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Integrating healthcare and research genetic data empowers the discovery of 28 novel 1 
developmental disorders 2 
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Summary 41 

De novo mutations (DNMs) in protein-coding genes are a well-established cause of 42 

developmental disorders (DD). However, known DD-associated genes only account for a 43 

minority of the observed excess of such DNMs. To identify novel DD-associated genes, we 44 

integrated healthcare and research exome sequences on 31,058 DD parent-offspring trios, and 45 

developed a simulation-based statistical test to identify gene-specific enrichments of DNMs. We 46 

identified 285 significantly DD-associated genes, including 28 not previously robustly associated 47 

with DDs. Despite detecting more DD-associated genes than in any previous study, much of the 48 

excess of DNMs of protein-coding genes remains unaccounted for. Modelling suggests that 49 

over 1,000 novel DD-associated genes await discovery, many of which are likely to be less 50 

penetrant than the currently known genes. Research access to clinical diagnostic datasets will 51 

be critical for completing the map of dominant DDs. 52 

  53 
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Introduction 54 

It has previously been estimated that ~42-48% of patients with a severe developmental 55 

disorder (DD) have a pathogenic de novo mutation (DNM) in a protein coding gene1,2. However, 56 

over half of these patients remain undiagnosed despite the identification of hundreds of 57 

dominant and X-linked DD-associated genes. This implies that there are more DD relevant 58 

genes left to find. Existing methods to detect gene-specific enrichments of damaging DNMs 59 

typically ignore much prior information about which variants and genes are more likely to be 60 

disease-associated. However, missense variants and protein-truncating variants (PTVs) vary in 61 

their impact on protein function3–6. Known dominant DD-associated genes are strongly enriched 62 

in the minority of genes that exhibit patterns of strong selective constraint on heterozygous 63 

PTVs in the general population7. To identify the remaining DD genes, we need to increase our 64 

power to detect gene-specific enrichments for damaging DNMs by both increasing sample sizes 65 

and improving our statistical methods. In previous studies of pathogenic Copy Number Variation 66 

(CNV), utilising healthcare-generated data has been key to achieve much larger sample sizes 67 

than would be possible in a research setting alone8,9. 68 

 69 

Improved statistical enrichment test identifies 285 significant DD-associated genes 70 

Following clear consent practices and only using aggregate, de-identified data, we 71 

pooled DNMs in patients with severe developmental disorders from three centres: GeneDx (a 72 

US-based diagnostic testing company), the Deciphering Developmental Disorders study, and 73 

Radboud University Medical Center. We performed stringent quality control on variants and 74 

samples to obtain 45,221 coding and splicing DNMs in 31,058 individuals (Supplementary Fig. 75 

1; Supplementary Table 1), which includes data on over 24,000 trios not previously published. 76 

These DNMs included 40,992 single nucleotide variants (SNVs) and 4,229 indels. The three 77 

cohorts have similar clinical characteristics, male/female ratios, enrichments of DNMs by 78 

mutational class, and prevalences of known disorders (Supplementary Fig. 2).  79 

To detect gene-specific enrichments of damaging DNMs, we developed a method 80 

named DeNovoWEST (De Novo Weighted Enrichment Simulation Test, 81 

https://github.com/queenjobo/DeNovoWEST). DeNovoWEST scores all classes of sequence 82 

variants on a unified severity scale based on the empirically-estimated positive predictive value 83 

of being pathogenic (Supplementary Fig. 3-4). We perform two tests per gene: the first is an 84 

enrichment test on all nonsynonymous DNMs and the second is a test designed to detect genes 85 

likely acting via an altered-function mechanism. This second test combines an enrichment test 86 

on missense DNMs with a test of linear clustering of missense DNMs within the gene. We then 87 

applied a Bonferroni multiple testing correction accounting for 18,762 x 2 tests, which takes into 88 

account the number of genes and two tests per gene. 89 
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We first applied DeNovoWEST to all individuals in our cohort and identified 281 90 

significant genes, 18 more than when using our previous method1 (Supplementary Fig. 5; Fig. 91 

1a). The majority (196/281; 70%) of these significant genes already had sufficient evidence of 92 

