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ABSTRACT
Differential privacy is a robust principle for privacy preserving data
analysis tasks, and has been successfully applied to a variety of
applications. However, the number of queries that can be answered
is limited for preventing privacy disclosure. Once the privacy
budget is exhausted, all succeeding queries must be rejected.
Therefore, each of the historical query answers is valuable and
it is important to exploit them together to learn more about the
data. We propose to integrate all available linear query answers
into a consistent form that embodies our knowledge learned from
the noisy answers, obtaining more accurate answers to past queries
and even new queries, improving the data utility. Two distinct
approaches are developed for this purpose, one via principle
component analysis, and another via maximum entropy method.
The second approach also generates a synthetic database, which is
useful for differentially private data publishing. One important goal
of our work is to ensure that the running time of our approaches
does not grow with the cardinality of the universe of a data tuple,
so that high-dimensional data with very large domain can still be
tackled efficiently.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Applications

General Terms
Algorithms, Security

Keywords
differential privacy, private data analysis

1. INTRODUCTION
The problem of privacy preservation is to enable public ana-
lysts studying useful knowledge from sensitive databases, while
protecting personal privacy. Recently, differential privacy [10]
has received considerable attention because it provides a rigorous
paradigm to protect privacy. The notion of privacy principle states
that the released information should not tell whether or not any per-
sonal data is included in the database. This is achieved by requiring
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that the output of a differentially private mechanism is insensitive
to a small change in the input database. Differential privacy has
been applied successfully to a variety of data analysis tasks and has
shown good utility [2, 4, 5, 8, 9, 11–15, 17, 19, 21, 22, 24, 25].

Differential privacy is achieved by injecting randomness into query
answers. In the typical Laplace mechanism [10], a random noise
drawn from a Laplace distribution is added to each query answer.
The magnitude of the noise is adjusted by the strongness of privacy
protection required and is calibrated to the maximum possible
change to the true answer caused by an atomic change to the input
database. For simple queries such as counting queries, the noisy
answers often show very good accuracy, and the absolute error does
not grow with the cardinality of the database.

However, answering more queries over time may result in dis-
closure of more private information. To control the amount of
private information exposed, it is important not to answer too many
queries. The privacy budget, which determines the number of
queries that can be answered, is limited jointly by the required
privacy level and the accuracy of query answers. Once the privacy
budget is exhausted, all succeeding queries have to be rejected.

In practice, analysts may have many different query tasks. Each
query task studies some properties of the database by issuing
some queries. Because the number of answerable queries is very
limited, every answer to historical queries is valuable. When we are
processing new queries, we should not forget the historical query
answers. Instead, it is important to exploit them together to learn
more about the data. In particular, if the answer to an incoming
query is derivable from the historical query answers, we can afford
to retrieve answer to the query without paying of privacy budget.
Motivated by this, we propose to integrate all available linear

query answers into a consistent form that embodies our knowledge
learned from the noisy answers, for improving data utility.

The main purpose of integrating all available query answers into
a consistent form is to obtain more accurate answers to queries.
The gain in accuracy often comes from the inconsistency of noisy
answers, due to redundant or dependent queries. As an example,
suppose the analysts are studying a census database and are curious
to know how much the Weight of a person raises on average when
his Height increases by 1. The correlation coefficient between
Height and Weight is demanded for this purpose. Three queries are
then been issued, probably by different analysts — the first query
computes SUM(Height×Weight) over people with Age<181, the

1More rigorously, the analyst issues a query that computes
SUM(Height·Weight·δ(Age<18)), where δ is an indicator function
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second query with Age≥18, and the third query over people of any
age. Here, three queries are linear dependent, and the answer to
each query can be improved by incorporating the noisy answers to
other two, provided that injected noise is independent. In practice,
dependence among a large collection of queries is expected to
appear commonly, especially when issued by different analysts.

