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A B S T R A C T

Integrating advanced simulation techniques and data analysis tools in a freeware Geographic Information

System (GIS) provides a valuable contribution to the management of conjunctive use of groundwater (the world's

largest freshwater resource) and surface-water. To this aim, we describe here the FREEWAT (FREE and open

source software tools for WATer resource management) platform. FREEWAT is a free and open source, QGIS-

integrated interface for planning and management of water resources, with specific attention to groundwater.

The FREEWAT platform couples the power of GIS geo-processing and post-processing tools in spatial data

analysis with that of process-based simulation models. The FREEWAT environment allows storage of large

spatial datasets, data management and visualization, and running of several distributed modelling codes (mainly

belonging to the MODFLOW family). It simulates hydrologic and transport processes, and provides a database

framework and visualization capabilities for hydrochemical analysis. Examples of real case study applications

are provided.

1. Introduction

Groundwater is the world's largest freshwater resource (Trenberth

et al., 2006), life-sustaining at global scale, supplying water to people,

irrigated agriculture, industry, energy production and maintaining

ecosystems. As such, groundwater exploitation, groundwater sustain-

ability and management, groundwater depletion (Wada et al., 2010;

Siebert et al., 2010), groundwater quality deterioration (Menció et al.,

2016; Chabukdhara et al., 2017; Werner et al., 2013) and conjunctive

use of ground- and surface-water (Li et al., 2016; Singh, 2014) con-

stitute a critical issue worldwide (Foster et al., 2000; Gleeson et al.,

2012; Singh, 2014) and need to be carefully addressed.

To manage all these issues, spatial databases for the description of

groundwater bodies characteristics (including, i.e., surface and sub-

surface geology information, aquifer hydrodynamics and hydro-

dispersive data as a result of direct or indirect site investigations, sur-

face water/groundwater relationships) are available (Schwarz and

Alexander, 1995; Refsgaard et al., 2010; Di Luzio et al., 2017; Regione

Toscana, 2017; SUPSI, 2017), and extensive monitoring networks are in

operation in many areas of the world, as required by groundwater re-

lated legislation (CRC, 2004; EU, 2000, 2006; California Department of

Water Resources, 2016a, 2016b). Moreover, authorities, in view of

improving the management of groundwater abstractions, are increas-

ingly building spatial database where well characteristics and discharge

are stored. Such piece of information starts to be available also as open

data and standard formats (e.g., Schwarz and Alexander, 1995; Regione

Toscana, 2017; ACA, 2000).

As several hydrologic and hydrochemical variables are being mon-

itored, and both satellite and ground-based observation data are col-

lected, there is the opportunity to take advantage of this large mass of

data and information to develop dynamically growing and efficient

groundwater management plans. While the use of semi-quantitative or

analytical approaches is widespread, this type of approach alone does

not take advantage of all the information that might be derived by the

newly collected data, thus making inconsistent the large economic ef-

fort done in data collection and archiving, and potentially leading to
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unsuccessful groundwater management.

Geographic Information Systems (GISs) have been applied to sup-

port environmental modelling and, being able to store, manage/analyse

and visualize large temporal, spatial and non-spatial datasets, they are

the most efficient tools to deal with geometric and alphanumerical data.

This makes GIS a perfect candidate for advancing and facilitating the

use of tools to manage large set of data and complex modelling en-

vironments (Kresic and Mikszewski, 2012). Traditionally, GIS has been

used in groundwater studies for producing groundwater head contour

or contaminant plume spread maps (making use of GIS-integrated in-

terpolation methods) or to perform groundwater vulnerability analysis

(i.e., using the DRASTIC method, Neh et al., 2015; Shrestha et al.,

2017). On the other hand, in the last 15 years, several authors have

been integrating basic tools for facilitating groundwater management in

GIS environment, with increasing production since 2010. Maidment

(2002) developed a dedicated data model for water resource; Gogu

et al. (2001), Martin et al. (2005), Strassberg et al. (2005), de Dreuzy

et al. (2006), Chesnaux et al. (2011) and Strassberg et al. (2011) fo-

cused the data model on groundwater related applications. As further

examples, Akbar et al. (2011) presented a GIS-based modelling system

called ArcPRZM-3 for spatial modelling of pesticide leaching potential

from soil towards groundwater; Rios et al. (2013) programmed a GIS-

based software to simulate groundwater nitrate load from septic sys-

tems to surface water bodies; Ajami et al. (2012) describe the RIPGIS-

NET, a GIS tool for riparian groundwater evapotranspiration in MOD-

FLOW; Toews and Gusyev (2013) describe a GIS tool to delineate

groundwater capture zone; Velasco et al. (2014) developed QUIMET, a

GIS-based hydrogeochemical analysis tools; Criollo et al. (2016) de-

veloped an integrated GIS-based tool for aquifer test analysis. However,

all these efforts are sparse and non-coordinated, and almost all of them

are developed within commercial, not-open GIS software.

Among the available ICTs (Information and Communication

Technologies), physically-based and distributed groundwater numerical

models (coupling ground- and surface-water and unsaturated zone

processes and incorporating climate, land use, morphological, hydro-

logical and hydrogeological data) may represent comprehensive and

dynamic tools to target water resource management issues (Refsgaard

et al., 2010; Cao et al., 2013; Singh, 2014). These tools allow simulating

the distribution of the water resource in space and time, taking into

account anthropogenic stresses and providing readily usable informa-

tion to decision makers (Pullar and Springer, 2000). They may support

the development of highly informative representations of hydrological

systems by: i) combining all the available spatial and non-spatial data in

a single framework; ii) allowing update and improvement as new data

are gathered; iii) providing information in space and time to water

managers; iv) offering relevant predictive functions, thus allowing

evaluation on how a hydrological system might behave under different

scenarios of natural and anthropogenic constraints. Anderson et al.

(2015) discuss in detail the potential applications of such tools, while

Singh (2014) presents a review on the use of numerical groundwater

models for managing the groundwater resource. Examples of applica-

tions to fulfill water regulation requirements may be found in Vázquez-

Suñé et al. (2006), Shepley et al. (2012), Moran (2016).

Modelers may take advantage of integrating advanced hydrological

modelling codes within a GIS environment, thus reducing model setup

and analysis time, and avoiding data isolation, data integrity problems

and broken data flows between model implementation and pre- and

post-processing steps (Alcaraz et al., 2017; Bhatt et al., 2008, 2014;

Pullar and Springer, 2000).

Since 2000, researchers have been devoted to design the integration

of modelling codes within a GIS environment (Alcaraz et al., 2017;

Bhatt et al., 2014; Carrera-Hernandez and Gaskin, 2006; Crestaz et al.,

2012; Dile et al., 2016; Rossetto et al., 2013; Strassberg et al., 2005;

Wang et al., 2016; Lei et al., 2011).

The coupling strategy between the hydrological model and the GIS

framework is a core issue in the integration of the two components.