DD-association to be considered of diagnostic utility (as of late 2019) by all three centres, and 93 

we refer to them as “consensus” genes. 54/281 of these significant genes were previously 94 

considered diagnostic by one or two centres (“discordant” genes). Applying DeNovoWEST to 95 

synonymous DNMs, as a negative control analysis, identified no significantly enriched genes 96 

(Supplementary Fig. 6). 97 

To discover novel DD-associated genes with greater power, we then applied 98 

DeNovoWEST only to DNMs in patients without damaging DNMs in consensus genes (we refer 99 

to this subset as ‘undiagnosed’ patients) and identified 94 significant genes (Fig. 1b; 100 

Supplementary Fig. 7; Supplementary Table 2). While 61 of these genes were discordant 101 

genes, we identified 33 putative ‘novel’ DD-associated genes. To further ensure robustness to 102 

potential mutation rate variation between genes, we determined whether any of the putative 103 

novel DD-associated genes had significantly more synonymous variants in the Genome 104 

Aggregation Database5 (gnomAD) of population variation than expected under our null mutation 105 

model (Supplementary Note). We identified 11/33 genes with a significant excess of 106 

synonymous variants. For these 11 genes we then repeated the DeNovoWEST test, increasing 107 

the null mutation rate by the ratio of observed to expected synonymous variants in gnomAD. 108 

Five of these genes then fell below our exome-wide significance threshold and were removed, 109 

leaving 28 novel genes, with a median of 10 nonsynonymous DNMs in our dataset (Fig. 1c; 110 

Supplementary Table 3). There were 314 patients with nonsynonymous DNMs in these 28 111 

genes (1.0% of our cohort); all DNMs in these genes were inspected in IGV10 and, of 198 for 112 

which experimental validation was attempted, all were confirmed as DNMs in the proband. The 113 

DNMs in these novel genes were distributed approximately randomly across the three datasets 114 

(no genes with p < 0.001, heterogeneity test). Six of the 28 novel DD-associated genes are 115 

further corroborated by OMIM entries or publications, including TFE311,12 for which patients were 116 

described in two recent publications. 117 

We also investigated whether some synonymous DNMs might be pathogenic by 118 

disrupting splicing. We annotated all synonymous DNMs with a splicing pathogenicity score, 119 

SpliceAI20, and identified a significant enrichment of synonymous DNMs with high SpliceAI 120 

scores (≥ 0.8, 1.56-fold enriched, p = 0.0037, Poisson test; Supplementary Table 4). This 121 

enrichment corresponds to an excess of ~15 splice-disrupting synonymous mutations in our 122 

cohort, of which six are accounted for by a single recurrent synonymous mutation in KAT6B 123 

known to disrupt splicing21. 124 

 125 
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 126 
Figure 1: Results of DeNovoWEST analysis. (a) Comparison of p-values generated using the 127 

new method (DeNovoWEST) versus the previous method (mupit)1. These are results from 128 

DeNovoWEST run on the full cohort. The dashed lines indicate the threshold for genome-wide 129 

significance. The size of the points is proportional to the number of nonsynonymous DNMs in 130 

our cohort (nsyn). The numbers describe the number of genes that fall into each quadrant (b) 131 

The number of missense and PTV DNMs in our cohort in the novel genes. The size of the points 132 

are proportional to the log10(-p-value) from the analysis on the undiagnosed subset. The colour 133 

corresponds to which test p-value was the minimum (more significant) for these genes: non-134 

synonymous enrichment test in blue (pEnrich), or missense enrichment and clustering test in 135 

red (pMEC). (c) The distribution of p-values from the analysis on the undiagnosed subset for 136 

discordant and novel genes; p-values for consensus genes come from the full analysis. The 137 

number of genes in each p-value bin is coloured by diagnostic gene group. (d) The fraction of 138 

cases with a nonsynonymous mutation in each diagnostic gene group. (e) The fraction of cases 139 

with a nonsynonymous mutation in each diagnostic gene group split by sex. In all figures, black 140 

represents the consensus genes, blue represents the discordant genes, and orange represents 141 

the novel genes. In (c), green represents the remaining fraction of cases expected to have a 142 

pathogenic de novo coding mutation (“remaining”) and grey is the fraction of cases that are 143 

likely to be explained by other genetic or nongenetic factors (“not de novo”). 144 
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Taken together, 25.0% of individuals in our combined cohort have a nonsynonymous 145 