A potential solution to the above problem is to apply a power-
ful query mechanism to all queries, obtaining the best possible
noisy answers within the limited privacy budget. However, there
are at least two reasons for this solution to be often infeasible.
First, in many situations, some query tasks appear earlier than
other query tasks, and the later query tasks can be adaptively
generated based on the results from the earlier query tasks. But
most query mechanisms are unable to incorporate historical noisy
answers to compute new queries, they require all queries in the
workload are given at once. Second, the database T may be
high-dimensional, even if each individual query task may operate
on a low-dimensional projection of T . Because most, if not all,
query mechanisms [14, 17] that support arbitrary linear queries
require running time at least quadratic in the size of the data
domain, the computation cost is prohibitively expensive.

Contributions. In this paper we study two post-processing ap-
proaches to integrate noisy answers to all linear queries into a
consistent form, which can improve the accuracy of the estimate
answers to all past or even new queries. One is based on principle
component analysis, the other is based on the maximum entropy
method. A typical use of our approaches is to incorporate the
knowledge learned from historical query answers to refine the
noisy answers output by a query mechanism for the current query
workload. Purely based on past query answers, our approaches
can also give meaningful answers to new queries that are highly
correlated with past queries, which are very useful when the
privacy budget has been exhausted. An important advantage of
our approaches is that explicit computation of the base histogram
over the entire universe U of a data tuple is circumvented, and the
computation cost does not explicitly depend on the cardinality of
U . Hence it is possible to tackle high-dimensional data with very
large domain (or even continuous data with infinitely large domain)
efficiently.

Our second approach also generates a synthetic database that
approximately matches the query answers, which is useful for
differentially private data publishing. Some studies [4, 11] have
dedicated to differentially private data publishing, but most have
polynomial, or even super-polynomial computation cost in the
cardinality of U . Moreover, they adopt the difference between
the answers to the synthetic database and to the input database as
the only objective for optimization, which may not be preferable
because the synthetic database can be very skew and unnatural. Our
approach uses entropy as a secondary objective, leading to more
natural data distributions and can give meaningful answers to new
queries.

Our approaches use a parameter α to trade off the bias and the
variance of estimate answers. Our first approach returns unbiased
estimate answers when α is set to +∞, but we are more interested
in biased answers because that often allows more accurate results.
We also present an approach to automatically select appropriate
values for α for obtaining the best possible answers. When prior
belief about the data distribution is available, the prior knowledge

that predicates whether Age<18 is true.

is often helpful for improving query accuracy when the past noisy
answers do not provide sufficient information. In this paper we also
show how to incorporate the prior belief into our approaches.

Organization. Section 2 gives notation and preliminaries; Section
3 and 4 introduce the two proposed approaches respectively; Sec-
tion 5 presents experimental evaluation; Section 6 surveys related
work; Section 7 concludes the paper.

2. NOTATION AND PRELIMINARIES
Suppose an input database T has d attributes A1 . . . Ad and n

tuples t1 . . . tn, ti ∈ U . We denote by ti[j] ∈ Aj the j’th attribute
value of ti. The universe or domain U of a tuple is the Cartesian
product of all attribute domains Aj . We consider a collection of m
queries q1 . . . qm, each described by a feature function fi : U → R

and computing the sum of feature values over T

qi(T ) =
∑

1≤j≤n

fi(tj) (1)

We refer to queries that can be expressed in the above form as
linear queries. Note that a variety of important query types is
covered in this expression, such as counting queries (including
range queries as a special case) and moment estimation (mean,
variance, correlation coefficient, etc). Many data mining tasks can
be built on linear queries.

To simplify notations and discussion, we assume that all data are
discrete and have finite domains. But it is possible to extend our
approaches to continuous data that have infinitely large domains.

