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Systems biology approaches that are based on the genetics of gene expression have been fruitful in identifying genetic
regulatory loci related to complex traits. We use microarray and genetic marker data from an F2 mouse intercross to
examine the large-scale organization of the gene co-expression network in liver, and annotate several gene modules in
terms of 22 physiological traits. We identify chromosomal loci (referred to as module quantitative trait loci, mQTL) that
perturb the modules and describe a novel approach that integrates network properties with genetic marker
information to model gene/trait relationships. Specifically, using the mQTL and the intramodular connectivity of a
body weight–related module, we describe which factors determine the relationship between gene expression profiles
and weight. Our approach results in the identification of genetic targets that influence gene modules (pathways) that
are related to the clinical phenotypes of interest.

Citation: Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, et al. (2006) Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet
2(8): e130. DOI: 10.1371/journal.pgen.0020130

Introduction

The identification of pathways and genes underlying
complex traits using standard mapping techniques has
been difficult due to genetic heterogeneity, epistatic
interactions, and environmental factors [1,2]. One promis-
ing approach to this problem involves the integration of
genetics and gene expression [3–7]. Network methods have
been applied to identify and characterize various biological
interactions [8–11], and have helped to predict gene
function in lower eukaryotes [12,13]. Recently, gene net-
work methods have been used in the analysis of complex
traits in higher organisms [14,15]. Here, we present a novel
approach for using gene co-expression networks to study
the genetics of complex physiological traits that are
relevant to metabolic syndrome (obesity, insulin resistance,
and dyslipidemia).

The traditional quantitative trait locus (QTL) mapping
approach [16] relates clinical traits to genetic markers
directly. Several authors have proposed a strategy that uses
genome-wide gene expression data to help map clinical
traits [3–7,17–25] The strategy uses the genetics of gene
expression to reconstruct metabolic or regulatory pathways,
and utilizes gene expression as a quantitative trait, thereby
mapping expression QTL (eQTL). Using this method, several
groups have found ‘‘hotspot’’ regions (regulatory gene
regions) in the genome that are involved in regulating the
expression of many genes [3,18,26]. These hotspots highlight
the genomic loci that determine the relationship between
the phenotype and groups of functionally related genes [26].

Here, we propose a novel approach for integrating network
properties with genetic information to determine the
relationship between clinical traits and groups of physio-
logically relevant genes. The following steps summarize our
overall approach: (1) A gene co-expression network is
constructed from genome-wide expression data from a
segregating population. (2) The biochemical and physiolog-
ical significance of the network modules are determined. (3)
Genetic loci regulating gene modules within the network are
identified. (4) Network properties are integrated with
genetic information to explain the biological significance
of the module genes.
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Results

Construction of a Weighted Mouse Liver Co-Expression
Network

The details of the gene co-expression network construction
are given in [27] and summarized in Materials and Methods.
Briefly, the absolute value of the Pearson correlation
coefficient is calculated for all pair-wise comparisons of gene
expression values across all microarray samples. This corre-
lation matrix is then transformed into a matrix of connection
strengths using a power function (connection strength ¼
jcorrelationjß), resulting in a weighted network. The use of
weighted networks represents an improvement over un-
weighted networks that are based on dichotomizing the
correlation matrix, because (1) the continuous nature of the
gene co-expression information is preserved and (2) the
results of weighted network analyses are highly robust with
respect to the choice of the parameter ß, whereas unweighted
networks display sensitivity to the choice of the cutoff
threshold [27].

We applied the network construction algorithm to a subset
of gene expression data from an F2 intercross between inbred
strains C3H/HeJ and C57BL/6J. Liver gene expression data
from 135 female mice were used for this analysis (see
Materials and Methods). This cross is described in detail
elsewhere [28], and will herein be referred to as the BxH
cross.

As detailed in the Materials and Methods section, we used
only the 3,421 most varying and most connected genes for
module detection. This should not lead to major information
loss since module genes tend to be highly connected. As
shown in Figure 1A and 1B, transcripts were clustered into
distinct groups, herein referred to as modules. We were able
to identify 12 distinct gene modules or groups of genes with
high topological overlap (for details on module construction,
see Materials and Methods). To distinguish between modules,
we designated each module by an arbitrary color. The
number of genes included in the modules ranged from 34
(Light-yellow) to 772 (Red), and their mean overall connec-
tivity (kall) ranged from 6.49 (Salmon) to 27.58 (Brown). We

also defined the intramodular connectivity (kin) for each gene
based on its Pearson correlation with all other genes in the
module (see Materials and Methods). Summary statistics for
all gene modules are available in Table S1. Detailed
information about all genes and their network properties
are available in Protocol S1.
Since we make use of the intramodular connectivity in the

Blue module (534 genes), we studied its robustness with
respect to dropping half of the microarrays used in its
definition. Specifically, the following procedure was carried
out 1,000 times. We randomly omitted half of the microarrays
from the analysis when computing intramodular connectivity
of the Blue module genes. Next, we correlated the resulting
connectivity measures with the original full data intra-
modular connectivities. The median correlation between
the full data connectivity and that of the 1,000 replicate
subsets was 0.89 (interquartile range ¼ [0.86,0.91]), which
demonstrates that the intramodular connectivity measure is
highly robust with respect to randomly omitting half of the
microarrays.

