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Abstract

We present a probabilistic framework for learning with
heterogeneous multiview data where some views are
given as ordinal, binary, or real-valued feature matrices,
and some views as similarity matrices. Our framework
has the following distinguishing aspects: (i) a unified
latent factor model for integrating information from di-
verse feature (ordinal, binary, real) and similarity based
views, and predicting the missing data in each view,
leveraging view correlations; (ii) seamless adaptation
to binary/multiclass classification where data consists of
multiple feature and/or similarity-based views; and (iii)
an efficient, variational inference algorithm which is es-
pecially flexible in modeling the views with ordinal-
valued data (by learning the cutpoints for the ordinal
data), and extends naturally to streaming data settings.
Our framework subsumes methods such as multiview
learning and multiple kernel learning as special cases.
We demonstrate the effectiveness of our framework on
several real-world and benchmarks datasets.

Introduction

Many data analysis problems involve heterogeneous data
with multiple representations or views. We consider a gen-
eral problem setting, where data in some views may be
given as a feature matrix (which, in turn, may be ordi-
nal, binary, or real-valued), while in other views as a ker-
nel or similarity matrix. Each view may also have a sig-
nificant amount of missing data. Such a problem setting is
frequently encountered in diverse areas, ranging from cog-
nitive neuroscience (Salazar et al. 2013) to recommender
systems (Zhang, Cao, and Yeung 2010; Pan et al. 2011;
Shi, Larson, and Hanjalic 2014). Consider a problem from
cognitive neuroscience (Salazar et al. 2013), where data col-
lected from a set of people may include ordinal-valued re-
sponse matrices on multiple questionnaires, real-valued fea-
ture matrices consisting of fMRI/EEG data, and one or more
similarity matrices computed using single-nucleotide poly-
morphism (SNP) measurements. There could also be miss-
ing observations in each view. The eventual goal could be to
integrate these diverse views to learn the latent traits (fac-
tors) of people, or learn a classifier for predicting certain
psychopathological conditions in people, or to predict the
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missing data in one or more views (e.g., predicting missing
fMRI data, leveraging other views). Likewise, in a multi-
domain recommender system (Zhang, Cao, and Yeung 2010;
Pan et al. 2011; Shi, Larson, and Hanjalic 2014), for a set of
users, we have multiple, partially observed ordinal-valued
rating matrices for domains such as movies, books, and elec-
tronic appliances, along with a binary-valued matrix of click
behavior on movies, and user-user similarities. The goal here
could be to predict the missing ratings in each domain’s rat-
ing matrix, leveraging information in all the sources.

When the eventual goal is only doing classification or
clustering on such multiview data, one direct procedure is to
represent each view (feature/kernel based) as a kernel ma-
trix and apply multiple kernel learning methods (Gönen and
Alpaydın 2011; Kumar, Rai, and Daumé III 2011). However,
such an approach may be inappropriate when data is missing
in one or more views, resulting in kernel matrices with miss-
ing entries, for which most of these methods are unsuitable.
Moreover, these methods lack a proper generative model for
each view, and therefore cannot be used for the task of un-
derstanding the data (e.g., learning latent factors), modeling
specific feature types (e.g., ordinal), or predicting the miss-
ing data in each view (multiview matrix completion).

We present a probabilistic framework for modeling such
heterogeneous multiview data with potentially missing data
in each view. We then show a seamless adaptation of this
framework for binary/multiclass classification for data hav-
ing multiple feature- and/or similarity-based views. Our
framework learns a view-specific latent matrix for each
feature/similarity-based view, and combines these latent ma-
trices via a set of structured-sparsity driven factor analy-
sis models (Virtanen et al. 2012) to learn a global low-
dimensional representation of the data. The view-specific la-
tent matrices can be used for matrix completion for each
view, whereas the global representation can be combined
with specific objectives to solve problems such as classifi-
cation or clustering of the multiview data. Our framework
also consists of an efficient, variational inference algorithm,
which is appealing in its own right by providing a princi-
pled way to learn the cutpoints for data in the ordinal-valued
views, which can be useful for the general problem of mod-
eling ordinal data, such as in recommender systems.



