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Abstract

Background: Identifying molecular signatures of disease phenotypes is studied using two mainstream approaches:

(i) Predictive modeling methods such as linear classification and regression algorithms are used to find signatures

predictive of phenotypes from genomic data, which may not be robust due to limited sample size or highly correlated

nature of genomic data. (ii) Gene set analysis methods are used to find gene sets on which phenotypes are linearly

dependent by bringing prior biological knowledge into the analysis, which may not capture more complex nonlinear

dependencies. Thus, formulating an integrated model of gene set analysis and nonlinear predictive modeling is of

great practical importance.

Results: In this study, we propose a Bayesian binary classification framework to integrate gene set analysis and

nonlinear predictive modeling. We then generalize this formulation to multitask learning setting to model multiple

related datasets conjointly. Our main novelty is the probabilistic nonlinear formulation that enables us to robustly

capture nonlinear dependencies between genomic data and phenotype even with small sample sizes. We

demonstrate the performance of our algorithms using repeated random subsampling validation experiments on two

cancer and two tuberculosis datasets by predicting important disease phenotypes from genome-wide gene

expression data.

Conclusions: We are able to obtain comparable or even better predictive performance than a baseline Bayesian

nonlinear algorithm and to identify sparse sets of relevant genes and gene sets on all datasets. We also show that our

multitask learning formulation enables us to further improve the generalization performance and to better

understand biological processes behind disease phenotypes.

Keywords: Gene set analysis, Nonlinear predictive modeling, Disease phenotypes, Multiple kernel learning, Cancer,

Tuberculosis

Background

Predictive modeling is frequently used to find molecu-

lar signatures of disease phenotypes from genomic data,

which helps us better understand underlying biological

processes behind phenotypes and reduce data acquisition

cost for future clinical samples by doing targeted profiling

Correspondence: mehmetgonen@ku.edu.tr

Department of Industrial Engineering, Koç University, 34450 İstanbul, Turkey

instead of genome-wide screens. To this aim, supervised

machine learning methods such as linear classification

and regression algorithms are trained to predict disease

phenotypes, and features with relatively higher impor-

tance values (e.g. features with larger magnitude weights)

in these parametric models are included into the signa-

ture. However, as illustrated by existing studies [1, 2],

molecular signatures identified by such algorithms may
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not be robust due to small sample size or highly correlated

nature of genomic data.

Gene set analysis methods try to identify gene sets on

which disease phenotypes are dependent by calculating an

enrichment score for each gene and transforming these

scores into gene set scores using a summarization pro-

cedure [3]. The main advantage of these approaches is

the ability to bring prior biological knowledge into the

analysis in the form of biological pathways or sets of

genes with similar biological functions [4], leading tomore

robust and clinically interpretable results than predictive

modeling approaches. However, they usually assume lin-

ear dependencies between genomic data and phenotype,

which may not reflect the underlying biology of disease,

and have difficulties in using very small or large gene sets

in the analysis.

To benefit from the best of both worlds, integrating gene

set analysis and predictive modeling is already considered

in many existing studies [5–7], which modify linear clas-

sification and regression algorithms to include gene set

information while doing feature selection for molecular

signature extraction. Even though this family of methods

capture dependencies between genes, they still fail to cap-

ture nonlinear dependencies between genomic data and

phenotype.

We suggest to integrate these two components using a

nonlinear framework by extending our earlier Bayesian

formulation [8]. Here, we develop a novel Bayesian mul-

tiple kernel learning algorithm, which trains a binary

classifier with a sparse set of active gene sets using a

sparsity-inducing prior, i.e. the spike and slab prior [9].

Using gene sets within a probabilistic formulation helps

us identify more robust signatures even with small sample

sizes. Using a kernel-based formulation enables us to cap-

ture nonlinear dependencies between genomic data and

phenotype, and to use overlapping gene sets and gene sets

with different sizes without any major concern. We also

generalize our proposed formulation tomultitask learning

setting to model multiple related datasets (e.g. different

patient cohorts profiled against the same phenotype) con-

jointly, leading to better predictive performance and more

robust molecular signatures. To the best of our knowl-

edge, [10] provides the first joint formulation of gene set

analysis and nonlinear predictive modeling, which per-

forms a survival analysis on breast cancer patients using

both clinical and genomic data, using an existing discrim-

inative multiple kernel learning algorithm. However, our

approach has important advantages over their method:

(i) more robustness on clinical datasets with small sample

size due to its probabilistic nature, (ii) its ability to perform

automatic model selection (e.g. determining the sparsity

level of kernel weights) due to its fully Bayesian inference

mechanism and (iii) its ability to model multiple related

datasets conjointly due to its multitask learning variant.

We perform repeated random subsampling validation

experiments on two cancer and two tuberculosis datasets

to demonstrate the better predictive performance of our

two algorithms over a baseline Bayesian nonlinear algo-

rithm and to show the biological relevance of the genes

and gene sets selected to disease phenotypes modeled.

Materials

In this study, we use two cancer and two tuberculosis

datasets, where we solve binary classification problems

to predict phenotype values from genomic data and to

extract molecular signatures of disease phenotypes.

Diagnosis of micro-satellite instability in colorectal and

endometrial carcinomas

Micro-satellite instability is a hypermutable phenotype

caused by the loss of DNA mismatch repair activity. It

is frequently observed in several tumor types such as

colorectal, endometrial, gastric, ovarian and sebaceous

carcinomas [11]. Tumors with micro-satellite instability

do not respond to chemotherapeutic strategies developed

for micro-satellite stable tumors, leading to its clinical

importance. That is why we address the problem of pre-

dicting micro-satellite instability status of cancer patients

from their gene expression data. We use two publicly

available datasets provided by ‘the Cancer Genome Atlas’

(TCGA) consortium: (i) ‘colon and rectum adenocarci-

noma’ (COADREAD) patients [12] and (ii) ‘uterine corpus

endometrial carcinoma’ (UCEC) patients [13].

