
Integrating Execution, Planning, and Learning in Soar

for External Environments*

John E. Laird zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Artificial Intelligence Laboratory

The University of Michigan

1101 Beal Ave.

Ann Arbor, MI 48109-2110

laird@caen.engin.umich.edu

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Three key components of an autonomous intelli-

gent system are planning, execution, and learning.

This paper describes how the Soar architecture

supports planning, execution, and learning in un-

predictable and dynamic environments. The tight

integration of these components provides reactive

execution, hierarchical execution, interruption, on

demand planning, and the conversion of deliber-

ate planning to reaction. These capabilities are

demonstrated on two robotic systems controlled

by Soar, one using a Puma robot arm and an

overhead camera, the second using a small mobile

robot with an arm.

Introduction

The architecture of an intelligent agent that interacts

with an external environment has often been decom-

posed into a set of cooperating processes including

planning, execution and learning. Few AI systems

since STRIPS [Fikes e2 al., 19721 have included all

of these processes. Instead, the emphasis has often

been on individual components, or pairs of compo-

nents, such as planning and execution, or planning

and learning. Recently, a few systems have been im-

plemented that incorporate planning, execution, and

learning [Blythe & Mitchell, 1989; Hammond, 1989;

Langley et al., 19891.

Soar [Laird et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal., 19871 is one such system. It tightly

couples problem solving and learning in every task it

attempts to execute. Problem solving is used to find

a solution path, which the learning mechanism gener-

alizes and stores as a plan in long-term memory. The

generalized plan can then be retrieved and used during

execution of the task (or on later problems). This ba-

sic approach has been demonstrated in Soar on a large

number of tasks [Rosenbloom et ai., 19901; however,

all of these demonstrations are essentially internal -

both planning and execution occur completely within

*This research was sponsored by grant NCC2-517 from

NASA Ames and ONR grant N00014-88-K-0554.

1022 ROBOTICS

Paul S. Rosenbloom

Information Sciences Institute

University of Southern California

4676 Admiralty Way

Marina de1 Rey, CA 90292

rosenbloom@isi.edu

the scope of the system. Thus they do not involve di-

rect execution in a real external environment and they

safely ignore many of the issues inherent to such envi-

ronments.

Recently, Soar has been extended so that it can in-

teract with external environments [Laird et al., 1990b].

What may be surprising is that Soar’s basic structure

already supports many of the capabilities necessary to

interact with external environments - reactive execu-

tion, hierarchical execution, interruption, on demand

planning, and the conversion of deliberate planning to

reaction.

In this paper, we present the integrated approach

to planning, execution, and learning embodied by the

Soar architecture. We focus on the aspects of Soar

that support effective performance in unpredictable en-

vironments in which perception can be uncertain and

incomplete. Soar’s approach to interaction with ex-

ternal environments is distinguished by the following

three characteristics:

Planning and execution share the same architecture

and knowledge bases. This provides strong con-

straints on the design of the architecture - the reac-

tive capabilities required by execution must also be

adequate for planning - and eliminates the need to

explicitly transfer knowledge between planning and

execution.

External actions can be controlled at three levels,

from high-speed reflexes, to deliberate selection, to

unrestricted planning and problem solving.

Learning automatically converts planning activity

into control knowledge and reflexes for reactive exe-

cution.

Throughout this presentation we demonstrate these

capabilities using two systems. The first is called Robo-

Sour [Laird et al., 1989; Laird et al., 199Oa]. Robo-Soar

controls a Puma robot arm using a camera vision sys-

tem as shown in Figure 1. The vision system provides

the position and orientation of blocks in the robot’s

work area, as well as the status of a trouble light.

Robo-Soar’s task is to align blocks in its work area,

unless the light goes on, in which case it must immedi-

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

SOAR
I

Figure 1: Robo-Soar system architecture.

ately push a button. The environment for Rob&oar

is unpredictable becaqse the light can go on at any

time, and an outside agent may intervene at any time

by moving blocks in the work area, either helping or

hindering Robo-Soar’s efforts to align the blocks. In

addition, Robo-Soar’s perception of the environment

is incomplete because the robot arm occludes the vi-

sion system while a block is being grasped. There is

no feedback as to whether a block has been picked up

until the arm is moved out of the work area.