A Generative Framework for Heterogeneous

Multiview Data

We first describe our basic framework for Multiview
Learning with Features and Similarities (abbreviated
henceforth as MLFS), for modeling heterogeneous mul-
tiview data, where the views may be in the form of
ordinal/binary/real-valued feature matrices and/or real-
valued similarity matrices. Our framework enables one to
integrate the data from all the views to learn latent factors
underlying the data, predict missing data in each view, and
infer view-correlations. We then show how MLFS can be
adapted for binary/multiclass classification problems.

We assume the data consist of N objects having a total of
M feature-based and/or similarity-based views. Of the M =
M1 + M2 + M3 views, the first M1 are assumed to be or-
dinal feature matrices X(1), . . . ,X(M1) (binary feature ma-
trix is a special case), the next M2 views are assumed to be

real-valued feature matrices X(M1+1), . . . ,X(M1+M2), and
the remaining M3 views are assumed to be real-valued sim-

ilarity matrices X(M1+M2+1), . . . ,X(M1+M2+M3). One or
more of these matrices may have missing data (randomly
missing entries or randomly missing entire rows and/or

columns). For a feature-based view, X(m) denotes a fea-
ture matrix of size N × Dm; for a similarity-based view,

X(m) denotes a similarity matrix of size N × N . We as-

sume the data X(m) in each feature/similarity-based view

are generated from a latent real-valued matrix U (m) =

[U
(m)
1 ; . . . ;U

(m)
N ] ∈ R

N×Km , where U
(m)
i , i = 1, . . . , N

are assumed to be row vectors.
Feature-based Views: The N×Dm feature matrix X(m)

for view m is generated, via a link-function fm, from a real-

valued matrix U (m) of the same size (thus Km = Dm).

Therefore, X
(m)
id = fm(U

(m)
id ) where i indexes the i-th

object and d indexes the d-th feature. For real-valued data,

the link-function is identity, so X
(m)
id = U

(m)
id . For ordinal

data in view m having Lm levels (1, · · · , Lm), X
(m)
id = l if

gml−1 < U
(m)
id < gml , with cutpoints −G = gm0 < gm1 <

gm2 < . . . < gmLm−1 < gmLm
= +G. Because the cutpoints

contain information indicating relative frequencies of ordi-
nal outcomes in each view, we will learn them, as described
in the next Section.

Similarity-based Views: The N × N similarity ma-

trix X(m) of view m is generated as X
(m)
ij ∼

N (U
(m)
i U

(m)
j

⊤
, τ−1

m ) where X
(m)
ij denotes the pairwise

similarity between objects i and j in view m. In this work,
we consider symmetric similarity matrices and thus only

model X
(m)
ij , i < j, but the model can be naturally extended

to asymmetric cases. In this case, U (m) ∈ R
N×Km is akin

to a low-rank approximation of the similarity matrix X(m)

(Km < N ).
Although the view-specific latent matrices {U (m)}Mm=1

have different meanings (and play different roles) in feature-
based and similarity-based views, in both cases there ex-

ists a mapping from U (m) to the observed data X(m). We
wish to extract and summarize the information from all these

view-specific latent matrices {U (m)}Mm=1 to obtain a global
latent representation of the data, and use it for tasks such
as classification or clustering. To do so, we assume the

view-specific latent matrices {U (m)}Mm=1 as being gener-
ated from a shared real-valued latent factor matrix V =
[V1; . . . ;VN ] of size N×R (where R denotes the number of
latent factors) with view-specific sparse factor loading ma-

trices W = {W (m)}Mm=1: U
(m)
i ∼ N (ViW

(m), γ−1
m I),

where W (m) ∈ R
R×Km .

Since different views may capture different aspects of the
entity under test (in addition to capturing aspects that are
present in all views), we wish to impose this structure in
the learned global latent factor matrix V and the associated

factor loading matrices W = {W (m)}Mm=1. Note that each
column (resp., row) of V (resp., W ) corresponds to a global
latent factor. We impose a structured-sparsity prior in the

factor loading matrices {W (m)}Mm=1 of all the views, such
that some of the rows in these matrices share the same sup-
port for non-zero entries whereas some rows are non-zero
only for a subset of these matrices. Figure 1 summarizes our
basic framework.