Three different approaches are presented in the literature (Brimicombe,

2003; Goodchild, 1992; Nyerges, 1991) (Fig. 1): i) loose coupling; ii)

close/tight coupling; iii) embedding. The simplest approach is the loose

coupling (Fig. 1a), which treats the two components independently and

allows interaction through manually-enabled file exchange only. In the

close/tight coupling strategy (Fig. 1b), GIS and hydrological model

engines work separately, but the first provides the interface where data

are pre-processed, run and then visualized. As such, direct commu-

nication between the two components occurs during program execu-

tion, when the GIS-integrated Graphical User Interface (GUI) allows to

generate input text files, which are then read by the program executable

for running and producing output files. Full integration at programming

language level is required in the third approach (also called seamless

integration; Fig. 1c), where new models using GIS data format are

embedded as full component of the host GIS application (Pullar and

Springer, 2000; Wang et al., 2016).

Nowadays, GIS is a well-consolidated technology among water au-

thorities/utilities and consultant companies. GISs are commonly used to

Fig. 1. Coupling strategies between GIS and models: a) loose coupling; b) close/tight coupling; c) embedding. Modified after Carrera-Hernandez and Gaskin (2006).
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process data for input into groundwater models or post-process results,

as these models require large spatial and temporal datasets (Wang et al.,

2016), while the use of modelling techniques continuously spreads.

Loose coupling has been the traditional way of dialogue between GISs

and models (e.g., Visual MODFLOW, Guiguer and Franz, 1996;

Groundwater VISTAS, Rumbaugh and Rumbaugh, 2011; ModelMuse,

Winston, 2009). Also, close/tight coupling solutions are available (e.g.,

FEFLOW, Crestaz et al., 2012; MODFLOW, Shapiro et al., 1997; MOD-

FLOW Analyst, Aquaveo, 2012; SID&GRID, Rossetto et al., 2013). The

most used GIS software for developing close/tight coupling is ESRI GIS

software (ESRI, 2011), followed by ARGUS One (Argus Holdings Ltd.,

1995), QGIS (QGIS Development Team, 2009), and MapWindow GIS

(Ames et al., 2008). GRASS-GIS (GRASS Development Team, 2017) and

gvSIG (Anguix and Díaz, 2008; gvSIG Association, 2010) were used in

one coupling experience each. Most of the solutions are developed

using free and open source GIS software (e.g., Bhatt et al., 2008, 2014;

Carrera-Hernandez and Gaskin, 2006). To our knowledge, only one

example of seamless coupling exists, the BGS GIS-Groundwater (Wang

et al., 2016), embedded in ESRI proprietary software.

Several modelling codes are open source and freely available (e.g.,

MODFLOW). It must be noted that the openness of a code is increas-

ingly a relevant factor in scientific analysis, as it constitutes a guarantee

for reproducibility and reliability of the analysis performed (Ince et al.,

2012; Hanson et al., 2011) and fast deployment of the code (Dile et al.,

2016). Codes neither open nor free, among them the well-known MIKE

SHE (Hughes and Liu, 2008) and FEFLOW (Diersch, 2009), restrict the

usage only to those able to buy such software (i.e., high income

countries; Dile et al., 2016). The cost of the software may then con-

stitute a barrier to the use of advanced ICT tools for groundwater

management. As for modelling codes, commercial GISs, besides the li-

censing costs, often bring concerns about proprietary data structures,

rigidity in data-models, and platform dependence (Bhatt et al., 2008,

2014).

Hence, producing open source and freely available GIS-integrated

software tools, based at least on a close/tight coupling approach, may

contribute to enhance groundwater management capabilities from a

technical point of view (Dile et al., 2016; Rossetto et al., 2013, 2015a;

De Filippis et al., 2017a; Wang et al., 2016). Finally, this may also

support water policies implementation (i.e., the EU Water Framework

Directive - EU, 2000 - and the Groundwater Directive - EU, 2006).

In this paper, we aim to present the architecture and capabilities of

FREEWAT, an open-source and free environment, developed within the

QGIS GIS desktop, where several tools and modelling codes for

groundwater management and conjunctive use of ground- and surface-

water are integrated. FREEWAT is conceived so that data coming from

groundwater bodies characterization, and their relationships with sur-

face water bodies and human activities, and monitoring networks may

be stored, analyzed with dedicated tools, processed by means of si-

mulation models, and finally results evaluated and visualized in the

unique QGIS environment. Tools integrated in FREEWAT and their

relevance are presented, along with their application to selected case

studies. Links to the source code, to a Reference Manual and to six User

Manuals and thirteen tutorials with related datasets are provided as

additional material. The objective of producing the FREEWAT software

is to enlarge the capabilities of authorities and companies in managing

the groundwater resource by using up-to-date, robust, well-documented

and reliable software without entailing the need of costly licensing.

2. FREEWAT architecture

FREEWAT was developed using open source and public domain

codes within the framework of the HORIZON 2020 FREEWAT project

(FREE and open source software tools for WATer resource management;

Rossetto et al., 2015a; De Filippis et al., 2017a; Foglia et al., 2018).

FREEWAT development evolved from the SID&GRID platform (Rossetto

et al., 2013), which integrated simulation codes within the open source

and free GIS gvSIG (Anguix and Díaz, 2008; gvSIG Association, 2010).

The FREEWAT code is released with a GNU GENERAL PUBLIC (GPL)

Version 2 license and it is accessible through the main project portal

(www.freewat.eu), the official QGIS repository of experimental plugins,

and also through the gitlab repository (https://gitlab.com/freewat).

The FREEWAT software (Fig. 2) is built on: (i) the GIS QGIS (QGIS

Development Team, 2009); (ii) a SpatiaLite Relational Database Man-

agement System (RDBMS), which is an SQLite Database engine with

spatial functions added (SpatiaLite Development Team, 2011) for spa-

tial data management and sharing; (iii) dedicated tools for pre-pro-

cessing of field data (the AkvaGIS for hydrochemical and hydro-

geological analysis, and the Observation Analysis Tool for time-series

Fig. 2. Simplified scheme of the FREEWAT architecture (De Filippis et al., 2017a).
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analysis); (iv) several existing process-based simulation models (be-

longing to the MODFLOW family (Harbaugh, 2005), except for the Crop

Growth Module, which belongs to the EPIC/APEX family of codes

(Gassman et al., 2005; Williams et al., 1989) for simulating crop water

uptake and crop yield) for the simulation of hydrological processes,

with particular reference to groundwater flow, advective/dispersive

solute transport and density-dependent flow; (v) dedicated tools for

post-processing of model results. The adoption of a SpatiaLite RDBMS is

convenient for model sharing: a SpatiaLite database is a file where all

the model information is stored and it can be easily shared among

Users.

As such, FREEWAT architecture is designed as a modular ensemble

of three main classes of tools: a) raw data analysis and pre-processing

tools, b) simulation tools, and c) tools for post-processing.

Integration of such pillars is performed via Python programming

language (www.python.org), with extensive use of the Python FloPy

library (FloPy, 2016; Bakker et al., 2016, 2017) for writing inputs, and

post-processing the majority of simulation codes.

Details about tools integrated in the FREEWAT platform and how

they are connected are provided in Fig. 3. The pre-processing tools for

the analysis, interpretation and visualization of hydrochemical and

hydrogeological data are included in the AkvaGIS module (Serrano

et al., 2017), and in the Observation Analysis Tool (OAT; Cannata and

Neumann, 2017) module that focuses on advanced time-series analysis.