DNM in one of the consensus or significant DD-associated genes (Fig. 1d). We noted 146 

significant sex differences in the autosomal burden of nonsynonymous DNMs (Supplementary 147 

Fig. 8). The rate of nonsynonymous DNMs in consensus autosomal genes was significantly 148 

higher in females than males (OR = 1.16, p = 4.4 x 10-7, Fisher’s exact test; Fig. 1e), as noted 149 

previously1. However, the exome-wide burden of autosomal nonsynonymous DNMs in all genes 150 

was not significantly different between undiagnosed males and females (OR = 1.03, p = 0.29, 151 

Fisher’s exact test). This suggests the existence of subtle sex differences in the genetic 152 

architecture of DD, especially with regard to known and undiscovered disorders. This could, for 153 

example, include sex-biased contribution of polygenic and/or environmental causes of DDs. 154 

 155 

Characteristics of the novel DD-associated genes and disorders 156 

Based on semantic similarity22 between Human Phenotype Ontology terms, patients with 157 

DNMs in the same novel DD-associated gene were less phenotypically similar to each other, on 158 

average, than patients with DNMs in a consensus gene (p = 2.3 x 10-11, Wilcoxon rank-sum test; 159 

Fig. 2a; Supplementary Figure 9). This suggests that these novel disorders less often result in 160 

distinctive and consistent clinical presentations, which may have made these disorders harder 161 

to discover via a phenotype-driven analysis or recognise by clinical presentation alone. Each of 162 

these novel disorders requires a detailed genotype-phenotype characterisation, which is beyond 163 

the scope of this study. 164 

Overall, novel DD-associated genes encode proteins that have very similar functional 165 

and evolutionary properties to consensus genes, e.g. developmental expression patterns, 166 

network properties and biological functions (Fig. 2b; Supplementary Table 5). Despite the 167 

high-level functional similarity between known and novel DD-associated genes, the 168 

nonsynonymous DNMs in the more recently discovered DD-associated genes are much more 169 

likely to be missense DNMs, and less likely to be PTVs (discordant and novel; p = 1.2 x 10-25, 170 

chi-squared test). Fifteen of the 28 (54%) of the novel genes only had missense DNMs, and 171 

only a minority had more PTVs than missense DNMs. Consequently, we expect that a greater 172 

proportion of the novel genes will act via altered-function mechanisms (e.g. dominant negative 173 

or gain-of-function). For example, the novel gene PSMC5 (DeNovoWEST p = 2.6 x 10-15) had 174 

one inframe deletion and nine missense DNMs, eight of which altered two structurally important 175 

amino acids that are both in the AAA+ ATPase domain within the 3D protein structure: 176 

p.Pro320Arg and p.Arg325Trp (Supplementary Fig. 10a-b), and so is likely to operate via an 177 

altered-function mechanism. None of the novel genes exhibited significant clustering of de novo 178 

PTVs.  179 
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 180 
Figure 2: Functional properties and mechanisms of novel genes. (a) Comparing the 181 

phenotypic similarity of patients with DNMs in novel and consensus genes. Random phenotypic 182 

similarity was calculated from random pairs of patients. Patients with DNMs in the same novel 183 

DD-associated gene were less phenotypically similar than patients with DNMs in a known DD-184 

associated gene (p = 2.3 x 10-11, Wilcoxon rank-sum test). (b) Comparison of functional 185 

properties of consensus and novel DD genes. Properties were chosen as those known to be 186 

differential between consensus and non-DD genes.  187 

 188 

We observed that missense DNMs were more likely to affect functional protein domains 189 

than other coding regions. We observed a 2.63-fold enrichment (p = 2.2 x 10-68, G-test) of 190 

missense DNMs residing in protein domains among consensus genes and a 1.80-fold 191 

enrichment (p = 8.0 x 10-5, G-test) in novel DD-associated genes, but no enrichment for 192 

synonymous DNMs (Supplementary Table 6). Four protein domain families in consensus 193 

genes were consistently enriched for missense DNMs (Supplementary Table 7): ion transport 194 

protein (PF00520, p = 6.9 x 10-4, G-test Bonferroni corrected), ligand-gated ion channel 195 

