

Open access • Posted Content • DOI:10.1101/797787

Integrating healthcare and research genetic data empowers the discovery of 28 novel developmental disorders — Source link 🖸

Joanna Kaplanis, Kaitlin E. Samocha, Laurens Wiel, Zhancheng Zhang ...+29 more authors

Institutions: Wellcome Trust Sanger Institute, Radboud University Nijmegen, GeneDx, University of Exeter ...+1 more institutions

Published on: 16 Oct 2019 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Exome

Related papers:

- Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism
- · Analysis of protein-coding genetic variation in 60,706 humans
- The mutational constraint spectrum quantified from variation in 141,456 humans
- · A framework for the interpretation of de novo mutation in human disease
- Integrating healthcare and research genetic data empowers the discovery of 49 novel developmental disorders

Integrating healthcare and research genetic data empowers the discovery of 28 novel developmental disorders

- 3
- 4 Joanna Kaplanis¹*, Kaitlin E. Samocha¹*, Laurens Wiel^{2,3}*, Zhancheng Zhang⁴*, Kevin J. Arvai⁴,
- 5 Ruth Y. Eberhardt¹, Giuseppe Gallone¹, Stefan H. Lelieveld², Hilary C. Martin¹, Jeremy F.
- 6 McRae¹, Patrick J. Short¹, Rebecca I. Torene⁴, Elke de Boer⁵, Petr Danecek¹, Eugene J.
- 7 Gardner¹, Ni Huang¹, Jenny Lord^{1,6}, Iñigo Martincorena¹, Rolph Pfundt⁵, Margot R. F.
- 8 Reijnders^{2,7}, Alison Yeung^{8,9}, Helger G. Yntema⁵, DDD Study, Lisenka E. L. M. Vissers⁵, Jane
- 9 Juusola⁴, Caroline F. Wright¹⁰, Han G. Brunner^{5,7,11}, Helen V. Firth^{1,12}, David R. FitzPatrick¹³,
- 10 Jeffrey C. Barrett¹, Matthew E. Hurles^{1#}†, Christian Gilissen^{2#}, Kyle Retterer^{4#}
- 11
- 12¹ Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- 13 ² Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud
- 14 University Medical Center, Nijmegen, 6525 GA, the Netherlands
- 15 ³ Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life
- 16 Sciences, Radboud University Medical Center, Nijmegen, 6525 GA, the Netherlands
- 17 ⁴ GeneDx, Gaithersburg, Maryland, USA
- ⁵ Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour,
- 19 Radboud University Medical Center, Nijmegen, 6525 GA, the Netherlands
- ⁶ Human Development and Health, Faculty of Medicine, University of Southampton, UK
- ⁷ Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, 6202 AZ,
- 22 the Netherlands
- 23 Victorian Clinical Genetics Services, Melbourne, Australia
- 24 ⁹ Murdoch Children's Research Institute, Melbourne, Australia
- ¹⁰ Institute of Biomedical and Clinical Science, University of Exeter Medical School, Research,
- Innovation, Learning and Development building, Royal Devon & Exeter Hospital, Barrack Road,
 Exeter EX2 5DW, UK
- ¹¹ GROW school for oncology and developmental biology, and MHENS school for mental health
- and neuroscience, Maastricht University Medical Centre, Maastricht, 6202 AZ, the Netherlands
- 30 ¹² Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust,
- 31 Cambridge, UK
- ¹³ MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital,
- 33 Edinburgh, UK
- 34
- 35 * contributed equally
- 36 [#] contributed equally
- 17 † To whom correspondence should be addressed: meh@sanger.ac.uk
- 38
- 39
- 40

41 Summary

- 42 *De novo* mutations (DNMs) in protein-coding genes are a well-established cause of
- 43 developmental disorders (DD). However, known DD-associated genes only account for a
- 44 minority of the observed excess of such DNMs. To identify novel DD-associated genes, we
- 45 integrated healthcare and research exome sequences on 31,058 DD parent-offspring trios, and
- 46 developed a simulation-based statistical test to identify gene-specific enrichments of DNMs. We
- 47 identified 285 significantly DD-associated genes, including 28 not previously robustly associated
- 48 with DDs. Despite detecting more DD-associated genes than in any previous study, much of the
- 49 excess of DNMs of protein-coding genes remains unaccounted for. Modelling suggests that
- 50 over 1,000 novel DD-associated genes await discovery, many of which are likely to be less
- 51 penetrant than the currently known genes. Research access to clinical diagnostic datasets will
- 52 be critical for completing the map of dominant DDs.

3

54 Introduction

55 It has previously been estimated that ~42-48% of patients with a severe developmental 56 disorder (DD) have a pathogenic *de novo* mutation (DNM) in a protein coding gene^{1,2}. However, 57 over half of these patients remain undiagnosed despite the identification of hundreds of 58 dominant and X-linked DD-associated genes. This implies that there are more DD relevant 59 genes left to find. Existing methods to detect gene-specific enrichments of damaging DNMs 60 typically ignore much prior information about which variants and genes are more likely to be 61 disease-associated. However, missense variants and protein-truncating variants (PTVs) vary in their impact on protein function^{3–6}. Known dominant DD-associated genes are strongly enriched 62 63 in the minority of genes that exhibit patterns of strong selective constraint on heterozygous 64 PTVs in the general population⁷. To identify the remaining DD genes, we need to increase our 65 power to detect gene-specific enrichments for damaging DNMs by both increasing sample sizes 66 and improving our statistical methods. In previous studies of pathogenic Copy Number Variation 67 (CNV), utilising healthcare-generated data has been key to achieve much larger sample sizes than would be possible in a research setting alone 8,9 . 68 69 70 Improved statistical enrichment test identifies 285 significant DD-associated genes 71 Following clear consent practices and only using aggregate, de-identified data, we 72 pooled DNMs in patients with severe developmental disorders from three centres: GeneDx (a 73 US-based diagnostic testing company), the Deciphering Developmental Disorders study, and 74 Radboud University Medical Center. We performed stringent quality control on variants and