The second system, called Hero-Soar, controls a

Hero 2000 robot. The Hero 2000 is a mobile robot

with an arm for picking up objects and sonar sensors

for detecting objects in the environment. Hero-Soar’s

task is to pick up cups and deposit them in a waste

basket. Our initial demonstrations of Soar will use

Robo-Soar. At the end of the paper we will return to

Hero-Soar and describe it more fully.

Execution

In Soar, all deliberate activity takes place within the

context of goals or subgoals. A goal (or subgoal) is at-

tempted by selecting and applying operators to trans-

form an initial state into intermediate states until a

desired state of the goal is reached. For Robo-Soar,

one goal that arises is to align the blocks in the work

area. A subgoal is to align a pair of blocks. Within

a goal, the first decision is the selection of a problem

space. The problem space determines the set of oper-

ators that are available in a goal. In Robo-Soar, the

problem space for manipulating the arm consists of op-

erators such as open-gripper and move-gripper.

The second decision selects the initial state of the

problem space. For goals requiring interaction with an

external environment, the states include data from the

system sensors, as well as internally computed elabora-

tions of this data. In Robo-Soar, the states include the

position and orientation of all visible blocks and the

gripper, their relative positions, and hypotheses about

the positions of occluded blocks. Once the initial state

is selected, decisions are made to select operators, one

after another, until the goal is achieved.

Every decision made by Soar, be it to select a prob-

lem space, initial state, or operator for a goal, is based

on preferences retrieved from Soar’s long-term produc-

tion memory. A preference is an absolute or relative

statement of the worth of a specific object for a spe-

cific decision. The simplest preference, called uccept-

able, means that an object should be considered for a

decision. Other preferences help distinguish between

the acceptable objects. For example, a preference in

Robo-Soar might be that it is better to select operator

move-gripper than operator close-gripper.

A preference is only considered for a decision if it has

been retrieved from the long-term production memory.

Productions are continually matched against a work-

ing memory - which contains the active goals and

their associated problem spaces, states, and operators
- and when matched, create preferences for specific

decisions. For example, a production in Robo-Soar

that proposes the close-gripper operator might be:

If the problem space is robot-arm and

the gripper is open and surrounds a block

then create an acceptable preference

for the close gripper operator.

Once an operator is proposed with an acceptable

preference, it becomes a candidate for selection. The

selection of operators is controlled by productions that

create preferences for candidate operators. For exam-

ple, the following production prefers opening the grip-

per over moving a block that is in place.

If the goal is to move block A next to block B and

the problem space is robot-arm and

block A is next to block B and

the gripper is closed and surrounds block A

then create a preference that opening the gripper

is better than withdrawing the gripper.

Arbitrary control knowledge can be encoding as pro-

ductions so that Soar is not constrained to any fixed

method. The exact method is a result of a synthesis of

all available control knowledge [Laird et al., 19861.

Soar’s production memory is unusual in that it fires

all matched production instantiations in parallel, and

it retracts the actions of production instantiations that

no longer match, as in a JTMS [Doyle, 19791.’ Thus,

‘Retraction in Soar was introduced in version 5. Earlier

versions ofSoar did not, retract the actions of productions.

LAIRD ANDROSENBLOOM 1023

Problem space: Puma Arm

Problem space: Selection

Problem space: Puma Arm

Problem space: Selection

Figure 2: Example of planning in Robo-Soar to move a block. Squares represent states, while horizontal arcs

represent operator applications. Downward pointing arcs are used to represent the creation of subgoals, and

upward pointing arcs represent the termination of subgoals and the creation of results.

sufficient preferences have been created to allow the

decision procedure to make a single choice, the sub-

goal is automatically terminated and the appropriate

selection is made.

If there is more than a single point of indecision on

the path to the goal, then it is necessary to create a

longer term plan. If other decisions are underdeter-

mined, then they will also lead to impasses and as-

sociated subgoals during the look-ahead search. The

result is a recursive application of the planning strat-

egy to each decision in the search where the current

knowledge is insufficient.

Figure 2 shows a trace of the problem solving for

Robo-Soar as it does look-ahead for moving a single

block. At the left of the figure, the system is faced

with an indecision as to which Puma command should

used first. In the ensuing impasse, it performs a look-

ahead search to find a sequence of Puma commands

that pickup and move the block. Because of the size

of the search space, Robo-Soar uses guidance from a

human to determine which operators it should evalu-

ate first [Laird et al., 19891. When a solution is found,

preferences are created to make each of the decisions

that required a subgoal, such as best(approach) and

best (move-above) in the figure. Unfortunately, these

preferences cannot directly serve as a plan because

they are associated with specific planning subgoals that

were created for the look-ahead search. These prefer-

ences are removed from working memory when their

associated subgoals are terminated.

