operators 
- and when matched, create preferences for specific 

decisions. For example, a production in Robo-Soar 

that proposes the close-gripper operator might be: 

If the problem space is robot-arm and 

the gripper is open and surrounds a block 

then create an acceptable preference 

for the close gripper operator. 

Once an operator is proposed with an acceptable 

preference, it becomes a candidate for selection. The 

selection of operators is controlled by productions that 

create preferences for candidate operators. For exam- 

ple, the following production prefers opening the grip- 

per over moving a block that is in place. 

If the goal is to move block A next to block B and 

the problem space is robot-arm and 

block A is next to block B and 

the gripper is closed and surrounds block A 

then create a preference that opening the gripper 

is better than withdrawing the gripper. 

Arbitrary control knowledge can be encoding as pro- 

ductions so that Soar is not constrained to any fixed 

method. The exact method is a result of a synthesis of 

all available control knowledge [Laird et al., 19861. 

Soar’s production memory is unusual in that it fires 

all matched production instantiations in parallel, and 

it retracts the actions of production instantiations that 

no longer match, as in a JTMS [Doyle, 19791.’ Thus, 

‘Retraction in Soar was introduced in version 5. Earlier 

versions ofSoar did not, retract the actions of productions. 
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Problem space: Puma Arm 

Problem space: Selection 

Problem space: Puma Arm 

Problem space: Selection 

Figure 2: Example of planning in Robo-Soar to move a block. Squares represent states, while horizontal arcs 

represent operator applications. Downward pointing arcs are used to represent the creation of subgoals, and 

upward pointing arcs represent the termination of subgoals and the creation of results. 

sufficient preferences have been created to allow the 

decision procedure to make a single choice, the sub- 

goal is automatically terminated and the appropriate 

selection is made. 

If there is more than a single point of indecision on 

the path to the goal, then it is necessary to create a 

longer term plan. If other decisions are underdeter- 

mined, then they will also lead to impasses and as- 

sociated subgoals during the look-ahead search. The 

result is a recursive application of the planning strat- 

egy to each decision in the search where the current 

knowledge is insufficient. 

Figure 2 shows a trace of the problem solving for 

Robo-Soar as it does look-ahead for moving a single 

block. At the left of the figure, the system is faced 

with an indecision as to which Puma command should 

used first. In the ensuing impasse, it performs a look- 

ahead search to find a sequence of Puma commands 

that pickup and move the block. Because of the size 

of the search space, Robo-Soar uses guidance from a 

human to determine which operators it should evalu- 

ate first [Laird et al., 19891. When a solution is found, 

preferences are created to make each of the decisions 

that required a subgoal, such as best(approach) and 

best (move-above) in the figure. Unfortunately, these 

preferences cannot directly serve as a plan because 

they are associated with specific planning subgoals that 

were created for the look-ahead search. These prefer- 

ences are removed from working memory when their 

associated subgoals are terminated. 

At this point, Soar’s learning mechanism, called 

chunkring, comes into play to preserve the control 

knowledge that was produced in the subgoals. Chunk- 
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ing is based on the observation that: (1) an impasse 

arises because of a lack of directly available knowledge, 

and (2) problem solving in the associated subgoal pro- 

duces new information that is available to resolve the 

impasse. Chunking caches the processing of the sub- 

goal by creating a production whose actions recreate 

the results of the subgoal. The conditions of the pro- 

duction are based on those working-memory elements 

in parent goals that were tested by productions in the 

subgoal and found necessary to produce the results. 

This is a process very similar to explanation-based 

learning [Rosenbloom & Laird, 19861. 

When chunking is used in conjunction with the 

planning scheme described above, Rob&oar learns 

new productions that create preferences for operators. 

Since the preferences were created by a search for a 

solution to the task, the new productions include all 

of the relevant tests of the current situation that are 

necessary to achieve the task. Chunking creates new 

productions not only for the original operator decision, 

but also for each decision that had an impasse in a sub- 

goal. As a result, productions are learned that create 

sufficient preferences for making each decision along 

the path to the goal. Once the original impasse is re- 

solved, the productions learned during planning will 

apply, creating sufficient preferences to select each op- 

erator on the path to the goal. This is shown in Figure 

2 as the straight line of operator applications across 

the top of figure after the planning is complete. 

