
 Open access Proceedings Article DOI:10.1109/REW.2017.50

Integrating Graphical and Natural Language Specifications to Support Analysis and
Testing — Source link

Christopher Robinson-Mallett, Robert M. Hierons

Published on: 01 Sep 2017

Topics: Integration testing, Distributed development, Quality (business), Natural language and Component (UML)

Related papers:

 The evolution of specification techniques

 Model-Based Systems

 Automatic Extraction and Integration of Changes in Shared Software Specifications

 The Impact of Executable Requirements Models

 Software evolution: a requirements engineering approach

Share this paper:

View more about this paper here: https://typeset.io/papers/integrating-graphical-and-natural-language-specifications-to-
4331s3r43z

https://typeset.io/
https://www.doi.org/10.1109/REW.2017.50
https://typeset.io/papers/integrating-graphical-and-natural-language-specifications-to-4331s3r43z
https://typeset.io/authors/christopher-robinson-mallett-vg40hfx12f
https://typeset.io/authors/robert-m-hierons-21r6mta4tg
https://typeset.io/topics/integration-testing-i1dzrknp
https://typeset.io/topics/distributed-development-687gvd4c
https://typeset.io/topics/quality-business-3c356nfw
https://typeset.io/topics/natural-language-37jkbm51
https://typeset.io/topics/component-uml-3bq2ifwa
https://typeset.io/papers/the-evolution-of-specification-techniques-1p90trqhfg
https://typeset.io/papers/model-based-systems-3k1tw1evh0
https://typeset.io/papers/automatic-extraction-and-integration-of-changes-in-shared-4a8y909tvi
https://typeset.io/papers/the-impact-of-executable-requirements-models-2z55o5go28
https://typeset.io/papers/software-evolution-a-requirements-engineering-approach-28k3yqtns2
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/integrating-graphical-and-natural-language-specifications-to-4331s3r43z
https://twitter.com/intent/tweet?text=Integrating%20Graphical%20and%20Natural%20Language%20Specifications%20to%20Support%20Analysis%20and%20Testing&url=https://typeset.io/papers/integrating-graphical-and-natural-language-specifications-to-4331s3r43z
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/integrating-graphical-and-natural-language-specifications-to-4331s3r43z
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/integrating-graphical-and-natural-language-specifications-to-4331s3r43z
https://typeset.io/papers/integrating-graphical-and-natural-language-specifications-to-4331s3r43z

Integrating graphical and natural language

specifications to support analysis and testing

Christopher L. Robinson-Mallett

Mobility Division, Siemens AG, Berlin

c.robinson-mallett@siemens.com

Robert M. Hierons

Brunel University London,

Uxbridge, United Kingdom

rob.hierons@brunel.ac.uk

Abstract—The ongoing trend towards distributed develop-
ment activities causes a growing need for specification activities
and techniques. Each component leads to a large number
of specification documents being exchanged, change managed
and committed. The quality of the specifications influences the
timing, costs and success of the development task. However,
the quality of such specifications is often far from optimal,
exhibiting gaps, inconsistencies, redundancies, and unbalanced
structures. At every release or delivery milestone, acceptance
and integration testing take place. Therefore, test-cases have
to be created from the requirements exchanged. This paper
presents a model-based approach for improving the quality of
comprehensive requirements sets. The presented solution is based
on a combination of a graphical notation and natural language
and can be used to drive model-based testing. The approach
has been implemented using state-of-the-art tools. We present
experience from field application in the automotive industry.

I. INTRODUCTION

The ongoing trend towards distributed development activ-

ities amongst world-wide teams and the integration of the

respective results causes a growing need for specification

activities and techniques. Each component leads to a large

number of specifications being exchanged, change managed as

well as integration and tests committed between the leading

and the supplying development teams.

While distributed development projects are not the topic

of this paper, our experience with them motivated the work

described. The quality of specifications has a significant im-

pact on the efficiency and risks of distributed development

activities [1] such as the quality of development results, change

management, coordination activities, and testing. Furthermore,

the development of dependable software demands traceable

processes and provably complete and correct results.

This paper aims at reducing risks of distributed development

activities, presenting a method to create and maintain product

specifications that are precise, formally structured, and that

product engineers find equally easy to understand and to use.