At this point, Soar’s learning mechanism, called

chunkring, comes into play to preserve the control

knowledge that was produced in the subgoals. Chunk-

1024 ROBOTICS

ing is based on the observation that: (1) an impasse

arises because of a lack of directly available knowledge,

and (2) problem solving in the associated subgoal pro-

duces new information that is available to resolve the

impasse. Chunking caches the processing of the sub-

goal by creating a production whose actions recreate

the results of the subgoal. The conditions of the pro-

duction are based on those working-memory elements

in parent goals that were tested by productions in the

subgoal and found necessary to produce the results.

This is a process very similar to explanation-based

learning [Rosenbloom & Laird, 19861.

When chunking is used in conjunction with the

planning scheme described above, Rob&oar learns

new productions that create preferences for operators.

Since the preferences were created by a search for a

solution to the task, the new productions include all

of the relevant tests of the current situation that are

necessary to achieve the task. Chunking creates new

productions not only for the original operator decision,

but also for each decision that had an impasse in a sub-

goal. As a result, productions are learned that create

sufficient preferences for making each decision along

the path to the goal. Once the original impasse is re-

solved, the productions learned during planning will

apply, creating sufficient preferences to select each op-

erator on the path to the goal. This is shown in Figure

2 as the straight line of operator applications across

the top of figure after the planning is complete.

In Robo-Soar, the productions learned for aligning

blocks are very general. They ignore all of the details of

the specific blocks because the planning was done using

a abstract problem space. Similarly, the productions

preferences and working memory elements exist only

when they are relevant to the current situation as dic-

tated by the conditions of the productions that created

them. For example, there may be many productions

that create preferences under different situations for a

given operator.

Once the relevant preferences have been created by

productions, a fixed decision procedure uses the pref-

erences created by productions to select the current

problem space, the initial state, and operators. The

decision procedure is invoked when Soar’s production

memory reaches quiescence, that is, when there are no

new changes to working memory.

Once an operator is selected, productions sensitive

to that operator can fire to implement the operator’s

actions. Operator implementation productions do not

retract their actions when they no longer match. By

nature they make changes to the state that must per-

sist until explicitly changed by other operators. For

an internal operator, the productions modify the cur-

rent state. For an operator involving interaction with

an external environment, the productions augment

the current state with appropriate motor commands.

The Soar architecture detects these augmentations and

sends them directly to the robot controller. For both

internal and external operators, there is an additional

production that tests that the operator was success-

fully applied and signals that the operator has termi-

nated so that a new operator can be selected. The

exact nature of the test is dependent on the operator

and may involve testing both internal data structures

and feedback from sensors.

At this point, the basic execution level of Soar has

been defined. This differs from the execution level of

most systems in that each control decision is made

through the run-time integration of long-term knowl-

edge. Most planning systems build a plan, and follow it

step by step, never opening up the individual decisions

to global long-term knowled

‘i

e. Other “ reactive” learn-

ing systems, such as Theo Blythe & Mitchell, 1989;

Mitchell et al., 19901 and Schoppers’ Universal plans

[Schoppers, 1986] create stimulus-response rules that

do not allow the integration at run-time of control

knowledge. Soar extends this notion of run-time com-

bination to its operator implementations as well, so

that an operator is not defined declaratively as in

STRIPS. This will be expanded later to include both

more reflexive and more deliberate execution.

Planning

In Soar, operator selection is the basic control act for

which planning can provide additional knowledge. For

situations in which Soar has sufficient knowledge, the

preferences created for each operator decision will lead

to the selection of a single operator. Once the oper-

ator is selected, productions will apply it by making

appropriate changes to the state. However, for many

situations, the knowledge encoded as productions will

be incomplete or inconsistent. We call such an un-

derdetermined decision an impasse. For example, an

impasse will arise when the preferences for selecting

operators do not suggest a unique best choice. The

Soar architecture detects impasses and automatically

creates subgoals to determine the best choice. Within

a subgoal, Soar once again casts the problem within

a problem space, but this time the goal is to deter-

mine which operator to select. Within the subgoal,

additional impasses may arise, leading to a goal stack.

