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4Núcleo de estudos ecológicos do Pantanal (NEPA), Instituto de Biociências, Federal University of Mato Grosso,

Cuiabá-MT, 78060-900, Brazil

Received: 23 August 2010 – Published in Biogeosciences Discuss.: 13 September 2010

Revised: 11 February 2011 – Accepted: 9 March 2011 – Published: 17 March 2011

Abstract. Development of efficient methodologies for map-

ping wetland vegetation is of key importance to wetland con-

servation. Here we propose the integration of a number of

statistical techniques, in particular cluster analysis, universal

kriging and error propagation modelling, to integrate obser-

vations from remote sensing and field sampling for mapping

vegetation communities and estimating uncertainty. The ap-

proach results in seven vegetation communities with a known

floral composition that can be mapped over large areas us-

ing remotely sensed data. The relationship between remotely

sensed data and vegetation patterns, captured in four factorial

axes, were described using multiple linear regression mod-

els. There were then used in a universal kriging procedure

to reduce the mapping uncertainty. Cross-validation proce-

dures and Monte Carlo simulations were used to quantify the

uncertainty in the resulting map. Cross-validation showed

that accuracy in classification varies according with the com-

munity type, as a result of sampling density and configura-

tion. A map of uncertainty derived from Monte Carlo simu-

lations revealed significant spatial variation in classification,

but this had little impact on the proportion and arrangement

of the communities observed. These results suggested that

mapping improvement could be achieved by increasing the

number of field observations of those communities with a

scattered and small patch size distribution; or by including

a larger number of digital images as explanatory variables

in the model. Comparison of the resulting plant community

map with a flood duration map, revealed that flooding dura-
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tion is an important driver of vegetation zonation. This map-

ping approach is able to integrate field point data and high-

resolution remote-sensing images, providing a new basis to

map wetland vegetation and allow its future application in

habitat management, conservation assessment and long-term

ecological monitoring in wetland landscapes.

1 Introduction

Wetlands are vulnerable habitats threatened by climatic

change, due to their high sensitivity to the hydrological

regime (Junk, 2002). They form transitional habitats be-

tween aquatic and terrestrial systems and embody different

kinds of habitats such as mangroves, peatlands, freshwater

swamps and marshes (Mitsch et al., 2009). The ecologi-

cal importance of these habitats has been recognized world-

wide as well as the urgent need to preserve them, as stressed

in the Cuiabá Declaration on Wetland elaborated during the

8th International Wetlands Conference of INTECOL, Brazil.

However, lack of policy guidance to regulate the sustainable

use of wetlands may lead to arbitrary management decisions

(Junk et al., 2006). To improve the protection of wetlands, it

is imperative to have a thorough understanding of the struc-

turing elements and of the identification of efficient methods

to describe and monitor them.

Vegetation communities have distinct spatial and tempo-

ral patterns. Understanding the mechanisms that determine

these patterns has been an important issue in ecology for

decades (e.g., Connell and Slatyer, 1977; Svenning et al.,

2004). Two aspects play a key role: spatial interactions in

ecological processes (e.g. competition), and environmental
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factors (e.g. flooding duration) (Tilman, 1988). Ecological

processes include interactions between individuals, which

may cause particular spatial patterns in the distribution of

plants. Spatial variation in environmental factors causes spa-

tial patterns in vegetation communities due to the differences

of species requirements. These two factors do not usually

operate independently but act together at different spatio-

temporal scales (Turner, 1989; Svenning et al., 2004). This

multi-scale interaction may lead to complex spatial patterns

that are continuously changing (Wagner and Fortin, 2005).

Consequently, the ability to distinguish plant communities

that arise from multi-scale ecological processes requires an

understanding of the processes and parameters causing the

heterogeneity (Turner, 1989).

Classical methods describing vegetation distribution pat-

terns along environmental gradients (e.g. altitude, tempera-

ture, water, nutrients) are based on sampling field plots, often

along transects (McIntosh, 1958; Whittaker, 1967). Such an

approach yields detailed insights into the vegetation occur-

rence and vegetation assemblages but does not provide spa-

tially continuous information required to study mechanistic

processes and spatial patterns of the landscape (Austin and

Smith, 1989). To retrieve such spatially continuous informa-

tion requires techniques that consider space explicitly (Gard-

ner and Engelhardt, 2008). One of these techniques is remote

sensing. By using the spectral signature of different vegeta-

tion states, remote sensing enables description of spatial and

temporal patterns of vegetation in a spatially continuous way

(Jensen, 2007). A restriction of this approach is the limited

level of detail in attribute information that can be mapped by

remote sensing, hindering the detection and identification of

many ecologically important properties of vegetation com-

munities, such as floral composition (Chambers et al., 2007).

Whereas field plots and remotely sensed data each have

their limitations as a basis for continuous vegetation maps,

is it possible to combine them through a statistical approach

(Guisan and Zimmerman, 2000; Ferrier et al., 2002; Pfeffer

et al., 2003; Miller et al., 2007). Point-data or other field

data and spatially continuous information from remote sens-

ing are here incorporated by means of statistical methods,

such as ordination analysis (Jongman et al., 1995) and spa-

tial interpolation techniques such as kriging. In this way, we

can make maps representing the spatial distribution of vege-

tation across large areas that incorporate detailed information

on floral composition (Pfeffer et al., 2003). This approach

has become increasingly important in ecological studies as it

recognizes the influence of spatial correlation in vegetation

patterns (Bascompte and Solé, 1996; Turner et al., 2001). In

addition, these techniques allow quantification of the uncer-

tainty in mapped vegetation, which is valuable when vege-

tation maps are used for further quantitative analysis or for

calibration and evaluation of mechanistic vegetation models

(e.g., Brzeziecki et al., 1993; Guisan and Zimmerman, 2000;

Chong et al., 2001). Here, we will use mapped vegetation

(and its uncertainty) to understand the complexity of spatial

patterns of vegetation distribution and to study the effect of

flood duration on plant community patterns.

In this study, we integrate field data and remotely sensed

data through geostatistical methods for a case study in the

Pantanal, a 150 000 km2 floodplain of the upper Paraguay

basin in the center-west part of Brazil. The variability in

water depth and flood duration are considered to be the pre-

ponderant causes of the high diversity of biological commu-

nities and plant zonation patterns found in the area (Junk et

al., 1989; Wantzen et al., 2005). In this extensive and pris-

tine wetland floodplain, long-term conservation depends on

habitat diversity maintenance (Junk et al., 2006).

The aims of this paper are: (1) to indentify and map plant

communities of the Pantanal by combining field data and

remotely sensed data using advanced statistical techniques;

(2) to evaluate the uncertainties in vegetation classification

of this novel statistical approach; and (3) to investigate the

relation between flood duration and vegetation zonation.

2 Study area

Our study site covers 60 km2 and is located within a na-

ture reserve in North Pantanal (16◦30′–16◦44′ S and 56◦20′–

56◦30′ W) (Fig. 1a). The site is representative of a large part

of the Pantanal regarding vegetation and environmental con-

ditions.

The Pantanal contains a large variety of alluvial ecosys-

tems with different drainage patterns, flooding characteris-

tics, geomorphologic aspects and vegetation types (Fig. 1a)

(Assine and Soares, 2004). The climate of this region is

tropical humid with marked seasonality between winter and

summer periods (Köppen, 1948). The summer from Novem-

ber to April is characterized by high temperatures (average

day temperature 34◦ C) and it is the season with the largest

amount of precipitation (Fig. 1b). The precipitation de-

creases in winter, causing this season to be very dry (De Mu-

sis et al., 1997). The water level in the rivers of the Pantanal

follows the seasonal trend in precipitation. Due to the poor

surface and subsurface drainage and the smooth, low eleva-

tion relative to the river level (Alvarenga et al., 1984; Assine

and Soares, 2004), large areas of the Pantanal are flooded ev-

ery summer. Climate oscillations have been shown to be the

main cause of the observed multi-year period of cyclic vari-

ation in flooding (Junk et al., 2006). The fluctuation in water

level of the river Cuiabá, which crosses the north part of the

studied area, is the main cause of the flooding of the studied

floodplain.