Despite their potential benefits, formal languages (FL) are

not widely used because the required expertise is often not

present. Instead, natural language (NL) in combination with

graphical notations (GN) is a familiar choice for the engineer,

with the use of GN helping reduce the size of the NL

specification and providing the potential to automate analysis,

transformation and testing. An additional benefit is that often

there is domain specific technical NL and GN that is common

to all groups. Thus a combination of NL and GN is practically

the de facto standard specification language in distributed

development scenarios, although significant drawbacks exist:

1) NL can leave much room for interpretation;

2) NL is local, e.g. a specification written in German is

only useful for German speaking groups (this can also

affect models);

3) It is difficult to maintain NL and keep it precise, con-

sistent and free of redundancies;

4) Automated processing of NL is difficult;

5) Over time and changes, NL and embedded or referred

GN tend to diverge in meaning;

6) GN alone may contribute precise, but only partial in-

formation, which demand NL requirements to tell the

reader how to interpret it.

Our experience in industrial projects indicates that structure

has a significant impact on requirements quality. An unclear

structure may contribute to redundancy and so to overly long

specifications. Additionally, inconsistencies may be created, if

additional requirements deviate from those already in the set.

In the context of this paper a specification is a set of state-

ments (requirements) describing aspects of the product under

development. Such statements may possess a type, for instance

to denote priority or use of certain information, e.g. differen-

tiate requirements from heading or secondary information. A

specification targets a stage of the development process, e.g.

product definition, analysis, design, implementation, testing,

integration, delivery. Furthermore, specifications may have a

certain scope, describing the product as a whole or only parts.

The proposed approach aims to create a model-integrated

specification that closes the gap between NL and GN through

formalising the structure of the GN specification, while pre-

serving the benefits of NL. We have found that a major benefit

is that the resulting specifications provide almost optimal

cohesion. In addition, it is possible to apply formal analysis

and test generation techniques to the resultant specifications.

This paper extends previous work [6] by providing additional

information about the formalisation used and by describing a

semi-automatic approach to test generation along with associ-

ated coverage criteria.

This paper is structured as follows. Section II gives the run-

ning example and Section III describes the proposed approach.

Section IV explains how the resultant combination of GN and

NL can drive testing. Section V describes our experiences of

using the proposed approach and associated tool. Section VI

Fig. 1. Block diagram belt-warner example

then describes related work and Section VII summarises the

work.

II. BELT-WARNER EXAMPLE

The belt-warner example is a simplified extract of the

specification of a real driver assistance function that warns the

driver at critical speeds that the safety belt is not tightened.

The architecture of the system is described using a subset of

Block Diagrams [2] [3]. The system behaviour is specified

using a sub-set of statecharts [4].

A. Architecture of the belt-warner example

In the belt-warner example a block diagram specifies the

system architecture. Block diagrams are graphical structures

consisting of hierarchical blocks, signal flows, signal entry

points and signal exit points. A block, represented as a rectan-

gle, may contain a behaviour. Hierarchical blocks may possess

architecture and behaviour. Signal flows, represented as edges

in the block diagram, specify message routing between blocks.

Signal sources and sinks, represented as wedged rectangles,

are special blocks used to define system interfaces.

The example architecture of a simple belt-warner in Figure

1 contains a single block, 4 signal sources and 4 signal

sinks. The sources define the input interface, which consists of

signals Belt Status, Ignition Status, Vehicle Speed, and System

Time. The sinks define the output interface, which consists of

signals Start Warning, Stop Warning, Activity, and Stand-by.

B. Behaviour of the belt-warner example

Statecharts is a graphical notation for extended, hierarchical

finite state-machines that is applicable to the specification of

state-based system behaviour. In the context of the presented

approach, a sub-set of statecharts has proved to be useful and

will be explained in this section. A complete and detailed

description of statecharts is provided in [4].

The nodes of a statechart represent a finite set of system

states, while the edges represent transitions between these

states. A statechart may process a finite set of inputs and

produces a finite set of outputs. A statechart may be extended

with data of arbitrary number and types.

A state may contain a finite set of sub-states, one being the

initial state, i.e. when changing into the state the initial sub-

state is entered. A transition into a hierarchical state (a state

containing sub-states) ends either implicitly in the initial or

Fig. 2. Statechart for the belt-warner

explicitly in one of the sub-states. An atomic state does not

contain sub-states. A state-invariant specifies conditions that

must hold when the system is in the corresponding state.

A state transition has an initial and a final state. A group

transition starts from a hierarchical state Sh; it can be triggered

from any sub-state of Sh. The trigger of transition t specifies

conditions on inputs and data under which t executes. Further-

more, in a transition it is possible to specify data operations

and outputs. We use predicate logic to specify the above.

The statechart in Figure 2 contains 4 atomic states, 2

hierarchical states and 9 transitions, of which 3 are initial

transitions and 4 are group transitions. It describes the system

behaviour in use, when turning it on/of, activating, deactivating

the function and situations in which the belt warning is started

or stopped.