On the other hand, FREEWAT integrates in QGIS a whole set of

simulation codes including among the others:

- hydrological simulation codes, and in particular codes for

groundwater management and conjunctive use of ground- and sur-

face-water (MODFLOW-2005, Harbaugh, 2005; MODFLOW-NWT,

Niswonger et al., 2011; MODFLOW-OWHM, Hanson et al., 2014a);

- codes for simulating advective-dispersive transport in aquifers

(MT3DMS, Zheng and Wang, 1999) and in the unsaturated zone

(MT3D-USGS, Bedekar et al., 2016), including density-dependent

flow (SEAWAT, Langevin et al., 2007). The occurrence of basic

chemical reactions can also be accounted. Specifically, the following

processes can be handled: equilibrium-controlled linear or nonlinear

sorption, non-equilibrium (rate-limited) sorption, and first-order

reaction representing radioactive decay and biodegradation;

- one code to perform sensitivity analysis and model calibration

(UCODE_2014, Poeter et al., 2014);

- one code for crop growth modelling (CGM, Gassman et al., 2005;

Williams et al., 1989);

- tools for general GIS operations to prepare input data, and post-

processing functionalities for model data output.

FREEWAT is developed as a QGIS plugin, so that, once installed and

activated, it appears as a drop-down menu in the QGIS toolbar (Fig. 4).

Such drop-down menu consists of several sub-menus, each of them

dedicated to a specific module/process, including pre- and post-pro-

cessing modules, tools for model implementation and supplementary

tools for managing GIS and SpatiaLite layers. A similar approach has

been used in Dile et al. (2016) for the QSWAT plugin.

The FREEWAT plugin comes with a set of manuals. Volume 0 (the

Reference Manual; Borsi et al., 2017) provides details about the plugin

characteristics and development and modules. Six User Manuals explain

Fig. 3. Relationships among the different tools integrated in FREEWAT.
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how to use the different modules and tools integrated in the plugin.

Finally, a set of thirteen tutorials drive the User to the use of such tools

and modules. The following sections describe the components of the

FREEWAT platform, and some applications to case studies developed

within the H2020 FREEWAT project.

2.1. GIS interface and pre-processing tools

QGIS is an open source GIS GUI supported on Linux, Unix, Mac OSX,

Windows and Android (QField) and licensed under the GNU General

Public License v3.0 (GPL-3.0). The software is mostly written in C++

(67%) and it supports Python language trough Python bindings

(PyQGIS) that enable the creation of plugins, the command execution in

a Python console integrated in QGIS, and the creation of standalone

scripts or custom applications based on QGIS API. During the last years,

QGIS has become a worldwide-used Geographic Free and Open Source

Software (QGIS GitHub repository: https://github.com/qgis). QGIS

capabilities for FREEWAT purposes are well described in Bhatt et al.

(2014).

Since 2013, a new stable version of QGIS is released every 4 months

and a Long Term Release (LTR), claiming a stronger reliability of the

algorithms and the whole software infrastructure, is released every

year. The last LTR is QGIS LAS PALMAS 2.18, in view of the migration

to Python3/Qt5 support. Hereinafter, an overview of the pre-processing

tools integrated in FREEWAT is provided.

2.1.1. The AkvaGIS module

AkvaGIS (Serrano et al., 2017) is a pre-processing module in-

tegrated in FREEWAT to allow water agencies, stakeholders, public

authorities and professionals of the water sector to address, among the

others, the following issues: (a) identifying the main processes influ-

encing the chemical composition of groundwater and the corresponding

spatial and temporal distribution; (b) evaluating groundwater quality

and the achievement of good chemical status based on thresholds is-

sued, e.g., by the Water Framework Directive (WFD; EU, 2000); c)

managing and integrating a large amount of time- and space-dependent

data (e.g., hydrogeological, hydrochemical, etc.); d) homogenizing and

harmonizing large sets of data collected from diverse sources gathered

with different techniques and formats supported by OGS (Open

Geospatial Consortium) and INSPIRE (EU, 2007), to be easily shared

across different Operating Systems; e) performing a comprehensive

analysis of the available data for generating input files for hydro-

geological models (time-series and surfaces of hydrogeological units).

AkvaGIS tools may be divided in two groups: tools for hydro-

chemical analysis and tools for hydrogeological analysis. The entry

point for using both these sets of tools is a dedicated relational

SpatiaLite database. The observed hydrogeological parameters, the

collected hydrochemical samples and their physical, chemical or mi-

crobiological measurements are related to the spatial points stored in a

Points table. These Points can be wells, piezometers, springs or any

other specific point from water bodies where measurements have been

collected (e.g., swallow holes, rivers, lakes, sea, etc.). Additional in-

formation, such as other hydrogeological parameters, responsible par-

ties and project information, among the others, can be stored for a quick

data management without losing information. All the AkvaGIS tables

and their fields are described in detail in the FREEWAT User Manual

Volume 4 (Serrano et al., 2017).

Three sub-menus are specifically dedicated to the hydrochemical

and the hydrogeological data exploitation:

1. The Database Management tools are devoted to create a new AkvaGIS

database, or open or close an existing one. The hydrochemical and

the hydrogeological spatio-temporal data have to be previously

stored in the AkvaGIS database. When the hydrochemical and the

hydrogeological spatio-temporal data are stored in an AkvaGIS da-

tabase, they are ready for representation or analysis using the next

sub-modules (see Fig. 5).

2. The Hydrochemical Analysis Tools allow to improve the harmoniza-

tion, integration, standardization, visualization and interpretation of

hydrochemical data. These tools include different instruments that

cover a wide range of methodologies for querying, interpreting, and

comparing groundwater quality data. They are conceived in order to

facilitate the pre-processing analysis for being used in the definition

of conceptual groundwater models. For instance, hydrochemical

analysis is useful to ensure flow paths, to control interactions be-

tween different water bodies (e.g., ground- and surface-water in-

teractions), or to characterize water-rock interactions. To perform

these kind of analysis (and others related to physical and chemical

Fig. 4. The FREEWAT drop-down menu in the toolbar of the QGIS desktop, with the Post-processing menu expanded.
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characteristics of water), some of the tools developed allow to per-

form: ionic balance calculations, chemical time-series analysis,

correlation of chemical parameters, and calculation of various

common hydrochemical diagrams (salinity, Schöller-Berkalof, Piper,

Stiff, among the others). All these diagrams are created, managed

and customized with the chemPlotLib library (Hunter, 2007) that,

given its versatility, can be used independently and applied to re-

produce other diagrams and plots. Furthermore, the User may

generate maps of the spatial distributions of parameters, Stiff dia-

gram maps and thematic maps for parameters according to pre-set

thresholds following a given regulation (e.g., the WFD).

3. The Hydrogeological Analysis Tools allow to manage, visualize and

interpret hydrogeological data. The User has the possibility to: (1)

query the hydrogeological measurements (e.g., piezometric head,

wells abstractions, etc.) performed in wells, piezometers, springs,

etc., and stored in the AkvaGIS database; (2) create thematic maps

(e.g., piezometric maps) based on selected points, time intervals and

parameters; (3) calculate some general statistics, such as the

minimum, maximum or average value for each selected hydro-

geological parameter; (4) query the depth or the thickness of the

identified hydrogeological units for further processing such para-

meters with QGIS interpolation tools creating hydrogeological sur-

faces. These surfaces can be used as input hydrogeological layers in

a groundwater numerical model.