The Pantanal vegetation presents floristic elements of

three important morphoclimatic and phytogeographic do-

mains i.e. Cerrado (Brazilian savanna), Amazonia and Chaco

(Ab’Saber, 1988). Savanna vegetation types are dominant

physiognomies in the Pantanal (67%). Semideciduous for-

est, gallery forest, swamp, Chaco, pioneer formations such

as monodominant forest of Vochysia divergens Pohl (Silva et
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Fig. 1. Study site. (A) Natural Reserve SESC Pantanal located at the Pantanal Mato-grossense, Mato Grosso; Brazil; (B) mean annual

water depth fluctuation of the River Cuiabá (1963–2000) and mean precipitation near Cuiabá, northern Pantanal. Rainfall data from INMET

(National Institute of Meteorology of Brazil), river level data from DNAEE (National Department of Waters and Electric Energy of Brazil);

(C) four meter resolution multispectral IKONOS-2 image, of the study site acquired in October 2003, true color. White circles are the sam-

pling locations; (D) 90-m Resolution SRTM (NASA Shuttle Radar Topographic Mission, http://www2.jpl.nasa.gov/srtm/) Digital Elevation

Model of the study area.

al., 2000) form the remaining components of the vegetation

mosaic. The variability in water depth and flooding dura-

tion and the temporal connections and disconnection estab-

lished between different elements of the landscape by means

of the flood pulse are considered the preponderant causes of

the high diversity of biological communities in the Pantanal

(Junk et al., 1989; Wantzen et al., 2005), dictating where and

when plant species with different life strategies and flooding

tolerance will appear (Junk et al., 2006).

3 Outline of the approach

Figure 2 shows a diagram with the procedural steps followed

to identify vegetation communities, to determine their spa-

tial distribution, and to study their relationship with flooding

duration. The first step of the procedure was the extraction

of vegetation communities from field sampling using factor

analyses and clustering (Fig. 2, top-right). Spatially contin-

uous variables were obtained from remotely sensed imagery

and a digital elevation model providing spatial information

necessary for vegetation mapping (Fig. 2, top-left). Remote-

sensing and elevation data were related to vegetation field
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Fig. 2. Flow diagram describing the procedural steps in the analysis of the data.

data using regression analysis (Fig. 2, centre). After fitting

variograms describing the spatial correlation in the residuals

of the regression analysis, universal kriging was performed

to combine extracted factor scores and spatially continuous

information derived from remote sensing to map vegetation

communities (Fig. 2, centre). The second step of the proce-

dure included an extensive uncertainty analysis on this map-

ping procedure by cross-validation and random simulations

to quantify the quality of the vegetation community maps

(Fig. 2, bottom-left). Finally, the vegetation map was used

to study the vegetation-environment relations by comparing

spatial patterns of plant community distribution with spatial

patterns of observed flooding duration (Fig. 2, bottom right).

4 Data acquisition

4.1 Vegetation data

We have sampled vegetation data based on field sampling of

key structural and compositional attributes of the five follow-

ing plant life forms as defined by Michin (1989): herbaceous

species (including gramineous plants), vines, shrubs, and two

Biogeosciences, 8, 667–686, 2011 www.biogeosciences.net/8/667/2011/



J. Arieira et al.: Integrating field sampling, geostatistics and remote sensing to map wetland vegetation 671

h

Fig. 3. Sampling scheme modified from the RAPELD method (see Magnusson et al., 2005). (A) 23 transects (sampling trail) are regularly

spaced over the site; (B) each transect is placed at the same elevation level and divided in five sampling transect each of 50 m length.

(C) Sampling along the transect. Herbaceous species: point samples at regular interval along the transect centre line. Shrubs, large-sized

trees and medium-sized trees: exhaustive sampling in the indicated zone. The tree size category is based on diameter of the trunk at breast

height (DBH).

size classes of trees. Here, we use the term life form to indi-

cate functional groups based on “group of plants that are sim-

ilar in a set of traits and their association to certain variables”

(Pillar and Sosinski, 2003). Shrubs were considered individ-

uals with the trunk bifurcated at the ground level and maxi-

mum canopy height of three meters. Palm species were con-

sidered either as a shrub life form or as a tree, depending on

species morphology. Due to possible phenotypic plasticity

found in species living under different micro-environmental

conditions, life form of a species was defined according to

the predominant morphologic form found in our sampling.

Two reasons motivated us to focus on life forms instead of

individual species when describing vegetation. First, this

approach reduces the data dimensionality (Colosanti et al.,

2007), and second, life form and ecology of plants are asso-

ciated (Grime, 1979), which guarantees that each life form is

an ecological unit. Dominant species within each plot, that

is, the woody species with the most biomass or the vine and

herbaceous species with the most coverage, were identified

and included in vegetation observations and analyses to en-

sure discrimination between structurally similar but floristi-

cally distinct communities.

Field sampling of vegetation was done in 2006 and 2007.

A sampling scheme modified from the RAPELD method (cf.,

Magnusson et al., 2005) was used (Fig. 3). The adjusted

RAPELD method comprised the establishment of 23 tran-

sects each of 250 m length distributed over the study site

(Fig. 3a). In order to study the effect of flooding duration

on vegetation composition and structure, each transect was

positioned at a different topographical elevation. Each tran-

sect was thus placed along an elevation contour, defined us-

ing a tripod-mounted telescope. Each transect was divided

into sampling transects of 50 m length in order to capture

variation in vegetation over short distances. This partitioning

resulted in a regular number of samples with similar sample

length suitable for sampling the different life forms (Fig. 3b),

producing a total number of 115 sampling units. Data collec-

tion and sample dimensions of a sampling unit varied accord-

ing with plant life form (Table 1, Fig. 3c). Herbaceous and

vine species were sampled with the point quadrat method

(Bullock, 1996). This method consists of counting the num-

ber of times that plant individuals touch on a vertical rod,

placed at 2 m intervals along the sampling transect. The cov-

erage value for a sampling transect was calculated as the pro-

portion of 25 points being intercepted by the plant (Table 1).

For woody life forms, plots were positioned along the tran-

sect (Fig. 3c). The plots have a length equal to the length of

the sampling unit along the transect (50 m), and a width de-

pending on the life form size as suggested by the RAPELD

method (Fig. 3c). Shrub measurements were taken in plots of

200 m2 (50×4 m); medium-sized tree measurements in plots

of 1000 m2 (50×20 m); and large-sized tree measurements

in plots of 2000 m2 (50×40 m). All species found in the plot

were identified and trunk diameter and species height were

measured for trees and shrubs. For shrub species, diame-

ters were measured for each individual at 5 cm above the soil

www.biogeosciences.net/8/667/2011/ Biogeosciences, 8, 667–686, 2011
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Table 1. Vegetation data obtained from field sampling and the available remote-sensing and ancillary imagery. Sample size varies with the

life form of plant. Biomass of trees and shrubs are calculated using the allometric equation developed by Chave et al. (2005) and by Barbosa

and Ferreira (2004), respectively. ρ is woody density, d is diameter at breast height, H is species height, Cb is circumference at ground

height (cm), n is the number of points touched by a species, and Nt is the total number of points in a sample (25 points).