- samples to obtain 45.221 coding and splicing DNMs in 31,058 individuals (**Supplementary Fig.**
- 76 **1**; **Supplementary Table 1**), which includes data on over 24,000 trios not previously published.
- These DNMs included 40,992 single nucleotide variants (SNVs) and 4,229 indels. The three
- 78 cohorts have similar clinical characteristics, male/female ratios, enrichments of DNMs by
- 79 mutational class, and prevalences of known disorders (Supplementary Fig. 2).
- To detect gene-specific enrichments of damaging DNMs, we developed a method
 named DeNovoWEST (*De Novo* Weighted Enrichment Simulation Test,

82 <u>https://github.com/queenjobo/DeNovoWEST</u>). DeNovoWEST scores all classes of sequence

83 variants on a unified severity scale based on the empirically-estimated positive predictive value

- of being pathogenic (**Supplementary Fig. 3-4**). We perform two tests per gene: the first is an
- 85 enrichment test on all nonsynonymous DNMs and the second is a test designed to detect genes
- 86 likely acting via an altered-function mechanism. This second test combines an enrichment test
- 87 on missense DNMs with a test of linear clustering of missense DNMs within the gene. We then
- 88 applied a Bonferroni multiple testing correction accounting for 18,762 x 2 tests, which takes into
- 89 account the number of genes and two tests per gene.

4

90 We first applied DeNovoWEST to all individuals in our cohort and identified 281 91 significant genes, 18 more than when using our previous method¹ (Supplementary Fig. 5; Fig. 92 1a). The majority (196/281; 70%) of these significant genes already had sufficient evidence of 93 DD-association to be considered of diagnostic utility (as of late 2019) by all three centres, and 94 we refer to them as "consensus" genes. 54/281 of these significant genes were previously considered diagnostic by one or two centres ("discordant" genes). Applying DeNovoWEST to 95 96 synonymous DNMs, as a negative control analysis, identified no significantly enriched genes 97 (Supplementary Fig. 6). 98 To discover novel DD-associated genes with greater power, we then applied 99 DeNovoWEST only to DNMs in patients without damaging DNMs in consensus genes (we refer 100 to this subset as 'undiagnosed' patients) and identified 94 significant genes (Fig. 1b; 101 Supplementary Fig. 7; Supplementary Table 2). While 61 of these genes were discordant 102 genes, we identified 33 putative 'novel' DD-associated genes. To further ensure robustness to 103 potential mutation rate variation between genes, we determined whether any of the putative 104 novel DD-associated genes had significantly more synonymous variants in the Genome Aggregation Database⁵ (gnomAD) of population variation than expected under our null mutation 105 106 model (Supplementary Note). We identified 11/33 genes with a significant excess of 107 synonymous variants. For these 11 genes we then repeated the DeNovoWEST test, increasing 108 the null mutation rate by the ratio of observed to expected synonymous variants in gnomAD. 109 Five of these genes then fell below our exome-wide significance threshold and were removed, 110 leaving 28 novel genes, with a median of 10 nonsynonymous DNMs in our dataset (Fig. 1c; 111 Supplementary Table 3). There were 314 patients with nonsynonymous DNMs in these 28 genes (1.0% of our cohort); all DNMs in these genes were inspected in IGV¹⁰ and, of 198 for 112 which experimental validation was attempted, all were confirmed as DNMs in the proband. The 113 114 DNMs in these novel genes were distributed approximately randomly across the three datasets (no genes with p < 0.001, heterogeneity test). Six of the 28 novel DD-associated genes are 115 further corroborated by OMIM entries or publications, including *TFE3*^{11,12} for which patients were 116 117 described in two recent publications. 118 We also investigated whether some synonymous DNMs might be pathogenic by 119 disrupting splicing. We annotated all synonymous DNMs with a splicing pathogenicity score, SpliceAl²⁰ and identified a significant enrichment of synonymous DNMs with high SpliceAl 120 scores (≥ 0.8 , 1.56-fold enriched, p = 0.0037, Poisson test; **Supplementary Table 4**). This 121 122 enrichment corresponds to an excess of ~15 splice-disrupting synonymous mutations in our

123 cohort, of which six are accounted for by a single recurrent synonymous mutation in *KAT6B*

- 124 known to disrupt splicing²¹.
- 125

bioRxiv preprint doi: https://doi.org/10.1101/797787; this version posted April 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

127 Figure 1: Results of DeNovoWEST analysis. (a) Comparison of p-values generated using the 128 new method (DeNovoWEST) versus the previous method (mupit)¹. These are results from 129 DeNovoWEST run on the full cohort. The dashed lines indicate the threshold for genome-wide 130 significance. The size of the points is proportional to the number of nonsynonymous DNMs in 131 our cohort (nsyn). The numbers describe the number of genes that fall into each guadrant (b) 132 The number of missense and PTV DNMs in our cohort in the novel genes. The size of the points 133 are proportional to the log₁₀(-p-value) from the analysis on the undiagnosed subset. The colour 134 corresponds to which test p-value was the minimum (more significant) for these genes: non-135 synonymous enrichment test in blue (pEnrich), or missense enrichment and clustering test in 136 red (pMEC). (c) The distribution of p-values from the analysis on the undiagnosed subset for 137 discordant and novel genes; p-values for consensus genes come from the full analysis. The 138 number of genes in each p-value bin is coloured by diagnostic gene group. (d) The fraction of 139 cases with a nonsynonymous mutation in each diagnostic gene group. (e) The fraction of cases 140 with a nonsynonymous mutation in each diagnostic gene group split by sex. In all figures, black 141 represents the consensus genes, blue represents the discordant genes, and orange represents 142 the novel genes. In (c), green represents the remaining fraction of cases expected to have a 143 pathogenic de novo coding mutation ("remaining") and grey is the fraction of cases that are

144 likely to be explained by other genetic or nongenetic factors ("not *de novo*").