The advantages of using the AkvaGIS tool relies in having a dedi-

cated free and open source database which is shared among the facility

planners, relevant water authorities and the environmental protection

agency, allowing each of these entities to perform analysis on the

monitored data. This way, authorities and agencies have the chance not

only to comment on reports, but to work on the raw data.

2.1.2. Observation Analysis Tool (OAT)

OAT (Cannata and Neumann, 2017) is a pre-processing tool in-

tegrated in FREEWAT for processing time-series observations to be used

in deriving model input data and supporting the calibration process.

OAT is inspired to TSPROC (Time Series Processing; Westenbroek et al.,

2012) software, which allows time-series processing using a script

language. OAT is similar to TSPROC in its final aim, but differs in its

design and implementation requirements in order to make some new

processing capabilities available (details are provided below), and to

attain compatibility with commonly applied programming languages

and with the standards in the field of sensors observation data man-

agement and formatting. The library design follows existing standards

and can be considered a simplified version of the Sensor Observation

Service (Bröring et al., 2012) objects.

The OAT library implements two main classes: the OAT.Sensor class,

designed to handle time-series data and metadata, and the OAT.Method

class, which is designed to represent a processing method. The general

structure and implemented use of the OAT library in FREEWAT is

presented in Fig. 6.

Each OAT.Sensor object is characterized by a single time-series re-

presented by a data section consisting in a time-series and a location/

metadata section. Time-series are managed thanks to the PANDAS li-

brary (McKinney, 2011).

Every OAT.Sensor object can be stored in a SpatiaLite database and

re-loaded back in Python as OAT.Sensor with its own data and meta-

data. The metadata section includes name, description, location (lati-

tude, longitude, elevation), unit of measurement, observed property,

coordinate system, time-zone, frequency, weight statistic and data

availability (time interval). The data section contains time, data, name,

and quality index, as well as a tag marking whether or not an individual

observation in the series is going to be used.

Sensor data can be retrieved from the istSOS (Istituto Scienze della

Terra Sensor Observation Service) server (Cannata and Antonovic,

Fig. 5. Structure of the AkvaGIS sub-menu: Database Management (to create, open or close an AkvaGIS database), Hydrochemical Analysis Tools (to create time-

series of chemical parameters, and perform common hydrochemical analysis, such as Piper and SAR plots, among the others) and Hydrogeological Analysis Tools (to

create time-series of hydraulic parameters, thematic maps, such as permeability maps, or hydrogeological unit maps).
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2010), or from local files or databases in the FREEWAT GIS environ-

ment for further use. Additionally, model results can be imported as

OAT.Sensor for further time-series analysis.

The OAT.Method objects are based on TSPROC processing cap-

abilities with the addition of new FREEWAT specific processes.

Examples of methods are: resampling (for calculating a new time-series

with a given frequency), comparison of different time-series, filling (to

fill a time-series which contains gaps in data), statistics (for calculating

some basic statistics for a time-series).

The result of a method is generally a new OAT.Sensor, so that pro-

cesses can be concatenated, and the final resulting time-series can be

saved in the FREEWAT model database or exported.

The library is integrated in the FREEWAT platform by specific GUI,

designed following the QGIS specifications. The interface allows non

software programming Users to take advantage of the library features

and manage temporal data in the modelling environment. Four OAT

specific interfaces have been implemented to create and manage me-

tadata of a time-series and to process and compare its data; in Fig. 7, the

Manage sensor and Compare sensor frames are presented to illustrate the

GUI look.

2.2. The modelling framework

FREEWAT includes a suite of modelling codes for performing

groundwater flow, and related processes, simulation and analysis of

groundwater management and conjunctive use of ground- and surface-

water. The modelling framework is based on the popular 3D finite

difference code for groundwater flow MODFLOW and related codes, by

integrating primarily the MODFLOW-2005 (Harbaugh, 2005), and

MODFLOW-OWHM (One-Water Hydrologic Flow Model; Hanson et al.,

2014a) versions. MODFLOW is a physically-based, spatially distributed

code developed by the USGS, which simulates groundwater flow dy-

namics in the saturated and unsaturated zones, both in confined and

unconfined aquifers with constant or variable thickness and transmis-

sivity values, in steady-state or transient conditions. The MODFLOW

source code, written in FORTRAN, is open, well documented, freely

available on the web at https://water.usgs.gov/ogw/modflow/, and it

has become a global standard for groundwater modelling applications

(e.g., Davison and Lerner, 2000; Ebraheem et al., 2004; Faunt et al.,

2009; Hanson et al., 2015; Phillips et al., 2015).

2.2.1. Integrated simulation codes

Table 1 lists codes and modules currently available through

FREEWAT to simulate different processes. These codes are widely used

through commercial or free dedicated GUIs, both for professional and

academic applications. Refer to the cited references for a comprehen-

sive description of the implemented codes.

In FREEWAT, the application of MODFLOW-2005 for simulating

groundwater flow in porous media, including ground- and surface-

water relation and the vertical flow through the unsaturated zone, is

conceived through the implementation of several MODFLOW packages

(Harbaugh, 2005) to represent flow associated with external stresses

(such as wells, areal recharge, evapotranspiration, drains, and rivers) as

boundary conditions and sink/source terms. Furthermore, the following

must be noted:

- MODFLOW-NWT executable is needed in FREEWAT if a ground-

water flow model has to be linked to a solute transport model in the

vadose zone. This because MT3D-USGS needs a specific ASCII file so

far generated only by MODFLOW-NWT;

- MODFLOW-OWHM executable is needed to run a Farm Process

(FMP) scenario.

In FREEWAT, MODFLOW-OWHM is used to deal with the con-

junctive use of ground- and surface-water for water management issues.

To this purpose, MODFLOW-OWHM is complemented by the FMP for

setting up and running water management scenarios. In MODFLOW-

OWHM, the volumetric water budget calculated by MODFLOW-2005

for the modelled hydrologic system is further complemented by water

budgets calculated by the FMP module for specific sub-regions of the

Fig. 6. The OAT data retrieval, processing, storage and export workflow (Cannata et al., 2017). Arrows indicate input and output of generic functions implemented in

the library.
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model, called “farms”. These “farms” are called “water units” in

FREEWAT and consist in areal units (defined by sets of grid cells) re-

quiring water for irrigated agriculture, natural vegetation, and, i.e.,

other anthropic activities in urban areas. The major scope of

simulations performed via MODFLOW-OWHM and FMP is to provide an

effective representation of conjunctive use of ground- and surface-water

resources to meet the required water demand. In FREEWAT, FMP re-

sults visualization consists of plots showing how the components of

Fig. 7. Print screen of the OAT interface integrated in the FREEWAT menu; data management and time-series comparison windows are shown.

Table 1

Hydrological modelling codes and modules integrated in FREEWAT. *Capabilities included also in MODFLOW-OWHM. **Results from the MODFLOW groundwater

flow model are used.