Biological Significance of Network Modules
We examined the functional significance of the gene

modules by testing for both enriched biochemical pathways
and subcellular compartmentalization of proteins corre-
sponding to genes within a gene module. First, we examined
whether these modules were enriched for gene products in a
specific subcellular compartment as defined by Gene Ontol-
ogy (GO). Using the WebGestalt web site (http://genereg.ornl.
gov/webgestalt) [29], we calculated the enrichment of any
specific GO cellular component in each module. All statisti-
cally significant observations are presented in Protocol S2.
The results show that each module was enriched with distinct
gene sets belonging to separate compartments within the cell.
Interestingly, very few modules shared the same category. The
‘‘nucleus’’ category was enriched for both the Black and the
Green-yellow (light green in color) modules. However, the
nuclear genes for the Green-yellow module were genes
involved in chromosomal maintenance, and for the Black
module, they were genes involved in the regulation of
transcription and DNA binding. Overall, these results are
consistent with a model in which some gene modules
correspond roughly to the spatial location of their products.
In order to gain further insight into the functional

significance of the gene modules, we utilized the Expression
Analysis Systemic Explorer (EASE) software package [29]
which can be used to conduct a pathway enrichment analysis
for each module. EASE can be utilized to find enrichment of
pathways annotated in the Kyoto Encyclopedia of Genes and
Genomes (KEGG). The EASE analysis for functional enrich-
ment of modules found that seven modules are significantly
enriched. The Brown module is enriched for genes within the
Biosynthesis of steroids (p ¼ 2.3 3 10�6) and Glycolysis/
Gluconeogenesis’’ (p¼ 1.53 10�5) pathways. These results are
consistent with the finding that the Brown module is closely
related to the plasma insulin levels (see below). The Blue
module is enriched for genes in the ECM-receptor inter-
action (p ¼ 2.3 3 10�9) and Complement and coagulation
cascades (p ¼ 1.0 3 10�6) pathways. The Green module is
enriched for the Toll-like receptor signaling (p¼ 1.6 3 10�8),
the Cytokine–cytokine receptor interaction (p ¼ 2.9 3 10�7),
and the Hematopoietic cell lineage (p¼ 6.63 10�5) pathways.
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Synopsis

Obesity is a major public health concern in many developed
countries. While some people appear to stay lean no matter what or
how much they eat, others appear to be genetically predisposed to
obesity. The genetic similarity between mouse and human makes
the mouse a promising mammalian model system to study obesity.
Advantages of mouse models include the ability to control diet/
environment and easy access to relevant tissues for gene expression
studies. Mouse cross studies have implicated dozens of chromoso-
mal regions that contain weight-predisposing genes, and gene
expression studies have yielded hundreds of body weight–related
genes. In this study, the authors use a gene network–based
approach for integrating clinical traits, genetic marker data, and
gene expression data. Instead of focusing on individual genes, the
authors provide a systems-level view of a module of genes related
to body weight. The resulting model allows them to characterize
weight-related genes utilizing network concepts (intramodular
connectivity) and genetic concepts (module quantitative trait locus).
This integrative genomics approach provides new insights into the
relationship between gene expression and body weight.



The Green-yellow module is enriched for genes involved in
the Cell cycle pathway (p ¼ 6.3 3 10�18). The Light-yellow
module is enriched for genes involved in the MAPK signaling
pathway (p ¼ 5.4 3 10�3). The Midnight-blue module is
enriched for genes involved in the Nitrobenzene degradation
pathway (p¼ 7.1310�4). The Light-yellow module is enriched
for genes involved in the Ribosome pathway (p¼ 3.1 3 10�4).
A detailed KEGG pathway analysis for each module can be
found in Protocol S2.

Next, we assessed the physiological relevance of each
module by examining the overall correlation of the module
genes with each of the phenotypes in F2 mice. In the BxH F2
cross, 22 physiological traits were measured for each animal.
For a given physiological trait, we defined a measure of gene
significance by forming the absolute value of the correlation
between trait and gene expression values. For example, the
body weight can be used to define a gene significance of the
ith gene expression GSweight(i)¼ jcor(x(i), weight)j where x(i)
is the gene expression profile of the ith gene. The mean gene
significance for a particular module can be considered as a
measure of module significance (MS) (see Materials and
Methods for statistical test), which means that MS provides a
measure for overall correlation between the trait and the
module. For example, a module with a high MS value for
‘‘body weight’’ is on average composed of genes highly
correlated with body weight. The two highest MS scores
observed were for the Blue module with mouse weight (g) (MS
¼ 0.395, p ¼ 7.7 3 10�5), and the Brown module with plasma
glucose-insulin ratio (MS ¼ 0.336, p¼ 0.004). In addition, the
Blue module was also related to abdominal fat pad mass (g)
(MS¼ 0.323, p¼ 0.009), and total mass (g) of other fat depots
(MS ¼ 0.309, p ¼ 0.02; Figure 2). The Brown module was also

Figure 1. Visual Representations of the Gene Co-Expression Network

(A) Hierarchical clustering of 3,421 genes and visualization of gene module partitioning. The colored bars (below) directly correspond to the module
(color) designation for the clusters of genes. One can visualize where in the whole clustering dendrogram the gene modules were defined.
(B) Multi-dimensional scaling plot representation of the entire gene expression network. Each gene is represented by a dot, where the color of the dot
corresponds to the gene module to which that gene belongs. The distance between each dot is representative of their topological overlap. This
representation allows one to visualize the relationships among genes within a gene module, how that module is related to the rest of the network, and
how closely any two modules are related.
DOI: 10.1371/journal.pgen.0020130.g001

Figure 2. The Relationship between the Blue Module and Several Clinical

Traits

Module significance is defined as the mean of the absolute value of the
correlation coefficient for all genes within a module with a physiological
trait of interest. A module significance of 0.30 is statistically significant at
a p-value of 0.05 for any module given n¼ 135 mice after correction for
multiple comparisons (see Materials and Methods).
Abfat, abdominal fat (g); Aneurysm, aneurysms as measured by
histological examination using a semi-quantitative scoring method.
AorticCal.L, aortic calcification in the lesion area; AorticCal.M, medial
aortic calcification; Chol, total plasma cholesterol (mg/dl); FFA, plasma
free fatty acids (mg/dl); HDL, high-density lipoprotein fraction of
cholesterol (mg/dl); Index, adiposity index (total fat 3 100/weight); Ins,
plasma insulin (lg/l); LDLþVLDL, plasma low-density lipoprotein and very
low-density lipoprotein choleseterol (mg/dl); Lesion, aortic lesion size as
measured by histological examination using a semi-quantitative scoring
method; MCP-1, plasma MCP-1 protein levels; otherfat, subcutaneous,
retroperitoneal, and mesenteric fat (g); TG, plasma triglycerides (mg/dl);
Totalfat, Abfatþ otherfat; UC, plasma unesterified cholesterol (mg/dl).
DOI: 10.1371/journal.pgen.0020130.g002
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found to be significantly related to plasma insulin levels (mg/
dl) (MS¼ 0.295, p¼ 0.04). The results for the trait analyses for
all modules with all traits are available in Figure S1. Since the
Blue module was the most significantly related module to our
clinical traits, our follow-up analysis focuses on this module.