(PF00060, p = 4.0 x 10-6), protein kinase domain (PF00069, p = 0.043), and kinesin motor 196 

domain (PF00225, p = 0.027). Missense DNMs in all four enriched domain families have 197 

previously been associated with DD (Supplementary Table 8)24–26.  198 

We observed a significant overlap between the 285 DNM-enriched DD-associated genes 199 

and a set of 369 previously described cancer driver genes27 (overlap of 70 genes; p = 1.7 x 10-200 
49, logistic regression correcting for shet), as observed previously28,29, as well as a significant 201 

enrichment of nonsynonymous DNMs in these genes (Supplementary Table 9). This overlap 202 

extends to somatic driver mutations: we observe 117 DNMs at 76 recurrent somatic mutations 203 

observed in at least three patients in The Cancer Genome Atlas (TCGA)30. By modelling the 204 

germline mutation rate at these somatic driver mutations, we found that recurrent 205 

nonsynonymous mutations in TCGA are enriched 21-fold in the DDD cohort (p < 10-50, Poisson 206 
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test, Supplementary Fig. 11), whereas recurrent synonymous mutations in TCGA are not 207 

significantly enriched (2.4-fold, p = 0.13, Poisson test). This suggests that this observation is 208 

driven by the pleiotropic effects of these mutations in development and tumourigenesis, rather 209 

than hypermutability. 210 

 211 

Recurrent mutations and potential new germline selection genes 212 

We identified 773 recurrent DNMs (736 SNVs and 37 indels), ranging from 2-36 213 

independent observations per DNM, which allowed us to interrogate systematically the factors 214 

driving recurrent germline mutation. We considered three potential contributory factors: (i) 215 

clinical ascertainment enriching for pathogenic mutations, (ii) greater mutability at specific sites, 216 

and (iii) positive selection conferring a proliferative advantage in the male germline, thus 217 

increasing the prevalence of sperm containing the mutation31. We observed strong evidence 218 

that all three factors contribute, but not necessarily mutually exclusively. Clinical ascertainment 219 

drives the observation that 65% of recurrent DNMs were in consensus genes, a 5.4-fold 220 

enrichment compared to DNMs only observed once (p < 10-50, proportion test). Hypermutability 221 

underpins the observation that 64% of recurrent de novo SNVs occurred at hypermutable CpG 222 

dinucleotides32, a 2.0-fold enrichment over DNMs only observed once (p = 3.3 x 10-68, chi-223 

square test). We also observed a striking enrichment of recurrent mutations at the 224 

haploinsufficient DD-associated gene MECP2, in which we observed 11 recurrently mutated 225 

SNVs within a 500bp window, nine of which were G to A mutations at a CpG dinucleotide. 226 

MECP2 exhibits a highly significant twofold excess of synonymous mutations within gnomAD5, 227 

suggesting that locus-specific hypermutability might explain this observation.  228 

To assess the contribution of germline selection to recurrent DNMs, we initially focused 229 

on the 12 known germline selection genes, which all operate through activation of the RAS-230 

MAPK signalling pathway33,34. We identified 39 recurrent DNMs in 11 of these genes, 38 of 231 

which are missense and all of which are known to be activating in the germline (see 232 

Supplement). As expected, given that hypermutability is not the driving factor for recurrent 233 

mutation in these germline selection genes, these 39 recurrent DNMs were depleted for CpGs 234 

relative to other recurrent mutations (6/39 vs 425/692, p = 3.4 x 10-8, chi-squared test).  235 