Variable name Calculation Sample size

Vegetation data

Above Ground Woody Biomass

Tree Eq. (2) 1000 m2

(medium sized tree)

2000 m2

(large trees)

Shrubs Eq. (1) 200 m2

Canopy height Average height of the overstore (m) 2000 m2

Richness Number of species per area

Tree (>30 dbh) 2000 m2

Tree (10 < dbh ≤ 30) 1000 m2

Shrub 200 m2

herb (including grasses) 25 points

vine 25 points

% Cover herbs % Cover = (n/Nt) ·100 (%) 25 points

% Cover vine % Cover = (n/Nt) ·100 (%) 25 points

Remote-sensing and ancillary data

IKONOS-2 (4 m resolution)

blue band (0.45–0.52 µm) Reflectance Values (µm)

green band (0.52–0.60 µm)

red band (0.63–0.69 µm)

infra-red band (0.76–0.90 µm)

NDVI Normalized Difference Vegetation

Index NDVI = (NIR − R)/(NIR + R)

Principal Components

PC1 Transformation from the

PC2 first four multi-spectral bands

PC3 of IKONOS images

PC4

Digital Elevation Model (90 m resolution) From USGS 7.5′ DEM (meter)

surface and for tree species at breast height. These data were

also used to calculate some variables describing the vege-

tation structure. Aboveground biomass of woody individu-

als was estimated by two different allometric equations for

shrubs and trees, respectively. Aboveground woody biomass

(Bs, kg) of shrubs was calculated using the allometric model

developed by Barbosa and Ferreira (2004):

Bs = exp
(

−3.9041+0.4658 ln (Cb2H)

+0.0458 (ln (Cb2H))2
)

(1)

with, Cb is circumference at the ground height (cm) and H

the species height (m).

Biomass (Bt, Kg) of a tree species was estimated following

Chave et al. (2005):

Bt = 0.112 ·(ρ ·H ·d2)0.916, (2)

with, ρ (g cm−3) the wood specific density, H (m) the

species height, and d (cm) the species diameter at breast

height. Information on species densities was obtained from

Schöngart et al. (2008). Canopy height (CH) was considered

the average height of the eight highest individuals in a plot.

4.2 Remote-sensing and ancillary data

Remotely sensed imagery and ancillary data are frequently

used in spatial vegetation modeling due to their capability

of providing accurate environmental information related to

Biogeosciences, 8, 667–686, 2011 www.biogeosciences.net/8/667/2011/
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vegetation patterns (Guisan and Zimmerman, 2000; Pfef-

fer et al., 2003; Miller et al., 2007). An IKONOS-2 image

and a Digital Elevation Model (DEM) (Table 1, Fig. 1c, d)

were used in this study to derive variables related to vege-

tation patterns. The acquisition date of the IKONOS-2 im-

age is 1 October 2003 corresponding to the dry season in

the Pantanal and representing an optimal time for detecting

spectral signatures of terrestrial vegetation on the floodplain,

due to the availability of cloud free images and nonflooded

soil conditions. The IKONOS-2 image consists of four spec-

tral bands: three bands in the visible part of the spectrum

located at blue (450–520 nm), green (520–600 nm) and red

(630–690 nm) and one band in Near Infrared (760–900 nm)

(Table 1). The pixel size is approximately 4×4 m. The reg-

istered radiance values by the IKONOS-2 sensor were con-

verted to reflectance values using the calibration information

provided by Bowen (2002). A Normalized Difference Vege-

tation Index (NDVI) was computed from the spectral bands

by taking a ratio of the difference of the near infrared and red

spectral bands and the sum of the near infrared and red band

(Tucker, 1979). Such an NDVI image shows stronger con-

trast between vegetation and soil and water surfaces while re-

ducing noise in the image. Furthermore, we applied a princi-

pal component (PC) transformation to the IKONOS-2 image

to reduce inter-band correlation and extract new spectral in-

formation that arises from this transformation. The four orig-

inal bands, the NDVI image and the four principal compo-

nent images were used for further data analysis as described

in the next section. The 90-m resolution DEM of the study

area was obtained from the SRTM (NASA Shuttle Radar To-

pography Mapping Mission) and used to provide continuous

information of canopy height rather than soil surface (Jacob-

sen, 2006) (Fig. 1d).

The original geodata with cell sizes of 4 m (IKONOS-

2) and 90 m (SRTM DEM) were re-sampled to support the

field data, i.e., to the plot size used to take measurements

of large tree species (50×40 m). The disaggregation of the

90 m cells into 40×50 m cells was done by overlaying the

desired 40×50 m cells over the 90 m cells and creating in-

tersects. From these a weighted average was calculated to

determine the value for the 40×50 m cells. A similar pro-

cedure was used to aggregate the 4 m cells of IKONOS-2

images into 40×50 m cells. The procedure for extraction of

the averaged values from the images consists of: (1) delin-

eating the irregular plot boundaries in the IKONOS-2 image

using ARC/INFO GIS software (version 9.0; ESRI, 2006);

(2) calculating average remote-sensing and elevation values

for exactly these digitized plots; and (3) extracting variables

from the IKONOS-2 derived images and SRTM DEM for

the 115 plots to be used in the analysis. The two last steps

were done in the PCRaster interactive raster GIS environ-

ment, which is oriented towards spatio-temporal modelling

(PCRaster, 2002; Wesseling et al., 1996).

5 Identifying plant communities

Velloso et al. (1991) developed a classification system of

Brazilian vegetation, which was adapted by Nunes da Cunha

et al. (2006), providing a detailed description of the plant

communities in the Pantanal. Here, we have used the com-

munities described by Nunes da Cunha et al. (2006), because

these can be identified by means of structure and composi-

tion (only dominant species) data of different vegetation lay-

ers. Communities are represented at a broad level as veg-

etation formation types rather than plant associations. We

used factor analysis (Bray and Curtis, 1957) where the factor

scores summarize the structural and compositional charac-

teristics of different vegetation samples. These factors were

found in a principal component analysis of the correlation

matrix, generating a small number of orthogonal factors ex-

plaining the correlation among the vegetation variables (Leg-

endre and Legendre, 1998). The different factor scores are

plotted against each other in Fig. 4, and the proximity among

point-samples and our field background about the vegetation

classes found in these points were used to classify them in

vegetation classes/clusters.

5.1 Ecological interpretation of ordination space

The first four factor axes explain 46% of the total vari-

ance (Table 2). We assumed that the strongest correlations

with each axis reflect the main vegetation gradients cap-

tured by it. Factor 1 explains a relatively large proportion

(22%) of the total variance. It mainly distinguishes commu-

nities dominated by a tall and rich tree layer (negative load-

ings) and those dominated by vine, shrub or herbaceous life

forms (positive loadings). Although explaining considerably

smaller proportions of the total variance, the remaining fac-

tors are still useful for identifying the vegetation classes. Fac-

tor 2 separates plant communities by their degree of coverage

and richness of herbaceous species. Factor 3 mainly repre-

sents variation in biomass of two trees, Brosimum latescens

and Mouriri guianensis, and one shrub, Psychotria capitata.

Factor 4 mainly represents variation in the biomass of shrubs

and of two species, the medium-sized tree Sapium obovatum

and the shrub Ruprechtia brachycepala.