It has been demonstrated in lower organisms that targeted
attacks on genes with very high connectivity often result in
lethal phenotypes [30–33]. These results motivated us to study
genes with high values of the intramodular connectivity
measure (kin). As described in the previous section, the kin for
each gene is based on its Pearson correlation with all the
other genes in the module (Materials and Methods). To assess
the significance of kin, we analyzed the Blue module, which
showed the highest MS value in our previous analysis, and
plotted kin against gene significance for all 534 genes in this
module. The plot is shown in Figure S2A (first panel). It is
evident from this plot that there is a direct relationship
between the connectivity of a gene and the extent to which it
is related to the body weight (Spearman correlation¼ 0.41, p
, 10�20). This analysis showed that the connectivity within a
physiologically relevant module is directly related to the gene
significance. General information for all Blue module hub
genes is presented in Table S2. We also measured gene
expression levels and calculated the intramodular connectiv-
ity and gene significance for the Blue module genes in the
brain, muscle, and adipose tissues in both male and female
(C57BL/6JxC3H/HeJ) F2 mice. We find a moderate relationship
between the connectivity and gene significance in male liver
gene expression network (Spearman correlation 0.16 and p¼
0.00028; Figure S2). In addition, our data suggest negligible
relationships between connectivity and gene significance for
other tissues (Figure S2). Since our data were not designed for
detecting subgroup differences, the tissue-specific conclusion
about relationship between connectivity and gene signifi-
cance warrants further validation.

Genetic Analysis of the Network Modules
The above results regarding co-expression modules made

use only of the gene expression data. In the following, we
relate the module gene expressions to the genetic marker
data to investigate the genetic underpinnings of the network
modules. Recently, we and others have shown that there are
genomic ‘‘hotspots’’ across the genome that regulate tran-
script levels of the genes [3,14,18,26]. Since the co-expression
network constructed here contained biologically relevant

gene modules, we hypothesized that there might also be
genomic hot spots that coordinately regulate the transcript
levels of the genes within each module. Using 1,065 single
nucleotide polymorphism (SNP) markers that were evenly
spaced across the genome (;1.5 cM density), we mapped the
gene expression values and plotted the distribution of the
eQTL [3,7] for all genes within each gene module. We defined
a module quantitative trait locus (mQTL) as the locus with a
significant enrichment for eQTL of the genes within a
predetermined gene module. Since we were interested in
studying the genetics of modules as opposed to the genetics of
the entire network, when searching for mQTLs, we focused
on module-specific eQTL hot spots[3,4]. Toward this end, we
used the Fisher exact test to determine whether the
proportion of module genes that map to the eQTL hotspot
was significantly higher than that of the 8,000 network genes.
The results for the Blue module are shown in Figure 3. We
found that the Blue module has nine mQTLs. These are
located on Chromosomes 2, 3, 5, 10 (middle), 10 (distal), 12
(proximal), 12 (middle), 14, and 19. The physical locations of
the peak markers for all mQTL of the Blue module are given
in Table 1.
To identify the likely candidate genes for each of the

mQTL loci, we examined the cis-eQTLs at each of these loci.
A cis-eQTL represents a genetic perturbation in a gene
(between mouse strains C57BL/6J and C3H/HeJ) that leads to a
change in its transcript levels. Due to the density of our
genetic map (;1.5 cM), we defined the eQTL to be cis-acting if
the physical location of the gene was within 5 megabases (Mb)
of its eQTL location. The complete list of cis-eQTLs
(logarithm of the odds score [LOD] . 4.3) for the Blue
module corresponding to these mQTL regions is given in
Table 1. For the Blue module mQTL, we found a total of 30
cis-eQTLs. Of particular interest are Cyp2c39, Cyp2c40, and
Cyp2c37, which we have previously reported as candidate
genes associated with weight in rodents using a different but
related method in an independent F2 mouse cross [26].
We then explored whether any of the physiological trait

QTL overlap with the physical location of their correspond-
ing mQTL. First, we mapped the trait with the highest module
significance score for the Blue module (i.e., body weight). The
QTL curve for the single marker genome scan is shown in
Figure 3. This analysis revealed the presence of four QTL
(LOD . 3) on Chromosomes 1 (143 Mb), 5 (118 Mb), 15 (78
Mb), and 19 (50 Mb). Interestingly, the Chromosome 19 locus

Table 1. Blue Module mQTL and Candidate cis-eQTL at These Loci

mQTL SNP ID SNP Physical Position Bonferroni Corrected

Enrichment p-Value

Candidate Genes

(cis-eQTLs) LOD . 4.3

mQTL2 rs3662347 Chromosome 2, 56.8 Mb 4.3E�03 Rif1, Neb, Gpd2, Galnt3, Scn7a, Metapl1

mQTL3 rs3714671 Chromosome 3, 79.8 Mb 2.6E�04 Lrat, Tdo2, Gucy1a3

mQTL5 rs3721607 Chromosome 5, 82.8 Mb 1.7E�02 AI586015

mQTL10a rs3676909 Chromosome 10, 58.8 Mb 9.8E�05 Rik (69894)

mQTL10b rs3704401 Chromosome 10, 101.8 Mb 1.4E�03 Kitl, Dusp6

mQTL12a rs3658504 Chromosome 12, 16.6 Mb 4.1E�04 Gm67, Atp6v1c2, Rik (77480), Rik (72123), Rrm2, Cys1

mQTL12b rs3683481 Chromosome 12, 38.2 Mb 1.1E�08 Stxpb6

mQTL14 rs3691821 Chromosome 14, 49.7 Mb 4.7E�04 Rik (108670), Rik (219189), Lect1, Dgkh

mQTL19 rs3658160 Chromosome 19, 47.0 Mb 1.4E�06 Pde6c, Cyp2c39, Cyp2c40, Cyp2c37, Rik (74580), Pi4k2a

DOI: 10.1371/journal.pgen.0020130.t001
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overlapped with the Blue mQTL locus. To explore whether
there are interactions among the four loci mentioned above,
we then fit a multiple QTL model. Using model selection
[34,35], we found that the best fit is provided by a model that
incorporates interactions between Chromosomes 1 and 15,
and Chromosomes 1 and 19 (Table S3). In contrast to the
additive model, which explained 34% of weight variation, this
model was able to explain 45% of the variation in weight
among the F2 mice.