Positive germline selection has been shown to be capable of increasing the apparent 236 

mutation rate more strongly31 than either clinical ascertainment (10-100X in our dataset) or 237 

hypermutability (~10X for CpGs). However, only a minority of the most highly recurrent 238 

mutations in our dataset are in genes that have been previously associated with germline 239 

selection. Nonetheless, several lines of evidence suggested that the majority of these most 240 

highly recurrent mutations are likely to confer a germline selective advantage. Based on the 241 

recurrent DNMs in known germline selection genes, DNMs under germline selection should be 242 

more likely to be activating missense mutations, and should be less enriched for CpG 243 
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dinucleotides. Table 1 shows the 16 de novo SNVs observed nine or more times in our DNM 244 

dataset, only two of which are in known germline selection genes (MAP2K1 and PTPN11). All 245 

but two of these 16 de novo SNVs cause missense changes, all but two of these genes cause 246 

disease by an altered-function mechanism, and these DNMs were depleted for CpGs relative to 247 

all recurrent mutations. Two of the genes with highly recurrent de novo SNVs, SHOC2 and 248 

PPP1CB, encode interacting proteins that are known to play a role in regulating the RAS-MAPK 249 

pathway, and pathogenic variants in these genes are associated with a Noonan-like 250 

syndrome35. Moreover, two of these recurrent DNMs are in the same gene SMAD4, which 251 

encodes a key component of the TGF-beta signalling pathway, potentially expanding the 252 

pathophysiology of germline selection beyond the RAS-MAPK pathway. Confirming germline 253 

selection of these mutations will require deep sequencing of testes and/or sperm34. 254 

 255 

 256 

Symbol Chr Position Ref Alt Consequence Recur Likely mechanism CpG 

Somatic 
Driver 
Gene 

Germline 
Selection 
Gene DD status 

PACS1 11 65978677 C T missense 36 activating Yes - - consensus 
PPP2R5D 6 42975003 G A missense 22 dominant negative - - - consensus 
SMAD4 18 48604676 A G missense 21 activating - Yes - consensus 
PACS2 14 105834449 G A missense 13 dominant negative Yes - - discordant 
MAP2K1 15 66729181 A G missense 11 activating - Yes Yes consensus 
PPP1CB 2 28999810 C G missense 11 all missense/in frame - - - consensus 
NAA10 X 153197863 G A missense 11 all missense/in frame Yes - - consensus 
MECP2 X 153296777 G A stop gain 11 loss of function Yes - - consensus 
CSNK2A1 20 472926 T C missense 10 activating - - - consensus 
CDK13 7 40085606 A G missense 10 all missense/in frame - - - consensus 
SHOC2 10 112724120 A G missense 9 activating - - - consensus 
PTPN11 12 112915523 A G missense 9 activating - Yes Yes consensus 
SMAD4 18 48604664 C T missense 9 activating Yes Yes - consensus 
SRCAP 16 30748664 C T stop gain 9 dominant negative Yes - - consensus 
FOXP1 3 71021817 C T missense 9 loss of function Yes - - consensus 
CTBP1 4 1206816 G A missense 9 dominant negative Yes - - discordant 

 257 

 258 

Table 1: Recurrent Mutations. De novo single nucleotide variants with more than 9 259 

recurrences in our cohort annotated with relevant information, such as CpG status, whether the 260 

impacted gene is a known somatic driver or germline selection gene, and diagnostic gene group 261 

(e.g. consensus). “Recur” refers to the number of recurrences. “Likely mechanism” refers to 262 

mechanisms attributed to this gene in the published literature.  263 

 264 

 265 
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Evidence for incomplete penetrance and pre/perinatal death 266 

Nonsynonymous DNMs in consensus or significant DD-associated genes accounted for 267 

half of the exome-wide nonsynonymous DNM burden associated with DD (Fig. 1b). Despite our 268 

identification of 285 significantly DD-associated genes, there remains a substantial burden of 269 

both missense and protein-truncating DNMs in unassociated genes (those that are neither 270 

significant in our analysis nor on the consensus gene list). The remaining burden of protein-271 

truncating DNMs is greatest in genes that are intolerant of PTVs in the general population 272 

(Supplementary Fig. 12) suggesting that more haploinsufficient (HI) disorders await discovery. 273 

We observed that PTV mutability (estimated from a null germline mutation model) was 274 

significantly lower in unassociated genes compared to DD-associated genes (p = 4.5 x 10-68, 275 