6

145 Taken together, 25.0% of individuals in our combined cohort have a nonsynonymous 146 DNM in one of the consensus or significant DD-associated genes (Fig. 1d). We noted 147 significant sex differences in the autosomal burden of nonsynonymous DNMs (Supplementary 148 Fig. 8). The rate of nonsynonymous DNMs in consensus autosomal genes was significantly higher in females than males (OR = 1.16, $p = 4.4 \times 10^{-7}$, Fisher's exact test; Fig. 1e), as noted 149 150 previously¹. However, the exome-wide burden of autosomal nonsynonymous DNMs in all genes 151 was not significantly different between undiagnosed males and females (OR = 1.03, p = 0.29, 152 Fisher's exact test). This suggests the existence of subtle sex differences in the genetic 153 architecture of DD, especially with regard to known and undiscovered disorders. This could, for 154 example, include sex-biased contribution of polygenic and/or environmental causes of DDs. 155 156 Characteristics of the novel DD-associated genes and disorders Based on semantic similarity²² between Human Phenotype Ontology terms, patients with 157 158 DNMs in the same novel DD-associated gene were less phenotypically similar to each other, on 159 average, than patients with DNMs in a consensus gene ($p = 2.3 \times 10^{-11}$, Wilcoxon rank-sum test;

Fig. 2a; Supplementary Figure 9). This suggests that these novel disorders less often result in distinctive and consistent clinical presentations, which may have made these disorders harder to discover via a phenotype-driven analysis or recognise by clinical presentation alone. Each of these novel disorders requires a detailed genotype-phenotype characterisation, which is beyond

164 the scope of this study.

165 Overall, novel DD-associated genes encode proteins that have very similar functional 166 and evolutionary properties to consensus genes, e.g. developmental expression patterns, 167 network properties and biological functions (Fig. 2b; Supplementary Table 5). Despite the 168 high-level functional similarity between known and novel DD-associated genes, the 169 nonsynonymous DNMs in the more recently discovered DD-associated genes are much more 170 likely to be missense DNMs, and less likely to be PTVs (discordant and novel; $p = 1.2 \times 10^{-25}$. chi-squared test). Fifteen of the 28 (54%) of the novel genes only had missense DNMs, and 171 172 only a minority had more PTVs than missense DNMs. Consequently, we expect that a greater 173 proportion of the novel genes will act via altered-function mechanisms (e.g. dominant negative 174 or gain-of-function). For example, the novel gene *PSMC5* (DeNovoWEST $p = 2.6 \times 10^{-15}$) had 175 one inframe deletion and nine missense DNMs, eight of which altered two structurally important 176 amino acids that are both in the AAA+ ATPase domain within the 3D protein structure: 177 p.Pro320Arg and p.Arg325Trp (Supplementary Fig. 10a-b), and so is likely to operate via an 178 altered-function mechanism. None of the novel genes exhibited significant clustering of *de novo* 179 PTVs.

Figure 2: Functional properties and mechanisms of novel genes. (a) Comparing the phenotypic similarity of patients with DNMs in novel and consensus genes. Random phenotypic similarity was calculated from random pairs of patients. Patients with DNMs in the same novel DD-associated gene were less phenotypically similar than patients with DNMs in a known DDassociated gene ($p = 2.3 \times 10^{-11}$, Wilcoxon rank-sum test). (b) Comparison of functional properties of consensus and novel DD genes. Properties were chosen as those known to be differential between consensus and non-DD genes.

188

189 We observed that missense DNMs were more likely to affect functional protein domains than other coding regions. We observed a 2.63-fold enrichment ($p = 2.2 \times 10^{-68}$. G-test) of 190 missense DNMs residing in protein domains among consensus genes and a 1.80-fold 191 192 enrichment ($p = 8.0 \times 10^{-5}$, G-test) in novel DD-associated genes, but no enrichment for synonymous DNMs (Supplementary Table 6). Four protein domain families in consensus 193 genes were consistently enriched for missense DNMs (Supplementary Table 7): ion transport 194 protein (PF00520, $p = 6.9 \times 10^{-4}$, G-test Bonferroni corrected), ligand-gated ion channel 195 (PF00060, $p = 4.0 \times 10^{-6}$), protein kinase domain (PF00069, p = 0.043), and kinesin motor 196 domain (PF00225, p = 0.027). Missense DNMs in all four enriched domain families have 197 previously been associated with DD (Supplementary Table 8)²⁴⁻²⁶. 198 199 We observed a significant overlap between the 285 DNM-enriched DD-associated genes

and a set of 369 previously described cancer driver genes²⁷ (overlap of 70 genes; $p = 1.7 \times 10^{-49}$, logistic regression correcting for s_{het}), as observed previously^{28,29}, as well as a significant enrichment of nonsynonymous DNMs in these genes (**Supplementary Table 9**). This overlap extends to somatic driver mutations: we observe 117 DNMs at 76 recurrent somatic mutations observed in at least three patients in The Cancer Genome Atlas (TCGA)³⁰. By modelling the germline mutation rate at these somatic driver mutations, we found that recurrent nonsynonymous mutations in TCGA are enriched 21-fold in the DDD cohort (p < 10⁻⁵⁰, Poisson

8

test, Supplementary Fig. 11), whereas recurrent synonymous mutations in TCGA are not
significantly enriched (2.4-fold, p = 0.13, Poisson test). This suggests that this observation is
driven by the pleiotropic effects of these mutations in development and tumourigenesis, rather
than hypermutability.