The phenotype values of cancer patients for both

datasets are downloaded from the TCGA website

(https://tcga-data.nci.nih.gov), which groups the patients

into three categories: (i) ‘micro-satellite instability

high’ (MSI-H), (ii) ‘micro-satellite instability low’ (MSI-L)

and (iii) ‘micro-satellite stable’ (MSS). The prepro-

cessed genomic characterizations of primary tumors

from the patients (i.e. mRNA gene expression) are

downloaded from https://www.synapse.org/#!Synapse:

syn300013, where 20,530 normalized gene expression

intensities are provided for each profiled primary tumor.

We remove the patients with missing phenotype value

or genomic data from further analysis. At the end, there

are 261 and 330 patients with available phenotype value

and genomic data for COADREAD and UCEC datasets,

respectively. Table 1 summarizes the final datasets by

listing the numbers of patients in each category together

with the total number of patients.

Diagnosis of tuberculosis in adult and pediatric individuals

Tuberculosis is responsible for 1.5 million deaths in 2013

according to theWorldHealthOrganization, whichmakes

it the second greatest killer due to a single infectious

agent after HIV. It is also the leading cause of death for

HIV-infected people. Its diagnosis is currently based on

https://tcga-data.nci.nih.gov
https://www.synapse.org/#!Synapse:syn300013
https://www.synapse.org/#!Synapse:syn300013
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Table 1 Summary of two cancer datasets

Number of patients

Dataset MSI-H MSI-L MSS Total

COADREAD 37 43 181 261

UCEC 108 27 195 330

MSI-HMicro-satellite instability high,MSI-LMicro-satellite instability low,

MSSMicro-satellite stable

clinical and radiological features, sputum microscopy and

tuberculin skin testing, which usually give false results

in HIV-infected individuals [14]. New clinical diagnos-

tic tests, especially for resource poor settings such as

low-income countries with high rates of HIV, are needed

to identify tuberculosis cases correctly for proper treat-

ment. That is why we address the problem of predicting

tuberculosis status of individuals from genome-wide RNA

expression in host blood. We use two publicly available

datasets of HIV-infected and -uninfected individuals from

South Africa and Malawi: (i) adult individuals (ADULT)

[14] and (ii) pediatric individuals (PEDIATRIC) [15].

The phenotype values and the genomic data for ADULT

and PEDIATRIC datasets are downloaded from NCBI’s

Gene Expression Omnibus using GEO Series accession

numbers GSE37250 and GSE39940, respectively, where

the individuals are grouped into three categories: (i) ‘active

tuberculosis’ (ATB), (ii) ‘latent tuberculosis infection’

(LTBI) and (iii) ‘other disease’ (OD). These repositories

contain background subtracted and quantile normalized

intensities of 47 323 probes for each individual. There

are 537 and 334 individuals with available phenotype

and genomic data for ADULT and PEDIATRIC datasets,

respectively. Table 2 summarizes the datasets by listing the

numbers of individuals in each category together with the

total number of individuals.

Methods

We consider the problem of predicting phenotype val-

ues from genomic data using classification algorithms.

Instead of training classifiers that use all available fea-

tures, we want to develop classifiers that use very few but

biologically relevant input features to identify a molec-

ular signature of the phenotype and to reduce the data

acquisition cost for test samples. However, the molecular

signatures identified from, for example, gene expression

Table 2 Summary of two tuberculosis datasets

Number of individuals

Dataset ATB LTBI OD Total

ADULT 195 167 175 537

PEDIATRIC 111 54 169 334

ATB Active tuberculosis, LTBI Latent tuberculosis infection, OD Other disease

data are not robust when we have limited training data

[1, 2]. In such cases, we obtain different molecular signa-

tures from different subsets of the same training set due

to highly correlated nature of data, which makes knowl-

edge extraction quite difficult. Instead, we can use our

prior biological knowledge to group the input features and

pick the relevant groups that are predictive of the pheno-

type while training the classification algorithm. We first

discuss our proposed method that can learn a classifier

and identify predictive gene sets simultaneously on a sin-

gle dataset.We then explain howwe extend ourmethod to

model multiple related datasets by identifying a common

set of predictive gene sets across them.

Sparse Bayesian multiple kernel learning

We formulate the prediction task as a binary classification

problem defined on the genomic data, denoted as domain

X , and the phenotype, denoted as domainY . We are given

an independent and identically distributed sample {xi ∈

X }Ni=1 and a class label vector y = {yi ∈ Y}Ni=1, where N

is the number of data points, and Y = {−1,+1}. We are

also given a list of gene sets {Im}Pm=1, which encode our

prior biological knowledge in terms of gene names, where

Im list the names of genes in the gene setm, which may be

a set of genes from a biological pathway or a set of genes

with similar biological functions, and P is the number of

gene sets.

We choose to develop a nonlinear classifier to predict

phenotype from genomic data using a kernel-based for-

mulation due to its three main advantages [16]: (i) We can

learn robust classifiers for tasks with very high dimen-

sional representations such as genomic data and small

sample size (i.e. large p, small n). (ii) We can learn bet-

ter classifiers using nonlinear kernels such as the Gaussian

kernel (i.e. kernel trick). (iii) We can use domain-specific

kernels (e.g. graph and tree kernels for structured objects)

to better capture the underlying biological processes [17].