In Robo-Soar, the productions learned for aligning 

blocks are very general. They ignore all of the details of 

the specific blocks because the planning was done using 

a abstract problem space. Similarly, the productions 



preferences and working memory elements exist only 

when they are relevant to the current situation as dic- 

tated by the conditions of the productions that created 

them. For example, there may be many productions 

that create preferences under different situations for a 

given operator. 

Once the relevant preferences have been created by 

productions, a fixed decision procedure uses the pref- 

erences created by productions to select the current 

problem space, the initial state, and operators. The 

decision procedure is invoked when Soar’s production 

memory reaches quiescence, that is, when there are no 

new changes to working memory. 

Once an operator is selected, productions sensitive 

to that operator can fire to implement the operator’s 

actions. Operator implementation productions do not 

retract their actions when they no longer match. By 

nature they make changes to the state that must per- 

sist until explicitly changed by other operators. For 

an internal operator, the productions modify the cur- 

rent state. For an operator involving interaction with 

an external environment, the productions augment 

the current state with appropriate motor commands. 

The Soar architecture detects these augmentations and 

sends them directly to the robot controller. For both 

internal and external operators, there is an additional 

production that tests that the operator was success- 

fully applied and signals that the operator has termi- 

nated so that a new operator can be selected. The 

exact nature of the test is dependent on the operator 

and may involve testing both internal data structures 

and feedback from sensors. 

At this point, the basic execution level of Soar has 

been defined. This differs from the execution level of 

most systems in that each control decision is made 

through the run-time integration of long-term knowl- 

edge. Most planning systems build a plan, and follow it 

step by step, never opening up the individual decisions 

to global long-term knowled 

‘i 

e. Other “ reactive”  learn- 

ing systems, such as Theo Blythe & Mitchell, 1989; 

Mitchell et al., 19901 and Schoppers’ Universal plans 

[Schoppers, 1986] create stimulus-response rules that 

do not allow the integration at run-time of control 

knowledge. Soar extends this notion of run-time com- 

bination to its operator implementations as well, so 

that an operator is not defined declaratively as in 

STRIPS. This will be expanded later to include both 

more reflexive and more deliberate execution. 

Planning 

In Soar, operator selection is the basic control act for 

which planning can provide additional knowledge. For 

situations in which Soar has sufficient knowledge, the 

preferences created for each operator decision will lead 

to the selection of a single operator. Once the oper- 

ator is selected, productions will apply it by making 

appropriate changes to the state. However, for many 

situations, the knowledge encoded as productions will 

be incomplete or inconsistent. We call such an un- 

derdetermined decision an impasse. For example, an 

impasse will arise when the preferences for selecting 

operators do not suggest a unique best choice. The 

Soar architecture detects impasses and automatically 

creates subgoals to determine the best choice. Within 

a subgoal, Soar once again casts the problem within 

a problem space, but this time the goal is to deter- 

mine which operator to select. Within the subgoal, 

additional impasses may arise, leading to a goal stack. 

The impasse is resolved, and the subgoal terminated, 

when sufficient preferences have been added to working 

memory so that a decision can be made. 

To determine the best operator, any number of 

methods can be used in the subgoal, such as draw- 

ing analogies to previous problems, asking an outside 

agent, or various planning strategies. In Soar, the 

selection of a problem space for the goal determines 

which approach will be taken, so that depending on 

the available knowledge, many different approaches are 

possible. This distinguishes Soar from many other sys- 

tems that use only a single planning technique to gen- 

erate control knowledge. 

Robo-Soar uses an abstract look-ahead planning 

strategy. Look-ahead planning requires additional do- 

main knowledge, specifically, the ability to simulate 

the actions of external operators on the internal model 

of the world. As expected, this knowledge is encoded 

as productions that directly modify the internal state 

when an operator is selected to apply to it. 