5.2 Defining plant communities through ecological

interpretation of clusters

Plant communities of the study area are identified based on

the proximity of point scores on the ordination space, and

the general expert knowledge (including existing vegetation

community classifications) of vegetation communities in the

area. Seven clusters are indicated in a scatter plot of the

different factors (Fig. 4) and are classified as: Monodomi-

nant forest, Shrubland, Alluvial seasonal semideciduous for-

est (Alluvial forest), Alluvial seasonal semideciduous low

forest (Alluvial low forest), Seasonally flooded grass-woody

www.biogeosciences.net/8/667/2011/ Biogeosciences, 8, 667–686, 2011
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Fig. 4. Factor analysis biplots of the axes 1 to 4 on vegetation variables obtained from 115 sampling locations. Seven clusters (symbols)

represent the vegetation communities found in the studied floodplain. Factor 1 describes the gradient of tree biomass found in the study site;

Factor 2 of herb cover and richness; Factor 3 of tree dominant species; and Factor 4 of shrub biomass.

savanna (Grassland), Low open tree and shrub savanna

(Open savanna) and Low dense tree and shrub savanna

(Dense savanna). The number of samples in each cluster

and their distribution over the ordination space express the

structural and floristic variability found within the commu-

nity and which communities have dominated the floodplain

landscape. Table 3 provides a statistical summary of struc-

tural and floristic characteristics of communities.

A number of communities show overlapping ranges of

scores on some of the factor axes, while other factor axes

provide clear boundaries between these communities. For in-

stance, the transitions between Alluvial forest and Monodom-

inant forest are smooth (Fig. 4a–c). These two communities

are mainly separated through the tree biomass and coverage

of herbaceous species in Monodominant forest (Fig. 4a) and

the dominance of Brosimum latescens and Mouriri guianen-

sis in Alluvial fores (Fig. 4b). Dense savanna lies between

Open savanna and Monodominant forest. Tree biomass dis-

tinguishes these communities (Fig. 4a). Dense savanna,

Grassland, Open savanna and Monodominant forest have

Biogeosciences, 8, 667–686, 2011 www.biogeosciences.net/8/667/2011/
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Table 2. Summary statistics for the factor analysis. Numbers in

bold highlight the highest correlation with the factor axis.

Variable Factor 1 Factor 2 Factor 3 Factor 4

Richness tree −0.76 −0.25 0.17 −0.28

Richness shrub 0.28 0.07 0.20 −0.35

Richness herb 0.31 0.58 0.43 −0.11

Canopy height −0.86 −0.05 −0.33 0.09

Cover % herb 0.04 0.79 0.16 0.06

Cover % vine 0.82 −0.15 −0.16 0.16

Richness vine 0.73 −0.09 −0.14 0.16

Biomass tree (total) −0.88 0.00 −0.26 0.18

Biomass shrub 0.54 −0.42 0.07 −0.58

Biomass (DBH 10 cm > 30 cm)

Vochysia divergens −0.31 −0.05 0.05 0.03

Sapium obovatum −0.03 −0.23 −0.09 −0.56

Licania parvifolia −0.43 −0.03 −0.17 0.11

Brosimum latescens −0.29 −0.34 0.51 0.22

Trichilia catigua −0.30 −0.27 0.45 0.06

Duroia duckei −0.59 0.09 −0.35 0.19

Cecropia pachystachya −0.31 0.23 −0.20 −0.02

Mouriri guianensis −0.51 −0.35 0.36 0.22

Biomass (DHB > 30 cm)

Vochysia divergens −0.72 0.17 −0.47 0.21

Mouriri guianensis −0.37 −0.42 0.55 0.23

Biomass (shrub)

Albizia polycephala 0.62 −0.11 0.02 0.12

Ruprechtia brachycepala −0.02 −0.25 0.05 −0.50

Peritassa dulcis 0.18 −0.52 −0.46 −0.06

Melochia villosa 0.41 0.16 0.18 0.24

Byrsonima cydoniifolia −0.23 −0.40 0.43 0.15

Psychotria capitata −0.48 −0.49 0.51 0.20

Bauhinia rufa 0.17 0.04 0.09 −0.32

Mimosa pellita 0.57 0.05 0.02 0.35

Laetia americana 0.74 −0.20 −0.09 0.14

Solanum pseudoauriculatum 0.26 0.19 0.15 0.22

Eugenia florida 0.03 −0.29 −0.32 0.07

Alchornia discolor −0.22 0.37 0.03 −0.37

Mabea paniculata −0.30 0.12 0.17 −0.25

Byrsonima orbygniana 0.00 0.19 0.25 −0.49

Cover % herbaceous species

Paspalum hydrophilum 0.34 0.37 0.24 0.05

Panicum guianense −0.17 0.06 −0.18 −0.35

Scleria bracteata −0.57 0.24 −0.27 0.16

Cover % vine

Cissus spinosa 0.67 −0.31 −0.20 −0.001

Aniseia cernua 0.54 0.14 0.09 0.34

Paullinia pinata 0.52 −0.31 −0.27 0.09

Dolliocarpus dentatus 0.23 −0.57 −0.27 −0.01

Ipomea rubens 0.36 0.16 0.17 0.22

% Variance 22 9 8 7

similar correlation values with Factor 2, indicating that there

may be a small variation in coverage of herbaceous species

between these communities. The low tree biomass in Shrub-

land is responsible for its positive scores on the first factor.

Alluvial low forest is distinguished from other forests based

on Factor 4. Its high shrub coverage compared to Shrub-

land and the dominance of Sapium obovatum and Ruprechtia

brachycepala generates the lowest scores on Factor 4.

6 Mapping plant communities

6.1 Correlating field data and image derived data

We first examined the relationship between IKONOS images

and SRTM DEM and the vegetation patterns captured in the

four factorial axes. Pearson correlation was applied to ana-

lyze the existence of linear relationships, observed in an ex-

ploratory analysis of the data, between image derived vari-

ables and field data (scores on factor axes). This facilitates

our understanding of the spectral nature of the field data and

the ecological interpretation of the variables (James and Mc-

Culloch, 1990). Next, the relationship between the image

derived variables and the factor axes was found using the fol-

lowing multiple linear regression model:

Yi = a0 +a1x1i +a2x2i + ...+apxpi +εi (3)

where Yi is the score value, a0,a1,...,ap are the model pa-

rameters, x1i, x2i , . . . , xpi are the values of the image de-

rived variables and εi are uncorrelated residuals. The anal-

yses were done with log transformed reflectance values to

ensure that the statistical distribution of the data is close to

Gaussian (Draper and Smith, 1998).

In the multiple regression analysis, image derived vari-

ables were selected to be included in the multiple regression

models using the best-subset regression method (Hofmann

et al., 2007; James and McCulloch, 1990). In this analy-

sis all combinations of explanatory variables in regressions

are tested, and Mallow’s C-p statistic (Mallows, 1973) and

determination coefficients (R2) are used as eliminatory crite-

rions of variables (Draper and Smith, 1998). We consider the

best regression equation for each factor the one with the low-

est C-p value, highest R2, and lowest number of explanatory

variables.

6.2 Vegetation patterns captured by digital images

Table 4 shows correlations between explanatory variables

and the factor axes. Except for NDVI, all image derived data

present significant correlation with Factor 1. The strongest

correlations with this first axis are found with blue, green and

red bands, PC1 and canopy topography. Lower reflectance

values in the three spectral bands and lower score values in

the PC1-3 images are linked to areas occupied by commu-

nities with high stored tree biomass such as Monodominant

forest and Alluvial forest (Table 4). Lower score values in

the PC4 reflects communities with lower tree biomass val-

ues even though this axis explains the noise from the spec-

tral band transformation. In spite of its weak correlation

with Factor 1, NDVI shows an expected spectral behaviour:

the values decrease toward areas with lower tree biomass,
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Table 3. Structural and floristic characteristics of plant communities, given as mean and standard deviation.

C
h

ar
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te
ri
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ic

sp
ec

ie
s

Monodominant

forest

Shrubland Alluvial

forest

Alluvial

Low Forest

Grassland Open

savanna

Dense

savanna

Vochysia

divergens

Pohl.

Laetia

americana L.

Byrsonima

cydoniifolia

A. Juss.

Ruprechtia

brachysepala

Meisn.