To calculate similarities between the data points, we have

multiple kernel functions defined over gene sets, namely,

{km : X × X → R}Pm=1, which are used to calculate the

kernel matrices {Km}Pm=1. For each gene set, the corre-

sponding kernel km(xi, xj|Im) considers only the features

extracted from or related to the genes in Im. We choose

to learn a weighted combination of the input kernels

{Km}Pm=1 while training a binary classifier, which is known

as multiple kernel learning [18], by extending our earlier

Bayesian formulation [8] with a sparsity-inducing prior on

the kernel weights. Figure 1 gives a schematic description

of the proposed model.

Probabilistic model

Our proposed probabilistic model, called ‘sparse Bayesian

multiple kernel learning’ (SBMKL), has three main parts:

(i) finding kernel-specific latent variables using the same
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Fig. 1 Schematic description of sparse Bayesian multiple kernel

learning. For each gene set, the corresponding kernel considers only

the features extracted from or related to the genes in this gene set.

We then learn a weighted sparse combination of these kernels while

training a binary classifier to predict the phenotype values

set of sample weights over the input kernels, (ii) assigning

sparse weights to these latent variables using the spike and

slab prior [9] and (iii) generating predicted outputs using

the latent variables and these sparse weights together with

a bias parameter.

The first part has the following distributional assump-

tions:

λi ∼ Gamma(λi;αλ,βλ) ∀i

ai|λi ∼ Normal
(

ai; 0, λ
−1
i

)

∀i

gmi |a, km,i ∼ Normal
(

gmi ;a⊤km,i, σ
2
g

)

∀(m, i),

where the superscript indexes the rows, the subscript

indexes the columns, Normal(·;µ,�) represents the nor-

mal distribution with the mean vector µ and the covari-

ance matrix �, and Gamma(·;α,β) denotes the gamma

distribution with the shape parameter α and the scale

parameter β . We generate the latent variables gm for each

input kernel Km using the same set of sample weights a.

Note that we need to use a small noise parameter σg while

generating the latent variables to better generalize to test

data points.

The second part has the following distributional

assumptions:

κ ∼ Beta(κ ; ζκ , ηκ)

sm|κ ∼ Bernoulli(sm; κ) ∀m

ω ∼ Gamma(ω;αω,βω)

em|ω ∼ Normal
(

em; 0,ω
−1

)

∀m,

where Beta(·; ζ , η) denotes the beta distribution with the

shape parameters ζ and η, and Bernoulli(·;π) represents

the Bernoulli distribution with the success probability

parameter π . We generate a binary indicator variable sm

and a normally distributed weight em for each input ker-

nel. The product of these two variables smem is a simple

parameterization of the spike and slab prior, which is more

amenable to approximate inference.

The third part has the following distributional assump-

tions:

γ ∼ Gamma(γ ;αγ ,βγ )

b|γ ∼ Normal(b; 0, γ −1)

fi|b, e, s, gi ∼ Normal
(

fi; (s ◦ e)⊤gi + b, 1
)

∀i

yi|fi ∼ Kronecker(fiyi > ν) ∀i,

where ◦ represents the Hadamard product, and

Kronecker(·) denotes the Kronecker delta function that

returns 1 if its argument is true and 0 otherwise. The

predicted outputs f , similar to the discriminant outputs

in support vector machines, are introduced to make the

inference procedures efficient [19]. The nonnegative

margin parameter ν is introduced to resolve the scaling

ambiguity and to place a low-density region between

two classes, similar to the margin idea in support vector

machines, which is generally used for semi-supervised

learning [20].

Figure 2 illustrates the proposed probabilistic model for

binary classification with a graphical model.

Inference using variational Bayes

We need to infer the posterior distribution over the model

parameters and the latent variables, which we denote

as � = {λ,a,G, κ , s,ω, e, γ , b, f }, given the input kernel

matrices {Km}Pm=1 and the class labels y to find the pre-

dictive distribution for test data points. Unfortunately,

exact inference for our proposed probabilistic model is

intractable. Instead of using a computationally expensive

Fig. 2 Graphical model of sparse Bayesian multiple kernel learning.

Random variables are shown as empty circles, whereas observed

variables are shown as filled circles. Hyper-parameters are ignored for

simplicity
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Gibbs sampling approach [21], we choose to perform vari-

ational inference, which maximizes a lower bound on

the marginal likelihood using an ensemble of factored

posteriors to infer the joint parameter distribution [22].

We approximate the posterior distribution over the

model parameters and the latent variables by a variational

distribution:

p(�|{Km}Pm=1, y) ≈ q(�),

where we assume that the variational distribution has

a simpler form than the posterior distribution to make

inference tractable. The inference problem can be defined

as finding the nearest variational distribution to the pos-

terior distribution with respect to a distance function.

We perform mean-field variational Bayes, which mea-

sures the distance between distributions q and p using

‘the Kullback–Leibler divergence’ denoted as KL(q||p).

We can decompose the log evidence as

log p(y|{Km}Pm=1) =

∫

q(�) log
p

(

�, y|{Km}Pm=1

)

q(�)
d�

︸ ︷︷ ︸

L(q)

+

∫

−q(�) log
p

(

�|{Km}Pm=1, y
)

q(�)
d�

︸ ︷︷ ︸

KL(q||p)

,

where we assume without loss of generality that all model

parameters and latent variables are continuous variables,

and see that minimizingKL(q||p) amounts tomaximizing

the lower bound L(q).