Wilcox rank-sum test Fig. 3a), which leads to reduced statistical power to detect DNM 276 

enrichment in unassociated genes. This is consistent with our hypothesis that many more HI 277 

disorders await discovery.  278 

A key parameter in estimating statistical power to detect novel HI disorders is the fold-279 

enrichment of de novo PTVs expected in as yet undiscovered HI disorders. We observed that 280 

novel DD-associated HI genes had significantly lower PTV enrichment compared to the 281 

consensus HI genes (p = 0.005, Wilcox rank-sum test; Fig. 3b). Two additional factors that 282 

could lower DNM enrichment, and thus power to detect a novel DD-association, are reduced 283 

penetrance and increased pre/perinatal death, which here covers spontaneous fetal loss, 284 

termination of pregnancy for fetal anomaly, stillbirth, and early neonatal death. To evaluate 285 

incomplete penetrance, we investigated whether HI genes with a lower enrichment of protein-286 

truncating DNMs in our cohort are associated with greater prevalences of PTVs in the general 287 

population. We observed a significant negative correlation (p = 0.031, weighted linear 288 

regression) between gene-specific PTV enrichment in our cohort and the gene-specific ratio of 289 

PTV to synonymous variants in gnomAD5, suggesting that incomplete penetrance does lower de 290 

novo PTV enrichment in individual genes in our cohort (Fig. 3c). 291 

Additionally, we observed that the fold-enrichment of protein-truncating DNMs in 292 

consensus HI DD-associated genes in our cohort was significantly lower for genes with a 293 

medium or high likelihood of presenting with a prenatal structural malformation (p = 4.6 x 10-5, 294 

Poisson test, Fig. 3d), suggesting that pre/perinatal death decreases our power to detect some 295 

novel DD-associated disorders (see supplement for details). 296 

 297 
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 298 
Figure 3: Impact of pre/perinatal death and penetrance on power. (a) PTV mutability is 299 

significantly lower in genes that are not significantly associated to DD in our analysis 300 

(“unassociated”, coloured blue) than in DD-associated genes (“associated”, coloured red; p = 301 

4.6 x 10-68, Wilcox rank sum test). (b) Distribution of PTV enrichment in significant, likely 302 

haploinsufficient, genes by diagnostic group. (c) Comparison of the PTV enrichment in our 303 

cohort vs the PTV to synonymous ratio found in gnomAD, for genes that are significantly 304 

enriched for the number of PTV mutations in our cohort (without any variant weighting). PTV 305 

enrichment is shown as log10(enrichment). There is a significant negative relationship (p = 306 

0.031, weighted regression). (d) Overall de novo PTV enrichment (observed / expected PTVs) 307 

across genes grouped by their clinician-assigned likelihood of presenting with a structural 308 

malformation on ultrasound during pregnancy. PTV enrichment is significantly lower for genes 309 

with a medium or high likelihood compared to genes with a low likelihood (p = 4.6 x 10-5, 310 

Poisson test). 311 

 312 

Modelling reveals hundreds of DD genes remain to be discovered 313 

 To understand the likely trajectory of future DD discovery efforts, we downsampled the 314 

current cohort and reran our enrichment analysis (Fig. 4a). We observed that the number of 315 

significant genes has not yet plateaued. Increasing sample sizes should result in the discovery 316 

of many novel DD-associated genes. To estimate how many haploinsufficient genes might await 317 

discovery, we modelled the likelihood of the observed distribution of protein-truncating DNMs 318 
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among genes as a function of varying numbers of undiscovered HI DD genes and fold-319 

enrichments of protein-truncating DNMs in those genes. We found that the remaining HI burden 320 

is most likely spread across ~1000 genes with ~10-fold PTV enrichment (Fig. 4b). This fold 321 

enrichment is three times lower than in known HI DD-associated genes, suggesting that 322 

incomplete penetrance and/or pre/perinatal death is much more prevalent among undiscovered 323 

HI genes. We modelled the missense DNM burden separately and also observed that the most 324 

likely architecture of undiscovered DD-associated genes is one that comprises over 1000 genes 325 

with a substantially lower fold-enrichment than in currently known DD-associated genes 326 