Integration of Genetics and Intramodular Connectivity to
Explain Physiological Significance of the Module

Next, we sought to explore the relationships between the
intramodular connectivity (kme), weight, and mQTL. kme is
the module eigengene-based connectivity (see the Materials
and Methods section). To carry out this analysis, we defined
two terms: GSweight and GSmQTL. As mentioned before,
GSweight is defined as the absolute value of the correlation

between gene expression profile and weight. GSmQTL is
defined as a measure of gene significance for each of the SNPs
underlying the mQTL. Using an additive marker coding
(0,1,2) to code the three possible genotypes at each locus in
the F2 mice, we defined the SNP gene significance measure of
the ith gene expression x(i) by the absolute value of its
correlation with the SNP under consideration.

GSmQTLðiÞ ¼ jcorðxðiÞ; SNPÞj: ð1Þ

This measure is highly correlated with the traditional LOD.
We prefer this correlation based SNP significance measure
over the LOD because (1) this definition is consistent with our
co-expression measure between two gene expression profiles
and with the definition of the body weight–based gene
significance measure, and (2) this definition measures the
effect size of the SNP without regard to the sample size.
The mQTL-based significance measure for a particular

SNP is designated ‘‘GSmQTL’’ followed by the chromosome

Figure 3. Blue Module mQTL Profile Partially Overlaps with the Physiological Trait (Weight) QTL

The black curves represent the QTL analysis across the genome for mouse body weight using a single marker genome scan according to the LOD score
scale to the right. Evidence of linkage for weight was found on Chromosome 1 (50.4 Mb, LOD ¼ 3.03), Chromosome 5 (118.5 Mb, LOD ¼ 3.39),
Chromosome 15 (78.2 Mb, LOD ¼ 3.58), and Chromosome 19 (50.4 Mb, LOD ¼ 4.07). For each marker, the blue vertical line represents the number
(divided by 20) of significant Blue module genes, i.e., the number of genes whose single-point LOD at this marker is bigger than 2. For example, there is
a SNP marker on Chromosome 2 at which 117 Blue module genes have a LOD bigger than 2. The red stars denote the locations of the mQTLs reported
in Table 1.
DOI: 10.1371/journal.pgen.0020130.g003

Table 2. Multivariate Linear Regression Models for GSweight

Model Regression Model R2 Covariate Co-Efficient Z p-Value

Model 1: Genetic View GSweight ; GSmQTL* þ GSmQTL19 0.37 GSmQTL* �0.250 �8.05 5E�15

GSmQTL19 0.652 12.30 ,2E�16

— — — —

Model 2: Network View GSweight ; kme 0.34 — — — —

— — — —

kme 0.643 16.51 ,2E�16

Model 3: Genetic þNetwork View GSweight ; GSmQTL* þ GSmQTL19 þkme 0.70 GSmQTL* �0.304 �14.00 ,2E�16

GSmQTL19 0.552 14.87 ,2E�16

kme 0.636 23.86 ,2E�16

Z denotes the Wald test statistic, and we report the corresponding p-value based on an asymptotic approximation.
DOI: 10.1371/journal.pgen.0020130.t002
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number on which the corresponding SNP is located. For
example, GSmQTL2 is the mQTL-based significance for the
mQTL peak marker SNP on Chromosome 2. For simplicity,
we make use of an additive marker coding, i.e., we assume an
additive allelic effect. While there are situations when a
dominant marker coding (AA!1, AB!1, and BB!0) or a
recessive marker coding (AA!1, AB!0, and BB!0) is
preferable, simulation studies have shown that, in general,
the additive marker coding works well for a wide range of
genetic models [36].

To assess the relationship between GSweight, kme, and
GSmQTL we used a multivariate linear regression model.
When we regressed GSweight on GSmQTL, we found that
GSmQTL19 was positively correlated with GSweight (Figure
4) whereas GSmQTL2, GSmQTL5, and GSmQTL10a were all
inversely correlated with GSweight. The latter motivated us to
define a summary measure GSmQTL* ¼ GSmQTL2 þ
GSmQTL5 þ GSmQTL10a, which quantifies the relationship
between a gene expression profile and the mQTLs on
Chromosomes 2, 5, and proximal 10. By regressing GSweight
on GSmQTL* and GSmQTL19, we found that 37% of the
variation in the GSweight could be explained by GSmQTL on
Chromosomes 2, 5, 10, and 19 (Table 2, model 1). When we
regressed GSweight on connectivity (kme), we found that
connectivity explained 34% of the variation in GSweight
(Table 2, model 2). However, although GSmQTL*,
GSmQTL19, and connectivity explained 19% (r2 ¼ (�0.44)2)
(Figure 4B), 29% (Figure 4C), and 34% (Figure 4A) of the
variation in GSweight, respectively, a model combining these
three covariates was able to explain 70% of GSweight
variation (Figure 4D; Table 2, model 3). We find that model
3 provides a significantly better fit to the data than model 1 (F
test p-value , 2.2e�16). Similarly, model 3 provides a
significantly better fit than model 2 (p , 2.2e�16). This
analysis demonstrates that a model that integrates genetic
information (SNP genotype) with network properties (intra-
modular connectivity) is a better predictor of the relationship
between Blue module genes and weight.