The impasse is resolved, and the subgoal terminated,

when sufficient preferences have been added to working

memory so that a decision can be made.

To determine the best operator, any number of

methods can be used in the subgoal, such as draw-

ing analogies to previous problems, asking an outside

agent, or various planning strategies. In Soar, the

selection of a problem space for the goal determines

which approach will be taken, so that depending on

the available knowledge, many different approaches are

possible. This distinguishes Soar from many other sys-

tems that use only a single planning technique to gen-

erate control knowledge.

Robo-Soar uses an abstract look-ahead planning

strategy. Look-ahead planning requires additional do-

main knowledge, specifically, the ability to simulate

the actions of external operators on the internal model

of the world. As expected, this knowledge is encoded

as productions that directly modify the internal state

when an operator is selected to apply to it.

The internal simulations of operators do not repli-

cate the behavior of the environment exactly, but are

abstractions. In Rob&oar, these abstractions are pre-

determined by the productions that implement the op-

erators, although in other work in Soar abstractions

have been generated automatically based on ignoring

impasses that arise during the look-ahead search [Un-

ruh & Rosenbloom, 19891. For Robo-Soar, an abstract

plan is created to align a set of blocks by moving one

block at a time. This level completely ignores moving

the gripper and grasping blocks. This plan is later re-

fined to movements of the gripper by further planning

once the first block movement has been determined.

Even this level is abstract in that it does not simu-

late exact sensor values (such as block A is at location

3.4, 5.5) but only relative positions of blocks and the

gripper (block A is to the right of block B).

Planning in Robo-Soar is performed by creating an

internal model of the environment and then evaluat-

ing the result of applying alternative operators using

available domain knowledge. The exact nature of the

search is dependent on the available knowledge. For

some tasks, it may be possible to evaluate the re-

sult of a single operator, but for other tasks, such as

Robo-Soar, evaluation may be possible only after ap-

plying many operators until a desired (of failed) state

is achieved. Planning knowledge converts the evalua-

tions computed in the search into preferences. When

LAIRD AND ROSENBLOOM 1025

2.

3.

4 .

5.

rect execution. The plan consists of the preferences

stored in these control rules, and the rule conditions

which determine when the preferences are applica-

ble.

Expressive planning language.

The expressibility of Soar’s plan language is a func-

tion of: (1) the fine-grained conditionality provided

by embedding the control knowledge in a set of rules;

and (2) the preference language. The first factor

makes it easy to encode such control structures as

conditionals, loops, and recursion. The second fac-

tor makes it easy to not only directly suggest the

appropriate operator to select, but also to suggest

that an operator be avoided, or that a partial order

holds among a set of operators. This differs from sys-

tems that use stimulus-response rules in which the

actions are commands to the motor system [Mitchell

et al., 1990; Schoppers, 19861. In Soar, the actions

of the productions are preferences that contribute

to the decision as to which operator to select. Thus

Soar has a wider vocabulary for expressing control

knowledge than these other systems.

On-demand planning.

Soar invokes planning whenever knowledge is insuf-

ficient for making a decision and it terminates plan-

ning as soon as sufficient knowledge is found. Be-

cause of this, planning is always in service of execu-

tion. Also because of this, planning and replanning

are indistinguishable activities. Both are initiated

because of indecision, and both provide knowledge

that resolves the indecision.

Learning improves future execution and plan-

ning.

Once a control production is learned, it can be used

for future problems that match its conditions. These

productions improve both execution and planning by

eliminating indecision in both external and internal

problem solving. The effect is not unlike the utiliza-

tion of previous cases in case-based reasoning [Ham-

mond, 19891. This is in contrast to other planning

systems that build “ situated control rules” for pro-

viding reactive execution of the current plan, but do

not generalize or store them for future goals [Drum-

mond, 19891.

Run- time combination of multiple plans.

When a new situation is encountered, all relevant

learned for moving the gripper ignore the exact names

and positions of the blocks, but are sensitive to the

final relative positions of the blocks.