(Supplemental Fig. 13).  327 

We calculated that a sample size of ~350,000 parent-offspring trios would be needed to 328 

have 80% power to detect a 10-fold enrichment of protein-truncating DNMs for a gene with the 329 

median PTV mutation rate among currently unassociated genes. Using this inferred 10-fold 330 

enrichment among undiscovered HI genes, from our current data we can evaluate the likelihood 331 

that any gene in the genome is an undiscovered HI gene, by comparing the likelihood of the 332 

number of de novo PTVs observed in each gene to have arisen from the null mutation rate or 333 

from a 10-fold increased PTV rate. Among the ~19,000 non-DD-associated genes, ~1,200 were 334 

more than three times more likely to have arisen from a 10-fold increased PTV rate, whereas 335 

~7,000 were three times more likely to have no de novo PTV enrichment.  336 

 337 
Figure 4: Exploring the remaining number of DD genes. (a) Number of significant genes 338 

from downsampling full cohort and running DeNovoWEST’s enrichment test. (b) Results from 339 

modelling the likelihood of the observed distribution of de novo PTV mutations. This model 340 

varies the numbers of remaining haploinsufficient (HI) DD genes and PTV enrichment in those 341 

remaining genes. The 50% credible interval is shown in red and the 90% credible interval is 342 

shown in orange. Note that the median PTV enrichment in significant HI genes (shown with an 343 

arrow) is 39.7. 344 
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 345 

Discussion 346 

In this study, we have discovered 28 novel developmental disorders by developing an 347 

improved statistical test for mutation enrichment and applying it to a dataset of exome 348 

sequences from 31,058 children with developmental disorders, and their parents. These 28 349 

novel genes account for up to 1.0% of our cohort, and inclusion of these genes in diagnostic 350 

workflows will catalyse increased diagnosis of similar patients globally. We note that the value of 351 

this study for improving diagnostic yield extends well beyond these 28 novel genes; once newly 352 

validated discordant genes are included, the total number of genes added to the diagnostic 353 

workflows of the three participating centres ranged from 48-65 genes. We have shown that both 354 

incomplete penetrance and pre/perinatal death reduce our power to detect novel DDs 355 

postnatally, and that one or both of these factors are likely operating considerably more strongly 356 

among undiscovered DD-associated genes. In addition, we have identified a set of highly 357 

recurrent mutations that are strong candidates for novel germline selection mutations, which 358 

would be expected to result in a higher than expected disease incidence that increases 359 

dramatically with increased paternal age. 360 

Our study represents the largest collection of DNMs for any disease area, and is 361 

approximately three times larger than a recent meta-analysis of DNMs from a collection of 362 

individuals with autism spectrum disorder, intellectual disability, and/or a developmental 363 

disorder36. Our analysis included DNMs from 24,348 previously unpublished trios, and we 364 

identified ~2.3 times as many significantly DD-associated genes as this previous study when 365 

using Bonferroni-corrected exome-wide significance (285 vs 124). In contrast to meta-analyses 366 

of published DNMs, the harmonised filtering of candidate DNMs across cohorts in this study 367 

should protect against results being confounded by substantial cohort-specific differences in the 368 

sensitivity and specificity of detecting DNMs. 369 

Here we inferred indirectly that developmental disorders with higher rates of detectable 370 

prenatal structural abnormalities had greater pre/perinatal death. The potential size of this effect 371 

can be quantified from the recently published PAGE study of genetic diagnoses in a cohort of 372 

fetal structural abnormalities37. In this latter study, genetic diagnoses were not returned to 373 

participants during the pregnancy, and so the genetic diagnostic information itself could not 374 

influence pre/perinatal death. In the PAGE study data, 69% of fetal abnormalities with a 375 

genetically diagnosable cause died perinatally or neonatally, with termination of pregnancy, fetal 376 

demise and neonatal death all contributing. This emphasises the substantial impact that 377 

pre/perinatal death can have on reducing the ability to discover novel DDs from postnatal 378 

recruitment alone, and motivates the integration of genetic data from prenatal, neonatal and 379 

postnatal studies in future analyses. 380 
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To empower our mutation enrichment testing, we estimated positive predictive values 381 

(PPV) of each DNM being pathogenic on the basis of their predicted protein consequence, 382 