A common (but not the only) way to obtain differentially private
answers to linear queries is via Laplace mechanism [10], which
introduces an independent Laplace noise ei ∼ Lap(bi) with
variance 2b2i to the answer to each query qi. We have the following
m noisy answers (together with their noise magnitudes bi) released

ai =
∑

1≤j≤n

fi(tj) + ei 1 ≤ i ≤ m (2)

where the probability density of ei ∼ Lap(bi) at x is

Lap(x; bi) =
1

2bi
exp

(
−
|x|

bi

)
(3)

In this paper, we will simply assume that the database cardinality n

is known to analysts.2

For better query accuracy, many query strategies introduce correlat-
ed noises into the query answers. However, all query strategies [2,
8, 15, 17, 25] built upon Laplace mechanism can be converted into
the above model. These query strategies work by computing and
submitting the strategy queries, some linear combinations of the
user queries, to the Laplace mechanism. We can simply assume
that the strategy queries and their noisy answers are known, which
will not violate differential privacy.

Our principle component analysis approach is in fact based on a
more relaxed setting — it merely assumes that the noisy answers
are unbiased and the covariance matrix is known. This will support
query mechanisms [14] that are not built upon Laplace mechanism.

2We can use ǫ-indistinguishability, the original concept of differ-
ential privacy, which permits release of n.
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The output of our approaches can be regarded as the estimate
answers to the space of all possible linear queries. These estimate
answers are consistent in the sense that they must correspond to a

base histogram ĥ that comprises the estimate counts for each ele-
ment in the data universe U . The estimate counts are real numbers
and can be negative. Once the base histogram ĥ is decided, the
estimate answers to all linear queries are determined. However,

we will avoid the explicit construction of the base histogram ĥ,
otherwise the computation cost is at least proportional to the size
of data domain U . The principle component analysis approach

represents ĥ as a set of eigen-queries along with the least squares
estimates to their answers. In contrast, the maximum entropy

approach represents ĥ as a parameterized probability distribution
or a sufficiently large sample drawn from that distribution. The
maximum entropy approach affords stronger consistency, in the
sense that the output always correspond to a valid database.

The goal of our approaches is to improve the query accuracy, which
can be measured by the mean squared error of the estimate answers.
Our approaches aim at obtaining the best possible answers to the
past queries, but they are also able to give meaningful answers to
new queries that are highly correlated with past queries.

When some prior belief about the data distribution is available,
it is often helpful to incorporate that a priori knowledge into the
computation for obtaining better query answers. The knowledge
often comes from unequal chances of value assignments to an
attribute. For example, some diseases are more common than
others, and an address value at the level of city should be weighted
more than an address value as the level of street. Our approaches
can refine the estimate answers according to a prior distribution
p0(t) =

∏
p0,i(t[i]) that assumes strong independency between

attributes. If no a priori knowledge is given, an uniform distribution
p0(t) =

1
|U|

is used as the uninformative prior.

It is possible to obtain the prior distribution p0 by computing some
extra queries to the database T . Each marginal distribution p0,i can
be obtained by computing |Ai| marginal queries that compute the
counts for each possible assignment to Ai. Since the sensitivity of
all 1-D marginal queries is only d, a little cost of privacy budget
can afford very accurate results.3

3. THE PRINCIPLE COMPONENT ANAL-

YSIS APPROACH
Let U = {1, . . . , N}, and we represent x = [x1, . . . , xN ]T as
a column vector of counts: xi = |{j|tj = i, 1 ≤ j ≤ n}|.
Each linear query is a length-N row vector qi = [qi,1, . . . , qi,N ]
with each qi,j = fi(j). We organize the m queries qi into the
rows of a m × N query matrix Q, the m noisy answers ai and
m noise variables ei into column vectors a and e. We denote by
Σ = E(eeT ) the covariance matrix of the noisy answers. Then the
best linear unbiased estimate for the true answer Qx is given by the
weighted least squares solution to the linear regression problem

a = Qx+ e E(e) = 0 Cov(e) = Σ (4)

3With little chances, the noisy answers to the marginal queries may
be invalid (negative), thus we need to convert them into a proper
prior. A simple way is to truncate negative answers to 0. A more
elegant way is to postulate a parameterized prior of the prior p0,i
and then perform Bayesian inference with the noisy answers as
evidence. This goes beyond the scope of this paper.