The ramifications of this approach to planning are

as follows:

1. Planning without monolithic plans.

In classical planning, the plan is a monolithic data

structure that provides communication between the

planner and the execution module. In Soar, a mono-

lithic declarative plan is not created, but instead a

set of control productions are learned that jointly di-

productions will fire. It makes no difference in which

previous problem the productions were learned. For

a novel problem, it is possible to have productions

from many different plans contribute to the selec-

tion of operators on the solution path (unlike case-

based reasoning). For those aspects of the problem

not covered by what has been learned from previous

problems, on-demand planning is available to fill in

the gaps.

It is this last observation that is probably most im-

portant for planning in uncertain and unpredictable

environment. By not committing to a single plan, but

instead allowing all cached planning knowledge to be

combined at run-time, Soar can respond to unexpected

changes in the environment, as long as it has previously

encountered a similar situation. If it does not have suf-

ficient knowledge for the current situation, it will plan,

learn the appropriate knowledge, and in the future be

able to respond directly without planning.

Interruption

The emphasis in our prior description of planning was

on acquiring knowledge that could be responsive to

changes in the environment during execution. This ig-

nores the issue of how the system responds to changes

in its environment during planning. Consider two sce-

narios from Robo-Soar . In the first scenario, one of

the blocks is removed from the table while Robe-Soar

is planning how to align the blocks. In the second,

a trouble light goes on while Robo-Soar is planning

how to align the blocks. This light signals that Robo-

Soar must push a button as soon as possible. The key

to both of these scenarios is that Soar’s productions

are continually matched against all of working mem-

ory, including incoming sensor data, and all goals and

subgoals. When a change is detected, planning can be

revised or abandoned if necessary.

In the first example, the removal of the block does

not eliminate the necessity to plan, it just changes the

current state, the desired state (fewer blocks need to be

aligned) and the set of available operators (fewer blocks

can be moved). The change in the set of available op-

erators modifies the impasse but does not eliminate

it, Within the subgoal, operators and data that were

specific to the removed block will be automatically re-

tracted from working memory. The exact effect will

depend on the state of the planning and its dependence

on the eliminated block. In the case where an outside

agent suddenly aligned all but one of the blocks, and

Robo-Soar had sufficient knowledge for that specific

case, the impasse would be eliminated and the appro-

priate operator selected.

In the second example, we assume that there ex-

ists a production that will direct Robo-Soar to push

a button when a light is turned on. This production

will test for the light and create a preference that the

push-button operator must be selected. When the

next operator decision is made, there is no longer a

1026 ROBOTICS

tie, and the push-button operator is selected. Inter- form approach is that all the decision making and plan-

ruption of planning can be predicated on a variety of

stimuli. For example, productions can keep track of

ning methods also apply to these “ goals” (abstract

operators like search-for-object). For example, if

the time spent planning and abort the planning if it

is taking too much time. Planning would be aborted

by creating a preference for the best action given the

currently available information. One disadvantage of

this scheme is that any partial planning that hi not

been captured in chunks will be lost.

Hierarchical Planning and Execution

there is an abstract internal simulation of an operator

such as pickup-cup, it can be used in planning for the

top goal in the same way planning would be performed

at more primitive levels. a

A second advantage of treating incomplete operator

applications as goals is that even seemingly primitive

acts, such as move-arm can become goals, providing

hierarchical execution. This is especially important

when there is uncertainty as to whether a primitive ac-

tion will complete successfully. Hero-Soar has exactly

these characteristics because its sensors are imperfect

and because it sometimes loses motor commands and

sensor data when communicating with the Hero robot.

Hero-Soar handles this uncertainty by selecting an op-

erator, such as move-arm, and then waiting for feed-

back that the arm is in the correct position before ter-

minating the operator. While the command is execut-

ing on the Hero hardware, a subgoal is created. In this

subgoal, the wait operator is repeatedly applied, con-

tinually counting how long it is waiting. If appropriate

feedback is received from the Hero, the move-arm op-

erator terminates, a new operator is selected, and the

subgoal is removed. However, if the motor command or

feedback was lost, or there is some other problem, such

as an obstruction preventing completion of the opera-

tor, the waiting continues. Productions sensitive to the

selected operator and the current count detect when

the operator has taken longer than expected. These

productions propose operators that directly query the

feedback sensors, retry the operator, or attempt some

other recovery strategy. Because of the relative compu-

tational speed differences between the Hero and Soar

on an Explorer II+, Hero-Soar spends approximately

30% of its time waiting for its external actions to com-

plete.