Paspalum

hydrophilum

Henrard

Paspalum

hydrophilum

Henrard

Byrsonima

orbignyana

A. Juss.

Duroia duckei

Huber

Mimosa pellita

Humb. & Bonpl.

ex Willd.

Psychotria

capitata

Ruiz & Pav.

Crataeva

tapia L.

Panicum

guianense

Hitchc.

Hybiscus

furcellatus

Desr.

Bauhinia rufa

(Bong.)

Steud.

Licania

parvifolia

Huber

Peritassa dulcis

(Benth.) Miers

Trichilia

catigua

A. Juss.

Banara arguta

Briq.

Laetia

americana L.

Alchornea

discolor

Poepp.

Scleria

bracteata

Cav.

Albizia polycephala

(Benth.) Killip

Mouriri

guianensis

Aubl.

Sapium

obovatum

Klotzsch

ex Müll.

Arg.

Cissus spinosa

Cambess.

Brosimum

lactescens

(S. Moore)

C. C. Berg

Cecropia

pachystachya

Trécul

Aniseia cernua

Moric.

Paullinia pinnata L.

Ipomea rubens

Chousy

Richness of herbs

(no. of sp. per

sample)

1.98±1.92 2.54±1.75 2±0.82 2.4±1.52 3.67±1.56 4.6±1.34 4.2±1.92

Richness of vines

(no. of sp. per

sample)

2.96±1.52 7.71±1.72 1.71±1.25 4.6±1.82 4.42±1.31 3.8±1.1 1.4±1.52

Richness of shrubs

(no. of sp. per

sample)

7.85±3.58 9.89±2.36 6.71±4.61 6.4±1.95 8.58±2.91 8.6±2.3 14.6±3.6

Richness of

medium sized trees

(no. of sp. per

sample)

4.91±1.64 0.32±0.61 8±2.65 6.2±2.17 0.17±0.39 1±0.45 5.8±1.64

Richness of large

trees (no. of sp.

per sample)

2.77±0.71 0.14±0.45 4.71±1.11 1.6±1.34 0.17±0.39 0.6±0.55 2±0.7

Biomass of shrubs

(Mg ha−1)

3.25±6.71 10.11±3.79 3.82±3.01 13.54±8.18 4.03±2.08 2.63±0.78 9.96±6.71

Biomass of

medium sized trees

(Mg ha−1)

109.58±17.29 2.38±7.58 91.54±29.87 28.50±21.78 4.57±9.56 29.5±31.01 26.75±17.29

Biomass of large

trees (Mg ha−1)

84.94±11.36 1.87±6.80 57.15±18.55 9.47±8.41 1.81±4.29 24.8±28.06 9.40±11.36

Canopy height (m) 20.19±1.30 2.41±0.84 15.2±3.19 5.72±1.74 1.76±0.21 2±0.1 3.14±1.3

Cover % herbs 37.06±9.55 27±24.26 16±7.66 18.4±11.52 61.33±21.46 97.6±3.58 56.8±9.55

Cover % vines 21.74±6.07 83±11.71 8.57±6.70 47.2±21.05 43.33±19.66 27.2±7.16 5.6±6.07
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Table 4. Pearson’s correlation coefficients between factor axes

and image variables: four spectral bands, Normalized Difference

Vegetation Index (NDVI), Principal Component transformation to

the IKONOS-2 image (PC), and canopy topography derived from

DEM-SRTM (DEM).

Variable Factor 1 Factor 2 Factor 3 Factor 4

blue band 0.71∗ 0.30∗ 0.38∗ 0.008

green band 0.71∗ 0.23∗ 0.38∗ −0.03

red band 0.67∗ 0.36∗ 0.37∗ −0.009

infra-red band 0.43∗ −0.34∗ 0.02 −0.001

NDVI −0.124 −0.47∗ −0.30∗ 0.01

PC1 0.69∗ −0.13 0.25∗ −0.03

PC2 0.29∗ 0.61∗ 0.30∗ 0.04

PC3 0.26∗ −0.08 0.03 0.10

PC4 −0.33∗ 0.13 −0.10 −0.10

Canopy −0.72∗ 0.15 −0.39∗ −0.16

topography

(DEM)

∗ P-value ≤ 0.05 for statistical significance.

such as those areas covered by Grassland, Open savanna,

Shrubland and Dense savanna. The strong negative corre-

lation between canopy topography and Factor 1 shows that

the boundaries between communities dominated by trees and

those dominated by shrubs, lianas and herbs are detected by

differences in canopy height.

The variability in cover degree and richness of herbaceous

life forms expressed by the second axis is best described by

the PC2 image (61%; Table 4). Communities with higher

and richer coverage of herbaceous species such as Grass-

land, Open savanna and Dense savanna are associated with

higher reflectance values in blue, green and red bands and

higher score values in the PC2 image. The negative correla-

tions between Factor 2 and infra-red band and NDVI show

that communities dominated by herbaceous species present

weaker spectral response to these two images.

As observed earlier, Factor 3 mostly justifies the spatial

distribution pattern of three tree species that dominate in Al-

luvial forest. Relatively to Monodominant forest, the lower

biomass content and canopy height of Alluvial forest might

be the cause for the negative correlations between Factor 3

and NDVI and Factor 3 and canopy topography.

The spatial variability of Factor 4 represents vegetation

patterns that are mainly explained by canopy topography

(i.e. DEM) showing that areas with higher biomass of shrubs

are associated with lower canopy height.

The equations found in the multiple regression analysis

are shown in Table 5. The regression models significantly

explain 70.4%, 66.3%, 31.3% and 25.6% of the variance in

factors 1 to 4, respectively. The use of an automatic variable

selection technique to choose regression models resulted in

inclusion of autocorrelated predictor variables in the mod-

els, such as the principal component images and IKONOS

bands. Because the main purpose of using multiple regres-

sion analysis in this study is to predict values accurately, and

not to test hypotheses about the model parameters, colinear-

ity of explanatory variables was not a matter of great concern

(Legendre and Legendre, 1998).

6.3 Variogram analysis

We applied variogram analysis to the residuals of the mul-

tiple linear regression to derive information on their spatial

structure (Wagner and Fortin, 2005). This information was

used for two reasons: (1) to investigate the spatial autocorre-

lation associated with the observed vegetation patterns; (2) to

use this information when making spatial predictions (Miller

et al., 2007). Sample variograms were estimated and vari-

ogram models fit using the function autofitVariogram from

the library automap (Hiemstra et al., 2008) in the statisti-

cal environment R-2.7.2 (R Development Core Team, 2009).

The function autofitVariogram automatically selects the var-

iogram model and parameters that best match the observed

sample variogram. The function iterates over the variogram

models (spherical, Gaussian, Màtern, and exponential) and

selects the model and model parameters that result in the

smallest residual sum of squares with the sample variogram.

The results indicate that the vegetation gradients repre-

sented by the residuals of each factor (Factor 1–4) vary on

different spatial scales (Fig. 5). Variograms of the Matérn

family, a family of semivariogram models where the degree

of smoothness of the random field is controlled through a

shape parameter (kappa) (Pardo-Iguzquiza and Chica-Olmo,

2008), were fit for Factors 1, 2 and 4 (Fig. 5a, b, d), whereas

an exponential variogram (special case of the Matérn fam-

ily) was fit for Factor 3 (Fig. 5c). The first and third fac-

tors show large-scale patterns as revealed by their ranges of

spatial dependence. The variogram of Factor 1 has a range

of 3380 m, whereas the variogram of Factor 3 is monoton-

ically increasing within the extent of the sample variogram

and consequently has a larger range. The variograms of Fac-

tors 2 and 4 show short ranges of spatial dependence (close

to a pure nugget effect) suggesting that processes governing

their spatial patterns show small scale variability.