III. MODEL-INTEGRATED REQUIREMENTS SPECIFICATION

As previously discussed, the proposed approach is based

on integrating GN and NL, which is achieved by mapping

each ‘basic model element’ of the graphical model to a

corresponding textual section (called a chapter).

This process is applicable to a variety of modeling notations,

if these can be mapped into finite structures, such as graphs.

Given an NL specification of a system (for the ease of

explanation initially without GN parts), we create a model-

integrated specification as follows.

1) Break down the specification into atomic statements.

2) Give each atomic statement a type of either information

or requirement.

3) Create a GN of the system’s high-level architecture.

4) Create a NL chapter structure based on the architecture:

• each node in the GN relates to a chapter,

• each edge in the GN relates to a chapter.

5) Relocate atomic statements into the chapter structure.

6) Analyse residual atomic statements and either discard or

redesign GN and go back to 3.

Fig. 3. Example model-integrated finite state machine

7) Review each chapter and eliminate incompleteness, in-

consistencies and redundancies.

8) Optionally, complement NL specification with condi-

tional statements defining feasible paths and further

system properties, e.g. state invariants.

This results in a semi-formal specification in the form of a

chapter structure; specification statements remain in NL. For

instance, if the GN is a finite state machine, then the model

elements are states and transitions, and a chapter is created for

each of these. Figure 3 presents the example of an FSM and

the NL structure generated.

In this paper we outline how GN in the form of labelled

directed graphs (LDGs) can be used. The GN part may have

a specific (separate) semantics associated with the language

originally used. We need to retain this information to cor-

rectly interpret different languages such as statecharts and

block diagrams. We have developed a set of semantics for

automotive controller functions but anticipate that different

semantics might be used in other domains. In practice, we have

found LDGs to cover a large and useful variety of modelling

notations. However, there might be notations, e.g. sequence

diagrams and use-case diagrams, where there is no natural

mapping to LDGs. In such cases we suggest that different

GN-notations are used, e.g. multi-graphs.

In practical software and systems development, the variety

of GN used often depends on the domain (e.g. statecharts,

activity diagrams, Petri nets, block diagrams, or fault trees). To

make the model-integration approach applicable to a maximum

number of GNs, it splits a GN into an abstract graphical

structure, whose elements will be given semantics via NL, and

a semantics that comes from the original graphical modelling

language used. For the example in Figure 3, the semantics

includes the information that the graph represents a finite state

machine: nodes represent states; edges represent transitions.

The graph of a GN thus represents the topology. Mapping a

GN to abstract graphs provides the benefit that we can have a

common approach and toolset for a range of GNs.

Conditional statements form an important part of many

modelling notations. For example, statecharts has state in-

variants and trigger conditions on edges. In the presented

approach, predicate logic may be used to specify conditional

structures in the NL part of the model-integrated specification;

we will see that this facilitates semi-automated test generation.

It is possible to structure this NL to form logical trees, where

leaves are atomic logical statements in NL and the other nodes

represent the logical operators OR, AND and XOR.

A. An abstract model

A labelled directed graph G is defined by a tuple

(L, V, V0, E, fV) in which L is the set of labels; V is the finite

set of nodes; V0 ⊂ V is the set of initial nodes; E ⊆ V ×L×V

is the finite set of edges (edge (v, l, v′) has source node v,

destination node v′ and label l); and fV : V → L is the node

label function that maps each node to a corresponding label.

The nodes and edges of graph G provide the structure of

the model. The labels allow us to add semantics to these.

L can be any suitably large set since the individual labels

can be separately mapped to the required information (such

as invariants). In practice, we have found it simplest to use

strings, with a label denoting, for example, the name of a state

or a function. Information regarding the semantics associated

with a label is supplied in a separate table. Tables I and II

give such information for the belt-warner system.

TABLE I
LDG OF BELT-WARNER BLOCK DIAGRAM

Gbd = (
V = { (n0, Belt Status, source),

(n1, IgnitionStatus, source),
(n2, V ehicle Speed, source),
(n3, SystemTime, source),
(n4, SimpleBeltWarner, node),
(n5, StartWarning, sink),
(n6, StopWarning, sink),
(n7, BeltWarner Activity, sink),
(n8, BeltWarner Stand−By, sink)},

E = { ((n0, n4), comfort),
((n1, n4), engine),
((n2, n4), chassis),
((n3, n4), combi),
((n4, n5), sbwout1),
((n4, n6), sbwout2),
((n4, n7), sbwout3),
((n4,n8), sbwout4)})