CADD score3, selective constraint against heterozygous PTVs across the gene (shet)38, and, for 383 

missense variants, presence in a region under selective missense constraint4. These PPVs 384 

should also be highly informative for variant prioritisation in the diagnosis of dominant 385 

developmental disorders. Further work is needed to see whether these PPVs might be 386 

informative for recessive developmental disorders, and in other types of dominant disorders. 387 

More generally, we hypothesise that empirically-estimated PPVs based on variant enrichment in 388 

large datasets will be similarly informative in many other disease areas. 389 

We adopted a conservative statistical approach to identifying DD-associated genes. In 390 

two previous studies using the same significance threshold, we identified 26 novel DD-391 

associated genes1,39. All 26 are now regarded as being diagnostic, and have entered routine 392 

clinical diagnostic practice. Had we used a significance threshold of FDR < 10% as used in 393 

Satterstrom, Kosmicki, Wang et al40, we would have identified 770 DD-associated genes. 394 

However, as the FDR of individual genes depends on the significance of other genes being 395 

tested, FDR thresholds are not appropriate for assessing the significance of individual genes, 396 

but rather for defining gene-sets. There are 184 consensus genes that did not cross our 397 

significance threshold in this study. It is likely that many of these cause disorders that were 398 

under-represented in our study due to the ease of clinical diagnosis on the basis of distinctive 399 

clinical features or targeted diagnostic testing. These ascertainment biases are, however, not 400 

likely to impact the representation of novel DDs in our cohort. 401 

Our modelling also suggested that likely over 1,000 DD-associated genes remain to be 402 

discovered, and that reduced penetrance and pre/perinatal death will reduce our power to 403 

identify these genes through DNM enrichment. Identifying these genes will require both 404 

improved analytical methods and greater sample sizes. As sample sizes increase, accurate 405 

modelling of gene-specific mutation rates becomes more important. In our analyses of 31,058 406 

trios, we observed evidence that mutation rate heterogeneity among genes can lead to over-407 

estimating the statistical significance of mutation enrichment based on an exome-wide mutation 408 

model. We advocate the development of more granular mutation rate models, based on large-409 

scale population variation resources, to ensure that larger studies are robust to mutation rate 410 

heterogeneity.  411 

We anticipate that the variant-level weights used by DeNovoWEST will improve over 412 

time. As reference population samples, such as gnomAD5, increase in size, weights based on 413 

selective constraint metrics (e.g. shet, regional missense constraint) will improve. Weights could 414 

also incorporate more functional information, such as expression in disease-relevant tissues. 415 

For example, we observe that DD-associated genes are significantly more likely to be 416 

expressed in fetal brain (Supplementary Fig. 14). Furthermore, novel metrics based on gene 417 
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co-regulation networks can predict whether genes function within a disease-relevant pathway41. 418 

As a cautionary note, including more functional information may increase power to detect some 419 

novel disorders while decreasing power for disorders with pathophysiology different from known 420 

disorders. Our analyses also suggest that variant-level weights could be further improved by 421 

incorporating other variant prioritisation metrics, such as upweighting variants predicted to 422 

impact splicing, variants in particular protein domains, or variants that are somatic driver 423 

mutations during tumorigenesis. In developing DeNovoWEST, we initially explored applying 424 

both variant-level weights and gene-level weights in separate stages of the analysis, however, 425 

subtle but pervasive correlations between gene-level metrics (e.g. shet) and variant-level metrics 426 

(e.g. regional missense constraint, CADD) presents statistical challenges to implementation. 427 

Finally, the discovery of less penetrant disorders can be empowered by analytical 428 

methodologies that integrate both DNMs and rare inherited variants, such as TADA42. 429 

Nonetheless, using current methods focused on DNMs alone, we estimated that ~350,000 430 

parent-child trios would need to be analysed to have ~80% power to detect HI genes with a 10-431 

fold PTV enrichment. Discovering non-HI disorders will need even larger sample sizes. 432 

Reaching this number of sequenced families will be impossible for an individual research study 433 

or clinical centre, therefore it is essential that genetic data generated as part of routine 434 

diagnostic practice is shared with the research community such that it can be aggregated to 435 

drive discovery of novel disorders and improve diagnostic practice.  436 

 437 
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