Code/module Reference Description Reference tab/menu for running the

related executable/process

MODFLOW-2005* Harbaugh, 2005 Groundwater flow in the saturated and unsaturated zone; ground-/

surface-water interaction and other hydrologic stresses represented as

specified-head, specified-flux, or head-dependent conditions through

specific packages

Groundwater Flow tab of the Run Model

window (Fig. 9)

MODFLOW-OWHM

(embedding the FMP

module)

Hanson et al., 2014a Demand-driven and supply-constrained flows, including agricultural,

urban, and other demands, and ground-/surface-water supplies

OWHM – FARM PROCESS tab of the Run

Model window (Fig. 9)

MODFLOW-NWT* Niswonger et al., 2011 Groundwater flow in the saturated and unsaturated zone; ground-/

surface-water interaction and other hydrologic stresses represented as

specified-head, specified-flux, or head-dependent conditions through

specific packages

Groundwater Flow tab of the Run Model

window (Fig. 9)

MODPATH** Pollock, 2016 Particle tracking based on a purely advective transport process A sub-menu of the Post-processing menu

(Fig. 5)

MT3DMS Zheng and Wang, 1999 Advective-dispersive solute transport in the saturated zone Solute Transport tab of the Run Model

window (Fig. 9)

MT3D-USGS Bedekar et al., 2016 Advective-dispersive solute transport in the saturated and vadose zone Solute Transport tab of the Run Model

window (Fig. 9)

SEAWAT Langevin et al., 2007 Viscosity-/Density- dependent flow Solute Transport tab of the Run Model

window (Fig. 9)

Unsaturated Solute Balance Borsi et al., 2017 Advective solute transport in the vadose zone, based on the infiltration

rate calculated by the MODFLOW UZF Package

A sub-menu of the Solute Transport Process

menu (Fig. 5)

Crop Growth Module Gassman et al., 2005;

Williams et al., 1989

Crop water uptake and crop yield at harvest (it uses outputs of the

FMP, as such it must be run after a successful FMP simulation)

A sub-menu of the Water Management and

Crop Modelling (FARM PROCESS) menu

(Fig. 5)

ZONE BUDGET** Harbaugh, 1990 Groundwater budget for model sub-regions, including also exchange

components between adjacent sub-regions

A sub-menu of the Post-processing menu

(Fig. 5)

UCODE_2014 Poeter et al., 2014 Sensitivity analysis and calibration (it can be linked to all the

MODFLOW versions listed in this table)

Model Calibration tab of the Run Model

window (Fig. 9)

R. Rossetto et al. Environmental Modelling and Software 107 (2018) 210–230

217



water demand and supply change over time. MODFLOW-OWHM and

FMP have been applied to rural environments in California for water

use management purposes, as described in Faunt et al. (2009), Hanson

et al. (2014b), Hanson et al. (2015) and Phillips et al. (2015).

In FREEWAT, the FMP is further coupled with a module dedicated

to crop growth, the Crop Growth Module (CGM), aiming at estimating

crop water uptake and crop yield at harvest based on hydrology, solar

radiation and temperature information. The CGM is based on the EPIC/

APEX family of models (Gassman et al., 2005; Williams et al., 1989).

The CGM is run sequentially after the FMP and all over the growing

season of the crop, from seeding to harvest. Crop yield at harvest is

calculated as a function of the above-ground biomass. The CGM com-

pares the potential crop yield and the actual crop yield, i.e., taking into

account the amount of water taken through root uptake for plant

transpiration.

In FREEWAT, any groundwater model may be coupled with one or

more solute transport models, aiming at simulating multi-species ad-

vective-dispersive transport, both in unsaturated and saturated zone.

The reference code integrated for simulating solute transport in the

saturated zone is MT3DMS (Zheng and Wang, 1999), which has a

comprehensive set of options and capabilities for simulating changes in

concentrations of miscible contaminants in groundwater, considering

advection, dispersion/diffusion, and some basic chemical reactions,

with various types of boundary conditions and external sinks or sources.

Simulation of heat transport is also possible by treating temperature as

a species and defining diffusive coefficient and other parameters in a

coherent way (see, e.g., Hecht-Méndez et al., 2010; Alberti et al., 2012).

Simulation of viscosity- and density-dependent flow may be per-

formed in FREEWAT by applying SEAWAT (Langevin et al., 2007), a

coupled version of MODFLOW and MT3DMS designed to simulate 3D,

variable-density/-viscosity groundwater flow and multi-species trans-

port. Such capabilities are particularly relevant to approach studies on

seawater intrusion processes, where density variations of water due to

salinity effects are crucial.

Solute transport in the vadose zone can be simulated through two

different approaches:

- use of MT3D-USGS (Bedekar et al., 2016), with new transport

modelling capabilities, including simulation of solute transport in

the unsaturated zone;

- Unsaturated Solute Balance (USB; Borsi et al., 2017) module, which

estimates the concentration at the water table of a contaminant

released at the ground surface, according to the infiltration rate

through the vadose zone as calculated by the MODFLOW UZF

Package (Niswonger et al., 2006). Such concentration at the water

table can be then considered as a constant concentration term for

MT3DMS to simulate solute transport in groundwater.

Sensitivity analysis, calibration, and uncertainty evaluation

methods are crucial to practical applications of complex hydrological

models. Important characteristics cannot be estimated accurately and/

or completely enough to fully define model input values. Many reviews

and discussions are available in the literature to demonstrate the im-

portance of properly performing sensitivity analysis, calibration and

uncertainty evaluation, in order to increase model reliability and

transparency, when dealing with environmental models (Hill and

Tiedeman, 2007; Bennett et al., 2013; Doherty, 2015). These critical

steps are also necessary to explore the relations between different types

of data and the processes represented in a model, including the com-

parison of different models and model results when used by stake-

holders and policy makers to support decisions for water resources

management.

In FREEWAT, inclusion of inverse modelling capabilities is per-

formed by UCODE_2014 (Poeter et al., 2014). UCODE_2014 can use

local perturbation methods for sensitivity analysis and non-linear least

squared regression through a modified Gauss-Newton method for

model calibration. Compared to global methods, this approach is

characterized by relatively frugal computational requirements and is

well suited for complex models of natural systems, which assume long

execution time (Foglia et al., 2007, 2013; La Vigna et al., 2016). In

UCODE_2014, model parameters are estimated automatically, by ex-

amining model results after performing model runs with different

parameter values, in hopes of improving how well the model represents

the system of concern. Goodness of such representation is accomplished

by comparing model results to field measurements. Sensitivity of model

parameters can be determined prior to perform any parameter esti-

mation, to avoid estimating insensitive parameters and thus reducing

execution time. As mentioned above, the calibration and sensitivity

analysis module can be directly connected to the OAT module.

2.2.2. Modelling workflow

MODFLOW requires text input files with a specific file structure.

Close/tight coupling between the QGIS software and the simulation

codes integrated in FREEWAT is achieved via four different file formats:

- GIS layer: a typical GIS vector or raster input dataset without any

explicit reference to the model space and time discretization (e.g., a

point, polyline or polygon layer containing the geometric compo-

nent only);

- Model layer (Ml): a subsurface model vector layer defining the finite

difference grid, where 3D geometric features (such as land surface

elevation or layer top and bottom elevations), hydrodynamic para-

meters (hydraulic conductivity and storage parameters) and basic

parameters are written at each cell of the grid. A model may consist

in several Mls and their number is based on the hydrostratigraphy

defined by the modeller;

- Model Data Objects (MDOs): spatial, temporal and finite difference

grid data needed to generate inputs for the simulation codes in-

tegrated in FREEWAT. An MDO is created from a geographical input

(a point, line or polygon GIS layer), a temporal input (derived from a

timetable) and a finite difference grid. An MDO brings information

about the spatial coordinate system (as in a GIS layer), but also the

spatial finite difference grid reference system and the time dis-

cretization of the simulated processes;

- Model file: text file generated from an MDO and required to run the

simulation.