TABLE II
LDG OF BELT-WARNER STATECHART

Gsc = (
V = { (n0, IGNITION OFF, node),

(n1, IGNITION ON, hierarchical node),
(n2, STAND BY, node),
(n3, ACTIV E, hierarchical node),
(n4,WARNING OFF, node),
(n5,WARNING ON,node)},

E = { ((−, n0), Initial SBW),
((n0, n1), turning on),
((n1, n0), turning off),
((−, n2), Initial IGNITION ON),
((n2, n3), activating),
((−, n4), Initial ACTIV E),
((n4, n5), start warning),
((n5, n4), stop warning)})

B. Semantics

The process of mapping a graphical model into LDGs

can lead to some loss of information that corresponds to

elements of the semantics of the GN used. For example, if

we map a statechart into an LDG then the resultant graph

does not contain information such as the fact that a node

represents a state and an edge represents a transition from

one state to another. This additional semantic information

must be retained; in the proposed approach the identity of the

original GN is retained so that it is possible to apply analysis

techniques that depend on this semantics. Furthermore, it is

possible to attach specific properties p0, ..., pn for each model

element type. For instance, properties may be used to define a

specific chapter structure for each model element type, e.g.

a state chapter must contain an invariant definition and a

transition chapter must contain a trigger definition.

Tuples are used to define the semantics associated with

elements of the LDG; a tuple relates a graph element to a GN

element type and additional information, e.g. a template for

the chapter title. Chapter title templates are string expression,

possibly with placeholders, e.g. for a system name or a model

element name. An example of a modeling notation semantics

for block diagrams is presented in Table III. The graph of the

modeling notation consists of the modeling elements hierarchi-

cal node, node, edge, source, and sink. Each modeling element

is mapped to the appropriate element of block diagrams, e.g.

a node is a block, an edge is a signal flow.

TABLE III
SEMANTICS OF BLOCK DIAGRAM

Sbd = { (hierarchical node, ”Requirements [sys name]”),
(node, ”Requirements [sys name]”.
”Functional Requirements [sys name]”),

(edge, ”Requirements [sys name]”.
”Signal F lows”.”Signal F low [name]”),

(source, ”Requirements [sys name]”.
”Interface”.”Inputs”.”Input [name]”),

(sink, ”Requirements [sys name]”.
”Interface”.”Outputs”.”Output [name]”)}

An example of a modeling notation semantics for state

charts is presented in Table IV. The graph of the modeling

notation consists of the modeling elements hierarchical node,

node, and edge. Compared to block diagrams there is no

need to consider sinks and sources. Each of these modeling

elements is mapped to the appropriate element of statecharts,

e.g. a node is a state, an edge is an transition.

TABLE IV
SEMANTICS OF STATECHART

Ssc = { (node, ”Requirements [sys name]”.
”Functional Requirements”.
”States”.”State [name]”),

(hierarchical node, ”Requirements [sys name]”.
”Functional Requirements”.
”States”.”Hierarchical State [name]”),

(edge, ”Requirements [sys name]”.
”Functional Requirements”.
”Transitions”.”Transition [name]”)}

C. Generating Specification Structures

A specification structure consists of hierarchically struc-

tured chapters, where each chapter provides semantics for

an element of the GN. The title of a chapter is created

from information regarding a graph element and its semantics

properties. Identifiers label graph elements; these provide a

one-to-one mapping between chapters and graph elements. For

example, it is possible to create a specification structure for

the belt-warner through two steps: generate chapters from the

Block Diagram (bold chapters); generate chapters from the

Statechart. Figure 4 gives the resulting structure.

Fig. 4. Model-integrated structure of belt-warner specification

D. Specification Chapters

A specification chapter has a title and a set of specification

entries. Each specification entry can have a specific type, e.g.

requirement, information, data type, physical constraint.

Each GN element type can have a specific specification

chapter structure, e.g. a state chapter may contain an invariant

while a transition chapter may contain initial state, final state,

and trigger. As a result, for each modelling notation we

use specification chapter templates that define a hierarchical

structure of specification entries for each model element type.

Common attributes for specification entries are types, owner,

date of creation and last edit, or a history record. For model-

integration a specification type attribute is defined (Table V).

Logical expressions may be used to define conditions that

complement GN, e.g. triggers and invariants. These conditions

TABLE V
SPECIFICATION OBJECT TYPES

Type Description

heading a structure element

information explanations and comments

requirement the specification of a single required product property

may be specified using NL. Naturally, complex conditions can

be split into atomic expressions, these being structured into a

tree. An example from the belt-warner is given in Table VI.

TABLE VI
CONDITION SPECIFICATION TYPES

Type description

condition atomic condition

XOR exclusive disjunctive composition of conditions

OR disjunctive composition of conditions

AND conjunctive composition of conditions

Since the atomic conditional expressions remain in NL, the

graph traversal produces concatenated NL expressions, which

only a human reader may check for validity. However, the

ability to automatically generate traces from conditional GN

was found to be very beneficial.