We start by writing q(�) as a factorized approximation:

q(�) = q(λ)q(a)q(G)q(κ)q(s)q(ω)q(e|s)q(γ )q(b)q(f ),

where we couple the weights e with the binary indicator

variables s due to their strong correlation. Note that we

choose not to have the factorization as q(e)q(s) because

it gives a unimodal distribution, but the true posterior

distribution may have exponentially many modes. To cap-

ture this multimodal structure, we choose to formulate

the factorization as q(e|s)q(s), which can be approxi-

mated efficiently [23]. We then write L(q) in the form of

expectations:

L(q) = Eq(�)[ log p(�, y|{Km}Pm=1)]−Eq(�)[ log q(�)] ,

where we iteratively maximize L(q) with respect to each

factor until convergence. The approximate posterior dis-

tribution of a specific factor τ can be found as

q(τ ) ∝ exp
(

Eq(�\τ)

[

log p
(

�, y|{Km}Pm=1

)])

.

Inference details

We define the factors for the first part of our probabilistic

model as

q(λ) =

N
∏

i=1

Gamma(λi;α(λi),β(λi))

q(a) = Normal(a;μ(a),�(a))

q(G) =

N
∏

i=1

Normal(gi;μ(gi),�(gi)),

where α(·),β(·),μ(·), and �(·) denote the shape

parameter, the scale parameter, the mean vector and the

covariance matrix of their arguments, respectively. The

approximate posterior distributions can be updated as

α(λi) = αλ + 1/2

β(λi) =
(

1/βλ + 〈a2i 〉/2
)−1

�(a) =

(

diag(〈λ〉) + σ−2
g

P
∑

m=1

KmK
⊤
m

)−1

μ(a) = �(a)

(

σ−2
g

P
∑

m=1

Km〈(gm)⊤〉

)

�(gi) =
(

σ−2
g I + 〈(s ◦ e)(s ◦ e)⊤〉

)−1

μ(gi) = �(gi)
(

σ−2
g [ k1,i . . . kP,i]

⊤ 〈a〉

+〈fi〉〈s ◦ e〉 − 〈b〉〈s ◦ e〉
)

,

where 〈h(·)〉 denotes the posterior expectation as usual,

i.e. Eq(·)[ h(·)].

The factors for the second part of our probabilistic

model are defined as

q(κ) = Beta(κ ; ζ(κ), η(κ))

q(s) =

P
∏

m=1

Bernoulli(sm;π(sm))

q(ω) = Gamma(ω;α(ω),β(ω))

q(e|s) =

P
∏

m=1

Normal(em|sm;μ(em|sm),�(em|sm)),

where ζ(·), η(·) and π(·) denote the shape parameters and

the success probability parameter of their arguments. We

can update the approximate posterior distributions as
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ζ(κ) = ζκ +

P
∑

m=1

〈sm〉

η(κ) = ηκ + P −

P
∑

m=1

〈sm〉

π(sm) = 1/(1 + exp(−rm))

α(ω) = αω + P/2

β(ω) =

(

1/βω +

P
∑

m=1

(〈1 − sm〉〈e2m|0〉 + 〈sm〉〈e2m|1〉)/2

)−1

�(em|0) = 1/〈ω〉

μ(em|0) = 0

�(em|1) = 1/(〈ω〉 + 〈gm(gm)⊤〉)

μ(em|1) = �(em|1)

N
∑

i=1

⎡

⎣(〈fi〉−〈b〉)〈gmi 〉−
∑

l �=m

〈sl〉〈el|1〉〈g
l
ig

m
i 〉

⎤

⎦ ,

where the auxiliary variable rm is defined as

rm =

〈

log
κ

1 − κ

〉

−
1

2
〈e2m|1〉〈gm(gm)⊤〉

+ 〈em|1〉

N
∑

i=1

⎡

⎣
(

〈fi〉 − 〈b〉
)

〈gmi 〉 −
∑

l �=m

〈sl〉〈el|1〉〈g
l
ig

m
i 〉

⎤

⎦ .

We define the factors for the third part of our probabilistic

model as

q(γ ) = Gamma(γ ;α(γ ),β(γ ))

q(b) = Normal(b;μ(b),�(b))

q(f ) =

N
∏

i=1

TruncatedNormal(fi;μ(fi),�(fi), ρ(fi)),

where TruncatedNormal(·;µ,�, ρ(·)) denotes the trun-

cated normal distribution with the mean vector µ, the

covariance matrix � and the truncation rule ρ(·) such

that TruncatedNormal(·;µ,�, ρ(·)) ∝ Normal(·;µ,�) if

ρ(·) is true, and TruncatedNormal(·;µ,�, ρ(·)) = 0 oth-

erwise. The approximate posterior distributions can be

updated as

α(γ ) = αγ + 1/2

β(γ ) = (1/βγ + 〈b2〉/2)−1

�(b) = (〈γ 〉 + N)−1

μ(b) = �(b)

(
N

∑

i=1

〈fi〉 − 〈(s ◦ e)⊤〉〈gi〉

)

�(fi) = 1

μ(fi) = 〈(s ◦ e)⊤〉〈gi〉 + 〈b〉

ρ(fi) � fiyi > ν,

where we can fortunately calculate the expectation of the

truncated normal distribution in closed-form.

Prediction scenario

We can replace p
(

a|{Km}Pm=1, y
)

with its approximate

posterior distribution q(a) and obtain the posterior pre-

dictive mean of the latent variables g⋆ for a new data

point x⋆ as

〈g⋆〉 =[ k1,⋆ . . . kP,⋆]
⊤ 〈a〉.