The solution to this problem is x̂ = (QTΣ−1Q)+QTΣ−1a =

(Σ−
1

2Q)+Σ−
1

2 a, where the superscript + denotes the Moore-
Penrose pseudo-inverse. x̂ is an unbiased estimate of x only if
rank(Q) = N . In any case, Qx̂ gives the least squares estimate to
the true answer Qx. In general, the subspace spanned by the rows
of Q, made up of all linear combinations of input queries {qi},
gives the set of all estimable functions4. For any estimable query q,
qx̂ gives the least squares estimate to qx.

However, the above standard process requires explicit construction
of the m×N matrix Q, and takes O(Nm2) time if N > m. This
is prohibitively expensive when the data universe U is extremely
large, say, for high-dimensional data. In this section, we will
present a more efficient approach that is suitable to the case of
m≪ |U | and is applicable for a range of important queries.

3.1 The Kernel PCA Approach
Our idea is to use PCA (Principle Component Analysis) to compute
a collection of orthonormal queries {vi}, called eigenqueries, each
a linear combination of the input queries {qi}. Moreover, we
also compute {zi}, the least squares estimates to the eigenqueries’
true answers. Those least squares estimates are guaranteed being
pairwise uncorrelated. Once {vi} and {zi} are obtained, the
estimate answers to any other queries can be derived from them.

Specifically, we are looking for a linear transformation operation
W that achieves three goals: WQ returns an orthogonal matrix
V = WQ whose rows give a set of r = rank(Q) orthonormal
queries {vi}; Wa obtains the least squares estimate to V x, i.e.,
Wa = WQx̂; Wa, or its errors We, are pairwise linearly
uncorrelated, i.e., E(We(We)T ) = WΣWT is a diagonal matrix.

Such matrix W can be found by computing the SVD (Singular

Value Decomposition) of Σ−
1

2Q: Σ−
1

2Q = UΛV , where U =
(ui,j)m×m and V = (vi,j)N×N are orthonormal matrices, and
Λ is an m × N diagonal matrix with r = rank(Q) nonnegative
singular values λ1 . . . λr on the diagonal in descending order. Then

W = Λ+UTΣ−
1

2 suffices our need. Only the r nonzero rows of
W are useful, and other zero rows are discarded.

An alternative way to find W is by computing the eigendecompo-

sition of Σ−
1

2QQTΣ−
1

2 = UΛ2UT , where U is an orthonormal
matrix and Λ2 is a diagonal matrix with eigenvalues on the diagonal
in decreasing order. This way can produce the same U and Λ
(except the extra rows or columns with full zeros) as the former

way. Thus we also obtain W = Λ+UTΣ−
1

2 .

Finally, we obtain r transformed queries that come from the r

nonzero rows of V = WQ. We refer to these transformed queries
as eigenqueries, denoted by row vectors v1 . . . vr . In fact they are
the principle components of the input queries (without centering
at zero) weighted by 1/σ1 . . . 1/σm, when the noisy answers are
independent variables with variances {σ2

i }.

PROPOSITION 1. The eigenqueries v1 . . . vr are a set of or-

thonormal vectors that forms a orthonormal basis for the subspace

spanned by the input queries q1 . . . qm.

4The term estimable means that an unbiased estimate can be
derived.
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PROPOSITION 2. The least squares estimate to the answer to

the eigenqueries is Wa.

PROOF.

WQx̂ = WQ(Σ−
1

2Q)+Σ−
1

2 a (5)

= WΣ
1

2UΛV (V TΛ+
U

T )Σ−
1

2 a (6)

= Λ+
U

TΣ−
1

2Σ
1

2UΛΛ+
U

TΣ−
1

2 a (7)

= Λ+
U

TΣ−
1

2 a = Wa (8)

PROPOSITION 3. The errors We of the estimate answers to

eigenqueries are pairwise linearly uncorrelated (but they are usu-

ally dependent in terms of probabilities).