Returning to the running example, Table VII presents a

specification chapter template for states (‘tbd’ denotes infor-

mation to be added by the user). Likewise, a chapter template

for transitions is presented in Table VIII.

TABLE VII
SPECIFICATION CHAPTER TEMPLATE BELT-WARNER STATE

Type Short Text

heading - Chapter X.2.1.3 State IGNITION OFF

information Context tbd

AND Invariant tbd

TABLE VIII
SPECIFICATION CHAPTER TEMPLATE BELT-WARNER TRANSITION

Type Short Text

heading - Chapter X.2.2.4 Transition turning on

information Context tbd

requirement Initial State tbd

requirement Final State tbd

AND Trigger tbd

Finally, the specification chapters are complemented man-

ually with details in NL. As an example for the use of

specification types, Table IX presents requirements for the

activation hysteresis of the simple belt-warner.

Logical conditions like the activation hysteresis are often

found in specification documents. The model-integrated spec-

ification can be extended with formalised conditional specifi-

cations resulting in an extended model-integrated specification;

graph operations are still applicable. Again, the formalisation

applies only to the structure of the conditional specifications,

the conditional statements remain NL.

TABLE IX
BELT-WARNER HYSTERESIS SPECIFICATION

Type Text

information The driver must not be distracted through
unnecessary belt-warnings at low speeds.

requirement The belt-warner shall be activated,
if vehicle speed exceeds 15 mph.

requirement The belt-warner shall be deactivated,
if vehicle speed drops below 12 mph.

requirement The belt-warner shall be deactivated,
if a relevant malfunction occurs.

TABLE X
BELT-WARNER IGNITION OFF INVARIANT SPECIFICATION

Type Text (• − level1, ◦ − level2, ⋆ − level3)

AND System resides in IGNITION OFF , if

condition • Belt-warner ECU not powered.

TABLE XI
BELT-WARNER WARNING OFF INVARIANT SPECIFICATION

Type Text (• − level1, ◦ − level2, ⋆ − level3)

AND System resides in WARNING OFF , if

condition • No warning sound emitted.

condition • Seat-belts fastened.

Examples of specifications of state invariants of the belt-

warner are presented in Tables X and XI; others are similar.

Examples of specifications of the triggering conditions of

the belt-warner example are presented in Tables XII and XIII.

TABLE XII
BELT-WARNER INITIAL CONDITION SPECIFICATION

Type Text (• − level1, ◦ − level2, ⋆ − level3)

AND Seat-belt warner turns on, if

condition • System precondition is TRUE.

TABLE XIII
BELT-WARNER START WARNING CONDITION SPECIFICATION

Type Text (• − level1, ◦ − level2, ⋆ − level3)

XOR Seat-belt warning must start, if

condition • The driver seat-belt is unfastened.

AND • passenger seat

condition ◦ Passenger seat is occupied.

condition ⋆ Passenger seat-belt is unfastened.

The conditional specifications complement the belt-warner

model in Figure 2, resulting in a non-deterministic model-

integrated specification. This model-integrated specification

can be input to further automate analysis and testing steps.

IV. MODEL-BASED TEST-CASE SPECIFICATION

In this section, we present an approach to apply model-

based test-case generation to model-integrated specifications.

A. Creating Test-Cases

The presented test-case creation approach combines auto-

mated test-case generation with experienced based testing. We

Fig. 5. Model-based testing process

outline this for statecharts. Initially, the statechart is flattened

and some modeling elements are substituted. Conditional

trigger specifications are transformed into disjunctive normal-

form; for each conjunct a corresponding transition is added to

the model. The resulting model is a graph to which one can

apply common traversal and coverage analysis algorithms.

We have found that it is not always sensible to directly apply

graph-traversal algorithms since the GN might not capture all

of the relevant information. For example, a specification might

contain a cycle that must be repeated a given number of times

before it can be left; we could encode this information in the

graph by unfolding the cycle but this might lead to a significant

increase in the size of the graph. In addition, the GN might

not capture important domain knowledge and may contain

non-determinism that results from abstraction. Nevertheless,

automation remains a key technology to efficiently handle

large specifications and reduce the potential for error in

carrying out routine tasks. As a result, we have developed an

interactive test case generation process that allows the user’s

domain knowledge to be utilised. After each step, the tool

reports the coverage achieved to allow the user to reason

about test-case quality. Based on this, the user either decides

to terminate or chooses the next transition to take.