211

212 Recurrent mutations and potential new germline selection genes

213 We identified 773 recurrent DNMs (736 SNVs and 37 indels), ranging from 2-36 214 independent observations per DNM, which allowed us to interrogate systematically the factors 215 driving recurrent germline mutation. We considered three potential contributory factors: (i) 216 clinical ascertainment enriching for pathogenic mutations. (ii) greater mutability at specific sites. 217 and (iii) positive selection conferring a proliferative advantage in the male germline, thus 218 increasing the prevalence of sperm containing the mutation³¹. We observed strong evidence 219 that all three factors contribute, but not necessarily mutually exclusively. Clinical ascertainment 220 drives the observation that 65% of recurrent DNMs were in consensus genes, a 5.4-fold 221 enrichment compared to DNMs only observed once ($p < 10^{-50}$, proportion test). Hypermutability underpins the observation that 64% of recurrent *de novo* SNVs occurred at hypermutable CpG 222 223 dinucleotides³², a 2.0-fold enrichment over DNMs only observed once ($p = 3.3 \times 10^{-68}$, chi-224 square test). We also observed a striking enrichment of recurrent mutations at the 225 haploinsufficient DD-associated gene MECP2, in which we observed 11 recurrently mutated 226 SNVs within a 500bp window, nine of which were G to A mutations at a CpG dinucleotide. 227 *MECP2* exhibits a highly significant twofold excess of synonymous mutations within gnomAD⁵, 228 suggesting that locus-specific hypermutability might explain this observation.

To assess the contribution of germline selection to recurrent DNMs, we initially focused on the 12 known germline selection genes, which all operate through activation of the RAS-MAPK signalling pathway^{33,34}. We identified 39 recurrent DNMs in 11 of these genes, 38 of which are missense and all of which are known to be activating in the germline (see Supplement). As expected, given that hypermutability is not the driving factor for recurrent mutation in these germline selection genes, these 39 recurrent DNMs were depleted for CpGs relative to other recurrent mutations (6/39 vs 425/692, p = 3.4 x 10⁻⁸, chi-squared test).

236 Positive germline selection has been shown to be capable of increasing the apparent mutation rate more strongly³¹ than either clinical ascertainment (10-100X in our dataset) or 237 238 hypermutability (~10X for CpGs). However, only a minority of the most highly recurrent 239 mutations in our dataset are in genes that have been previously associated with germline 240 selection. Nonetheless, several lines of evidence suggested that the majority of these most 241 highly recurrent mutations are likely to confer a germline selective advantage. Based on the 242 recurrent DNMs in known germline selection genes, DNMs under germline selection should be 243 more likely to be activating missense mutations, and should be less enriched for CpG

Somatic

Germline

244 dinucleotides. Table 1 shows the 16 de novo SNVs observed nine or more times in our DNM 245 dataset, only two of which are in known germline selection genes (MAP2K1 and PTPN11). All 246 but two of these 16 de novo SNVs cause missense changes, all but two of these genes cause 247 disease by an altered-function mechanism, and these DNMs were depleted for CpGs relative to 248 all recurrent mutations. Two of the genes with highly recurrent de novo SNVs, SHOC2 and 249 PPP1CB, encode interacting proteins that are known to play a role in regulating the RAS-MAPK 250 pathway, and pathogenic variants in these genes are associated with a Noonan-like 251 syndrome³⁵. Moreover, two of these recurrent DNMs are in the same gene SMAD4, which 252 encodes a key component of the TGF-beta signalling pathway, potentially expanding the 253 pathophysiology of germline selection beyond the RAS-MAPK pathway. Confirming germline 254 selection of these mutations will require deep sequencing of testes and/or sperm³⁴. 255 256

									Driver	Selection	
Symbol	Chr	Position	Ref	Alt	Consequence	Recur	Likely mechanism	CpG	Gene	Gene	DD status
PACS1	11	65978677	С	Т	missense	36	activating	Yes	-	-	consensus
PPP2R5D	6	42975003	G	А	missense	22	dominant negative	-	-	-	consensus
SMAD4	18	48604676	А	G	missense	21	activating	-	Yes	-	consensus
PACS2	14	105834449	G	А	missense	13	dominant negative	Yes	-	-	discordant
MAP2K1	15	66729181	А	G	missense	11	activating	-	Yes	Yes	consensus
PPP1CB	2	28999810	С	G	missense	11	all missense/in frame	-	-	-	consensus
NAA10	Х	153197863	G	А	missense	11	all missense/in frame	Yes	-	-	consensus
MECP2	Х	153296777	G	А	stop gain	11	loss of function	Yes	-	-	consensus
CSNK2A1	20	472926	Т	С	missense	10	activating	-	-	-	consensus
CDK13	7	40085606	А	G	missense	10	all missense/in frame	-	-	-	consensus
SHOC2	10	112724120	А	G	missense	9	activating	-	-	-	consensus
PTPN11	12	112915523	А	G	missense	9	activating	-	Yes	Yes	consensus
SMAD4	18	48604664	С	Т	missense	9	activating	Yes	Yes	-	consensus
SRCAP	16	30748664	С	Т	stop gain	9	dominant negative	Yes	-	-	consensus
FOXP1	3	71021817	С	Т	missense	9	loss of function	Yes	-	-	consensus
CTBP1	4	1206816	G	А	missense	9	dominant negative	Yes	-	-	discordant
257											

258

Table 1: Recurrent Mutations. *De novo* single nucleotide variants with more than 9
recurrences in our cohort annotated with relevant information, such as CpG status, whether the
impacted gene is a known somatic driver or germline selection gene, and diagnostic gene group
(e.g. consensus). "Recur" refers to the number of recurrences. "Likely mechanism" refers to
mechanisms attributed to this gene in the published literature.