PROOF. WΣWT = Λ+UTΣ−
1

2ΣΣ−
1

2U(Λ+)T =
(ΛTΛ)+

Thus, the eigenqueries {vi} and their estimate answers {zi} col-
lectively give the least squares estimates for all estimable queries
in a consistent form, where z = (zi)r×1 comprises the first r

entries of Wa. Each estimable query q is a unique combination
c1v1 + · · · + crvr of the eigenqueries. The coefficients c1 . . . cr
can be simply derived by computing the inner products ci = qvTi ,
and we obtain the least squares estimate answer c1z1 + · · ·+ crzr .
Because zi’s have pairwise uncorrelated errors of variances 1/λ2

i ,
the variance of q’s estimate answer is c21/λ

2
1 + · · ·+ c2r/λ

2
r .

For non-estimable query q, the above process actually finds an
estimable query q′ that is closest to q (measured by ‖q − q′‖2)
and returns the least squares estimate answer to q′.

When the database cardinality n is known to analysts, it is useful
to add a virtual query u = [1 . . . 1]1×N with sufficiently low error
variance into the input queries Q to embody our knowledge about
n.5 The virtual query u counts the total number of tuples in T , and
we call u the universal query. Inclusion of u in Q results in that u

becomes the most significant eigenquery v1 = N
1

2 u with infinitely
large λ1.

3.2 Computing the Kernel Matrix
The benefit of the PCA approach is that, in essence, all calculations
can be carried out with the inner products 〈qi, qj〉. It is unnecessary
to explicitly construct the length-N vectors qi and vi if the inner
products 〈qi, qj〉 are easy to compute. We first compute the kernel

matrix K = QQT that involves with m2 inner products. Based on

eigendecomposition of Σ−
1

2KΣ−
1

2 = UΛ2UT , we obtain W =

Λ+UTΣ−
1

2 , where each nonzero row gives the coefficients of an
eigenquery vi in combination of input queries. Those coefficients
are used for finding the coordinates c1 . . . cr of any query q in the
basis of eigenqueries: ci = 〈q, vi〉 =

∑
j wi,j〈q, qj〉. Thus, the

least squares estimate answer to any query q can be obtained by
computing nr inner products. Overall, the output of our approach
are the coefficient matrix W , the least squares estimate z = Wa to
the answers to r eigenqueries, and the eigenvalues {λ2

i }, which can
be computed in O(m2r) time once the kernel matrix K is available.

5or we can use constrained linear regression to avoid use of the
infinitely low variance.

In the remainder of this section, we redefine the inner product
〈qi, qj〉 as the dot product qiq

T
j divided by N . This scales the

kernel matrix K by a factor 1/N , and makes the norm of the
universal query u be ||u|| = 1 (so v1 = u). Because PCA is a
scale and rotation invariant procedure, the output W and {λ2

i } will
not change.

The key problem is to find a way to compute the inner products
without traversing every location in the universe U . Recall that the
tuple representation t that consists of d attribute values. To simplify
discussion, we assume that the size of every attribute domain is
bounded by a number C: |Ai| ≤ C for all i.

We propose to write a query q = (f(t))1×N in the following
polynomial form

(q)t = f(t) =
∑

1≤i≤lq

∏

j∈Sq,i

gq,i,j(t[j]) (9)

that comprises lq product terms
∏

j∈Sq,i
gq,i,j(t[j]), where Sq,i ⊆

{1 . . . d} and gq,i,j(t[j]) are arbitrary functions that can be com-
puted in constant time. We define the size of q, denoted by sq , the
number of times the gq,i,j functions appear in the polynomial form:
sq =

∑
i |Sq,i| ≤ lqd. We let gq,i,j(t[j]) = 1 for all j 6∈ Sq,i, so

that we also have (q)t =
∑

1≤i≤lq

∏
1≤j≤d gq,i,j(t[j]).

The reason for the use of polynomial form is that many queries can
be written in a polynomial form of very short lengths lq ≪ N ,
which helps us to compute the inner products in an efficient way.

THEOREM 1. The inner product of q1 and q2 can be computed

in O(lq1sq2C + lq2sq1C) ≤ O(lq1 lq2dC) time.

PROOF.