The testing process presented in Figure 5 is divided in

two phases: automated test-model construction, i.e. flattening

and substitution, and semi-automatic test-case generation. A

software tool uses flattening and substitution operations to gen-

erate a testing model from the model-integrated specification.

Fig. 6. Test-Model Belt-Warner

The resulting testing model for the belt-warner example is

TABLE XIV
TEST-CASE EXAMPLE

No. Input Output

0 [Initial SBW] [Invariant IGNITION OFF]

System precondition is TRUE. Belt-warner ECU not powered.

1 [Trigger turning on] [Invariant IGNITION ON]

Ignition key turned ON. Belt-warner ECU powered.
Error memory is empty. [Invariant STAND BY]

[Trigger Initial IGNITION ON] Belt-warner signals stand-by.
Set power status bit = 1.

2 [Trigger activating] [Invariant IGNITION ON]

Vehicle speed ≥ 25 km/h. Belt-warner ECU powered.
[Trigger Initial ACTIVE] Error memory is void.
Set activity bit = 1. [Invariant ACTIVE]

Belt warner signals activity.
Vehicle speed > 25 km/h.
[Invariant WARNING OFF]

No warning sound emitted.
Seat belts fastened.

3 [Trigger start warning] [Invariant IGNITION ON]

Passenger seat occupied. Belt-warner ECU powered.
Passenger seat-belt unfastened. Error memory is void.

[Invariant ACTIVE]

Belt warner signals activity.
Vehicle speed > 25 km/h.
[Invariant WARNING ON]

A warning sound emitted.
Passenger seat-belt unfastened.

4 [Trigger stop warning] [Invariant IGNITION ON]

Warning emitted. Belt-warner ECU powered.
Driver seat-belt fastened. Error memory is void.
Passenger seat occupied. [Invariant ACTIVE]

Passenger seat-belt fastened. Belt warner signals activity.
Vehicle speed > 25 km/h.
[Invariant WARNING OFF]

No warning sound emitted.
Seat-belts fastened.

presented in Figure 6. The testing model is used by another

software tool to support the test-case specification process by

advising the test engineer. Test-case creation starts with an

empty sequence in the initial state (the initial transition may

add text to the test-case too, but for now we will ignore this).

The software tool supports the test-engineer by offering the

current state’s outgoing transitions and its textual contents,

which may be chosen to extend the test-case. When the test-

engineer selects a transition its textual content is appended to

the test-case and the current state is changed.

Once a test-case is finished, it is added to a test-set (a

collection of test-cases). The tool applies coverage metrics to

a test-set so that the test engineer can decide whether further

test-cases should be added. Table XIV gives a test-case created

using the tool from the belt-warner model. The test-case covers

the edges marked bold in the model presented in Figure 6.

B. Test coverage criteria

Let us suppose that S is a model-integrated specification,

GS is an LDG generated from S, and GT is a test-model

derived from S. Further, suppose that tS is a test suite. We

have several possible coverage metrics.

Edge coverage CG is the fraction of edges of GS that are

covered when executing tS . Condition coverage CS is the

fraction of conditional statements (within structured logical

expressions) of S covered when executing tS . Trigger cover-

age CT , is the fraction of edges of the test-model T that are

covered when executing tS . For effort estimation, an upper

bound on the number of edges in T is provided by taking the

sum, over the edges of GS , of the number of conditions in the

DNF form of the triggers. The test-case presented in Table

XIV results in the coverage rates presented in Table XV.

TABLE XV
BELT-WARNER TEST COVERAGE EXAMPLE

Transition CG CS CT

Initial ACTIVE 100% 100% 100%

Initial IGNITION ON 100% 100% 100%

Initial SBW 100% 100% 100%

activating 100% 100% 100%

deactivating 0% 0% 0%

start warning 100% 50% 50%

stop warning 100% 50% 100%

turning off 0% 0% 0%

turning on 100% 100% 100%

V. CASE STUDIES

The model-integration approach and tool have been used

in a number of development projects in industry: system

specification of various parking assistance systems using block

diagrams and statecharts; functional specification of emer-

gency braking systems using statecharts; system specification

of camera-based surround view systems; system, function and

test-case specifications of the control of an automated manual

gearbox; architecture, function and user interface specifica-

tions of a database management tool; and architecture and

function of a software-controlled medical device.

Among the specified driver assistance systems are 4 park-

ing systems, 2 brake-assistance systems, and a camera-based

traffic information system, for which it was found that a

major benefit lies in the clear structure and transparency of

the model-integrated specification. The largest specification

included 5 functional variants of a parking system containing

more than 2000 requirements, which were structured using 8

statechart models, of which the largest contained 40 states and

69 transitions. Frequently it was seen that the specifications

would increase in size. Even though redundancies can be

eliminated completely, the model-based approach enforces

completeness and the additional, missing, requirements caused

the specification to grow.