(a) (b)

Figure 1: (a) plate notation showing the data in M views. The

data matrix X
(m) could either be a feature matrix or a similarity

matrix (with the link from U
(m) to X

(m) appropriately defined).
(b) for M = 3 views, a structured-sparsity based decomposition of
the view-specific latent matrices to learn shared and view-specific
latent factors. First two factors are present in all the views (nonzero

first two rows in each W
(m)) while others are present only in some

views. The matrix V is the global latent representation of the data.

We assume each row of V ∈ R
N×R drawn as Vi ∼

N (0, I). We use group-wise automatic relevance deter-
mination (Virtanen et al. 2012) as the sparsity inducing

prior on {W (m)}Mm=1, which also helps in inferring R by
shrinking the unnecessary rows in W to close to zero.

Each row of W (m) is assumed to be drawn as W
(m)
r ∼

N (0, α−1
mrI), r = 1, . . . , R, where αmr ∼ Gam(aα, bα)

and choosing aα, bα → 0, we have Jeffreys prior p(αmr) ∝
1/αmr, favoring strong sparsity. We can identify the fac-
tor activeness in each view from the precision hyperpa-
rameter αmr: small αmr (large variance) indicates active-
ness of factor r in view m. Let B be a (M × R)-
binary matrix indicating the active view vs factor associ-
ations, then Bmr = 1 if α−1

mr > ǫ, for some small ǫ
(e.g., 0.01). The correlation between views m and m′ can

also be computed as (W̃ (m))⊤W̃ (m′)/(S(m)S(m′)) where

W̃
(m)
r =

∑Km

j=1(W
(m)
rj )2, r = 1, . . . , R and S(m) =

√

(W̃ (m))⊤W̃ (m′).

Identifiability via Rotation: Factor analysis models are
known to have identifiability issues due to the fact that

V W (m) = V QQ−1W (m), for arbitrary rotation Q (Virta-



nen et al. 2012). We explicitly optimize w.r.t. Q to maintain
identifiability in the model, and achieve faster convergence
during inference.

Adaptation for Multiview Classification

This general framework for MLFS can be applied for multi-
view factor analysis and matrix completion problems when
data consists of multiple feature-based (ordinal/binary/real)
and/or similarity-based views. Our framework is more gen-
eral than other prior works for these problems, that assume
all views having the same feature-based representation (Vir-
tanen et al. 2012; Zhang, Cao, and Yeung 2010). We now
show how MLFS can be adapted for other problems such as
multiview classification.

In multiview classification, the training data consist of
N objects, each having M feature and/or similarity based
views. As earlier, we assume that the data are given as a
collection of (potentially incomplete) feature and/or simi-

larity matrices {X(m)}Mm=1. Each object also has a label
yi ∈ {1, . . . , C}, i = 1, . . . , N , and the goal is to learn a
classifier that predicts the labels for test objects where each
test object has representation in M views (or a subset of the
views). The classification adaptation of MLFS is based on
a multinomial probit model (Girolami and Rogers 2006) on
the global latent factors V = [V1; . . . ;VN ] where Vi ∈
R

1×R, which can be summarized as: yi = argmaxc{zic},
where c = 1, . . . , C; zic ∼ N (Viβc, 1); βc ∼ N (0, ρ−1I),
where βc ∈ R

R×1. Under this adaptation, we learn both V
and βc jointly, instead of in two separate steps.

A particular advantage of our framework for classification
is that, in addition to handling views having potentially dif-
ferent representations, it allows objects to be missing in one
or more views. The existing multiview or multiple kernel
learning (Yu et al. 2011; Gönen and Alpaydın 2011) meth-
ods require the views to be transformed into the same repre-
sentation and/or cannot easily handle missing data. A sim-
ilar adaptation can be used to perform clustering instead of
multiclass classification by replacing the multinomial probit
classification by a Gaussian mixture model.