264

10

266 Evidence for incomplete penetrance and pre/perinatal death

267 Nonsynonymous DNMs in consensus or significant DD-associated genes accounted for 268 half of the exome-wide nonsynonymous DNM burden associated with DD (Fig. 1b). Despite our 269 identification of 285 significantly DD-associated genes, there remains a substantial burden of 270 both missense and protein-truncating DNMs in unassociated genes (those that are neither 271 significant in our analysis nor on the consensus gene list). The remaining burden of protein-272 truncating DNMs is greatest in genes that are intolerant of PTVs in the general population 273 (Supplementary Fig. 12) suggesting that more haploinsufficient (HI) disorders await discovery. 274 We observed that PTV mutability (estimated from a null germline mutation model) was significantly lower in unassociated genes compared to DD-associated genes ($p = 4.5 \times 10^{-68}$. 275 276 Wilcox rank-sum test Fig. 3a), which leads to reduced statistical power to detect DNM 277 enrichment in unassociated genes. This is consistent with our hypothesis that many more HI 278 disorders await discovery.

279 A key parameter in estimating statistical power to detect novel HI disorders is the fold-280 enrichment of de novo PTVs expected in as yet undiscovered HI disorders. We observed that 281 novel DD-associated HI genes had significantly lower PTV enrichment compared to the 282 consensus HI genes (p = 0.005, Wilcox rank-sum test; Fig. 3b). Two additional factors that 283 could lower DNM enrichment, and thus power to detect a novel DD-association, are reduced 284 penetrance and increased pre/perinatal death, which here covers spontaneous fetal loss, 285 termination of pregnancy for fetal anomaly, stillbirth, and early neonatal death. To evaluate 286 incomplete penetrance, we investigated whether HI genes with a lower enrichment of protein-287 truncating DNMs in our cohort are associated with greater prevalences of PTVs in the general 288 population. We observed a significant negative correlation (p = 0.031, weighted linear regression) between gene-specific PTV enrichment in our cohort and the gene-specific ratio of 289 290 PTV to synonymous variants in gnomAD⁵, suggesting that incomplete penetrance does lower de 291 novo PTV enrichment in individual genes in our cohort (Fig. 3c).

Additionally, we observed that the fold-enrichment of protein-truncating DNMs in consensus HI DD-associated genes in our cohort was significantly lower for genes with a medium or high likelihood of presenting with a prenatal structural malformation ($p = 4.6 \times 10^{-5}$, Poisson test, **Fig. 3d**), suggesting that pre/perinatal death decreases our power to detect some novel DD-associated disorders (see supplement for details).

11

299 Figure 3: Impact of pre/perinatal death and penetrance on power. (a) PTV mutability is 300 significantly lower in genes that are not significantly associated to DD in our analysis 301 ("unassociated", coloured blue) than in DD-associated genes ("associated", coloured red; p = 302 4.6 x 10⁻⁶⁸, Wilcox rank sum test). (b) Distribution of PTV enrichment in significant, likely 303 haploinsufficient, genes by diagnostic group. (c) Comparison of the PTV enrichment in our 304 cohort vs the PTV to synonymous ratio found in gnomAD, for genes that are significantly 305 enriched for the number of PTV mutations in our cohort (without any variant weighting). PTV 306 enrichment is shown as log10(enrichment). There is a significant negative relationship (p = 307 0.031, weighted regression). (d) Overall *de novo* PTV enrichment (observed / expected PTVs) 308 across genes grouped by their clinician-assigned likelihood of presenting with a structural 309 malformation on ultrasound during pregnancy. PTV enrichment is significantly lower for genes with a medium or high likelihood compared to genes with a low likelihood ($p = 4.6 \times 10^{-5}$, 310 311 Poisson test).

312

313 Modelling reveals hundreds of DD genes remain to be discovered

To understand the likely trajectory of future DD discovery efforts, we downsampled the current cohort and reran our enrichment analysis (**Fig. 4a**). We observed that the number of significant genes has not yet plateaued. Increasing sample sizes should result in the discovery of many novel DD-associated genes. To estimate how many haploinsufficient genes might await discovery, we modelled the likelihood of the observed distribution of protein-truncating DNMs

among genes as a function of varying numbers of undiscovered HI DD genes and fold-

- enrichments of protein-truncating DNMs in those genes. We found that the remaining HI burden
- is most likely spread across ~1000 genes with ~10-fold PTV enrichment (**Fig. 4b**). This fold
- 322 enrichment is three times lower than in known HI DD-associated genes, suggesting that
- 323 incomplete penetrance and/or pre/perinatal death is much more prevalent among undiscovered
- HI genes. We modelled the missense DNM burden separately and also observed that the most
- 325 likely architecture of undiscovered DD-associated genes is one that comprises over 1000 genes
- 326 with a substantially lower fold-enrichment than in currently known DD-associated genes
- 327 (Supplemental Fig. 13).

328 We calculated that a sample size of ~350,000 parent-offspring trios would be needed to 329 have 80% power to detect a 10-fold enrichment of protein-truncating DNMs for a gene with the 330 median PTV mutation rate among currently unassociated genes. Using this inferred 10-fold 331 enrichment among undiscovered HI genes, from our current data we can evaluate the likelihood 332 that any gene in the genome is an undiscovered HI gene, by comparing the likelihood of the 333 number of *de novo* PTVs observed in each gene to have arisen from the null mutation rate or 334 from a 10-fold increased PTV rate. Among the ~19,000 non-DD-associated genes, ~1,200 were 335 more than three times more likely to have arisen from a 10-fold increased PTV rate, whereas 336 ~7,000 were three times more likely to have no *de novo* PTV enrichment.