The posterior predictive mean of the predicted output

f⋆ can also be found by replacing p(b, e, s|{Km}Pm=1, y)with

its approximate posterior distribution q(b)q(e|s)q(s):

〈f⋆〉 = 〈(s ◦ e)⊤〉〈g⋆〉 + 〈b〉,

where we use 〈f⋆〉 to predict the class label by looking at its

sign.

Sparse Bayesian multitask multiple kernel learning

We formulate the joint modeling of prediction tasks on

multiple datasets using a multitask learning approach,

which models distinct but related tasks conjointly to

improve overall generalization performance. We are given

T datasets, and, for each dataset, we have an independent

and identically distributed sample {xt,i ∈ X }
Nt
i=1 and a class

label vector yt = {yt,i ∈ Y}
Nt
i=1, where Nt is the num-

ber of data points in the dataset t. We also have a list of

gene sets {Im}Pm=1, which are shared across the tasks, and

the corresponding kernel functions {kt,m(·, ·|Im)}Pm=1 for

each task.

Probabilistic model

Our single-task learning model SBMKL is extended

towardsmultitask learning to obtain ‘sparse Bayesianmul-

titask multiple kernel learning’ (SBMTMKL).

The distributional assumptions of the first part can be

modified as

λt,i ∼ Gamma(λt,i;αλ,βλ) ∀(t, i)

at,i|λi ∼ Normal
(

at,i; 0, λ
−1
t,i

)

∀(t, i)

gmt,i|at , kt,m,i ∼ Normal
(

gmt,i;a
⊤
t kt,m,i, σ

2
g

)

∀(t,m, i),

where we have task-specific model variables and latent

variables.

The distributional assumptions of the second part are

written as

κ ∼ Beta(κ ; ζκ , ηκ )

sm|κ ∼ Bernoulli(sm; κ) ∀m

ωt ∼ Gamma(ωt ;αω,βω) ∀t

et,m|ωt ∼ Normal(et,m; 0,ω
−1
t ) ∀(t,m),

where the binary indicator variables are shared across the

tasks, which helps us transfer information between them.
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The distributional assumptions of the third part can be

modified as

γt ∼ Gamma
(

γt ;αγ ,βγ

)

∀t

bt|γt ∼ Normal
(

bt ; 0, γ
−1
t

)

∀t

ft,i|bt , et , s, gt,i ∼ Normal
(

ft,i; (s ◦ et)
⊤gt,i + bt , 1

)

∀(t, i)

yt,i|ft,i ∼ Kronecker
(

ft,iyt,i > ν
)

∀(t, i),

where we have task-specific bias parameters and predicted

outputs.

Inference using variational Bayes

We approximate the posterior distribution over the model

parameters and the latent variables by a variational distri-

bution:

p
(

�|{{Kt,m}Pm=1, yt}
T
t=1

)

≈ q(�),

where we start inference by writing q(�) as a factorized

approximation:

q(�) =

T
∏

t=1

[

q(λt)q(at)q(Gt)

]

q(κ)q(s)

T
∏

t=1

[

q(ωt)q(et|s)
]

×

T
∏

t=1

[

q(γt)q(bt)q(f t)
]

.

Inference details

The update equations of the approximate posterior distri-

butions for all model parameters and latent variables are

very similar to those of SBMKL except for the binary indi-

cator variables. We can update the approximate posterior

distribution of them as

π(sm) = 1/(1 + exp(−rm))

where the auxiliary variable rm is defined as

rm =

〈

log
κ

1 − κ

〉

−
1

2

T
∑

t=1

〈e2t,m|1〉〈gmt (gmt )⊤〉

+

T
∑
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〈et,m|1〉
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⎡
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)
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∑

l �=m

〈sl〉〈et,l|1〉〈g
l
t,ig

m
t,i〉

⎤

⎦ .

Prediction scenario

We can use the approximate posterior distribution q(at)

instead of p(at|{{Kt,m}Pm=1, yt}
T
t=1) and obtain the poste-

rior predictive mean of the latent variables gt,⋆ for a new

data point xt,⋆ in the task t as

〈gt,⋆〉 =[ kt,1,⋆ . . . kt,P,⋆]
⊤ 〈at〉.

The posterior predictive mean of the pre-

dicted output ft,⋆ can also be found by replacing

p
(

bt , et , s|
{

{Kt,m}Pm=1, yt
}T

t=1

)

with its approximate

posterior distribution q(bt)q(et|s)q(s):

〈ft,⋆〉 = 〈(s ◦ et)
⊤〉〈gt,⋆〉 + 〈bt〉,

where we use 〈ft,⋆〉 to predict the class label by looking at

its sign.

Baseline algorithm

We use a kernelized Bayesian classification algorithm,

which is known as relevance vector machine [24], as

the baseline algorithm. Its distributional assumptions are

defined as

λi ∼ Gamma (λi;αλ,βλ) ∀i

ai|λi ∼ Normal
(

ai; 0, λ
−1
i

)

∀i

γ ∼ Gamma
(

γ ;αγ ,βγ

)

b|γ ∼ Normal
(

b; 0, γ −1
)

fi|a, b, ki ∼ Normal
(

fi;a
⊤ki + b, 1

)

∀i

yi|fi ∼ Kronecker
(

fiyi > ν
)

∀i,

where the predicted outputs of data points are modeled

as a linear function of their kernel representations (i.e.

a⊤ki + b). We again learn the posterior distribution over

the model parameters and the latent variables using a

deterministic variational approximation as we do for our

methods. We call this algorithm ‘Bayesian relevance vec-

tor machine’ (BRVM). We have three main reasons for

choosing this particular baseline algorithm: (i) BRVM can

make use of kernel functions to obtain nonlinear models

like our methods. (ii) We can see the effect of using gene

set information by comparing our methods to BRVM.