〈q1, q2〉 =
∑

t∈U

(q1)t(q2)t/N (10)

=
∑

1≤i≤lq1

∑

1≤j≤lq2

∏

1≤k≤d

∑

θ∈Ak

1

|Ak|
gq1,i,k(θ)gq2,j,k(θ) (11)

=
∑

1≤i≤lq1

∑

1≤j≤lq2

∏

k∈Sq1,i

∪Sq2,j

∑

θ∈Ak

1

|Ak|
gq1,i,k(θ)gq2,j,k(θ) (12)

Eq. 12 has at most lq1sq2C + lq2sq1C calls to g functions.

The factor C appears because we need to traverse every element of
Ak for computing

∑
θ∈Ak

gq1,i,k(θ)gq2,j,k(θ). For many kinds of
queries (like range queries), the g functions have special structure
that allows us to compute

∑
θ∈Ak

gq1,i,k(θ)gq2,j,k(θ) in constant
time. In that case, the factor C does not appear.

COROLLARY 1. The kernel matrix K can be computed in

O(
∑

i lqi
∑

i sqiC) ≤ O((
∑

i lqi)
2dC) time.

Many query types can be written in a polynomial form with short
lengths, thus support efficient computation of the inner products.
Some typical examples are as follows.

A range query q counts the number of tuples whose attribute
values fall into specified intervals. A k-D range query can be
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written as (q)t = δ(a1 ≤ t[i1] ≤ b1)× · · · × δ(ak ≤ t[ik] ≤ bk),
where δ denotes an indicator function that returns 1 if the predicate
is true and returns 0 otherwise. We have lq = 1 and sq = k.

A counting query q with predicate function given by a boolean
expression can be written in a polynomial form, by summing over
all possible assignments to the boolean variables in the expression.
The length lq can be exponentially large in the number of boolean
variables. However, many user queries only contain a few boolean
variables.

Mean, variance, covariance, and higher order moments can be
written in the form (q)t = (t[i1])

c1 × · · · × (t[ik])
ck for some

constants {ck}. lq = 1 and sq ≤ k′ for a k′-order moment.

A query strategy proposed in [2] addresses binary attributes
(|Ai| = 2) and computes the Fourier transformation of the
database. The query to compute a Fourier coefficient is in the form:
(q)t = (−1)t[i1] × · · · × (−1)t[ik]. lq = 1 and sq ≤ d.

The work in [25] extends the Fourier transformation to the wavelet

transformation. The strategy query is in the form: (q)t =∏
i(−1)

ci(t[i]) for some functions ci. lq = 1 and sq = d.

Some queries does not belong to any of the above examples.
However, we can show that the inner products can still be efficiently
computed if each of the queries is relevant to only a few attributes.
Because most existing query strategies [2,8,15,17,25] require com-
putation cost at least proportional to the domain size, the queries
generated by those strategies usually operate on a low-dimensional
projection of T on only a few attributes.

Suppose a query q is relevant to a set of dq attributes hq = {hq,1,

. . . , hq,dq}. Let Domq denote the Cartesian product
∏

i Ahq,i
,

and let q(t′) for t′ ∈ Domq denote (q)t when t′ and t match on the
relevant attributes. Then q can be regarded as the sum of |Domq|

counting queries, each specifies a location in Domq . We can write
q as

(q)t =
∑

t′∈Domq

∏

1≤i≤dq

δ(t[hq,i] = t
′[i])q(t′) (13)

We have lq = |Domq| and sq = lqdq . This immediately
implies that the inner product of two such queries q1 and q2 can
be computed in at most O(|Domq1 ||Domq2 |(dq1 + dq2)) ≤
O(Cdq1+dq2 (dq1 + dq2)) time. We can further reduce the com-
putation cost to only O(|Domq1 |dq1 + |Domq2 |dq2).

THEOREM 2. The inner product of q1 and q2 can be computed

in O(|Domq1 |dq1 + |Domq2 |dq2) ≤ O(Cdq1 dq1 + Cdq2 dq2)
time, assuming the computation cost for qi(t

′) for t′ ∈ Domqi

is O(dqi).