6.4 Universal kriging

Universal kriging is a spatial interpolation technique that can

incorporate environmental data and spatial dependence in the

modeled error to predict at locations without observations

and generate accurate vegetation distribution maps (Pfeffer

et al., 2003; Pebesma and Wesseling, 1998). Universal krig-

ing was done on the regression residuals and the interpo-

lated residuals were added to a trend surface to predict factor

scores at unobserved locations. This trend surface was based

on the regression equation in Eq. (3) (Pfeffer et al., 2003).

The predicted scores were used to create four factor score
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Table 5. Multiple linear regression models relating factor axes scores (F1–4) to imagery derived variables: four spectral bands (blue, green,

red and infra-red), Normalized Difference Vegetation Index (NDVI), Principal Component transformation to the IKONOS-2 image (PC), and

canopy topography derived from DEM-SRTM (DEM). R2 is the coefficient of determination showing the strength of these relationships.

Equation R2

F1 = 30.6 + 9.49 blue − 0.0241 DEM − 34.7 PC1 − 46.4 PC2 − 33.7 PC3 + 8.7 PC4 + 2.15 NDVI 70.4

F2 = − 9.43 + 5.15 NDVI + 0.0715 DEM − 3.38 green + 3.52 red + 55.1 PC2 − 140 PC3 66.3

F3 = 15.2 + 419 PC4 − 9.98 NDVI + 15.9 blue − 15.2 red + 4.90 infra-red 31.3

F4 = 2.4 − 27.9 PC1 + 53.9 PC2 + 129 PC3 − 49 PC4 − 0.9 NDVI − 0.15 DEM − 20.9 blue + 2.2 green + 9.8 red + 3.6 infra-red 25.6

Fig. 5. Maps of the kriged estimates of factor scores and the semi-variograms of the residuals of the regression between factor axes and

remotely sensed and ancillary data; fitted variogram models: mat: matheron family, exp: exponential. Values between brackets are nugget

effect, structured variance and variogram range, respectively. (A) Factor 1; (B) Factor 2; (C) Factor 3; (D) Factor 4.
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Fig. 6. Maps of the standard deviation of the predicted error result-

ing from universal kriging; (A) Factor 1; (B) Factor 2; (C) Factor 3;

(D) Factor 4.

maps. In addition, the universal kriging approach was used

to estimate the prediction error (standard deviation), which is

typically increasing as a function of the distance to observa-

tion locations (Stein and Corsten, 1991).

The score maps in Fig. 5 show the vegetation spatial pat-

terns predicted by universal kriging. The score maps of the

first and third factor axes (Fig. 5a and c) show mainly large-

scale variability. These axes, as mentioned earlier, mostly

represent spatial variation of tree life forms. Contrarily, the

score maps of the second and fourth axes (Fig. 5b and d)

representing the occurrence of herbaceous and shrub layers,

respectively, show small-scale spatial variability.

Examining the pattern of the prediction errors of the scores

for each factor axis (Fig. 6), one can infer to which extent

sample data and image data contribute to predictions. When

the range of the semivariogram is large, as seen in the semi-

variograms of Factor 1 and 3 (Fig. 5a, c), the prediction er-

rors increase slowly with the distance away from samples.

On the other hand, a short range in the variogram results in

prediction errors increasing rapidly with distance away from

samples, as is the case with Factor 2 and 4. Image data will

in this case have greater impact on predictions. Neverthe-

less, the quality of the factor score maps is not only related to

differences between small-scale and large-scale spatial vari-

ation but rather reflects the explanatory strength of the rela-

tionship between factor axes and image derived variables as

shown by the mean error in the score maps. We use these

mean errors as indicative of the overall quality of the maps.

According to these averages, Factor 1 represents the most

accurate map (mean standard deviation of 0.51) followed by

Factor 2 (mean s.d. = 0.64), Factor 3 (mean s.d. = 0.69) and

Factor 4 (mean s.d. = 0.87).

Fig. 7. (A) Predicted distribution of the plant communities iden-

tified at the study site. (B) Results of leave-one-sample out cross-

validation. Percentage of predicted classes at sampling locations.

Each bar shows the results for sampling locations with a certain ob-

served class (indicated by the colors at the bottom of the C panel).

(C) Idem, leave-five-out cross-validation. N = 115.

6.5 Spatial distribution of plant communities across

the floodplain

In the final part of this procedure, we combined score point

data and the four kriged maps generated as described in the

former sections to create the final map of plant communi-

ties. First, the cluster center of each community was calcu-

lated as the average of score values of each factor axis. Then,

the resulting seven cluster centers were used to assign each

location on the map to a community class. This was done

by calculating Euclidean distances between centers and pre-

dicted scores values. Each location was then assigned to the

community whose center was nearest to the predicted score

values at that location.

The map of plant communities (Fig. 7a) resulting from this

classification method shows the predicted spatial distribution

of the seven identified plant communities on the floodplain.

Grassland (16% of coverage), Shrubland (30% of cover-

age) and Monodominant forest (32% of coverage) sum up

to 78% of the coverage at the studied site. These commu-

nities mostly appear as large and contiguous patches across

the site. Alluvial forest and Alluvial low forest, as expected,

appear as strips covering exclusively places close to water
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bodies: along rivers, channels and surrounding baı́as, i.e.

temporary or permanent lakes seasonally connected to the

river. These two communities cover just 4% (2% each) of

the studied floodplain. The greatest portion of the 10% of

Open savanna that covers the study area is located towards

the Northern boundary. The 8% of Dense savanna is found

as small patches generally surrounded by Open savanna and

as a big patch beside Monodominant forest.

6.6 Evaluating uncertainty

Vegetation mapping using statistical approaches carries dif-

ferent sources of uncertainties related to sampling scheme,

interpolation errors, sampling support, data quality, lack of

data and others, which may compromise the model’s capa-

bility of accurately predicting vegetation patterns (Guisan

and Zimmerman, 2000; Pfeffer et al., 2003; Miller et al.,

2007). The predictive success of our mapping approach was

evaluated using cross-validation (Efron and Tibshirani, 1986)

and random-simulations (Bourennane et al., 2007), both per-

formed in R.

6.6.1 Cross-validation

We have used cross-validation to investigate the sensitiv-

ity of vegetation predictions performed by universal krig-

ing as a result of sampling variability (Pfeffer et al.,

2003). Two resampling techniques were applied: leave-

one-out cross-validation (LOOCV) and leave-five-out cross-

validation (LFOCV). The first technique is the standard pro-

cedure (Efron and Tibshirani, 1986) which consists of omit-

ting one sample at a time from the data set and based on

the remaining observed values make predictions at this loca-

tion using the interpolation technique, i.e., universal kriging.

Because samples/plots within the same transect are consider-

ably closer to other observations than the typical distance be-

tween prediction locations and observations locations (Miller

et al., 2007), LFOCV was used to test the prediction quality

of the model when the whole transect, that is, five plots, is left

out to make predictions. Vegetation classes were assigned

from the predicted scores and compared with the observed

vegetation classes at the 115 sample plots.

Overall agreement between predicted and observed classes

does not differ substantially between the two resampling

techniques: leave-one-out results in 52.2% agreement and

leave-five-out in 48.7% agreement. Both techniques show

that accuracy in classification varies according to the com-

munity type (Fig. 7b and c). Communities which have been

observed on a large number of plots and occupy large por-

tions of the vegetation map, such as Monodominant forest

and Shrubland, are less sensitive to sampling density than

those communities which occur in smaller and few patches,

such as Alluvial forest and Alluvial low forest. Consequently,

communities observed in few of the plots are wrongly clas-

sified also for LOOCV (Fig. 7b). Other possible causes of

uncertainty in classification from our mapping approach de-

rives from the similarity between community types having

a small distance between cluster centers in the ordination

space (Fig. 4). Communities such as Alluvial forest and

Dense savanna are frequently predicted to be their neigh-

boring communities, namely, Monodominant forest; and Al-

luvial low forest are frequently predicted to be Shrubland

(Fig. 7b and c).