(iii) BRVM uses the same type of inference mechanism

with our methods.

Results and discussion

To illustrate the effectiveness of our proposed methods

SBMKL and SBMTMKL, we report their results on four

datasets (i.e. two cancer and two tuberculosis datasets)

and compare them to the baseline algorithm BRVM,

which does not make use of gene set information, using

repeated random subsampling validation experiments.

Experimental settings

For each dataset, we create 100 random train/test splits to

obtain robust results. For each replication, the training set

is defined by randomly selecting 75 % of the data points

with stratification on the phenotype, and the remaining

25 % of the samples are used as the test set. The train-

ing set is normalized to have zero mean and unit standard

deviation, and the test set is then normalized using the

mean and the standard deviation of the original training

set.

We extract gene sets from ‘the Molecular Signatures

Database’ (MSigDB) [3], which contains curated pathway

gene sets from online databases such as ‘the Kyoto Ency-

clopedia of Genes and Genomes’ (KEGG) [25] and ‘the
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Pathway Interaction Database’ (PID) [26]. In our experi-

ments, we use 196 PID pathways reported in MSigDB as

our gene set collection.

To calculate similarity between data points for all meth-

ods, we use the Gaussian kernel:

kGaussian(xi, xj) = exp
(

−‖xi − xj‖
2
2/(2s

2)
)

,

where ‖ · ‖2 denotes the ℓ2-norm, and we set the ker-

nel width s to the mean of pairwise Euclidean distances

between the data points:

s =
1

N2

N
∑

i=1

N
∑

j=1

‖xi − xj‖2.

For BRVM, we calculate a single kernel over all input

features. For SBMKL and SBMTMKL, we calculate a sepa-

rate kernel function for each gene set over the correspond-

ing features. Note that the Gaussian kernels calculated on

the gene sets take values between 0 and 1 by definition,

and there is no need for eliminating small/large gene sets

or performing additional normalization steps to remove

the effect of gene set size.

The hyper-parameter values of BRVM are selected as

(αλ,βλ) = (1, 1), (αγ ,βγ ) = (1, 1) and ν = 1. The

hyper-parameter values of SBMKL and SBMTMKL are

selected as (αλ,βλ) = (1, 1), σg = 0.1, (ζκ , ηκ) =

(1, 999), (αω,βω) = (1, 1), (αγ ,βγ ) = (1, 1) and ν = 1.

Note that (ζκ , ηκ) are set to these particular values to

produce very sparse binary indicator variables, leading to

classifiers with very few gene sets used for prediction. For

BRVM, we perform 200 iterations during variational infer-

ence, whereas we perform 50 iterations for SBMKL and

SBMTMKL.

We use ‘area under the receiver operating character-

istic curve’ (AUROC) to compare classification results.

AUROC is used to summarize the receiver operating char-

acteristic curve, which is a curve of true positives as a

function of false positives while the threshold to pre-

dict labels changes. Larger AUROC values correspond to

better performance.

Classification results on the cancer datasets

On the cancer datasets, we run binary classification exper-

iments to separate MSI-H patients from others (i.e. MSI-L

and MSS), which is in agreement with the earlier stud-

ies that combine MSI-L and MSS tumors into the same

group [11]. For BRVM and SBMKL methods, we train

a separate classification model on each dataset, whereas,

for SBMTMKL, we train a joint model on both datasets.

Figure 3 compares the performance of BRVM, SBMKL

and SBMTMKL on both datasets in terms of AUROC over

100 replications using box-and-whisker plots, and also

reports the average AUROC value for each experiment.

We clearly see that our methods with sparse gene set

Fig. 3 AUROC values on the cancer datasets for MSI-H versus others

classification. The box-and-whisker plot shows the results over 100

replications in repeated random subsampling validation experiments

of BRVM, SBMKL and SBMTMKL on both datasets. The numbers just

below the dataset names give the average AUROC value for each

experiment

weights, leading to classifiers with very few active features,

obtain results comparable to or even better than BRVM.

Note that BRVM uses all available input features of the

genomic data for classification. For example, SBMKL falls

behind BRVM just by 0.1 % on COADREAD dataset, but

obtains 2.9 % higher average AUROC on UCEC dataset.

The average AUROC values become even higher if we

model both datasets together using our multitask learn-

ing method SBMTMKL, which outperforms BRVM by

1.0 and 3.4 % on COADREAD and UCEC, respectively.

Our sparse classifiers obtain these results using very few

active features (i.e. features related to the genes in the gene

sets with nonzero binary indicator variables); SBMKL uses

154.19 (3.40) and 403.03 (8.27) out of 20 530 (196) input

features (gene sets) on the average, whereas SBMTMKL

uses 484.03 (9.96) features (gene sets) on the average (i.e.

less than 2.5 % of the input features) and obtains bet-

ter classification results than BRVM and SBMKL on both

datasets.

Classification results on the tuberculosis datasets

On the tuberculosis datasets, we perform binary clas-

sification experiments to separate individuals with ATB

from others (i.e. individuals with LTBI or OD), which is

critical in clinical settings because we should correctly

identify individuals who need tuberculosis treatment [14].