Functional specifications of an automated gear-box were

created using the model-integration tool; experience data is

presented in Table XVI. Two requirements engineers took four

months to create model-integrated specifications from high-

level functional specification. Since the functional specifica-

tions were found to be incomplete and inconsistent, workshops

were held with the system developers to elicit missing require-

ments and to remove specification faults. The model-integrated

specifications were complemented with testing information, so

that the same specifications could be used to generate test-

cases for manual and automatic execution.

TABLE XVI
AUTOMATIC GEARBOX APPLICATION STATISTICS

Component Requirements Nodes Edges

Coasting 315 18 36

Creeping 275 15 34

Garage Shift 268 12 34

Launch 262 16 32

Shift Quality 293 14 21

Stalling 144 11 20

Startup&Shutdown 117 17 26

The model-integration has also been used to specify a

medical system consisting of 7 major components. Experience

data is presented in Table XVII.

TABLE XVII
MEDICAL DEVICE APPLICATION STATISTICS

Component Requirements Nodes Edges

ECU 91 6 8

Sensors 98 8 15

Actuators 92 8 14

Radio Arch. 17 2 2

Radio Func. 83 5 15

Radio Master 92 11 15

Radio Client 71 8 13

The model-integrated specification approach is in use. To

specify graphical user interfaces, a specific graphical notation

and semantics have been developed that represents the graph-

ical widgets and their placement on the screen. Functional

behaviour, in the form of a statechart, can be attached to

widgets. The project, including the specification approach, has

been assessed and certified for SPICE level 1 [5].

TABLE XVIII
COMPARISON OF APPLICATION STATISTICS IN DEVELOPMENT PROJECTS

System Comp. Models Nodes Edges Effort[h]

Parking 1 4 8 40 69 500

Parking 2 4 5 19 38 650

Brake 1 1 2 6 8 700

Brake 2 1 2 15 18 800

Gearbox 7 7 103 203 1100

SW Tool 3 26 133 235 900

Medical Device 4 7 48 82 400

Table XVIII presents statistics regarding specifications cre-

ated using the approach presented. The rows refer to the

specified systems. The columns contain counts of components,

models, states and transitions included in the specifications.

Table XVIII shows very different efficiencies (efforts per

node, edge, model, or component), where effort is a rough ap-

proximation of the number of person hours required to create

and maintain the specification during the project. The parking

and brake assist system projects were the first applications

of the approach and were involved in the development of the

method and tool. Thus the comparably low efficiency is caused

by less automation and a less mature approach. Furthermore,

we found that the number of components and models are

individual decisions made during the early phases of each

project. The influence of such decisions on the efficiency of

development activities is hard to determine. However, as a rule

of thumb, we found during the further projects that specifying

and maintaining a chapter takes approximately up to two days.

VI. RELATED WORK

The basic approach described in this paper has previously

been presented [6]. This paper provides additional details and

formalisation as well as an extended example and experience

data. An additional extension is the inclusion of a semi-

automatic model-based testing approach and associated cover-

age criteria. The model-integration approach contributes to the

RE reference model presented in [7] as it provides a method

to systematically integrate and relate artefacts (as domain

knowledge) into artefacts of requirements and specifications.

The presented approach contributes to the concept of view-

points resolution presented in [8] through abstraction and

unification of document structures that significantly eases the

comparison and gap analysis of different viewpoints. The

extension of the presented approach to methods for the identifi-

cation of missing and wrong facts over a set of comprehensive

model-integrated specifications is a topic of ongoing work and

inspired by the viewpoints analysis presented in [8].

In [6] we noted that structure has a significant impact on the

quality of requirements sets. Previous work has used clustering

to automatically restructure comprehensive requirements sets

[9]. In contrast, model-integration takes advantage of the

knowledge and experience of the human reader, who is sup-

ported by an improved document structure. Similar approaches

have been presented on the integration of textual and graphical

modeling languages, e.g. [10], [11], although these do not

consider natural language as a textual language.

There are many approaches to model-based testing. How-

ever, they typically require the existence of a model in a

formal language such as a finite state machine [12] or labelled

transition system [13], possibly enriched by aspects such as

time [14] or probabilities [15], [16]. While NL explanations

can complement a model in such a language, the NL is not

normally integrated with the model.