PROOF.

〈q1, q2〉 =
∑

t∈U

(q1)t(q2)t/N (14)

=
∑

t0∈Domhq1
∩hq2




∑

t1∈Domhq1
\hq2

q1(t0, t1)







∑

t2∈Domhq2
\hq1

q2(t0, t2)


 /|Domhq1

∪hq2
| (15)

where Domh denotes
∏

i∈h Ai. Eq. 15 has |Domq1 | calls to q1(·)
and |Domq2 | calls to q2(·).

COROLLARY 2. The kernel matrix K can be computed in

O(
∑

i |Domqi |dqim) ≤ O(
∑

i C
dqi dqim) time, assuming the

computation cost for qi(t
′) for t′ ∈ Domqi is O(dqi).

In practice, we can use either Eq. 12 or Eq. 15 to compute the inner
product of a pair of queries, and choose the faster one based on the
types of queries.

3.3 Trade-off between Bias and Variance
Usually, if we can tolerate a small bias, and change the query a
little, we may obtain more accurate estimate answer with smaller
error. Suppose there are two queries q1 and q2, which compute the
number of elements that fall into the interval [0, 99] and [1, 100],
respectively. Because these two queries are very similar and highly
correlated, we are often able to obtain a more accurate answer,
to any of them, by averaging their noisy answers. The resulting
answer a = (a1 + a2)/2 is the least squares estimate answer
to the query q = (q1 + q2)/2 (provided that two noisy answers
have equal variances). Because q is very similar to q1 and q2,
the estimate bias (q − q1)x is hopefully very small. Because
E(error2) = bias2 + variance, as long as the reduction in
variance is more than the square of estimate bias, a is a better
answer to q1 (or q2) in terms of squared error, though the estimate
bias is unknown to analysts.

To answer a query q, we propose to return the least squares estimate
q′x̂ to another estimable query q′, and minimize the objective
function

Rq(q
′) = α

2
‖q − q

′

‖
2 + V ar(q′x̂) (16)

The parameter α ≥ 0 controls the trade-off between bias and
variance. In the following we present a simple way to solve this
problem.

Any query q can be decomposed into orthogonal components q =
c1v1+· · ·+crvr+qbias, in which ci = 〈q, vi〉 and the inherent bias
qbias denotes the difference from q to the estimable space spanned
by {vi}. Then we represent q′ in the similar way: q′ = y1c1v1 +
· · · + yrcrvr , where 0 ≤ yi ≤ 1. Through simple calculation, we
obtain ‖q − q′‖2 =

∑
i(1 − yi)

2c2i + ||qbias||
2 and V ar(q′x̂) =

V ar(
∑

i yicizi) =
∑

i y
2
i c

2
i /λ

2
i , where 1/λ2

i is the variance of zi.
Hence,

Rq(q
′) = ||qbias||

2 +
∑

i

((1− yi)
2
α
2
c
2
i + y

2
i c

2
i /λ

2
i ) (17)

The optimal solution can be obtained by setting the derivative to

zero, and we get yi =
α2

α2+1/λ2

i

.

Finally, for each query q we output y1c1z1 + · · · + yrcrzr as its
estimate answer that minimizes the objective function Rq . yi serve
as the weights to every eigenqueries vi, and are irrelevant to the
query q. Obviously, the output estimate answers to the space of all
possible queries are consistent.
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THEOREM 3. Let yi = α2

α2+1/λ2

i

. For any query q, the output

y1c1z1 + · · · + yrcrzr is the least squares estimate answer to

another query q′ that minimizes Rq(q
′), where ci = 〈q, vi〉. For

any fixed assignment to α, the output estimate answers to the space

of all possible queries are consistent.