The modelling workflow within FREEWAT is accomplished within

QGIS and it is based on the sequence: a) data pre-processing; b) model

implementation; c) model run; d) post-processing. A general modelling

workflow envisages the following steps, here presented for a ground-

water flow model for the sake of simplicity (Fig. 8):

a) Data pre-processing. Data pre-processing mostly consists in col-

lecting, storing and editing available geographic and non-geo-

graphic information by performing GIS vector or raster operations to

prepare data for the next step (model implementation). All the GIS

vector and raster data need to be created selecting a specific

Coordinate Reference System (CRS), which will be used coherently

during all the phases of model implementation. The activities to be

performed are related, for example, to define top and bottom sur-

faces of hydrostratigraphic units, to create shapefiles for the drai-

nage network from Digital Elevation Model (DEM), etc. This step

can also take advantage of the AkvaGIS and OAT capabilities.

b) Model implementation. Define model setup and translate the pre-

viously created data files (GIS layers/tables) in Mls/MDOs/database

tables. This takes into account the space and time discretization of

the hydrological model. Initially, a new hydrological model and the

related SpatiaLite geodatabase (file *.sqlite) are created within a

specific working folder, where model files and results are stored in

the following steps of the workflow (i.e., when generating model

text files, when running the model and when importing model
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results; Fig. 9). Model sharing is thus made straightforward through

sharing the *sqlite file. Moreover, the User can also easily interface

with the Mls/MDOs stored within the spatial database, through

specific QGIS plugins (e.g., the DB Manager). During model crea-

tion, time and map units, the setup of the first stress period and the

model CRS must be defined as well. After this step, model dis-

cretization has to be defined, regarding both space discretization in

the horizontal (model grid) and vertical (Mls) planes and time dis-

cretization. Geometry and hydrodynamic properties are then as-

signed to each Ml. For this task, the User may use spatial GIS

functions (e.g., spatial joins, selection tools) for using raster and

vector layers to assign properties values at each grid cell. Two

dedicated algorithms (the Copy from Vector layer and Copy from

Raster layer tools) are developed in FREEWAT to copy properties

values from raster/vector layers to grid cells, through automatically

performing spatial intersection between raster pixels or point/line/

polygon shape files and the model grid. In order to get required

MODFLOW text files to define boundary and initial conditions and

source/sink terms, MDOs have to be created (i.e., well MDO, river

MDO, etc). This completes the phase of model implementation and

lays the basis for model run.

c) Model run. This phase consists in translating, by means of the Python

FloPy library (FloPy, 2016; Bakker et al., 2016, 2017), all the MLs

andMDOs implemented and stored within the SpatiaLite database in

model files (i.e., text files). These are then input to the MODFLOW

executable for running the groundwater flow model. In the Run

Modelwindow (Fig. 9), the User activates packages and inputs solver

parameters (including solver convergence criteria), for which initial

default values are set (De Filippis et al., 2017b). The Run Model

window contains four tabs: 1) the Groundwater Flow tab allows to

run MODFLOW and simulate groundwater dynamics; this step is

mandatory and needs to be performed before using any other tabs;

2) the Solute Transport tab allows to run MT3DMS, MT3D-USGS or

SEAWAT, using the output from step 1); 3) the OWHM - FARM

PROCESS tab allows to run the FMP (Schmid et al., 2006; Schmid

and Hanson, 2009; the simulation will start with the conditions set

on step 1) and rerun MODFLOW-OWHM based on the FMP inputs);

4) the Model Calibration tab allows to run UCODE_2014 for sensi-

tivity analysis and(or) parameter estimation, using models resulting

from completion of steps 1), 2) or 3).

All the steps related to model implementation can be repeated for

Fig. 8. Modelling workflow in FREEWAT.

R. Rossetto et al. Environmental Modelling and Software 107 (2018) 210–230

219



setting up one or more solute transport models or an FMP model linked

to the MODFLOW model, mandatorily implemented and run. The same

holds true also for calibration with UCODE_2014.

At each of these tabs, the Run button triggers the writing process of

model files specific to the process which is going to be simulated. The

executable of the needed simulation code is retrieved according to the

path defined by the User through the prg_locations table, and the si-

mulation is performed.

d) Post-processing. Once a simulation has successfully terminated, the

User can display results with FREEWAT post-processing tools, that

take advantage of all the visualization tools available through QGIS.

FREEWAT embeds a dedicated set of sub-menus for visualizing re-

sults obtained from specific simulation codes. These are available

through the Post-processing menu of FREEWAT (Fig. 5) and include:

- generate raster files with distribution of the simulated hydraulic head/

solute concentration for each model layer at specific time steps within

a selected stress period. These can be handled into GIS using geo-

graphical algorithms (e.g., contouring) to perform the desired analysis;

- visualize cross sections for contaminant plume spreads in the

vertical plane (Fig. 10a);

- visualize volumetric model budget at specific time steps and stress

periods by means of bar charts;

- save a cvs file with the water budget of User-defined sub-regions

after the application of the ZONE BUDGET;

- visualize a scatter plot for estimating model fit by comparing si-

mulated to observed values for the hydraulic head at certain

locations (Fig. 10b);

- generate graphs to evaluate sensitivity indexes, estimate para-

meters and model fit after running UCODE_2014;

- generate water budget plots after an FMP simulation;

- generate pathlines after running MODPATH.

Results visualization goes through reading of binary output files

generated after model run and this is accomplished in FREEWAT by

using the Python FloPy library (FloPy, 2016; Bakker et al., 2016, 2017).

3. Case studies

The tools integrated in FREEWAT were tested at 16 case studies in

EU and non-EU countries for dealing with a number of water-related

issues (Cannata et al., 2017; Dadaser-Celik and Celik, 2017; De Filippis

et al., 2017d, 2017e; FREEWAT, 2017a, 2017b; Grodzynskyi and

Svidzinska, 2017; Kopač and Vremec, 2017; Panteleit et al., 2017;

Perdikaki et al., 2017; Positano and Nannucci, 2017). Thirteen syn-

thetic applications were also designed for tutorials. An overview of the

locations of the above-mentioned real-world case studies is provided in

Fig. 11. Descriptions of FREEWAT application at some of these case

studies are reported below.

3.1. Design of a Managed Aquifer Recharge facility at Suvereto (central

Italy)

Within the LIFE REWAT project (www.liferewat.eu), FREEWAT was

Fig. 9. The Run Model window with the Groundwater Flow tab expanded.
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applied to support the design of a Managed Aquifer Recharge (MAR)

facility at Suvereto (Tuscany region, central Italy; Rossetto et al., 2018).