Inference

Since exact inference is intractable, we use variational
Bayesian EM (Beal 2003) to perform approximate infer-
ence. We will infer the variational distribution for the latent
variables, collectively referred to as Θ, and consisting of

{{U (m),W (m),αm, γm}Mm=1,V }, along with {βc, zc}
C
c=1

for classification. For the cutpoints G = {gm}M1
m=1 and

the rotation matrix Q, we will seek a point estimate. As
will be shown, our inference algorithm also works in the
streaming setting (Broderick et al. 2013) where each data
point is seen only once. Sometimes, for brevity, we will use

{U ,W ,α,γ} for {U (m),W (m),αm, γm}Mm=1, {β, z} for
{{βc}

C
c=1, z}, and {µ, z} for {{µj}

J
j=1, z}, respectively.

The data from all views will be collectively referred to as X
which, in the classification case, also consists of the labels.
Due to the lack of space, we only provide brief descriptions
of the key aspects of our inference algorithm, leaving further
details in the Supplementary Material.

We approximate the true posterior p(Θ|X ,G,Q)) by its
mean-field approximation:

q(Θ) =

M
∏

m=M1+M2+1

N
∏

i=1

q(U
(m)
i )

N
∏

i=1

q(Vi)

M
∏

m=1

R
∏

r=1

q(W (m)
r )

M
∏

m=1

R
∏

r=1

q(αmr)

M
∏

m=1

q(γm) (1)

Thus, we minimize the KL-divergence
KL(q(Θ)||p(Θ|X ,G,Q)), equivalent to maximiz-
ing the evidence lower bound (ELBO) given by
L(q(Θ),G,Q) = Eq(Θ)[log p(X ,Θ|G,Q) − log(q(Θ))].
With further approximation for the ordinal-valued views
using a Taylor-series expansion, we can efficiently up-
date variational parameters for q(Θ). Note that in (1),

the terms q(U
(m)
i ) appear only for the similarity-based

views because for feature-based view, U
(m)
i are integrated

out in the variational lower bound (details of derivation
are provided in Supplementary Material). We maximize
the variational lower bound by iterating between vari-
ational E-step: maxq(Θ) L(q(Θ),G,Q), and M-step:

maxG,Q L(q(Θ),G,Q). In this section, we summarize
the variational updates for U , W , V , the cutpoints G,
the rotation matrix Q, and the extension to the streaming
setting.

Update U
(m)
i : For similarity-based views, the vari-

ational posterior q(U
(m)
i ) = N (µu,Σu), where

Σu = (〈γm〉IKm
+

∑

j 6=i〈τm〉〈U
(m)
j

⊤
U

(m)
j 〉)−1 and

µu = (〈γm〉〈Vi〉〈W
(m)〉 + 〈τm〉(

∑

j>i X
(m)
ij 〈U

(m)
j 〉 +

∑

j<i X
(m)
ji 〈U

(m)
j 〉)Σu, where 〈.〉 denotes expectation

w.r.t. q.
Update Vi: q(Vi) = N (µv,Σv). For the supervised

multiclass classification case with N (0, I) prior on Vi,

Σv = (I+
∑M

m=1〈γm〉〈W (m)W (m)⊤〉+
∑C

c=1〈βcβ
⊤
c 〉)

−1

and µv = (
∑M1

m=1〈γm〉
∑Km

j=1〈W
(m)
:j

⊤
〉(gm

X
(m)
i,j

+

gm

X
(m)
i,j

−1
)/2 +

∑M1+M2

m=M1+1〈γm〉X
(m)
i 〈W (m)⊤〉 +

∑M1+M2+M3

m=M1+M2+1〈γm〉〈U
(m)
i 〉〈W (m)⊤〉 +

∑C

c=1〈zic〉〈β
⊤
c 〉)Σv .

Update W (m): The variational posterior for the j-th col-

umn of W (m) (j = 1, . . . ,Km), is given by q(W
(m)
:j ) =

N (µw,Σw), where Σw = (〈diag(αm1, αm2, ..., αmR)〉 +

〈γt〉
∑N

i=1〈V
⊤
i Vi〉)

−1 and µw depends on the type of
view. For ordinal-valued feature-based view, µw =

Σw〈γm〉
∑N

i=1〈V
⊤
i 〉(gm

X
(m)
i,j

+gm

X
(m)
i,j

−1
)/2. For real-valued

feature-based view, µw = Σw〈γm〉
∑N

i=1〈V
⊤
i 〉X

(m)
ij . For

similarity-based view, µw = Σw〈γm〉
∑N

i=1〈V
⊤
i 〉〈U

(m)
ij 〉.