The internal simulations of operators do not repli- 

cate the behavior of the environment exactly, but are 

abstractions. In Rob&oar, these abstractions are pre- 

determined by the productions that implement the op- 

erators, although in other work in Soar abstractions 

have been generated automatically based on ignoring 

impasses that arise during the look-ahead search [Un- 

ruh & Rosenbloom, 19891. For Robo-Soar, an abstract 

plan is created to align a set of blocks by moving one 

block at a time. This level completely ignores moving 

the gripper and grasping blocks. This plan is later re- 

fined to movements of the gripper by further planning 

once the first block movement has been determined. 

Even this level is abstract in that it does not simu- 

late exact sensor values (such as block A is at location 

3.4, 5.5) but only relative positions of blocks and the 

gripper (block A is to the right of block B). 

Planning in Robo-Soar is performed by creating an 

internal model of the environment and then evaluat- 

ing the result of applying alternative operators using 

available domain knowledge. The exact nature of the 

search is dependent on the available knowledge. For 

some tasks, it may be possible to evaluate the re- 

sult of a single operator, but for other tasks, such as 

Robo-Soar, evaluation may be possible only after ap- 

plying many operators until a desired (of failed) state 

is achieved. Planning knowledge converts the evalua- 

tions computed in the search into preferences. When 
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rect execution. The plan consists of the preferences 

stored in these control rules, and the rule conditions 

which determine when the preferences are applica- 

ble. 

Expressive planning language. 

The expressibility of Soar’s plan language is a func- 

tion of: (1) the fine-grained conditionality provided 

by embedding the control knowledge in a set of rules; 

and (2) the preference language. The first factor 

makes it easy to encode such control structures as 

conditionals, loops, and recursion. The second fac- 

tor makes it easy to not only directly suggest the 

appropriate operator to select, but also to suggest 

that an operator be avoided, or that a partial order 

holds among a set of operators. This differs from sys- 

tems that use stimulus-response rules in which the 

actions are commands to the motor system [Mitchell 

et al., 1990; Schoppers, 19861. In Soar, the actions 

of the productions are preferences that contribute 

to the decision as to which operator to select. Thus 

Soar has a wider vocabulary for expressing control 

knowledge than these other systems. 

On-demand planning. 

Soar invokes planning whenever knowledge is insuf- 

ficient for making a decision and it terminates plan- 

ning as soon as sufficient knowledge is found. Be- 

cause of this, planning is always in service of execu- 

tion. Also because of this, planning and replanning 

are indistinguishable activities. Both are initiated 

because of indecision, and both provide knowledge 

that resolves the indecision. 

Learning improves future execution and plan- 

ning. 

Once a control production is learned, it can be used 

for future problems that match its conditions. These 

productions improve both execution and planning by 

eliminating indecision in both external and internal 

problem solving. The effect is not unlike the utiliza- 

tion of previous cases in case-based reasoning [Ham- 

mond, 19891. This is in contrast to other planning 

systems that build “ situated control rules”  for pro- 

viding reactive execution of the current plan, but do 

not generalize or store them for future goals [Drum- 

mond, 19891. 

Run- time combination of multiple plans. 

When a new situation is encountered, all relevant 

learned for moving the gripper ignore the exact names 

and positions of the blocks, but are sensitive to the 

final relative positions of the blocks. 

The ramifications of this approach to planning are 

as follows: 

1. Planning without monolithic plans. 

In classical planning, the plan is a monolithic data 

structure that provides communication between the 

planner and the execution module. In Soar, a mono- 

lithic declarative plan is not created, but instead a 

set of control productions are learned that jointly di- 

productions will fire. It makes no difference in which 

previous problem the productions were learned. For 

a novel problem, it is possible to have productions 

from many different plans contribute to the selec- 

tion of operators on the solution path (unlike case- 

based reasoning). For those aspects of the problem 

not covered by what has been learned from previous 

problems, on-demand planning is available to fill in 

the gaps. 

It is this last observation that is probably most im- 

portant for planning in uncertain and unpredictable 

environment. By not committing to a single plan, but 

instead allowing all cached planning knowledge to be 

combined at run-time, Soar can respond to unexpected 

changes in the environment, as long as it has previously 

encountered a similar situation. If it does not have suf- 

ficient knowledge for the current situation, it will plan, 

learn the appropriate knowledge, and in the future be 

able to respond directly without planning. 