The MAR plant aims at restoring the overexploited coastal aquifer of the

Cornia plain, for irrigation, drinking and industrial purposes. The pre-

sent Italian regulation for permitting a MAR plant requires a one-year

monitoring of groundwater and surface water level and chemical water

quality (DM 100/2016; Ministero dell’Ambiente, 2016). In this context,

the AkvaGIS tools were used to input, store and analyse all the mon-

itored data. Data were then used to build Piper, Schöller-Berkalof

(Fig. 12a and b) and other plots for assessing the main groundwater

Fig. 10. Examples of post-processing tools integrated in FREEWAT: (a) cross sections allow to visualize how a contaminant plume spreads in the vertical plane; (b)

scatter plot compares simulated and observed values for hydraulic head. Data for other types of observations (e.g., flow) can also be displayed.
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chemical characteristics, their variability during the year, and re-

lationships with surface water chemistry and geothermal groundwater

chemistry from adjoining groundwater bodies. In this example, the

Piper and Schöeller-Berkalof diagrams show that samples of ground-

and surface-water belong to the bicarbonate-calcium facies, while

limited chemical variations can be observed at some points.

3.2. Ground- and surface-water interaction at the Lugano lake case study

The FREEWAT platform was applied at the Lugano lake case study

(Cannata et al., 2017), a transboundary water-body shared between

Switzerland and Italy. In order to assess interactions between the Lu-

gano lake and the aquifers connected to this surface-water body, a

MODFLOW model was built using the LAK package (Merritt and

Konikow, 2000). In the development of the Lugano lake case study,

OAT was used to facilitate the automatic import in QGIS of all the

observations of the Canton Ticino hydro-meteorological monitoring

system and the related hydrogeological database GESPOS (SUPSI,

2017). Measurements of temperature, river stage and precipitation

were harvested with the OAT capability to connect with an istSOS Web

service and create, for the User-defined time period and resolution, new

OAT.Sensors and related time-series in FREEWAT. Groundwater level

time-series were generated by importing csv files (Fig. 8). Statistical

analysis of the time-series was conducted to better understand the

system recharge and to estimate evapotranspiration to set appropriate

boundary conditions. Additionally, the created OAT.Sensor was used to

set observations for calibration. OAT can speed up the model creation

and calibration phases in a GIS-integrated environment. Finally, its

capability to record time-series metadata facilitates model sharing of

sensor types and observed properties.

3.3. Managing the Induced RiverBank Filtration MAR scheme at

Sant’Alessio plain (Lucca, Italy)

Groundwater modelling capabilities were also tested to a case study

developed for demonstrating the effectiveness of managing the Induced

RiverBank Filtration MAR scheme at the Sant’Alessio plain, in central

Italy, (Rossetto et al., 2015b). In this case study, the modelling frame-

work was used to define the well-head protection area for a well field

consisting of 12 vertical wells (the overall abstraction is about 0.5 m3/s)

set along the Serchio riverbank for drinking purposes (Fig. 13).

The FREEWAT platform was applied to estimate induced/increased

infiltration rates in the aquifer caused by large groundwater pumping

and building of a river-weir to rise the river head (using MODFLOW-

2005), and wellhead protection areas by means of isochrones (using

MODPATH and GIS tools) (De Filippis et al., 2017d).

3.4. Analysis of contamination caused by diffuse pollution (Lucca, Italy)

The Sant’Alessio case study was also used to demonstrate the si-

mulation of solute transport in FREEWAT using MT3DMS (De Filippis

et al., 2017d).

In the case study, we evaluated the dilution effects of better quality

surface water recharging the aquifer with reference to aquifer nitrate

contamination due to agricultural activities and untreated wastewater

discharged in areas located north-east of the study area (Fig. 14).

3.5. Conjunctive use of ground- and surface-water in rural water

management

A synthetic problem was designed to show the application of FMP in

FREEWAT as a tool to address water management issues in urban and

rural areas. This example is inspired to a hypothetical case study pre-

sented in Schmid et al. (2006) and used in the Simulating water man-

agement in agricultural catchments tutorial produced within the H2020

FREEWAT project.

Fig. 15 shows the water budget computed for an irrigated water

unit. The following terms are shown: i) precipitation, as specified in

input by the User; ii) evaporation and transpiration from groundwater, as

calculated by the FMP. Water supply is guaranteed by means of

groundwater pumping, Well Pumping, as specified in input by the User.

Periods of water deficit (i.e., demand exceeding supply) can be easily

identified when the External Water Delivery term is not null. This means

that supply from all the other inflow components is not sufficient to

Fig. 11. Location of real-world case studies where the FREEWAT platform was applied in the framework of EU-funded projects.
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Fig. 12. (a) Piper and (b) Schöeller-Berkalof diagrams related to monitoring campaigns performed at Suvereto MAR plant (central Italy) within the EU LIFE REWAT

project. These diagrams allow to identify the chemical facies of groundwater samples.
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meet the water demand of the irrigated area. It occurs, i.e., between day

100 and 200, when precipitation rates are low, evapotranspiration rates

increase, and User-defined maximum pumping rates (i.e., legally con-

strained) are reached. In such cases, alternative sources of water supply

(External Water Delivery), other than groundwater, should be taken into

account, and the possibility to conjunctively use ground- and surface-

water could be tested in an FMP scenario by connecting the water unit

to a network of surface channels/delivering pipelines.

3.6. Sensitivity analysis and calibration for modelling groundwater

management in the Stampriet area

Among the case studies developed within the H2020 FREEWAT

project, the Stampriet transboundary aquifer system (the STAS) re-

presents an important resource of freshwater shared among Namibia,

Botswana and South Africa and mainly exploited for irrigation pur-

poses. The main objective of this case study was to provide a tool able

Fig. 13. Well-head protection area envelope based on 365-days isochrones.

Fig. 14. Nitrate plume originating from a peri-urban area located in the north-eastern part of the study area and spreading westward.
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to provide a shared knowledge of the STAS aquifer system, in order to

foster a cooperation among the three governments for a sustainable

management of groundwater resources (FREEWAT, 2017b).

UCODE_2014 was extensively used for evaluating and calibrating a

MODFLOW model developed for the STAS aquifer.

Among the available sensitivity indicators, the composite scaled

sensitivity (CSS) indicates the information content of all the available

observations for the estimation of each parameter (Poeter et al., 2014).

Fig. 16 presents a plot of the CSS evaluated for the following para-

meters:

- inflow rates specified along the northern boundary of the active

domain (cfr. Fig. 17) and simulated through sets of pumping wells

(parameters WELLx_y, where x refers to the model layer and y

identifies a set of pumping wells to which a specific rate was as-

signed);

- hydraulic conductivity values assigned at specific zones of the active

domain (parameters HK_x_y, where x refers to the model layer and y

identifies a specific zone of the active domain);

- distributed recharge flux assigned at specific zones of the active

domain (parameters RCHy, where y identifies a specific zone of the

active domain).

CSS values were analysed along with Parameter Correlation

Coefficients (PCC) to evaluate which parameters were to be included in

the calibration process (strong, positive correlation – i.e., PCC > 0.95 –

occurred between parameters WELL1_2 and WELL1_3 only).

Fig. 17 shows a spatially distributed representation of the residuals

(observed minus simulated values) calculated after calibration of the

MODFLOW model: red dots identify areas where residuals are negative

and the model over-estimates the observed values; vice-versa, blue dots

provide information on areas where the model under-estimates the

observations.