To further explain the relationship between GSweight and
the module variables, we visualized the distribution of
GSweight in different strata using boxplots (Figure 4E). The
eight different boxplots of Figure 4E correspond to the eight
groups of genes that resulted by splitting the Blue module
genes by their median GSmQTL*, GSmQTL19, and kme

values. We found that genes with high GSmQTL19, high
connectivity, and low GSmQTL* had the highest GSweight
(Figure 4E, labeled ‘‘q� 19þ kþ’’). This indicates that genes
with strong linkage to the Chromosome 19 locus, absence of

linkage to the SNPs described on Chromosomes 2, 5, and 10,
and high connectivity have the highest absolute correlation
with weight. Detailed information regarding the Blue module
genes and the multivariate regression analyses can be found
in Protocol S3.

Discussion

Network approaches provide means to bridge the gap from
individual genes to systems biology [8]. Highly connected
‘‘hub’’ nodes are of special interest because they are the
backbones of the scale-free network architecture. This
architecture confers resistance to change and robustness to
the entire network [37]. In the co-expression network
presented here, we find that the gene expression levels of
hub genes are less variable (lower variance) than other, less-
connected, nodes (Figure S3) across all mice. This is
consistent with the idea that the network’s most highly
connected hubs are resilient to large genetic background
variations since they are vital for core biological functions [8].
Modularity is an innate characteristic of many large

networks [38] including gene co-expression networks [39].
Modules, or groups of highly correlated genes, could be a
result of transcriptional co-activation (gene activation or
gene repression), or the co-regulation of mRNA stability, or a
combination of these, resulting in a complex genetic network
of closely related genes coordinately operating to accomplish
a function or a group of related functions. It is important to
note that the gene modules reported here are not the only
existing modules; but rather they are those most perturbed in
the F2 cross examined. We find that some co-expression
network modules are enriched with genes belonging to
distinct cellular compartments. This finding is consistent
with the study by Giot et al. [12] showing that in the Drosophila
protein–protein interaction network, proteins within the
same compartment tend to be more highly connected [12].
This also provides supporting evidence that the information
extracted from the co-expression network is in concordance
with the protein interaction network [40].
We show that some of the modules are directly related to

physiological traits. This relationship is also evident when one
examines the list of genes within each module. For example,
the Blue module, which we found to be highly associated with
obesity and weight, contains two key regulators of adipo-
genesis, namely PPAR-c [41] and BMP2 [42]. In addition, the
Blue module contains genes such as Cyp2c37, Cyp2c40,
Cyp2d10, Cyp4b1, and Ehhadh that are either present in the

Figure 4. Relating the Gene Significance Measure for Weight (GSweight) to Genetic and Network Based Variables of the Blue Module

(A) Scatterplot between GSweight (y-axis) and intramodular connectivity (kme) based on the module eigengene (x-axis). Each point corresponds to a
gene in the Blue module.
(B) Scatterplot between GSweight (y-axis) and the sum of the mQTL significance measures of Chromosomes 2, 5, and 10 (GSmQTL* ¼ GSmQTL2 þ
GSmQTL5þ GSmQTL10a).
(C) Scatterplot between GSweight (y-axis) and the mQTL significance measure of Chromosome 19 (GSmQTL19).
(D) Scatterplot between GSweight (y-axis) and the predicted value based on a multivariable regression model involving intramodular connectivity (kme)
and the aforementioned mQTL significance measures (GSmQTL* and GSmQTL19). The linear regression model explains 70% of the variation in
GSweight.
(E) Boxplot for visualizing the effect of the module based variables on GSweight. The 8 different boxplots correspond to the eight groups of genes that
result by splitting the module variables by their median values. Genes with high/low GSmQTL* values are labeled by qþ and q�, respectively. Genes
with high/low GSmQTL19 values are labeled by 19þ and 19�, respectively. Genes with high/low connectivity values are labeled by kþ and k�,
respectively (For example, the boxplot labeled qþ 19� k� plots the GSweight distribution of the Blue module genes with a high GSmQTL*, a low
GSmQTL19, and a low connectivity).
DOI: 10.1371/journal.pgen.0020130.g004
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KEGG ‘‘Fatty acid metabolism’’ pathway or have been
previously associated with adiposity [26].

An important aspect of network analysis it to study the
intramodular structure and pairwise interactions between
genes across multiple conditions. For example, it could be
interesting to determine which pairwise interactions are
tissue or sex specific. Although a detailed analysis is beyond
the scope of this article, we provide a glimpse of such an
analysis in Figure S4.

The ‘‘genetics of gene expression’’ approach has been
fruitful in identifying genetic regulatory loci related to
complex traits [3,6,26]. Here we show that integration of
genetics and network analysis is a powerful approach to
identify key regulatory loci controlling the co-expression
network modules. We show that there exist several such
mQTL across the genome. For the Blue module genes, we
found an example of an mQTL on Chromosome 19 that
coincided with the QTL of mouse weight. We hypothesize
that the underlying gene or genes within such coinciding loci
control the variation of both the trait and gene expression of
the genes comprising the respective module. In contrast, loci
that do not overlap with the trait QTL may represent novel
loci that indirectly affect these traits through the underlying
co-expression network.

Our unsupervised module detection method identifies a
weight-related network module. In that module, genes with
high intramodular connectivity tend to have a high absolute
correlation with body weight (GSweight). Importantly, the
availability of genetic marker data greatly enhances our
understanding of the relationship between connectivity and
GSweight. Two novel concepts enabled us to integrate the
gene co-expression network analysis with the genetic analysis:
the use of intramodular connectivity as a covariate character-
izing a particular gene, and the use of the correlation of gene
expression with SNP alleles at mQTL (GSmQTL) as a
covariate to characterize a particular gene.

We found that the most significant predictor for the
weight-based gene significance measure (GSweight) was the
intramodular connectivity (kme). However, several of the
mQTL-based gene significance measures (GSmQTL19,
GSmQTL2, GSmQTL5, and GSmQTL10a) were highly sig-
nificant independent predictors as well. The fact that the
mQTL-based significance measures were independent of
connectivity could also be seen from the weak correlations
between kme and GSmQTL19 (r¼ 0.083), GSmQTL2 (r¼ 0.15),
GSmQTL5 (r ¼ �0.071), and GSmQTL10 (r ¼ 0.050). The
multivariate regression models in Table 2 highlight the value
of taking a network perspective. Model 3 integrates co-
expression network concepts (connectivity) and genetic
marker information (GSmQTL) to explain 70% of the
variation in GSweight (Figure 4D). This compares favorably
to the univariate model that uses only connectivity (R2¼0.34)
or a model that uses only the genetic marker information (R2

¼ 0.37). Integrating gene co-expression networks with genetic
marker information allows one to understand what factors
influence the relationship between gene expression and
weight.