Inferring the cutpoints: We infer the cutpoints gm

for each ordinal view by optimizing the objective func-

tion L̃m(gm) =
∑Lm

l=1 L̃
m
l , where L̃m

l = Nm
l [log(gm

l −
gm
l−1) − 〈γm〉(gm

l
2 + gm

l−1
2 + gm

l gm
l−1)/6] + 〈γm〉(gm

l +
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Figure 2: (a) and (b): true and inferred factor loading matrices W
for ordinal, real, and similarity-based views on synthetic data.

gm
l−1)

∑

i,j:Xm
i,j

=l〈Vi〉〈W
(m)
:j 〉/2. Here Nm

l is the number

of observations with value l in view m. The gradients of L̃t
l

are also analytically available. Moreover, the objective func-
tion is concave w.r.t. gm – in each variational M-step, the so-
lution ĝm given the variational distributions q(Θ) is globally
optimal. It can be solved efficiently using Newton’s method.
At every VB iteration, optimization over gm is guaranteed
to increase the variational lower bound.

Inferring the rotation matrix Q: Since rotation leaves
p(X|Θ) unchanged, optimization over Q effectively mini-
mizes KL(q(Θ)||p(Θ)) (encourages V ,W ,α to be similar
to the prior). This encourages structured sparsity (imposed
by prior), helps escaping from local optima, and achieves
faster convergence (Virtanen et al. 2012). Figure 2 shows an
experiment on a three-view synthetic data, consisting of or-
dinal, real, and similarity based views, each generated from
a subset of four latent factors. The rotation matrix also helps
in the identifiability of inferred loading matrices.

Streaming extension: In the streaming setting, given Xn

(a new data point, or a batch of new data points, with each
having some or all the views), we infer the latent factors Vn

using the following update equations: q(Vn) = N (µn,Σn),

where µn = (
∑M1

m=1

∑

j〈γm〉〈W
(m)
:j

⊤
〉(gm

X
(m)
n,j

+

gm

X
(m)
n,j

−1
)/2 +

∑M1+M2

m=M1+1〈γm〉X
(m)
n 〈W (m)⊤〉 +

∑M1+M2+M3

m=M1+M2+1〈γm〉〈U
(m)
n 〉〈W (m)⊤〉)Σn, and

Σn = (I +
∑M

m=1〈γm〉〈W (m)W (m)⊤〉)−1. The

global variables Θ, such as W (m), can be updated
in a manner similar to (Broderick et al. 2013) as
q(Θn) ∝ q(Θn−1)p(Xn|Θn). Due to the lack of space,
the experiments for the streaming setting are presented
separately in the Supplementary Material.

Related Work

The existing methods for learning from multiview data,
such as (Gönen and Alpaydın 2011; Virtanen et al. 2012;
Zhang, Cao, and Yeung 2010; Bickel and Scheffer 2004;
Yu et al. 2011; Shao, Shi, and Yu 2013; Zhe et al. 2014;
Chaudhuri et al. 2009; Kumar, Rai, and Daumé III 2011),
usually either require all the views to be of the same type
(e.g., feature based or similarity based), or are designed to
solve specific problems on multiview data (e.g., classifica-
tion or clustering or matrix completion). Moreover, most
of these are non-generative w.r.t. the views (Gönen and
Alpaydın 2011; Chaudhuri et al. 2009; Kumar, Rai, and
Daumé III 2011), lacking a principled mechanism to han-
dle/predict missing data in one or more views. The idea of

learning shared and view-specific latent factors for multi-
view data has been used in some other previous works (Jia,
Salzmann, and Darrell 2010; Virtanen et al. 2012). These
methods however do not generalize to other feature types
(e.g., ordinal/binary) or similarity matrices, and to classifi-
cation/clustering problems. Another recent method (Klami,
Bouchard, and Tripathi 2014), based on the idea of collec-
tive matrix factorization (Singh and Gordon 2008), jointly
performs factorization of multiple matrices with each denot-
ing a similarity matrix defined over two (from a collection of
several) sets of objects (both sets can be the same). However,
due to its specific construction, this method can only model a
single similarity matrix over the objects of a given set (unlike
our method which allows modeling multiple similarity ma-
trices over the same set of objects), does not explicitly model
ordinal data, does not generalize to classification/clustering,
and uses a considerably different inference procedure (batch
MAP estimation) than our proposed framework.