337

Figure 4: Exploring the remaining number of DD genes. (a) Number of significant genes from downsampling full cohort and running DeNovoWEST's enrichment test. (b) Results from modelling the likelihood of the observed distribution of *de novo* PTV mutations. This model varies the numbers of remaining haploinsufficient (HI) DD genes and PTV enrichment in those remaining genes. The 50% credible interval is shown in red and the 90% credible interval is shown in orange. Note that the median PTV enrichment in significant HI genes (shown with an arrow) is 39.7.

13

345

346 Discussion

347 In this study, we have discovered 28 novel developmental disorders by developing an 348 improved statistical test for mutation enrichment and applying it to a dataset of exome 349 sequences from 31,058 children with developmental disorders, and their parents. These 28 350 novel genes account for up to 1.0% of our cohort, and inclusion of these genes in diagnostic 351 workflows will catalyse increased diagnosis of similar patients globally. We note that the value of 352 this study for improving diagnostic yield extends well beyond these 28 novel genes; once newly 353 validated discordant genes are included, the total number of genes added to the diagnostic 354 workflows of the three participating centres ranged from 48-65 genes. We have shown that both 355 incomplete penetrance and pre/perinatal death reduce our power to detect novel DDs 356 postnatally, and that one or both of these factors are likely operating considerably more strongly 357 among undiscovered DD-associated genes. In addition, we have identified a set of highly 358 recurrent mutations that are strong candidates for novel germline selection mutations, which 359 would be expected to result in a higher than expected disease incidence that increases 360 dramatically with increased paternal age.

361 Our study represents the largest collection of DNMs for any disease area, and is 362 approximately three times larger than a recent meta-analysis of DNMs from a collection of 363 individuals with autism spectrum disorder, intellectual disability, and/or a developmental 364 disorder³⁶. Our analysis included DNMs from 24,348 previously unpublished trios, and we 365 identified ~2.3 times as many significantly DD-associated genes as this previous study when 366 using Bonferroni-corrected exome-wide significance (285 vs 124). In contrast to meta-analyses 367 of published DNMs, the harmonised filtering of candidate DNMs across cohorts in this study 368 should protect against results being confounded by substantial cohort-specific differences in the 369 sensitivity and specificity of detecting DNMs.

370 Here we inferred indirectly that developmental disorders with higher rates of detectable 371 prenatal structural abnormalities had greater pre/perinatal death. The potential size of this effect 372 can be quantified from the recently published PAGE study of genetic diagnoses in a cohort of fetal structural abnormalities³⁷. In this latter study, genetic diagnoses were not returned to 373 374 participants during the pregnancy, and so the genetic diagnostic information itself could not 375 influence pre/perinatal death. In the PAGE study data, 69% of fetal abnormalities with a 376 genetically diagnosable cause died perinatally or neonatally, with termination of pregnancy, fetal 377 demise and neonatal death all contributing. This emphasises the substantial impact that 378 pre/perinatal death can have on reducing the ability to discover novel DDs from postnatal 379 recruitment alone, and motivates the integration of genetic data from prenatal, neonatal and 380 postnatal studies in future analyses.

381 To empower our mutation enrichment testing, we estimated positive predictive values 382 (PPV) of each DNM being pathogenic on the basis of their predicted protein consequence. CADD score³, selective constraint against heterozygous PTVs across the gene (s_{het})³⁸, and, for 383 384 missense variants, presence in a region under selective missense constraint⁴. These PPVs 385 should also be highly informative for variant prioritisation in the diagnosis of dominant 386 developmental disorders. Further work is needed to see whether these PPVs might be 387 informative for recessive developmental disorders, and in other types of dominant disorders. 388 More generally, we hypothesise that empirically-estimated PPVs based on variant enrichment in 389 large datasets will be similarly informative in many other disease areas.

390 We adopted a conservative statistical approach to identifying DD-associated genes. In 391 two previous studies using the same significance threshold, we identified 26 novel DD-392 associated genes^{1,39}. All 26 are now regarded as being diagnostic, and have entered routine 393 clinical diagnostic practice. Had we used a significance threshold of FDR < 10% as used in Satterstrom, Kosmicki, Wang et al⁴⁰, we would have identified 770 DD-associated genes. 394 395 However, as the FDR of individual genes depends on the significance of other genes being 396 tested, FDR thresholds are not appropriate for assessing the significance of individual genes, 397 but rather for defining gene-sets. There are 184 consensus genes that did not cross our 398 significance threshold in this study. It is likely that many of these cause disorders that were 399 under-represented in our study due to the ease of clinical diagnosis on the basis of distinctive 400 clinical features or targeted diagnostic testing. These ascertainment biases are, however, not 401 likely to impact the representation of novel DDs in our cohort.

402 Our modelling also suggested that likely over 1,000 DD-associated genes remain to be 403 discovered, and that reduced penetrance and pre/perinatal death will reduce our power to 404 identify these genes through DNM enrichment. Identifying these genes will require both 405 improved analytical methods and greater sample sizes. As sample sizes increase, accurate 406 modelling of gene-specific mutation rates becomes more important. In our analyses of 31,058 407 trios, we observed evidence that mutation rate heterogeneity among genes can lead to over-408 estimating the statistical significance of mutation enrichment based on an exome-wide mutation 409 model. We advocate the development of more granular mutation rate models, based on large-410 scale population variation resources, to ensure that larger studies are robust to mutation rate 411 heterogeneity.