In summary, we report the construction and character-
ization of a gene co-expression network in mice. We
demonstrate the inherent modularity of the network and
show that these gene modules have biologically meaningful
functions, including significant correlations with physiolog-

ical traits. In addition, we show that the highly connected hub
genes of a module have higher gene significance relationships
to the complex trait. We also demonstrate that these gene
modules are largely coordinately regulated by a few key loci
on the genome. Lastly, when we integrate the genetic
information at these loci with the connectivity information
from our network analysis, we are able to explain 70% of the
relationship between a gene and mouse weight. Our multi-
variate regression model represents a novel method for
characterizing genes that are correlated with a complex trait,
and highlights the importance of the systems biology
approach to study complex traits.

Materials and Methods

Animal husbandry and physiological trait measurements. C57BL /6J
apoE null (B6.apoE�/�) mice were purchased from the Jackson
Laboratory (Bar Harbor, Maine, United States) and C3H/HeJ apoE null
(C3H.apoE�/�) mice were bred by backcrossing B6.apoE�/� to C3H/HeJ
for ten generations with selection at each generation for the targeted
ApoE�/� alleles on Chromosome 7. All mice were fed ad libidum and
maintained on a 12-h light/dark cycle. F2 mice were generated by
crossing B6.apoE�/� with C3H.apoE�/� and subsequently intercrossing
the F1 mice. F2 mice were fed Purina Chow (Ralston-Purina Co., St.
Louis, Missouri, United States) containing 4% fat until 8 wk of age,
and then fed a Western diet (Teklad 88137; Harlan Teklad, Madison,
Wisconsin, United States) containing 42% fat and 0.15% cholesterol
for 16 wk until they were sacrificed at 24 wk of age. Mice were fasted
for 4 h and anesthetized by exposure to isoflurane before the blood
was collected from the retro-orbital sinus and the mice were
sacrificed.

At the time of euthanasia, all mice were weighed and measured
from the tip of the nose to the anus. Fat depots, plasma lipids (free
fatty acids and triglycerides), plasma high-density liporprotein (HDL)
cholesterol and total cholesterol, and plasma insulin levels were
measured as previously described [43]. Very low-density lipoprotein
(VLDL)/LDL cholesterol levels were calculated by subtracting HDL
cholesterol from total cholesterol levels. Plasma glucose concen-
trations were measured using a glucose kit (#315–100; Sigma, St.
Louis, Missouri, United States). Plasma leptin, adiponectin, and MCP-
1 levels were measured using mouse enzyme-linked immunoabsorb-
ent (ELISA) kits (#MOB00, #MRP300, and MJE00; R&D Systems,
Minneapolis, Minnesota, United States).

Genotyping. Genomic DNA was isolated from kidney by phenol-
chloroform extraction. An examination of existing databases
identified over 1,300 SNPs that showed variation between the
C57BL/6J and C3H/HeJ strains, and a complete linkage map for all
19 autosomes was constructed using 1,065 of these SNPs at an average
density of 1.5 cM. Genotyping was conducted by ParAllele (Affyme-
trix, Santa Clara, California, United States) using the molecular-
inversion probe (MIB) multiplex [44].

Microarray analysis. RNA preparation and array hybridizations
were performed at Rosetta Inpharmatics (Seattle, Washington,
United States). The custom ink-jet microarrays used in this study
(Agilent Technologies [Palo Alto, California, United States], previ-
ously described [3,45]) contain 2,186 control probes and 23,574 non-
control oligonucleotides extracted from mouse Unigene clusters and
combined with RefSeq sequences and RIKEN full-length clones.
Mouse livers were homogenized and total RNA extracted using Trizol
reagent (Invitrogen, Carlsbad, California, United States) according to
manufacturer’s protocol. Three lg of total RNA was reverse
transcribed and labeled with either Cy3 or Cy5 fluorochromes.
Purified Cy3 or Cy5 complementary RNA was hybridized to at least
two microarray slides with fluor reversal for 24 h in a hybridization
chamber, washed, and scanned using a laser confocal scanner. Arrays
were quantified on the basis of spot intensity relative to background,
adjusted for experimental variation between arrays using average
intensity over multiple channels, and fit to an error model to
determine significance (type I error). Gene expression is reported as
the ratio of the mean log10 intensity (mlratio) relative to the pool
derived from 150 mice randomly selected from the F2 population.

Microarray data reduction. In order to minimize noise in the gene
expression dataset, several data-filtering steps were taken. First,
preliminary evidence showed major differences in gene expression
levels between sexes among the F2 mice used, and therefore only
female mice were used for network construction. The construction
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and comparison of the male network will be reported elsewhere. Only
those mice with complete phenotype, genotype, and array data were
used. This gave a final experimental sample of 135 female mice used
for network construction. To reduce the computational burden and
to possibly enhance the signal in our data, we used only the 8,000
most-varying female liver genes in our preliminary network
construction. For module detection, we limited our analysis to the
3,600 most-connected genes because our module construction
method and visualization tools cannot handle larger datasets at this
point. By definition, module genes are highly connected with the
genes of their module (i.e., module genes tend to have relatively high
connectivity). Thus, for the purpose of module detection, restricting
the analysis to the most-connected genes should not lead to major
information loss. Since the network nodes in our analysis correspond
to genes as opposed to probesets, we eliminated multiple probes with
similar expression patterns for the same gene. Specifically, the 3,600
genes were examined, and where appropriate, gene isoforms and
genes containing duplicate probes were excluded by using only those
with the highest expression among the redundant transcripts. This
final filtering step yielded a count of 3,421 genes for the experimental
network construction.