VII. CONCLUSIONS

The model-integrated approach has been presented, with this

making it possible to seemlessly integrate textual specifications

and models, resulting in a semi-formal specification. The

level of formalisation of the resulting specifications makes it

possible to use formal analyses and graph operations, e.g. test-

case generation. The benefits include the following:

1) formal definition of requirements completeness;

2) efficiency through automation;

3) fewer manual faults through automation;

4) improved clarity through use of the model as a document

structure;

5) fewer redundancies and inconsistencies through formal

soundness criteria and checking capabilities;

6) no divergence of the GN and NL parts of a specification;

7) eased and accelerated maintenance and change.

The approach has been implemented in a tool. It has been

applied in several projects in industry over a period of 6 years.

Future work will aim at the reimplementation of the tool

independent of specific commercial requirements management

systems and that utilises the model-integration approach. Fur-

thermore, an extended approach is under development that

allows for bidirectional changing of models, i.e. to transfer

changes of the model from NL into GN and vice versa.

Currently, it is only possible to change the model through

manually changing the GN-part and transferring these changes

automatically to the NL-part. There may also be scope to

automatically derive some structure from NL.

REFERENCES

[1] T. Gilb, “No cure no pay: How to contract for software services,”
Comput. Sci. Inf. Syst., vol. 4, no. 1, pp. 29–41, 2007.

[2] J. W. Nilsson, Electric circuits (4. ed.), ser. Addison-Wesley series in
electrical and computer engineering. Addison-Wesley, 1993.

[3] M. K. Stojcev, “John p. hayes, computer architecture and organization,
third ed., mcgraw-hill book company, inc., boston, 1988, softcover,
pp 604, plus xiv, ISBN 0-07-115997-5,” Microelectronics Reliability,
vol. 46, no. 1, pp. 196–197, 2006.

[4] D. Harel, “Statecharts in the making: a personal account,” Commun.

ACM, vol. 52, no. 3, pp. 67–75, 2009.
[5] I. O. for Standardization, “Software process improvement and capability

determination (spice),” Tech. Rep., 2012.
[6] C. Robinson-Mallett, “An approach on integrating models and textual

specifications,” in Second IEEE International Workshop on Model-

Driven Requirements Engineering, MoDRE 2012, Chicago, IL, USA,

September 24, 2012, 2012, pp. 92–96.
[7] C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave, “A reference model

for requirements and specifications,” IEEE Software, vol. 17, no. 3, pp.
37–43, 2000. [Online]. Available: http://dx.doi.org/10.1109/52.896248

[8] J. C. S. do Prado Leite and P. Freeman, “Requirements validation
through viewpoint resolution,” IEEE Trans. Software Eng., vol. 17,
no. 12, pp. 1253–1269, 1991.

[9] A. Ferrari, S. Gnesi, and G. Tolomei, “Using clustering to improve the
structure of natural language requirements documents,” in Requirements

Engineering: Foundation for Software Quality - 19th International

Working Conference, REFSQ 2013, Essen, Germany, April 8-11, 2013.

Proceedings, 2013, pp. 34–49.
[10] L. Engelen and M. van den Brand, “Integrating textual and graphical

modelling languages,” Electr. Notes Theor. Comput. Sci., vol. 253, no. 7,
pp. 105–120, 2010.

[11] M. Scheidgen, “Textual modelling embedded into graphical modelling,”
in Model Driven Architecture - Foundations and Applications, 4th

European Conference, ECMDA-FA 2008, Berlin, Germany, June 9-13,

2008. Proceedings, 2008, pp. 153–168.
[12] R. M. Hierons and U. C. Türker, “Parallel algorithms for testing finite

state machines: Generating UIO sequences,” IEEE Transactions on

Software Engineering, vol. 42, no. 11, pp. 1077–1091, 2016.
[13] J. Tretmans, “Model based testing with labelled transition systems,” in

Formal Methods and Testing, ser. Lecture Notes in Computer Science,
vol. 4949. Springer, 2008, pp. 1–38.

[14] C. Gaston, R. M. Hierons, and P. L. Gall, “An implementation relation
and test framework for timed distributed systems,” in 25th IFIP WG

6.1 International Conference on Testing Software and Systems (ICTSS

2013), ser. Lecture Notes in Computer Science, vol. 8254. Springer,
2013, pp. 82–97.

[15] M. Gerhold and M. Stoelinga, “Model-based testing of probabilistic
systems,” in Fundamental Approaches to Software Engineering - 19th

International Conference, FASE 2016, ser. Lecture Notes in Computer
Science, vol. 9633. Springer, 2016, pp. 251–268.

[16] G. H. Walton, J. H. Poore, and C. J. Trammell, “Statistical testing of
software based on a usage model,” Softw., Pract. Exper., vol. 25, no. 1,
pp. 97–108, 1995.