4. Limitations and further development

FREEWAT development and maintenance has been addressed so far

according to suggestions from HORIZON 2020 FREEWAT project

partners in relation to the application to their specific case studies.

Moreover, about 1100 individuals from the academic world, water

authorities, water utilities and geoenvironmental companies, among

the others, were trained during extensive dissemination activities

throughout 60 dedicated courses in about 50 countries until the end of

September 2017. These allowed gathering a huge mass of information

on code malfunctioning (which was then fixed), code improvements

and suggestions for further code development.

As per the MODFLOW suite, at present not all the MODFLOW

packages and processes are implemented in the FREEWAT platform. For

instance, the following stress packages are not available: Flow and Head

Boundary (FHB), Reservoir (RES) and Stream (STR). Similarly, the

Conduit Flow Process (CFP; Shoemaker et al., 2008) for the simulation

of turbulent groundwater flow conditions in dual-porosity aquifers is

not presently supported in FREEWAT. Only one solver is implemented,

the Preconditioned Conjugate Gradient (PCG) package. Additional

limitations exist in using MNW2, LAK, UZF and SFR2 packages, arising

from a selection of some options in the code, which cannot be managed

through the FREEWAT interface (De Filippis et al., 2017b). These

choices were made in order to allow an easier and faster application of

the software, even if limiting its full capabilities. Nevertheless, ad-

vanced Users may directly modify MODFLOW model files to cope with

such limitations. Additionally, the advanced User may implement

packages, even if not supported in FREEWAT, producing the related

text file independently of the FREEWAT interface and running the

model by directly using the modelling code executable.

MT3D-USGS can be applied only to address unsaturated zone

transport (UZT): other specific packages included in MT3D-USGS are

not yet supported (e.g., CTS - Contaminant Treatment System Package,

LKT - Lake Transport Package, SFT - Streamflow Transport Package;

Bedekar et al., 2016).

The FMP version currently implemented within the platform has

Fig. 15. Example of output plots after an FMP simulation from a synthetic problem.
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two main limitations: spatial distribution of water units cannot vary

throughout the simulation, and crop rotation is not allowed. Further

assumptions have been included and these result in adopting some

default options, in order to ease the code usability (De Filippis et al.,

2017c). Also in such case, the advanced User can modify model files

and run MODFLOW-OWHM independently of FREEWAT.

The Authors wish to mention, among the others, as relevant sug-

gestions for code capabilities improvement, the need to integrate a

Fig. 16. CSS values calculated by UCODE_2014 for selected parameters.

Fig. 17. Map of residuals calculated by UCODE_2014 after model automatic calibration.
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method for grid refinement only at selected model areas (i.e., the Local

Grid Refinement capability; Mehl and Hill, 2005), the need for in-

tegrating more MODFLOW solver packages, as well as the im-

plementation of stochastic simulations methods, and of modules for

improving simulation of mass exchange between ground- and surface-

water. Some MODFLOW versions are missing (i.e. , MODFLOW-USG,

MODFLOW 6) and their integration is considered for further develop-

ment. Tools to cope with some of these limitations are currently under

development.

5. Conclusions

Groundwater is a critical resource for people and ecosystems. Tools

are needed for efficient data management so that more technically

sound and community-supported decisions may be made. In this view,

development and diffusion of robust open source and free software

constitutes a cornerstone to enhance groundwater management, thus

empowering as much as possible technical units in water authorities,

academia and private companies, also in communities/countries with

limited resources. In recent years, several efforts have addressed these

issues by developing tools in GIS and coupling GIS and numerical hy-

drological models. Often, commercial software was used to this scope,

but the cost of such software is usually prohibitive in many areas of the

world.

The FREEWAT platform aims at targeting these goals by having

developed, within the QGIS GIS environment and adopting SpatiaLite

as a DBMS, dedicated tools for processing of large ground- and surface-

water related datasets and, using a close/tight coupling strategy, in-

tegration of several hydrological simulation codes (mostly from the

MODFLOW family). By using the FREEWAT plugin, the User can ar-

chive, pre-process and analyse data (related to groundwater bodies

characterization, and their relationships with surface-water bodies and

human activities, and monitoring networks), build a set of models

(groundwater flow models, solute transport models, inversion models)

and post-process results in a unique QGIS environment. Tools devel-

oped and integrated in FREEWAT and their relevance are presented,

along with their application to selected case studies. Models can be run

at different scales: from small contaminated site to large watershed. The

latter is demonstrated in FREEWAT by the case study on the Stampriet

transboundary aquifer, shared among Namibia, Botswana and South

Africa.

The FREEWAT plugin is freely available through the FREEWAT

project website (www.freewat.eu), the gitlab repository (https://gitlab.

com/freewat), and the QGIS Plugin Repository along with one

Reference Manual, six User Manuals, and a set of thirteen tutorials with

related datasets (dealing with different groundwater management is-

sues, i.e., contamination issues, Managed Aquifer Recharge, rural water

management, seawater intrusion, calibration of groundwater models,

etc.). All this material aims to disseminate not only FREEWAT use as a

standard software, but also to increase capacity on ICT use for mana-

ging groundwater quantity and quality. By providing lectures, tutorials

(still open and free), starting from basic theory to applications, we also

aim to increase capacity in numerical modelling in order to foster full

understanding of the concepts and limitations of the methods and

mindful applications. At present, FREEWAT version 1.0.2 is available

since March 2018.

Finally, the objective of producing the FREEWAT software is that of

enlarging the capabilities of authorities and companies to manage

groundwater resources by using up-to-date, robust, well-documented

and reliable software, whose documentation is accessible and modifi-

able, without entailing the need of costly licensing. Maintenance and

diffusion of this experience will strongly rely on building a large com-

munity of Users and Developers. This community may help in identi-

fying (potential) bugs to be fixed and providing suggestions for further

development. In this view, the large capacity building activities per-

formed so far, and their outcomes constitute, in the Authors' opinion,

sufficient guarantee for its continuation.

Software availability

Software name: FREEWAT v.1.0.2.

Development team: Iacopo Borsi (head developer; iacopo.borsi@

tea-group.com), Massimiliano Cannata, Rotman Criollo, Laura Foglia,

Giovanna De Filippis, Matteo Ghetta, Steffen Mehl, Vincent Mora,

Vincent Picavet, Rudy Rossetto, Enric Vázquez-Suñé, Violeta Velasco-

Mansilla.

Year first available: 2017.

Software required: QGIS and the up-to-date version of the

FREEWAT plugin.

Availability: Software and documentation can be downloaded from

the FREEWAT website through the download area. To access the

download area, free-of-charge registration is requested for statistical

purposes only, by filling the form at http://www.freewat.eu/download-

information.

The FREEWAT plugin can also be downloaded through the official

QGIS repository of experimental plugins.

The FREEWAT code can also be accessed through the gitlab re-

pository: https://gitlab.com/freewat.

License: FREEWAT is released under a GNU GENERAL PUBLIC

LICENSE, Version 2, June 1991. https://www.gnu.org/licenses/old-

licenses/gpl-2.0.en.html.

Cost: free.

Program language: Python.

Program size: about 70MB, referred to the FREEWAT plugin only.
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