In our previous Robo-Soar examples, the set of op-

erators corresponded quite closely to the motor com-

mands of the robot controller. However, Soar has no

restriction that problem space operators must directly

correspond to individual actions of the motor system.

For many problems, planning is greatly simplified if it

is performed with abstract operators far removed from

the primitive actions of the hardware. For execution,

the hierarchical decomposition provided by multiple

levels of operators can provide important context for

dealing with execution errors and unexpected changes

in the environment.

Soar provides hierarchical decomposition by creat-

ing subgoals whenever there is insufficient knowledge

encoded as productions to implement an operator di-

rectly. In the subgoal, the implementation of the ab-

stract operator is carried out by selecting and applying

less abstract operators, until the abstract operator is

terminated.

To demonstrate Soar’s capabilities in hierarchical

planning and execution we will use our second system,

Hero-Soar. Hero-Soar searches for cups using sonar

sensors. The basic motor commands include position-

ing the various parts of the arm, opening and clos-

ing the gripper, orienting sonar sensors, and moving

and turning the robot. A more useful set includes op-

erators such as search-for-object, center-object,

pickup-cup, and drop-cup. The execution of each of

these operators involves a combination of more primi-

tive operators that can only be determined at run-time.

For example, search-for-an-object involves an ex-

ploration of the room until the sonar sensors detect an

object.

In Hero-Soar, the problem space for the top-most

goal consists of just these operators. Control knowl-

edge selects the operators when they are appropri-

ate. However, once one of these operators is se-

lected, an impasse arises because there are no relevant

implementation productions. For example, once the

search-for-object operator is selected, a subgoal is

generated and a problem space is selected that contains

operators for moving the robot and analyzing sonar

readings.

,

Operators such as search-for-object would be

considered goals in most other systems. In contrast,

goals in Soar arise only when knowledge is insufficient

to make progress. One advantage of Soar’s more uni-

Hierarchical execution is not unique to Soar.

Georgeff and Lansky have used a similar approach in

PRS for controlling a mobile robot [Georgeff & Lansky,

19871. In PRS, declarative procedures, called Knowl-

edge Areas (KAs) loosely correspond to abstract op-

erators in Soar. Each KA has a body consisting of

the steps of the procedure represented as a graphic

network. Just as Soar can use additional abstract op-

erators in the implementation of an operator, a KA

can have goals as part of its procedure which lead to

additional KAs being invoked. PRS maintains reactiv-

ity by continually comparing the conditions of its KAs

against the current situation and goals, just as Soar is

continually matching it productions. A significant dif-

ference between PRS and Soar is in the representation

of control knowledge and operators. Within a KA, the

control is a fixed declarative procedure. Soar’s control

knowledge is represented as preferences in productions

that can be used for any relevant decision. Thus the

knowledge is not constrained to a specific procedure,

LAIRDANDROSENBLOOM 1027

and will be used when the conditions of the produc-

tion that generates the preference match the current

situation. In addition, new productions can be added

to Soar through learning, and the actions of these pro-

ductions will be integrated with existing knowledge at

run-time.

Reactive Execution

Hierarchical execution provides important context for

complex activities. Unfortunately it also exacts a cost

in terms of run-time efficiency. In order to perform a

primitive act, impasses must be detected, goals cre-

ated, problem spaces selected, and so on, until the

motor command is generated. Execution can be per-

formed more efficiently by directly selecting and apply-

ing primitive operators. However, operator application

has its own overheads. The actions of an operator will

only be executed after the operator has been selected

following quiescence, thus forcing a delay. The advan-

t age of these two approaches is that they allow knowl-

edge to be integrated at run-time, so that a decision is

not based on an isolated production.

Soar also supports direct reflex actions where a pro-

duction creates motor commands without testing the

current operator. These productions act as reflexes for

low level responses, such as stopping the wheel motors

when an object is directly in front of the robot. Along

with the increase responsiveness comes a loss of con-

trol; no other knowledge will contribute to the decision

to stop the robot.

The ultimate limits on reactivity rest with Soar’s

ability to match productions and process prefer-

ences. Unfortunately, there are currently no fixed time

bounds on Soar’s responsiveness. Given Soar’s learn-

ing, an even greater concern is that extended plan-

ning and learning will actually reduce responsiveness as

more and more productions must be matched [Tambe

& Newell, 19881. R ecent results suggest that these

problems can be avoided by restricting the expressive-

ness of the production conditions [Tambe & Rosen-

bloom, 19891.