6.6.2 Simulation

A Monte Carlo approach was applied to examine the uncer-

tainty of our method (Legendre and Legendre, 1998). In

this approach, we used the same universal kriging equa-

tions, however creating equally likely random realizations

(i.e., possible random outcomes or scenarios) of score maps

instead of predicted values as was done in the original proce-

dure. This was done by simulating 1000 realizations of score

maps for each factor, based on the scores at the observation

locations and the fit variograms. These realizations reflect

the prediction uncertainty at the prediction locations; all re-

alizations are equally probable. For each realization, we cal-

culated the vegetation pattern, using the same Euclidean dis-

tance algorithm applied in the original mapping procedure.

This was repeated for all 1000 realizations, resulting in 1000

realizations of vegetation community maps. Two realizations

are shown in Fig. 8b, c. From these 1000 realizations, we cre-

ated a map showing the probability, from 0 to 1, that a certain

community is found in a 40 m grid cell (Fig. 8). On this map,

a value 1 indicates zero prediction uncertainty.

The result shows that the quality of classification varies

spatially, even though the proportion and arrangement of

communities observed in the original map is preserved to

a great extent. The central zone of a community patch is

more likely to be classified correctly than border areas, as

shown by the increasing probabilities towards the center of

patches of communities (Fig. 8a). This might reflect intrinsic

uncertainties in classification of natural ecotones reflected in

the overlapping of score values of very close communities

in the factor space. The quality of classification also var-

ied between communities. Classification of Dense savanna

and Open savanna, for instance, exhibit lower probabilities

of being in the correct class as indicated by their more ran-

dom distribution across the landscape (Fig. 8b and c). Here,

sampling configuration and distance between clusters in fac-

tor space are an important source of errors.

7 Flood duration-vegetation relationship

The relationship between vegetation distribution and flood-

ing was assessed by comparing the plant community map

with a flood duration map as in direct gradient analysis. The

flood duration map (Fig. 9) was created from a digital ele-

vation map and 38 yr of daily recordings of the water level

Biogeosciences, 8, 667–686, 2011 www.biogeosciences.net/8/667/2011/



J. Arieira et al.: Integrating field sampling, geostatistics and remote sensing to map wetland vegetation 681

Fig. 8. Results of Monte Carlo simulation, using 1000 random sim-

ulations. (A) The colors on the map indicate the vegetation class

with the highest probability of occurrence at a cell. A color gradi-

ent is used to show the value of this highest probability; (B) maps

of two single random realizations, color scale is identical to Fig. 8.

in the River Cuiabá (Fig. 1b) provided by the Brazilian Na-

tional Water Agency (ANA; http://hidroweb.ana.gov.br). The

40-m resolution digital elevation map was created with uni-

versal kriging from 81 GPS elevation measurements at the

site and using SRTM DEM as an auxiliary variable (Valeri-

ano and Abdon, 2007). A base station was installed for in-

creased precision of the GPS measurements. Flood duration

and flood depth data were also monitored by direct reading

of staff gauges for two years (2007–2008) at the 23 sampling

transects. The relationship between flooding and elevation

data was tested with Pearson’s correlation coefficient. Statis-

tically significant and strong correlations were found among
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Fig. 9. (A) Map with average number of days flooded per year at the

study site, calculated over the period 1969–2007; (B) relationship

between flood duration (days yr−1) and elevation of the soil surface

(m a.s.l.) observed at the 23 study transects; (C) water level fluctu-

ation in the River Cuiabá between 1969 and 2007. Vertical dotted

lines indicate the occurrence of drier and wetter years.

them (r > 70%; P ≤ 0.05) indicating the possibility of cal-

culating flooding duration values over the floodplain through

the indirect relationship between river water depth and ele-

vation. Flood duration of a cell was calculated by comparing

the water level in the river and the topographical elevation of

the cell for each day as follows: if the elevation value at a

cell was lower than the water level in the river on a certain

day, the cell was considered flooded that day. This approach

ignores spatial variation in water level associated with down-

stream gradients in water level, local depressions containing

water that is only partially connected with the main river, and

surface water fed by groundwater. However, the effect of

these processes is relatively small as indicated by additional

field sampling with the staff gauges.

The flood duration map (Fig. 9) shows the number of

flooded days per year in the study area. Flood duration data

extracted from this map were classified into monthly inter-

vals and the distribution of the plant communities found in

the vegetation map along this flooding gradient was plotted

in Fig. 10. Figure 10 shows that the zonation of plant com-

munities along the floodplain is clearly related to the duration

of inundation. Alluvial forest and Dense savanna occur in
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areas with a flooding duration of less than two months. Mon-

odominant forest, although occupying a high proportion of

the highest areas, has the highest occurrence at intermediary

flooding conditions, with a flooding duration between two

and four months. Open savanna is mostly found where flood-

ing lasts for four to six months per year. Grassland is found

under almost the whole range of flooding durations, however

with peaks of occurrence in areas with a flooding duration

below two months and between four and six months of inun-

dation. Alluvial low forest is mostly situated at locations with

a flooding duration between 6–8 months. Shrubland domi-

nates the areas with the highest flooding duration. Above

eight months of flood duration, there is no suitable condition

for tree species establishment and the landscape is occupied

mostly by Shrubland, Open savanna and Grassland. The oc-

currence of monodominant forest in the last flood duration

class might be associated with the coarse representation of

spatial variation in flood duration, illustrated in Fig. 9.

8 Discussion

Wetland mapping at scales suitable for conservation can be

limited by the lack of temporally and spatially consistent

datasets. The present study identifies an efficient method-

ological approaches to map and understand spatio-temporal

patterns of wetland vegetation of the Pantanal. We provide a

framework to map wetland habitats based on the integration

of field data and remotely sensed data through geostatistic

methods and identify possible causes of vegetation zonation.

The vegetation in our study area shows complex spatial

patterns. The use of universal kriging for mapping is valuable

because it allows combining remote-sensing information and

spatially distributed field observations, taking into account

the spatial dependence of the variation not explained by the

remote-sensing data. Most other classification methods (e.g.,

maximum likelihood) do not allow this level of sophistication

in using composite spatial information.

The plant communities described in an existing classifica-

tion (Nunes da Cunha et al., 2006) could be identified as clus-

ters in the ordination space, thanks to the floristic properties

included in the analyses that differentiated structurally sim-

ilar but floristically different plant communities. However,

sometimes clusters showed overlap on a number of factor

axes and boundaries between clusters were not always accu-

rate. Such overlap probably indicates the existence of grad-

ual changes in vegetation (Brzeziecki et al., 1993), which

is not represented in our model with sharp boundaries be-

tween vegetation communities. Thus, the vegetation com-

munity studied deviates slightly from our crisp plant com-

munity model. This had two implications for our analysis.

One is the subjective determination of cluster boundaries in

the ordination space, particularly in cases where boundaries

were not crisp. The other is related to the interpretation of

the uncertainty analysis. One of the causes of uncertainty

Fig. 10. Fraction of occupied sites by the seven identified communi-

ties along the flood duration gradient. Flooding gradient is divided

in five flood classes representing number of flooded months.

of the mapped vegetation is the uncertainty in the assign-

ment of an interpolated point to a cluster in the ordination

space. Overlap of clusters in the ordination space may ac-

tually represent transition zones between plant communities,

and are related to intrinsic uncertainty in classification (see

also, Fortin et al., 2000; Hernandez-Stefanoni and Dupuy,

2007). Potential misclassification in these zones appears as

uncertainty on the interpolated crisp map, particular in ar-

eas close to mapped boundaries between plant communities.