Weighted gene co-expression network construction. Constructing a
weighted co-expression network is critical for identifying modules
and for defining the intramodular connectivity. In co-expression
networks, nodes correspond to genes, and connection strengths are
determined by the pairwise correlations between expression profiles.
In contrast to unweighted networks, weighted networks use soft
thresholding of the Pearson correlation matrix for determining the
connection strengths between two genes. Soft thresholding of the
Pearson correlation preserves the continuous nature of the gene co-
expression information, and leads to results that are highly robust
with respect to the weighted network construction method [27].

The theory of the network construction algorithm is described in
detail elsewhere [27]. Briefly, a gene co-expression similarity measure
(absolute value of the Pearson product moment correlation) was used
to relate every pairwise gene–gene relationship. An adjacency matrix
was then constructed using a ‘‘soft’’ power adjacency function aij ¼
jcor(xi, xj )j b where the absolute value of the Pearson correlation
measures gene is the co-expression similarity, and aij represents the
resulting adjacency that measures the connection strengths. The
network connectivity (kall) of the i

th gene is the sum of the connection
strengths with the other genes, i.e., ki ¼

X

u6¼i
aiu. This summation

performed over all genes in a particular module is the intramodular
connectivity (kin). The network satisfies scale-free topology if the
connectivity distribution of the nodes follows an inverse power law,
(frequency of connectivity p(k) follows an approximate inverse power
law in k, i.e., p(k) ; k�c). We chose a power of b¼6 based on the scale-
free topology criterion [27]. This criterion says that the power
parameter, b, is the lowest integer such that the resulting network
satisfies approximate scale-free topology (linear model fitting index
R2 of the regression line between log(p(k)) and log(k) is larger than
0.8). This criterion uses the fact that gene co-expression networks
have been found to satisfy approximate scale-free topology [8,46–48].
Since we are using a weighted network as opposed to an unweighted
network, the biological findings are highly robust with respect to the
choice of this power. Many co-expression networks satisfy the scale-
free property only approximately. Figure S5 shows that the
connectivity distribution p(k) is better modeled using an exponen-
tially truncated power law p(k) ; k�c exp(�a k) [49]. In practice, we
find that the two parameters a and c provide too much flexibility in
curve fitting. The truncated exponential model fitting index R2 tends
to be high irrespective of the adjacency function parameter. For this
reason, we focus on the scale-free topology fitting index in our scale-
free topology criterion. Exploring the use of the truncated
exponential fitting index is beyond the scope of this article.

Network module identification. The modules in our weighted gene
co-expression network are groups of highly correlated genes. In
network terminology, modules are groups of genes with similar
patterns of connection strengths with all other genes of the network.
Modules are sets of genes with high ‘‘topological overlap’’ [27,50]. To
calculate the topological overlap for a pair of genes, we compare
them in terms of their connection strengths with all other genes in
the network. A pair of genes is said to have high topological overlap if
they are both strongly connected to the same group of genes. The use
of topological overlap thus serves as a filter to exclude very weak
connections during network construction. Specifically the topolog-
ical overlap between genes i and j is given by

xij ¼
lij þ aij

minfki; kjg þ 1� aij
ð2Þ

where lij ¼
X

u6¼i;j
aiuauj denotes the number of nodes to which both i

and j are connected, and u indexes the nodes of the network. The
topological overlap matrix (TOM) is given by X¼ [xij]. xij is a number
between 0 and 1 and is symmetric (i.e, xij¼xji). Module identification
was based on using the topological overlap matrix, X ¼ [xij] in
conjunction with average linkage hierarchical clustering. Since
hierarchical clustering takes a dissimilarity measure as input, we
defined a topological overlap–based dissimilarity measure as follows:
dx
ij ¼ 1� xij . Modules corresponded to branches of the resulting
hierarchical clustering tree (dendrogram). We used a dynamic cut-
tree algorithm for selection branches of the hierarchical clustering
dendrogram (the details of the algorithm can be found at the
following link: http://www.genetics.ucla.edu/labs/horvath/binzhang/
DynamicTreeCut). The algorithm takes into account an essential
feature of cluster occurrence and makes use of the internal structure
in a dendrogram. Specifically, the algorithm is based on an adaptive
process of cluster decomposition and combination, and the process is
iterated until the number of clusters becomes stable. Although our
network and module construction method has been used in other
applications [27,33], no claim is made that our module construction
method is optimal. The findings of a simulation study that show the
efficacy of our module detection method can be found on our Web
p a g e : h t t p : / / w w w . g e n e t i c s . u c l a . e d u / l a b s / h o r v a t h /
CoexpressionNetwork/MouseWeight.

Each module represents a group of genes with similar expression
profiles across the samples and the expression profile pattern is
distinct from those of the other modules. In each case, the modules
were then assessed for enrichment in ontology terms based on
Fisher’s exact test.

Statistical analysis of module significance measure and eQTL
clustering. To assign a p-value to the module significance measure, we
made use of the Fisher transformation as implemented in the R
function ‘‘cor.test’’. Since the claims regarding the relationship
between module genes and physiologic traits is fundamental to many
subsequent analyses, we used the conservative Bonferroni correction
for multiple comparisons which entails multiplying the uncorrected
p-value by the number of tests. A less-conservative alternative would
be to estimate the false discovery rate, but care needs to be taken
because the tests may be highly correlated.

Module connectivity and mQTL used in regression analysis. For
our multivariate regression analyses, we find it expedient to sum up
the gene expression profiles of an entire module by one idealized
gene expression profile. Toward this end we make use of the concept
of a module eigengene. For a detailed theoretical discussion see http://
www.genetics.ucla.edu/labs/horvath/ModuleConformity.

Briefly, to compute the module eigengene, one decomposes the
standardized gene expression profile of each module via the singular
value decomposition (X ¼ UDVT). The first column V1 of V
corresponds to the module eigengene. The singular value decom-
position is closely related to principal component analysis, we denote
V1 by PC1 in the text. The module eigengene gives rise to a measure
of module centrality (kme) as follows: kme(i) ¼ jcor(x(i),PC1)j. We will
refer to kme as module eigengene-based connectivity. The module
eigengene-based connectivity measure (kme) is highly correlated (r ¼
0.86) with the standard intramodular connectivity measure (kin). kme
was used only in our regression analysis because it is slightly more
informative in our regression models. For all other applications, kin
was utilized.