Interruption 

The emphasis in our prior description of planning was 

on acquiring knowledge that could be responsive to 

changes in the environment during execution. This ig- 

nores the issue of how the system responds to changes 

in its environment during planning. Consider two sce- 

narios from Robo-Soar . In the first scenario, one of 

the blocks is removed from the table while Robe-Soar 

is planning how to align the blocks. In the second, 

a trouble light goes on while Robo-Soar is planning 

how to align the blocks. This light signals that Robo- 

Soar must push a button as soon as possible. The key 

to both of these scenarios is that Soar’s productions 

are continually matched against all of working mem- 

ory, including incoming sensor data, and all goals and 

subgoals. When a change is detected, planning can be 

revised or abandoned if necessary. 

In the first example, the removal of the block does 

not eliminate the necessity to plan, it just changes the 

current state, the desired state (fewer blocks need to be 

aligned) and the set of available operators (fewer blocks 

can be moved). The change in the set of available op- 

erators modifies the impasse but does not eliminate 

it, Within the subgoal, operators and data that were 

specific to the removed block will be automatically re- 

tracted from working memory. The exact effect will 

depend on the state of the planning and its dependence 

on the eliminated block. In the case where an outside 

agent suddenly aligned all but one of the blocks, and 

Robo-Soar had sufficient knowledge for that specific 

case, the impasse would be eliminated and the appro- 

priate operator selected. 

In the second example, we assume that there ex- 

ists a production that will direct Robo-Soar to push 

a button when a light is turned on. This production 

will test for the light and create a preference that the 

push-button operator must be selected. When the 

next operator decision is made, there is no longer a 
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tie, and the push-button operator is selected. Inter- form approach is that all the decision making and plan- 

ruption of planning can be predicated on a variety of 

stimuli. For example, productions can keep track of 

ning methods also apply to these “ goals”  (abstract 

operators like search-for-object). For example, if 

the time spent planning and abort the planning if it 

is taking too much time. Planning would be aborted 

by creating a preference for the best action given the 

currently available information. One disadvantage of 

this scheme is that any partial planning that hi not 

been captured in chunks will be lost. 

Hierarchical Planning and Execution 

there is an abstract internal simulation of an operator 

such as pickup-cup, it can be used in planning for the 

top goal in the same way planning would be performed 

at more primitive levels. a 

A second advantage of treating incomplete operator 

applications as goals is that even seemingly primitive 

acts, such as move-arm can become goals, providing 

hierarchical execution. This is especially important 

when there is uncertainty as to whether a primitive ac- 

tion will complete successfully. Hero-Soar has exactly 

these characteristics because its sensors are imperfect 

and because it sometimes loses motor commands and 

sensor data when communicating with the Hero robot. 

Hero-Soar handles this uncertainty by selecting an op- 

erator, such as move-arm, and then waiting for feed- 

back that the arm is in the correct position before ter- 

minating the operator. While the command is execut- 

ing on the Hero hardware, a subgoal is created. In this 

subgoal, the wait operator is repeatedly applied, con- 

tinually counting how long it is waiting. If appropriate 

feedback is received from the Hero, the move-arm op- 

erator terminates, a new operator is selected, and the 

subgoal is removed. However, if the motor command or 

feedback was lost, or there is some other problem, such 

as an obstruction preventing completion of the opera- 

tor, the waiting continues. Productions sensitive to the 

selected operator and the current count detect when 

the operator has taken longer than expected. These 

productions propose operators that directly query the 

feedback sensors, retry the operator, or attempt some 

other recovery strategy. Because of the relative compu- 

tational speed differences between the Hero and Soar 

on an Explorer II+, Hero-Soar spends approximately 

30% of its time waiting for its external actions to com- 

plete. 

In our previous Robo-Soar examples, the set of op- 

erators corresponded quite closely to the motor com- 

mands of the robot controller. However, Soar has no 

restriction that problem space operators must directly 

correspond to individual actions of the motor system. 