However, even though we recognize that plant community is

a spatial concept rather than a well-delimited entity (Austin

and Smith, 1989), we believe that the abstract definition of

crisp boundaries is needed to interpret space-time vegetation

patterns over large areas.

Our analysis of the causes of vegetation zonation on the

floodplain indicated that flood duration is an important de-

terminant of plant community distribution in space, influ-

encing spatial transitions between different plant communi-

ties. Different mechanisms of tolerance to prolonged flood-

ing evolved by species of a community (Parolin, 2009) might

be related to vegetation zonation as it controls the expan-

sion of different sets of plants (Damasceno-Junior et al.,

2005). On the other hand, non-linear response of com-

munities to the flood duration gradient, as was the case

for Grassland, indicates that interaction with neighboring
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communities might have an influence on the vegetation dis-

tribution of these communities (Fig. 10) (Austin, 2002).

The different techniques used here to evaluate the behavior

of our statistical model for mapping vegetation, e.g. cross-

validation and Monte Carlo simulation, allowed us to iden-

tify possible causes of misclassification and determine spatial

prediction uncertainty (Congalton and Green, 1999; Guisan

and Zimmerman, 2000; Pfeffer et al., 2003).

The accuracy levels of the vegetation map derived from

the mapping procedure described here and assessed by cross-

validation (accuracy between 49% and 52%) were of the

same magnitude as to those found by Pfeffer et al. (2003) in

their maps of Alpine vegetation (between 50% to 65%). The

uncertainties in vegetation classification that resulted from

the sampling density and configuration suggest that the map

quality may be improved when samples are collected at a

higher density (Guisan and Zimmerman, 2000; Pfeffer et al.,

2003; Miller et al., 2007). In geostatistical approaches for

vegetation mapping as used in this paper, large distances be-

tween the observations directly affect the estimated accuracy

of the predictions (Miller et al., 2007). Our study showed

that the gap of vegetation information due to large-distance

separated sampling points can be filled with information con-

tained in the remote-sensing images. As a result of the sam-

pling scheme used here, the systematic sampling produced an

uneven number of samples per community type and possible

omission of communities was limited to small and scattered

patches over the floodplain, as was the case of Savanna for-

est (personal observation). Consequently, the level of uncer-

tainty in predictions varied among communities and in space.

Monte Carlo simulation is a relatively standard method to

evaluate mapping uncertainty (Steele et al., 1998; Hunsaker

et al., 2001; Papadopoulos and Yeung, 2001; Cripps et al.,

2008). Cripps et al. (2008) have used an approach similar

to the one applied here to quantify uncertainty associated

with land cover maps. Those authors provided maps of sim-

ulated posterior means and standard deviation of vegetation

classes and concluded that similarity in vegetation structure

may cause larger uncertainty in the assigned class in the map.

This is consistent with our findings.

Generally, DEM is included in predictive vegetation mod-

els as an environmental layer (Pfeffer et al., 2003). The

SRTM DEM used here provides measurement of the top of

the trees with limited information about the level of the topo-

graphical surface. The use of SRTM DEM in studies inter-

ested in the causal relationship between elevation above sea

level and vegetation distribution can be constrained by the

lack of precision in elevation data. This was not a matter of

concern in our study, because remote-sensing imagery and

SRTM DEM were included in the model because of their

abilities in detecting spatial patterns of vegetation derived

from field sampling.

Uncertainty assessment and its cartographic representa-

tion is an important tool for management and research, in-

dicating zones of high and low classification confidence and

helping to find strategies for mapping improvement (Chong

et al., 2001; Guisan and Zimmerman, 2000; Pfeffer et al.,

2003; Scheller and Mladenoff, 2007). Some strategies are

available in such a statistical approach to improve vegetation

map quality. Increasing the number of samples and sample

configuration are the most obvious ways to improve clas-

sification accuracy (Guisan and Zimmermann, 2000; Pfef-

fer et al., 2003; Rempel and Kushneriuk, 2003). There are

also other image derived predictors that could have been in-

cluded in this study, such as digital maps of soil properties

(e.g. soil texture) or flooding attributes. In fact, the inclu-

sion of flooding duration as an explanatory variable in the

regression models could have helped in predictions, because

of the relationship between flooding duration and vegetation

zonation. However, the gain in quality of the map would be

limited because flooding duration is only known with a rel-

atively high uncertainty (as it depends on complicated flow

dynamics on the floodplain). Besides, the comparison be-

tween inundation patterns and vegetation distribution using

continuous data provided by both the inundation and the veg-

etation maps, as made here, would be compromised if the

vegetation map had been created using inundation data.

We assume in this work that plant communities arise from

the combination of patterns of distribution of different life

forms and that these patterns repeat themselves in other parts

of the Pantanal and present a temporal stability. Because the

vegetation patterns captured in our field sampling should re-

peat themselves in time and in other areas, one should be able

to monitor vegetation patterns by just providing image data

(RS images and the DEM) to create vegetation maps for dif-

ferent years. However, the assumption of temporal stability

in vegetation patterns is constrained by long-term dynamics

associated with events (e.g. gradual increase in flooding du-

rations due to climate change or land use change in upstream

areas) that can change plant associations and interactions. To

deal with this, we would suggest that field sampling is re-

done at a regular time interval of approximately ten years.

9 Conclusions

This study provided a framework to map wetland habitats

based on the integration of field data and remotely sensed

data through geostatistical methods and to identify possible

causes of uncertainties in the developed map. We showed

that it is possible to classify vegetation at locations in the

studied floodplain by measuring structural and floristic at-

tributes of different vegetation layers (herbaceous, tree, shrub

and vines), and combining these data with remotely sensed

imagery and DEM data.

The study shows that the vegetation community studied

deviates slightly from a crisp plant community model result-

ing in a somewhat subjective determination of cluster bound-

aries in the ordination space and increasing map uncertainty.
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We conclude that spatial patterns of vegetation distribu-

tion in the studied floodplain is to a great extent determined

by the spatial patterns in inundation, as stressed by a num-

ber of other studies in the Pantanal (Junk, 1989; Nunes da

Cunha and Junk, 1999, 2000; Zeilhofer and Schessl, 2000).

In addition, patterns in vegetation are determined by spatial

dependence in biological processes, such as competition be-

tween neighbors and dispersal strategies (Tilman, 1994).

The cartographic representation of classification uncer-

tainty gave useful information on the spatial distribution

and sources of uncertainty. The simulation and the cross-

validation results showed that uncertainty in classification

varied in space and among communities, partly due to the

sampling configuration. To avoid bias in sampling and re-

sulting problems of omission of communities in the mapped

area, we suggest the use of stratified random sampling

method or stratified systematic unaligned sampling in future

studies (Lo and Watson, 1998). The inclusion of other re-

motely sensed images in the model as a strategy for map im-

provement needs to be taken into account in future studies

also.

The significant advantage of the mapping approach de-

scribed in this paper is that detailed biological information

from field observations can be integrated with high spatial

resolution remotely sensed data producing accurate maps.

Unlike “classical” approaches to vegetation class mapping,

our modeling carries quantitative information on vegetation

variability and can be used to map vegetation over large ar-

eas. We believe that mapping of plant communities by inte-

grating field observations and high-resolution imagery using

geostatistics is a promising approach for conservation assess-

ment and long-term ecological monitoring in extensive wet-

land areas.
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Econômicos do Pantanal – Manejo e Conservação, Embrapa –
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