Finally, related to our contribution on inferring the
cutpoints for the ordinal views, in another recent work
(Hernandez-Lobato, Houlsby, and Ghahramani 2014) pro-
posed a single-view ordinal matrix completion model with
an Expectation Propagation (EP) based algorithm for learn-
ing the cutpoints. It however assumes a Gaussian prior on
the cutpoints. We do not make any such assumption and op-
timize w.r.t. the cutpoints. Moreover, the optimization prob-
lem for inferring the cutpoints is concave, leading to an effi-
cient and fast-converging inference.

Experiments

In this section, we first apply our framework for analyzing
a real-world dataset from cognitive neuroscience. We then
present results on benchmark datasets for recommender sys-
tem matrix completion and classification, respectively.

Cognitive Neuroscience Data

This is a heterogeneous multiview data collected from 637
college students. The data consist of 23 ordinal-valued
response matrices from self-report questionnaires, con-
cerning various behavioral/psychological aspects; one real-
valued feature matrix from fMRI data having four features:
threat-related (left/right) amygdala reactivity and reward-
related (left/right) ventral striatum (VS) reactivity (Nikolova
and Hariri 2012); and four similarity matrices, obtained
from SNP measurements of three biological systems (nore-
pinephrine (NE), dopamine (DA) and serotonin (5-HT))
(Hariri et al. 2002; Nikolova et al. 2011), and a personality
ratings dataset provided by informants (e.g., parents, sibling
or friends) (Vazire 2006). For the SNP data (A,C,G,T nu-
cleotides), the similarity matrices are based on the genome-
wide average proportion of alleles shared identical-by-state
(IBS) (Lawson and Falush 2012). For the informant re-
ports (on 94 questions), the similarities are based on com-
puting the averaged informants’ ratings for each student
and then using a similarity measure proposed in (Daemen
and De Moor 2009). There are also binary labels associ-
ated with diagnosis of psychopathological disorders. We
focus on two broadband behavioral disorders: Internaliz-
ing (anxious and depression symptoms) and Externalizing
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Figure 3: (a) Active views for each factor. Row labels indicate the type of view: ordinal (O), real (R) and similarity (S); column indexes
factors (Number of active views in parenthesis). (b) Inferred view-correlation matrix. (c) Type of questions associated with each one of the
7 factors for the NEO questionnaire (first row in the left panel), based on the factor loading matrix of NEO. (d) Predicting ordinal responses
and predicting fMRI.

Table 1: AUC scores on the prediction of internalizing and externalizing disorders.

MLFS (all) MLFS (ordinal) MLFS (real+sim.) MLFS (concat.) BEMKL

Intern. 0.754 ± 0.032 0.720 ± 0.026 0.546 ± 0.031 0.713 ± 0.027 0.686 ± 0.037

Extern. 0.862 ± 0.019 0.770 ± 0.027 0.606 ± 0.024 0.747 ± 0.034 0.855 ± 0.015

(aggressive, delinquent and hyperactive symptoms as well
as substance use disorders) (Krueger and Markon 2006).
We apply our MLFS framework on this data to: (i) inter-
pret common/view-specific latent factors as well as view-
correlations, (ii) do multiview classification to predict psy-
chopathological conditions, (iii) predict missing data (e.g.,
question answers and fMRI response) leveraging informa-
tion from multiple views. We perform analysis considering
Km = 20 (for similarity-based views), R = 30 latent fac-
tors, and prior hyperparameters aα = bα = 0.01.