Figure 4 compares the performance of BRVM, SBMKL
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Fig. 4 AUROC values on the tuberculosis datasets for ATB versus

others classification. The box-and-whisker plots show the results over

100 replications in repeated random subsampling validation

experiments of BRVM, SBMKL and SBMTMKL on both datasets. The

numbers just below the dataset names give the average AUROC

value for each experiment

and SBMTMKL on both datasets. We see that our meth-

ods obtain results better than BRVM. On ADULT and

PEDIATRIC datasets, SBMKL outperforms BRVM by 0.8

and 0.2 % using 782.21 (11.41) and 569.51 (7.88) out of

47, 323 (196) input features (gene sets) on the average,

respectively. Our multitask learning method SBMTMKL

again has the highest AUROC values on both datasets and

outperforms BRVM by 1.5 % on ADULT and 1.3 % on

PEDIATRIC using 1 102.65 (16.07) features (gene sets) on

the average.

Biological results on the cancer datasets

To illustrate the biological relevance of our methods,

we analyze their abilities to identify relevant gene sets

based on the binary indicator variables inferred dur-

ing training. For each gene set, we count the num-

ber of replications in which the corresponding binary

indicator variable is nonzero. Table 3 lists the top 10

most frequently selected gene sets together with their

selection frequencies for three scenarios: (i) SBMKL on

COADREAD, (ii) SBMKL on UCEC and (iii) SBMTMKL

on COADREAD and UCEC. We see that SBMKL is

able to identify WNT_NONCANONICAL_PATHWAY and

TGFBRPATHWAY as the top two gene sets in the first

scenario, which are reported to be involved in the ini-

tiation and progression of colorectal cancer [12]. How-

ever, their selection frequencies are quite low (i.e. less

than or equal to 0.10). Similarly, for UCEC, it is able

to identify two apoptosis-related gene sets, namely,

P53DOWNSTREAMPATHWAY and NOTCH_PATHWAY, as

the top gene sets with more than 0.80 frequencies, which

are known to be associated with endometrial cancer [13].

When we jointly model both datasets using our multi-

task learning method SBMTMKL, we are able to iden-

tify P53DOWNSTREAMPATHWAY, NOTCH_PATHWAY and

WNT_NONCANONICAL_PATHWAY as the top gene sets

with increased frequencies compared to those of SBMKL.

We see that multitask learning decreases the effect of

random subsampling by picking relevant gene sets more

frequently, leading to more robust knowledge extraction

for both datasets.

We also count the number of replications for each

gene in which it is included in the final classifier.

Figure 5 displays the top 50 most frequently selected

genes together with their selection frequencies for three

scenarios. CREBBP, EP300, JUN and MDM2 are among

the top 50 genes for all scenarios, which is reasonable

Table 3 Gene set selection results on the cancer datasets for MSI-H versus others classification

SBMKL on COADREAD SBMKL on UCEC SBMTMKL on COADREAD and UCEC

Gene set name Frequency Gene set name Frequency Gene set name Frequency

WNT_NONCANONICAL_PATHWAY 0.10 P53DOWNSTREAMPATHWAY 0.92 P53DOWNSTREAMPATHWAY 0.99

TGFBRPATHWAY 0.09 NOTCH_PATHWAY 0.83 NOTCH_PATHWAY 0.92

DELTANP63PATHWAY 0.07 NFAT_TFPATHWAY 0.26 WNT_NONCANONICAL_PATHWAY 0.61

TAP63PATHWAY 0.07 IL5_PATHWAY 0.24 NFAT_TFPATHWAY 0.41

RB_1PATHWAY 0.07 P53REGULATIONPATHWAY 0.24 AR_PATHWAY 0.34

NFAT_3PATHWAY 0.06 CDC42_REG_PATHWAY 0.20 RHOA_PATHWAY 0.21

ATF2_PATHWAY 0.06 AVB3_OPN_PATHWAY 0.15 REG_GR_PATHWAY 0.21

SMAD2_3NUCLEARPATHWAY 0.05 WNT_NONCANONICAL_PATHWAY 0.14 UPA_UPAR_PATHWAY 0.17

P73PATHWAY 0.05 REG_GR_PATHWAY 0.13 BMPPATHWAY 0.17

MYC_ACTIVPATHWAY 0.05 UPA_UPAR_PATHWAY 0.11 RAC1_PATHWAY 0.14

The table displays the top 10 most frequently selected gene sets together with their selection frequencies for three scenarios
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Fig. 5 Gene selection results on the cancer datasets for MSI-H versus others classification. The bar plots display the top 50 most frequently selected

genes together with their selection frequencies for three scenarios. Blue bars show the genes that are in the top 50 for all scenarios, and orange bars

show the genes that are in the top 50 only for multitask learning scenario

considering their functions in cell cycle. We see that the

selection frequencies of the first two scenarios are lower

than those of the third scenario, which is consistent with

our gene set selection results. Our multitask learning

method SBMTMKL includes several genes in the top 50

that are not selected by SBMKL in two other scenar-

ios, which may lead to interesting findings. For example,

E2F1, E2F2 and E2F3 are used in the final classifier in all

replications, which are reported to be related to cellular

proliferation [27].