Although there are no time bounds, Soar is well

matched for both Hero-Soar and Robo-Soar. In nei-

ther case does Soar’s processing provide the main bot-

tleneck. However, as we move into domains with more

limited time constraints, further research on bounding

Soar’s execution time will be necessary.

Discussion

Perhaps the key reason that Soar is able to exhibit

effective execution, planning (extended, hierarchical,

and reactive), and interruption, is that it has three dis-

tinct levels at which external actions can be controlled.

These levels differ both in the speed with which they

occur and the scope of knowledge that they can take

into consideration in making a decision. At the low-

est level, an external action can be selected directly

by a production. This is the fastest level - Soar can

fire 40 productions per second on a TI Explorer II+

while controlling the Hero using 300 productions -

but the knowledge utilized is limited to what is ex-

pressed locally in a single production.2 This level is

appropriately described as reflexive behavior - it is

fast, uncontrollable by other knowledge, and difficult

to change.

At the middle level, an external action can be se-

lected through selecting an operator. This is some-

what slower - in the comparable situation as above,

only 10 decisions can be made per second - but it

can take into account any knowledge about the cur-

rent problem solving context that can be retrieved

directly by firing productions (without changing the

context). It allows for the consideration and compar-

isons of actions before a selection is made. This level is

appropriately described as a dynamic mixture of top-

down (plan-driven) and bottom-up (data-driven) be-

havior. It is based on previously-stored plan fragments

(learned control rules) and the current situation, and

can dynamically, at run-time, adjudicate among their

various demands. This level can be changed simply by

learning new plan fragments.

At the highest level, an external action can be se-

lected as a result of extended problem solving in sub-

goals. This can be arbitrarily slow, but potentially

allows any knowledge in the system - or outside of

it, if external interaction is allowed - to be taken into

consideration. This level is appropriately described as

global planning behavior.

Soar’s learning is closely tied into these three lev-

els. Learning is invoked automatically whenever the

knowledge available in the bottom two levels is in-

sufficient. Learning moves knowledge from planning

to the middle level of deliberate action and, also

to the bottom level of reflexes. Without learning,

one could attempt to combine the bottom and mid-

dle layers by precompiling their knowledge into a

fixed decision network as in REX [Kaelbling, 1986;

Rosenschein, 19851. However, for an autonomous sys-

tem that is continually learning new control knowledge

and operators [Laird et al., 199Oa], the only chance to

bring together all of the relevant knowledge for a deci-

sion is when the decision is to be made.

The integration of planning, execution, and learning

in Soar is quite similar to that in Theo because of the

mutual dependence upon impasse-driven planning and

the caching of plans as productions or rules. Schop-

pers’ Universal Plans also caches the results of plan-

ning; however, Schoppers’ system plans during an ini-

tial design stage and exhaustively generates all possible

plans through back-chaining. In contrast, Theo and

Soar plan only when necessary, and do not generate all

2Hero-Soar is limited in absolute response time by de-

lays in the communication link between the Hero and the

Explorer, and the speed of the Hero central processor. The

actual response time of Hero-Soar to a change in its envi-

ronment is around .5 seconds.

1028 ROBOTICS

possible plans; however, Theo as yet does not support

interruption, nor can it maintain any history. All de-

cisions must be based on its current sensors readings.

Soar is further distinguished from Theo in that Soar

supports not only reactive behavior and planning, but

also deliberative execution in which multiple sources

of knowledge are integrated at run-time. This middle

level of deliberate execution is especially important in

learning systems when planning knowledge is combined

dynamically at run-time.

Acknowledgments

The authors would like to thank Michael Hucka, Eric

Yager, Chris Tuck, Arie Covrigaru and Clare Congdon

for help in developing Robo-Soar and Hero-Soar.

References

[Blythe & Mitchell, 19891 J. Blythe & T. M. Mitchell.

On becoming reactive. In Proceedings of the Sixth

International Machine Learning W orkshop, pages

255-259, Cornell, NY, June 1989. Morgan Kauf-

mann.

[Doyle, 19791 J. Doyle. A truth maintenance system.

Artificial Intelligence, 12~231-272, 1979.

[Drummond, 19891 M. Drummond. Situated control

rules. In Proceedings of the First International Con-

ference on Principles of Knowledge Representation

and Reasoning, Toronto, May 1989. Morgan Kauf-

Mann.