For many problems, planning is greatly simplified if it 

is performed with abstract operators far removed from 

the primitive actions of the hardware. For execution, 

the hierarchical decomposition provided by multiple 

levels of operators can provide important context for 

dealing with execution errors and unexpected changes 

in the environment. 

Soar provides hierarchical decomposition by creat- 

ing subgoals whenever there is insufficient knowledge 

encoded as productions to implement an operator di- 

rectly. In the subgoal, the implementation of the ab- 

stract operator is carried out by selecting and applying 

less abstract operators, until the abstract operator is 

terminated. 

To demonstrate Soar’s capabilities in hierarchical 

planning and execution we will use our second system, 

Hero-Soar. Hero-Soar searches for cups using sonar 

sensors. The basic motor commands include position- 

ing the various parts of the arm, opening and clos- 

ing the gripper, orienting sonar sensors, and moving 

and turning the robot. A more useful set includes op- 

erators such as search-for-object, center-object, 

pickup-cup, and drop-cup. The execution of each of 

these operators involves a combination of more primi- 

tive operators that can only be determined at run-time. 

For example, search-for-an-object involves an ex- 

ploration of the room until the sonar sensors detect an 

object. 

In Hero-Soar, the problem space for the top-most 

goal consists of just these operators. Control knowl- 

edge selects the operators when they are appropri- 

ate. However, once one of these operators is se- 

lected, an impasse arises because there are no relevant 

implementation productions. For example, once the 

search-for-object operator is selected, a subgoal is 

generated and a problem space is selected that contains 

operators for moving the robot and analyzing sonar 

readings. 

, 

Operators such as search-for-object would be 

considered goals in most other systems. In contrast, 

goals in Soar arise only when knowledge is insufficient 

to make progress. One advantage of Soar’s more uni- 

Hierarchical execution is not unique to Soar. 

Georgeff and Lansky have used a similar approach in 

PRS for controlling a mobile robot [Georgeff & Lansky, 

19871. In PRS, declarative procedures, called Knowl- 

edge Areas (KAs) loosely correspond to abstract op- 

erators in Soar. Each KA has a body consisting of 

the steps of the procedure represented as a graphic 

network. Just as Soar can use additional abstract op- 

erators in the implementation of an operator, a KA 

can have goals as part of its procedure which lead to 

additional KAs being invoked. PRS maintains reactiv- 

ity by continually comparing the conditions of its KAs 

against the current situation and goals, just as Soar is 

continually matching it productions. A significant dif- 

ference between PRS and Soar is in the representation 

of control knowledge and operators. Within a KA, the 

control is a fixed declarative procedure. Soar’s control 

knowledge is represented as preferences in productions 

that can be used for any relevant decision. Thus the 

knowledge is not constrained to a specific procedure, 
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and will be used when the conditions of the produc- 

tion that generates the preference match the current 

situation. In addition, new productions can be added 

to Soar through learning, and the actions of these pro- 

ductions will be integrated with existing knowledge at 

run-time. 

Reactive Execution 

Hierarchical execution provides important context for 

complex activities. Unfortunately it also exacts a cost 

in terms of run-time efficiency. In order to perform a 

primitive act, impasses must be detected, goals cre- 

ated, problem spaces selected, and so on, until the 

motor command is generated. Execution can be per- 

formed more efficiently by directly selecting and apply- 

ing primitive operators. However, operator application 

has its own overheads. The actions of an operator will 

only be executed after the operator has been selected 

following quiescence, thus forcing a delay. The advan- 

t age of these two approaches is that they allow knowl- 

edge to be integrated at run-time, so that a decision is 

not based on an isolated production. 

Soar also supports direct reflex actions where a pro- 

duction creates motor commands without testing the 

current operator. These productions act as reflexes for 

low level responses, such as stopping the wheel motors 

when an object is directly in front of the robot. Along 

with the increase responsiveness comes a loss of con- 

trol; no other knowledge will contribute to the decision 

to stop the robot. 