Common/view-specific factors and view-correlations:
For our first task, we are interested in understanding the data
by (i) identifying latent personality traits (factors) present
in the students, and (ii) inferring the view-correlations. Our
model can help distinguish between common and view-
specific factors by looking at the view-factor association
matrix B (model section). Figure 3(a) shows the inferred
view-factor associations for this data. We only show 17 fac-
tors which have at least one active view. Note that the first
one represents the common factor (present in all the views),
whereas the last 4 factors have only one active view (struc-
tured noise). Figure 3(b) shows the view-correlation matrix

inferred from W (m), computed as described in the model
section. As the figure shows, our model (seemingly) cor-
rectly discovers views that have high pairwise correlations,
such as questionnaires on drug-use, self-report delinquency
and alcohol-use. Further insights can be obtained by inter-

preting the factor loadings W (m) (for which the rows cor-
respond to factors and columns to questions). The NEO
questionnaire (240 questions) is of particular interest in psy-
chology to measure the five broad domains of personality
(openness, conscientiousness, extraversion, agreeableness,
and neuroticism). Figure 3(c) shows, for the 7 factors ac-
tive in NEO, the percentage of questions associated with ev-
ery domain of personality. It is insightful to observe that the
first factor includes, in an equitable manner, questions re-
lated with the five domains, whereas for the other factors,
questions related with one or two domains of the personality

are dominant.

Predicting psychopathological disorders: Our next task
predicts each of the two types of psychopathological disor-
ders (Internalizing and Externalizing; each is a binary clas-
sification task). To do so, we first split the data at random
into training (50%) and testing (50%) sets. The training set
is used to fit MLFS in four different settings: (1) MLFS with
all the views, (2) MLFS with ordinal views (questionnaires),
(3) MLFS with real and similarity based views (fMRI, SNP
and informants), (4) MLFS concatenating the ordinal views
into a single matrix. We consider Bayesian Efficient Multi-
ple Kernel Learning (BEMKL) (Gönen 2012) as a baseline
for this experiment. For this baseline, we transformed the
ordinal and real-valued feature based views to kernel ma-
trices. Each experiment is repeated 10 times with different
splits of training and test data. Since the labels are highly
imbalanced (very few 1s), to assess the prediction perfor-
mance, we compute the average of the area under ROC
curve (AUC). Table 1 shows the mean AUC with standard
deviation, bold numbers indicate the best performance. The
MLFS model, which considers all the heterogeneous views,
yields the overall best performance.

Predicting ordinal responses and fMRI: We first con-
sider the task of ordinal matrix completion (questionnaires).
We hide (20%, 30%, . . . , 90%) data in each ordinal view and
predict the missing data using the following methods: (1)
MLFS with all the views, (2) MLFS with only ordinal views,
concatenated as a single matrix, and (3) sparse factor pro-
bit model (SFPM) proposed in (Hahn, Carvalho, and Scott
2012). Top plot in Figure 3 (d) shows the average mean abso-
lute error (MAE) over 10 runs. The smallest MAE achieved
by MLFS with all views demonstrates the benefit of integrat-
ing information from both the features and similarity based
views with the group sparse factor loading matrices. Our
next experiment is on predicting fMRI responses leverag-
ing other views. For this task, we hide fMRI data from 30%
of the subjects. For this group, we only assume access to
the ordinal- and similarity-based views. We compare with
two baselines: (1) a linear regression model (LRM) where



Table 2: Benchmark datasets: Ordinal matrix completion leveraging the similarity based view.

Epinion Ciao

MAE Exact Match MAE Exact Match

Ordinal only 0.8700 (±0.0079) 0.3871 (±0.0056) 1.0423 (±0.0162) 0.3039 (±0.0068)

KPMF 1.0664 (±0.0204) 0.2715 (± 0.0212) 1.1477(±0.0242) 0.2788 (±0.0140)

MLFS 0.8470 (±0.0050) 0.4060 (±0.0102) 0.9826 (±0.0133) 0.3261 (±0.0070)

Table 3: Benchmark datasets: Accuracies on multiple similarity matrix based classification.

UCI Handwritten Digits (10 classes) Protein Fold (27 classes)

No missing 50% missing No missing 50% missing

Concatenation 93.47% (±1.40%) 92.02% (±2.03%) 50.46% (± 2.96%) 45.93% (± 3.59%)

BEMKL 94.94% (±0.84%) 88.59% (±2.76%) 53.70% (±2.88%) 47.77% (±3.01%)

MLFS 95.14% (±0.85%) 93.61% (±1.16%) 51.11% (±2.02%) 48.27% (±2.48%)

the covariates are the ordinal responses and the similarity-
based views (decomposed using SVD); (2) a sparse factor
regression model (SFRM) (Carvalho et al. 2008) with same
covariates as before. Bottom plot in Figure 3 (d) shows the
mean square error (MSE) averaged over 10 runs. Here again,
MLFS outperforms the other baselines, showing the benefits
of a principled generative model for the data. The Supple-
mentary Material contains additional comparisons, includ-
ing a plot for predicted vs. ground-truth of missing fMRI
responses.