[Fikes et al., 19721 R. E. Fikes, P. E. Hart, & N. J.

Nilsson. Learning and executing generalized robot

plans. Artificial Intelligence, 3:251-288, 1972.

[Georgeff & Lansky, 19871 M. P. Georgeff & A. L. Lan-

sky. Reactive reasoning and planning. Proceedings

of AAAI-87, 1987.

[Hammond, 19891 K. J. Hammond. Case-Based Plan-

ning: Viewing Planning as a Memo y Task. Aca-

demic Press, Inc., Boston, 1989.

[Kaelbling, 19861 L. P. Kaelbling. An architecture for

intelligent reactive systems. In M. P. Georgeff &

A. L. Lansky, editors, Reasoning about Actions and

Plans: Proceedings of the 1986 W orkshop, 95 First

Street, 1986. Morgan Kaufomann.

[Laird et al., 19861 J. E. Laird, P. S. Rosenbloom, &

A. Newell. Universal Subgoaling and Chunking: The

Automatic Generation and Learning of Goal Hierar-

chies. Kluwer Academic Publishers, Hingham, MA,

1986.

[Laird et al., 19871 J. E. Laird, A. Newell, & P. S.

Rosenbloom. Soar: An architecture for general in-

telligence. Artificial Intelligence, 33(3), 1987.

[Laird et al., 19891 J. E. Laird, E. S. Yager, C. M.

Tuck, & M. Hucka. Learning in tele-autonomous sys-

tems using Soar. In Proceedings of the 1989 NASA

Conference on Space Telerobotics, 1989.

[Laird et al., 199Oa] J. E. Laird, M. Hucka, E. S.

Yager, & C. M. Tuck. Correcting and extending

domain knowledge using outside guidance. In Pro-

ceedings of the Seventh International Conference on

Machine Learning, June 1990.

[Laird et al., 1990b] J. E. Laird, K. Swedlow, E. Alt-

mann, & C. B. Congdon. Soar 5 User’s Manual.

University of Michigan, 1990. In preparation.

[Langley et al., 19891 P. Langley, K. Thompson,

W. Iba, J. H. Gennari, & J. A. Allen. An integrated

cognitive architecture for autonomous agents. Tech-

nical Report 89-28, Department of Information &

Computer Science, University of California, Irvine,

September 1989.

[Mitchell et al., 19901 T. M. Mitchell, J. Allen, P. Cha-

lasani, J. Cheng, 0. Etzionoi, M. Ringuette, &

J. Schlimmer. Theo: A framework for self-improving

systems. In K. VanLehn, editor, Architectures for

Intelligence. Erlbaum, Hillsdale, NJ, 1990. In press.

[Rosenbloom & Laird, 19861 P. S. Rosenbloom & J. E.

Laird. Mapping explanation-based generalization

onto Soar. In Proceedings of AAAI-86, Philadelphia,

PA, 1986. American Association for Artificial Intel-

ligence.

[Rosenbloom et al., 19901 P. S. Rosenbloom, J. E.

Laird, A. Newell, & R. McCarl. A preliminary anal-

ysis of the foundations of the Soar architecture as

a basis for general intelligence. In Foundations of

Artificial Intelligence. MIT Press, Cambridge, MA,

1990. In press.

[Rosenschein, 19851 S. Rosenschein. Formal theories

of knowledge in AI and robotics. New Generation

Computing, 31345-357, 1985.

[Schoppers, 19861 M. J. Schoppers. Universal plans for

reactive robots in unpredictable environments. In

M. P. Georgeff & A. L. Lansky, editors, Reasoning

about Actions and Plans: Proceedings of the 1986

W orkshop. Morgan Kaufmann, 1986.

[Tambe & Newell, 19881 M. Tambe & A. Newell. Some

chunks are expensive. In Proceedings of the Fifth In-

ternational Conference on Machine Learning, 1988.

[Tambe & Rosenbloom, 19891 M. Tambe & P. S.

Rosenbloom. Eliminating expensive chunks by re-

stricting expressiveness. In Proceedings of IJCAI-89,

1989.

[Unruh & Rosenbloom, ‘19891 A. Unruh & P. S. Rosen-

bloom. Abstraction in problem solving and learning.

In Proceedings of IJCAI-89, 1989.

LAIRDANDROSENBLOOM 1029