Biological results on the tuberculosis datasets

We also evaluate the gene set selection results of our

methods on the tuberculosis datasets. Table 4 lists the top

Table 4 Gene set selection results on the tuberculosis datasets for ATB versus others classification

SBMKL on ADULT SBMKL on PEDIATRIC SBMTMKL on ADULT and PEDIATRIC

Pathway name Frequency Pathway name Frequency Pathway name Frequency

ERBB_NETWORK_PATHWAY 0.73 A6B1_A6B4_INTEGRIN_PATHWAY 0.31 RHODOPSIN_PATHWAY 0.67

AP1_PATHWAY 0.55 RAS_PATHWAY 0.27 ERBB_NETWORK_PATHWAY 0.63

CONE_PATHWAY 0.44 INTEGRIN1_PATHWAY 0.24 AP1_PATHWAY 0.60

AR_TF_PATHWAY 0.42 RAC1_PATHWAY 0.21 SYNDECAN_1_PATHWAY 0.51

CERAMIDE_PATHWAY 0.31 RHODOPSIN_PATHWAY 0.20 PLK1_PATHWAY 0.50

RHODOPSIN_PATHWAY 0.31 SYNDECAN_1_PATHWAY 0.17 CERAMIDE_PATHWAY 0.42

SYNDECAN_1_PATHWAY 0.29 ATM_PATHWAY 0.16 ATM_PATHWAY 0.41

FANCONI_PATHWAY 0.25 ATF2_PATHWAY 0.15 AR_TF_PATHWAY 0.40

RXR_VDR_PATHWAY 0.24 THROMBIN_PAR1_PATHWAY 0.15 ATF2_PATHWAY 0.37

HNF3BPATHWAY 0.23 IL12_2PATHWAY 0.13 HNF3APATHWAY 0.35

The table displays the top 10 most frequently selected gene sets together with their selection frequencies for three scenarios
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10 most frequently selected gene sets together with their

selection frequencies for three scenarios: (i) SBMKL on

ADULT, (ii) SBMKL on PEDIATRIC and (iii) SBMTMKL

on ADULT and PEDIATRIC. We see that the gene set

selection frequencies of SBMKL on PEDIATRIC dataset

are quite low (i.e. between 0.13 and 0.31) compared to

those on ADULT dataset. However, when we model both

datasets using ourmultitask learningmethod SBMTMKL,

the selection frequencies of the top 10 gene sets become

significantly higher (i.e. between 0.35 and 0.67), leading to

more robust gene set signatures.

Figure 6 displays the top 50 most frequently selected

genes together with their selection frequencies for three

scenarios. We see that the genes that are part of signaling

mechanisms such as MAPK1, MAPK3, MAPK8, PIK3CA,

PIK3R1 and RAC1 are selected in the top 50 genes for all

scenarios. Similar to the results on the cancer datasets, the

selection frequencies of the first two scenarios are lower

than those of the third scenario, which shows the robust-

ness of multitask learning approach. As an interesting

finding, SBMTMKL includes three genes from interleukin

family, namely, IL8, IL2 and IL6, in the top 50, which are

shown to be diagnostically associated with tuberculosis

[28–30], whereas they are not picked in the top 50 by

SBMKL in single dataset experiments.

Conclusions

Integrating gene set analysis and predictive modeling

is already considered by many existing studies, which

fail either to capture nonlinear dependencies between

genomic data and phenotype or to model multiple related

datasets conjointly.

In this study, we integrate gene set analysis and non-

linear predictive modeling of disease phenotypes by cast-

ing this problem into a binary classification framework

defined on the gene sets with a sparsity-inducing prior on

their weights. To this aim, we propose a Bayesian multiple

kernel learning algorithm, which produces a classifier with

sparse gene set weights, by extending our earlier Bayesian

formulation [8]. We then generalize this new algorithm

to multitask learning to be able to model multiple related

datasets conjointly, leading to better generalization per-

formance and to more robust molecular signatures. The

main novelty of our methods is the integration of gene

set analysis and nonlinear predictive modeling using a

probabilistic formulation, which enables us to robustly

capture nonlinear dependencies between genomic data

and phenotype even with small sample sizes, and to use

overlapping gene sets and gene sets with different sizes

without any major concern. Our approach brings us two

side advantages: (i) We can identify very few gene sets

Fig. 6 Gene selection results on the tuberculosis datasets for ATB versus others classification. The bar plots display the top 50 most frequently

selected genes together with their selection frequencies for three scenarios. Blue bars show the genes that are in the top 50 for all scenarios, and

orange bars show the genes that are in the top 50 only for multitask learning scenario
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predictive of the phenotype, which may shed light on

underlying biological processes. (ii) We can reduce the

data acquisition cost for test samples in clinical settings by

collecting only the features used in our classifier.

To demonstrate the performance of our algorithms

SBMKL and SBMTMKL, we perform repeated random

subsampling validation experiments on four datasets of

two major human diseases, namely, cancer and tuberculo-

sis. On the two cancer datasets [12, 13], we decide whether

a colorectal or endometrial tumor displays micro-satellite

instability using its mRNA gene expression data. On the

two tuberculosis datasets [14, 15], we diagnose whether

an adult or pediatric individual has an active tuberculosis

infection using his/her whole blood RNA expression data.

We compare our two methods to a baseline Bayesian non-

linear algorithm that is trained on all available genomic

data without using gene set information. Our methods

obtain comparable or even better predictive performance

using very few features (i.e. less than 2.5 % of the input

features) on all datasets. We also show that we are able to

identify biologically relevant genes and gene sets for can-

cer and tuberculosis phenotypes, which are validated by

the existing studies from the literature. The results of our

multitask learning algorithm show that modeling multiple

related datasets conjointly enables us to further improve

the generalization performance and to better understand

biological processes behind disease phenotypes.

In the experiments reported, we use real-valued gene

expression measurements as genomic data. Our methods

can also be applied to discrete data such as mutation pro-

files of tumors, which are hard to use in classical gene

set analysis methods due to their very sparse nature. As

a possible extension, we plan to use our kernel-based

formulations on cancer datasets to identify driver muta-

tions using kernels for discrete data such as the Jaccard

similarity coefficient.
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