Matrix Completion for Recommender Systems
For this task, we consider two benchmark datasets1, Epin-
ion and Ciao, both having two views: ordinal rating matrix
(range 1-5) and similarity matrix. The goal in this exper-
iment is to complete the partially observed rating matrix,
leveraging similarity based view. Note that multiview ma-
trix completion methods such as (Zhang, Cao, and Yeung
2010) cannot be applied for this task because these require
all the views to be of the same type (e.g., ordinal matrix).
The Epinion dataset we use consists of a 1000× 1500 ordi-
nal user-movie rating matrix (∼ 2% observed entries). The
Ciao dataset we use consists of product 1000 × 500 ordi-
nal user-DVDs rating matrix (∼ 1% observed entries). In
addition, for each dataset, we are given a network over the
users which is converted into a 1000×1000 similarity matrix
(computed based on the number of common trusted users for
each pair of users). We compare our method with two base-
lines: (i) Ordinal only: uses only the ordinal view, (ii) Ker-
nelized Probabilistic Matrix Factorization (KPMF) (Zhou et
al. 2012): allows using a similarity matrix to assist a matrix
completion task (it however treats the ratings as real-valued;
we round it when comparing the exact match). We run 10
different splits with 50% of the observed ratings as training
set and the remaining 50% ratings as test set and report the
averaged results. As Table 2 shows, our method outperforms
both baselines in terms of the completion accuracy (Mean-
Absolute Error and Exact Match).

Multiview/Multiple Kernel Classification
Our next experiment is on the task of multiple kernel classifi-
cation on benchmark datasets. The multinomial probit adap-
tation of MLFS, with all similarity-based views, naturally
applies for this problem. For this experiment, we choose two
benchmark datasets: UCI Handwritten Digits (Kumar, Rai,

1http://www.public.asu.edu/ jtang20/datasetcode/truststudy.htm/

and Daumé III 2011) and Protein Fold Prediction (Gönen
2012). The Digits data consists of 2000 digits (10 classes),
with each having 6 type of feature representations. We con-
struct 6 kernel matrices for this data in the same manner
as (Kumar, Rai, and Daumé III 2011). We split the data into
100 digits for training and 1900 digits for test. The Protein
data consists of 624 protein samples (27 classes), each hav-
ing 12 views. We construct 12 kernel matrices for this data
in the same manner as (Gönen 2012). For Protein data, we
split the data equally into training and test sets. For both Dig-
its and Protein data experiments, for each training/test split
(10 runs), we try two settings: no missing and 50% missing
observations in each view. We compare with two baselines:
(i) Concatenation: performs SVD on each view’s similarity
matrix, concatenates all of the resulting matrices, and learns
a multiclass probit model, and (ii) Bayesian Efficient Mul-
tiple Kernel Learning (BEMKL) (Gönen 2012), which is a
state-of-the-art multiple kernel learning method. The results
are shown in Table 3. For the missing data setting, we use
zero-imputation for the baseline methods (our method does
not require imputation). As shown in the table, our method
yields better test set classification accuracies as compared to
the other baselines. For Protein data, although BEMKL per-
forms better for the fully observed case, our method is better
when the data in each view is significantly missing.

Conclusion

We presented a probabilistic, Bayesian framework for learn-
ing from heterogeneous multiview data consisting of di-
verse feature-based (ordinal, binary, real) and similarity-
based views. In addition to learning the latent factors and
view correlations in multiview data, our framework allows
solving various other problems involving multiview data,
such as matrix completion and classification. Our contribu-
tion on learning the cutpoints for ordinal data is useful in
its own right (e.g., applications in recommender systems).
The streaming extension shows the feasibility of posing our
framework in online learning and active learning, left as fu-
ture work. Our work can also be extended for multiview
clustering when the data consists a mixture of feature- (real,
binary, ordinal, etc.) and similarity-based views.
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