We anticipate that the variant-level weights used by DeNovoWEST will improve over time. As reference population samples, such as gnomAD⁵, increase in size, weights based on selective constraint metrics (e.g. s_{het}, regional missense constraint) will improve. Weights could also incorporate more functional information, such as expression in disease-relevant tissues. For example, we observe that DD-associated genes are significantly more likely to be expressed in fetal brain (**Supplementary Fig. 14**). Furthermore, novel metrics based on gene

418 co-regulation networks can predict whether genes function within a disease-relevant pathway⁴¹. 419 As a cautionary note, including more functional information may increase power to detect some 420 novel disorders while decreasing power for disorders with pathophysiology different from known 421 disorders. Our analyses also suggest that variant-level weights could be further improved by 422 incorporating other variant prioritisation metrics, such as upweighting variants predicted to 423 impact splicing, variants in particular protein domains, or variants that are somatic driver 424 mutations during tumorigenesis. In developing DeNovoWEST, we initially explored applying 425 both variant-level weights and gene-level weights in separate stages of the analysis, however, 426 subtle but pervasive correlations between gene-level metrics (e.g. s_{het}) and variant-level metrics 427 (e.g. regional missense constraint, CADD) presents statistical challenges to implementation. 428 Finally, the discovery of less penetrant disorders can be empowered by analytical 429 methodologies that integrate both DNMs and rare inherited variants, such as TADA⁴². 430 Nonetheless, using current methods focused on DNMs alone, we estimated that ~350,000 431 parent-child trios would need to be analysed to have ~80% power to detect HI genes with a 10-432 fold PTV enrichment. Discovering non-HI disorders will need even larger sample sizes. 433 Reaching this number of sequenced families will be impossible for an individual research study 434 or clinical centre, therefore it is essential that genetic data generated as part of routine

- diagnostic practice is shared with the research community such that it can be aggregated to
- 436 drive discovery of novel disorders and improve diagnostic practice.
- 437

438 Acknowledgements

439 We thank the families and their clinicians for their participation and engagement. We are very 440 grateful to our colleagues who assisted in the generation and processing of data. Inclusion of 441 RadboudUMC data was in part supported by the Solve-RD project that has received funding 442 from the European Union's Horizon 2020 research and innovation programme under grant 443 agreement No 779257. This work was in part financially supported by grants from the 444 Netherlands Organization for Scientific Research: 917-17-353 to CG. The DDD study presents 445 independent research commissioned by the Health Innovation Challenge Fund [grant number 446 HICF-1009-003]. This study makes use of DECIPHER which is funded by Wellcome. See 447 www.ddduk.org/access.html for full acknowledgement. The DDD study would like to 448 acknowledge the tireless work of Rosemary Kelsell. Finally we acknowledge the contribution of 449 an esteemed DDD clinical collaborator, M. Bitner-Glindicz, who died during the course of the

- 450 study.
- 451

452 Data Access

- 453 Sequence and variant level data and phenotypic data for the DDD study data are available
- 454 through EGA study ID EGAS00001000775

- 455 RadboudUMC sequence and variant level data cannot be made available through EGA due to
- 456 the nature of consent for clinical testing
- 457 GeneDx data cannot be made available through EGA due to the nature of consent for clinical
- 458 testing. GeneDx has contributed deidentified data to this study to improve clinical interpretation
- 459 of genomic data, in accordance with patient consent and in conformance with the ACMG
- 460 position statement on genomic data sharing (see Supplementary Note for details).
- 461 Clinically interpreted variants and associated phenotypes from the DDD study are available
- 462 through DECIPHER (<u>https://decipher.sanger.ac.uk</u>)
- 463 Clinically interpreted variants from RUMC are available from the Dutch national initiative for
- 464 sharing variant classifications (<u>https://www.vkgl.nl/nl/diagnostiek/vkgl-datashare-database</u>)
- 465 Clinically interpreted variants from GeneDx are deposited in ClinVar
- 466 (https://www.ncbi.nlm.nih.gov/clinvar)

References

- Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. *Nature* 542, 433–438 (2017).
- Martin, H. C. *et al.* Quantifying the contribution of recessive coding variation to developmental disorders. *Science* 362, 1161–1164 (2018).
- Kircher, M. *et al.* A general framework for estimating the relative pathogenicity of human genetic variants. *Nat. Genet.* 46, 310–315 (2014).
- Samocha, K. E. *et al.* Regional missense constraint improves variant deleteriousness prediction. *bioRxiv* 148353 (2017) doi:10.1101/148353.
- Karczewski, K. J. *et al.* Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. *bioRxiv* 531210 (2019) doi:10.1101/531210.
- Kosmicki, J. A. *et al.* Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. *Nat. Genet.* 49, 504–510 (2017).
- Lek, M. *et al.* Analysis of protein-coding genetic variation in 60,706 humans. *Nature* 536, 285–291 (2016).
- Cooper, G. M. *et al.* A copy number variation morbidity map of developmental delay. *Nat. Genet.* 43, 838–846 (2011).
- 9. Coe, B. P. *et al.* Refining analyses of copy number variation identifies specific genes associated with developmental delay. *Nat. Genet.* **46**, 1063–1071 (2014).
- Robinson, J. T. *et al.* Integrative genomics viewer. *Nature Biotechnology* vol. 29 24–26 (2011).
- Villegas, F. *et al.* Lysosomal Signaling Licenses Embryonic Stem Cell Differentiation via Inactivation of Tfe3. *Cell Stem Cell* 24, 257–270.e8 (2019).
- Diaz, J., Berger, S. & Leon, E. TFE3-associated neurodevelopmental disorder: A distinct recognizable syndrome. *Am. J. Med. Genet. A* 182, 584–590 (2020).