The ultimate limits on reactivity rest with Soar’s 

ability to match productions and process prefer- 

ences. Unfortunately, there are currently no fixed time 

bounds on Soar’s responsiveness. Given Soar’s learn- 

ing, an even greater concern is that extended plan- 

ning and learning will actually reduce responsiveness as 

more and more productions must be matched [Tambe 

& Newell, 19881. R ecent results suggest that these 

problems can be avoided by restricting the expressive- 

ness of the production conditions [Tambe & Rosen- 

bloom, 19891. 

Although there are no time bounds, Soar is well 

matched for both Hero-Soar and Robo-Soar. In nei- 

ther case does Soar’s processing provide the main bot- 

tleneck. However, as we move into domains with more 

limited time constraints, further research on bounding 

Soar’s execution time will be necessary. 

Discussion 

Perhaps the key reason that Soar is able to exhibit 

effective execution, planning (extended, hierarchical, 

and reactive), and interruption, is that it has three dis- 

tinct levels at which external actions can be controlled. 

These levels differ both in the speed with which they 

occur and the scope of knowledge that they can take 

into consideration in making a decision. At the low- 

est level, an external action can be selected directly 

by a production. This is the fastest level - Soar can 

fire 40 productions per second on a TI Explorer II+ 

while controlling the Hero using 300 productions - 

but the knowledge utilized is limited to what is ex- 

pressed locally in a single production.2 This level is 

appropriately described as reflexive behavior - it is 

fast, uncontrollable by other knowledge, and difficult 

to change. 

At the middle level, an external action can be se- 

lected through selecting an operator. This is some- 

what slower - in the comparable situation as above, 

only 10 decisions can be made per second - but it 

can take into account any knowledge about the cur- 

rent problem solving context that can be retrieved 

directly by firing productions (without changing the 

context). It allows for the consideration and compar- 

isons of actions before a selection is made. This level is 

appropriately described as a dynamic mixture of top- 

down (plan-driven) and bottom-up (data-driven) be- 

havior. It is based on previously-stored plan fragments 

(learned control rules) and the current situation, and 

can dynamically, at run-time, adjudicate among their 

various demands. This level can be changed simply by 

learning new plan fragments. 

At the highest level, an external action can be se- 

lected as a result of extended problem solving in sub- 

goals. This can be arbitrarily slow, but potentially 

allows any knowledge in the system - or outside of 

it, if external interaction is allowed - to be taken into 

consideration. This level is appropriately described as 

global planning behavior. 

Soar’s learning is closely tied into these three lev- 

els. Learning is invoked automatically whenever the 

knowledge available in the bottom two levels is in- 

sufficient. Learning moves knowledge from planning 

to the middle level of deliberate action and, also 

to the bottom level of reflexes. Without learning, 

one could attempt to combine the bottom and mid- 

dle layers by precompiling their knowledge into a 

fixed decision network as in REX [Kaelbling, 1986; 

Rosenschein, 19851. However, for an autonomous sys- 

tem that is continually learning new control knowledge 

and operators [Laird et al., 199Oa], the only chance to 

bring together all of the relevant knowledge for a deci- 

sion is when the decision is to be made. 

The integration of planning, execution, and learning 

in Soar is quite similar to that in Theo because of the 

mutual dependence upon impasse-driven planning and 

the caching of plans as productions or rules. Schop- 

pers’ Universal Plans also caches the results of plan- 

ning; however, Schoppers’ system plans during an ini- 

tial design stage and exhaustively generates all possible 

plans through back-chaining. In contrast, Theo and 

Soar plan only when necessary, and do not generate all 

2Hero-Soar is limited in absolute response time by de- 

lays in the communication link between the Hero and the 

Explorer, and the speed of the Hero central processor. The 

actual response time of Hero-Soar to a change in its envi- 

ronment is around .5 seconds. 
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possible plans; however, Theo as yet does not support 

interruption, nor can it maintain any history. All de- 

cisions must be based on its current sensors readings. 

Soar is further distinguished from Theo in that Soar 

supports not only reactive behavior and planning, but 

also deliberative execution in which multiple sources 

of knowledge are integrated at run-time. This middle 

level of deliberate execution is especially important in 

learning systems when planning knowledge is combined 

dynamically at run-time. 
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