The SNPs used in the multivariate linear regression analysis were
chosen based on two criteria: (1) They had to be peak markers at the
Blue module mQTL, and (2) they had to be significant predictors of
weight (p , 0.05) in the linear model in which weight was regressed
on all nine mQTL SNPs. These two criteria resulted in Chromosomes
2, 5, 10a, and 19 mQTL SNPs being included in the multivariate linear
regression analysis.

EASE Analysis. The Expression Analysis Systemic Explorer (EASE)
software [29] was downloaded from the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) [51] http://david.
niaid.nih.gov/david/ease.htm. As detailed in Protocol S2, each module
was analyzed separately for pathway enrichment. We also report
corresponding pathway plots. In Table 1 of Protocol S2, we report
Fisher exact p-values and several multiple testing corrected p-values
(Bonferroni, Benjamini, and Hochberg).

Other statistical methods and software. Linear regression model-
ing was performed using the R function ‘‘lm’’ (25). The percent of
variance explained by the linear model was determined using the
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unadjusted R2 value of the model. In the text, we also made use of the
well-known statistical result that the variance explained by a
univariate linear model involving a single regressor x and an outcome
y equals the square of the correlation between x and y.

The boxplots of Figure 4E visualize the distribution of GSweight
for different groups of genes. A boxplot consists of the most extreme
values (the whiskers) in the dataset (maximum and minimum values),
the lower and upper quartiles (lower and upper boundary of the box),
and the median value (horizontal line inside the notch). A notch is
drawn in each side of the box. If the notches of two plots do not
overlap, the two medians differ significantly. Single-point QTL
analyses used the ‘‘scanone’’ function of the rQTL package.

To compare nested linear models, we used the ‘‘anova’’ function in
R. The fitqtl command in qtl package [35] in R software was used to
carry out the model selection for weight.

Software and data availability. The statistical analysis was carried
out with the R software (http://www.R-project.org). We provide the
entire statistical code and processed data for generating the weighted
gene co-expression network results. Thus, the reader is able to
reproduce our findings. The document also serves as a tutorial to
weighted gene co-expression network analysis. This tutorial and the
data files can be found at the following Web page: http://www.genetics.
ucla.edu/labs/horvath/CoexpressionNetwork/MouseWeight.

Supporting Information

Figure S1. MS Score for All Modules Corresponding to Each Trait

Bars representing MS are colored according to the designated color
of their corresponding module. An MS score of 0.30 (red horizontal
line) is significant at p ¼ 0.05 after a Bonferroni correction for
multiple comparisons.

Found at DOI: 10.1371/journal.pgen.0020130.sg001 (442 KB PDF).

Figure S2. Connectivity and Gene Significance in the Blue Module

(A) Scatter plot representing the relationship of intramodular
connectivity (kin) with gene significance for weight in the Blue
module in different tissue/gender combinations. The corresponding
tissue/gender combination is stated on the x-axis. Gene significance is
defined as the correlation coefficient for each gene with the
physiological trait of interest. (B) Scatter plot between female liver
connectivity (kin) in the Blue module (x-axis) and intramodular
connectivities in other tissue/gender combinations. The correspond-
ing tissue/gender combination is stated on the y-axis. The correlations
show that the intramodular connectivities of the Blue module genes
are not preserved. This may indicate that the Blue module is liver
specific.

Found at DOI: 10.1371/journal.pgen.0020130.sg002 (406 KB PDF).

Figure S3. The Relationship between Connectivity and Gene
Expression in the Blue Module and the Complete Network

(A) Plots representing the relationship between connectivity (kin) with
mean expression level and gene expression variance of the Blue
module. (B) Plots representing the relationship between connectivity
(kall) and gene expression mean and variance for all genes in the
entire co-expression network.

Found at DOI: 10.1371/journal.pgen.0020130.sg003 (323 KB PDF).

Figure S4. Visualizing Connection Patterns of Five Hub Genes across
Different Gender/Tissue Combinations

The Figure shows focuses on the five most-connected hub genes in
the female liver tissue and their strongest connections with the Blue
module genes. The strongest connections were defined as the upper
10% of pairwise topological overlap. There is some suggestive
evidence for sex differences in Ppic connectivity in liver and adipose

tissue. Anxa5 appears to be highly connected in liver but less so in
adipose or muscle. A detailed and more rigorous analysis is beyond
the scope of our article.

Found at DOI: 10.1371/journal.pgen.0020130.sg004 (1.5 MB PDF).

Figure S5. Log/Log Plot Representing the Connectivity Distribution
of the Network

The black line is the best linear fit to the log k/log p(k) plot, where k is
connectivity. This fit is representative of a power-law distribution
indicative of a scale-free topology. The red line is representative of a
log/log plot fitting a model representative of an exponentially
truncated power law p(k) ; k�c exp(�a k). Both models have
previously been described as characteristic of naturally occurring
networks.

Found at DOI: 10.1371/journal.pgen.0020130.sg005 (4 KB PDF).

Protocol S1. Gene Information, Network Connectivity, and Gene
Expression Data

Found at DOI: 10.1371/journal.pgen.0020130.sd001 (8.9 MB XLS).

Protocol S2. Functional Enrichment (EASE) Analysis

Found at DOI: 10.1371/journal.pgen.0020130.sd002 (1.6 MB DOC).

Protocol S3. Data for Blue Module Regression Analysis

Found at DOI: 10.1371/journal.pgen.0020130.sd003 (245 KB XLS).

Table S1. Characteristics of the Female Liver Gene Co-Expression
Modules

Found at DOI: 10.1371/journal.pgen.0020130.st001 (32 KB DOC).

Table S2. Summary of Blue Module Hub Genes and Their Properties

Found at DOI: 10.1371/journal.pgen.0020130.st002 (158 KB DOC).

Table S3. Regressing Body Weight on Multiple mQTLs (SNPs) of the
Blue Module

Found at DOI: 10.1371/journal.pgen.0020130.st003 (25 KB DOC).

Accession Numbers

The Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/
geo) accession number for this entire liver gene expression dataset is
GSE2814.
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