- 18
- Reynhout, S. *et al.* De Novo Mutations Affecting the Catalytic Cα Subunit of PP2A, PPP2CA, Cause Syndromic Intellectual Disability Resembling Other PP2A-Related Neurodevelopmental Disorders. *Am. J. Hum. Genet.* **104**, 139–156 (2019).
- Carapito, R. *et al.* ZMIZ1 Variants Cause a Syndromic Neurodevelopmental Disorder. *Am. J. Hum. Genet.* **104**, 319–330 (2019).
- Calpena, E. *et al.* De Novo Missense Substitutions in the Gene Encoding CDK8, a Regulator of the Mediator Complex, Cause a Syndromic Developmental Disorder. *Am. J. Hum. Genet.* **104**, 709–720 (2019).
- Salpietro, V. *et al.* Mutations in the Neuronal Vesicular SNARE VAMP2 Affect Synaptic Membrane Fusion and Impair Human Neurodevelopment. *Am. J. Hum. Genet.* **104**, 721– 730 (2019).
- O'Donnell-Luria, A. H. *et al.* Heterozygous Variants in KMT2E Cause a Spectrum of Neurodevelopmental Disorders and Epilepsy. *Am. J. Hum. Genet.* **104**, 1210–1222 (2019).
- Stolerman, E. S. *et al.* Genetic variants in the KDM6B gene are associated with neurodevelopmental delays and dysmorphic features. *Am. J. Med. Genet. A* **179**, 1276– 1286 (2019).
- Dulovic-Mahlow, M. *et al.* De Novo Variants in TAOK1 Cause Neurodevelopmental Disorders. *Am. J. Hum. Genet.* (2019) doi:10.1016/j.ajhg.2019.05.005.
- Jaganathan, K. *et al.* Predicting Splicing from Primary Sequence with Deep Learning. *Cell* 176, 535–548.e24 (2019).
- Yilmaz, R. *et al.* A recurrent synonymous KAT6B mutation causes Say-Barber-Biesecker/Young-Simpson syndrome by inducing aberrant splicing. *Am. J. Med. Genet. A* 167A, 3006–3010 (2015).
- Wu, X., Pang, E., Lin, K. & Pei, Z.-M. Improving the measurement of semantic similarity between gene ontology terms and gene products: insights from an edge- and IC-based hybrid method. *PLoS One* 8, e66745 (2013).
- Coban-Akdemir, Z. *et al.* Identifying Genes Whose Mutant Transcripts Cause Dominant Disease Traits by Potential Gain-of-Function Alleles. *Am. J. Hum. Genet.* **103**, 171–187

(2018).

- Catterall, W. A., Dib-Hajj, S., Meisler, M. H. & Pietrobon, D. Inherited neuronal ion channelopathies: new windows on complex neurological diseases. *J. Neurosci.* 28, 11768– 11777 (2008).
- Lasser, M., Tiber, J. & Lowery, L. A. The Role of the Microtubule Cytoskeleton in Neurodevelopmental Disorders. *Front. Cell. Neurosci.* 12, 165 (2018).
- Hamilton, M. J. *et al.* Heterozygous mutations affecting the protein kinase domain of cause a syndromic form of developmental delay and intellectual disability. *J. Med. Genet.* 55, 28– 38 (2018).
- Martincorena, I. *et al.* Universal Patterns of Selection in Cancer and Somatic Tissues. *Cell* 173, 1823 (2018).
- Qi, H., Dong, C., Chung, W. K., Wang, K. & Shen, Y. Deep Genetic Connection Between Cancer and Developmental Disorders. *Hum. Mutat.* 37, 1042–1050 (2016).
- 29. Ronan, J. L., Wu, W. & Crabtree, G. R. From neural development to cognition: unexpected roles for chromatin. *Nat. Rev. Genet.* **14**, 347–359 (2013).
- Cancer Genome Atlas Research Network *et al.* The Cancer Genome Atlas Pan-Cancer analysis project. *Nat. Genet.* 45, 1113–1120 (2013).
- Goriely, A. & Wilkie, A. O. M. Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease. *Am. J. Hum. Genet.* **90**, 175–200 (2012).
- Duncan, B. K. & Miller, J. H. Mutagenic deamination of cytosine residues in DNA. *Nature* vol. 287 560–561 (1980).
- Maher, G. J. *et al.* Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes. *Proc. Natl. Acad. Sci. U. S. A.* **113**, 2454–2459 (2016).
- Maher, G. J. *et al.* Selfish mutations dysregulating RAS-MAPK signaling are pervasive in aged human testes. *Genome Res.* 28, 1779–1790 (2018).
- 35. Young, L. C. et al. SHOC2-MRAS-PP1 complex positively regulates RAF activity and

contributes to Noonan syndrome pathogenesis. *Proc. Natl. Acad. Sci. U. S. A.* **115**, E10576–E10585 (2018).

- Coe, B. P. *et al.* Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity. *Nat. Genet.* **51**, 106–116 (2019).
- 37. Lord, J. *et al.* Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study. *Lancet* **393**, 747–757 (2019).
- Cassa, C. A. *et al.* Estimating the selective effects of heterozygous protein-truncating variants from human exome data. *Nat. Genet.* 49, 806–810 (2017).
- Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic causes of developmental disorders. *Nature* 519, 223–228 (2015).
- Satterstrom, F. K. *et al.* Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. *Cell* 180, 568– 584.e23 (2020).
- Deelen, P. *et al.* Improving the diagnostic yield of exome- sequencing by predicting genephenotype associations using large-scale gene expression analysis. *Nat. Commun.* **10**, 2837 (2019).
- 42. He, X. *et al.* Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes. *PLoS Genet.* **9**, e1003671 (2013).