The weights of eigenvectors are assigned according to the vari-
ances of their least squares estimate answer: higher variance, less
important. The parameter α controls how much the weights are
affected by the variances. If α = +∞, all eigenqueries are equally
weighted, so we always output unbiased estimate answer to any
estimable query q. When α approaches 0, only the universal query
u = v1 is used. In latter case, the estimate answer to a query q

is 〈q, u〉z1 = quTn/N , as if computed on a uniformly distributed
database. This is like a smooth version of dimension reduction. A
simple observation is that, if we restrict each yi to be either 0 or 1,
then yi = 1 if and only if 1/λ2

i < α2, and all eigenqueries vi with
1/λ2

i > α2 are discarded.

3.4 Incorporating Prior Belief about Data

Distribution
So far, we measure the difference between two queries by the
squared norm ‖q − q′‖2 when we trade off between bias and
variance. Because the inner product is set to proportional to the dot
product, all locations in U are equally weighted in measuring the
difference between q and q′. This may not be preferable, because
some assignments to a tuple can be more likely to appear than other
assignments. When a prior distribution p0 is given, we propose to
use a new inner product function, which is defined as

〈q1, q2〉 =
∑

t∈U

p0(t)(q1)t(q2)t (18)

With this definition, each member t of U is weighted by it’s prior
probability p0(t).

To intuitively understand the effect of this change, consider the
extreme case that α approaches 0. In that case, the estimate
answer to a query q is 〈q, u〉z1 = n

∑
t∈U p0(t)(q)t(u)t, as

if computed on a database that follows the prior distribution p0.
So the parameter α indicates to what extent we believe the prior
distribution.

We assume that the prior distribution is given in the form p0(t) =∏
p0,i(t[i]), which makes strong independency assumption. Then

Eq. 12 now becomes

〈q1, q2〉 =
∑

t∈U

p0(t)(q1)t(q2)t = (19)

∑

1≤i≤lq1

∑

1≤j≤lq2

∏

k∈Sq1,i

∪Sq2,j

∑

θ∈Ak

p0,k(θ)gq1,i,k(θ)gq2,j,k(θ) (20)

This is equivalent to having every gq,i,j function in Eq. 12
and Eq. 15 to be substituted with a new one g′q,i,j(t[j]) =√
|Aj |p0,j(t[j])gq,i,j(t[j]). Hence, the computation cost for inner

products remains the same.

3.5 Selecting an Appropriate α

For improving query accuracy, it is desirable to choose an α that
leads to estimate answers with minimal mean squared error (MSE)
to a collection of queries. The best choice of α depends on the

data distribution and the queries. A simple way to choose α is
to try many possible assignments to α, compute for each trial
the resulting MSE in a differentially private manner, and choose
the assignment that leads to the smallest noisy MSE. However,
this approach will expend considerable amount of privacy budget,
because a) it has to compute many differentially private MSE
queries for making a good choice; b) the sensitivity of a MSE query
is large, which makes it difficult to obtain an accurate estimate to
MSE.

We assume that all input queries are independently drawn from
an underlying population Ω, and the noises added to every query
answer are also independent (though it is still possible to apply our
approach to the case of dependent noises). We propose to find an α

that minimizes the following quantity

MSEm(α) = (21)

Eqi∼Ω,q∼Ω((A({(q1, a1) . . . (qm, am)}, q, α)− qx)2)

where A denotes the algorithm that receives m input queries qi
and noisy answers ai and outputs the estimate answer to q given
parameter α, and qx denotes the true answer to q. So MSEm is
the expected squared error of the estimate answers to new queries
that come from the same distribution from which the input queries
are drawn. We present an approach to estimate this MSE resulted
by a choice of α, purely based on the past noisy answers to Q.

Our idea is based on cross-validation. We randomly split all m
queries in Q into k groups. At each stage we choose a group
as test set Qtest, and the union of other groups as training set
Qtraining . We use the PCA approach to process the training
queries in Qtraining together with their noisy answers. Then we
compute the estimate answers a′

test to the test queries in Qtest,
according to the current choice of α. The estimate answers a′

test

are then compared to Qtest’s noisy answers atest, so as to obtain an
unbiased estimate to MSE|Qtraining|

. The above stage is repeated
k times, each time choosing a different group as the test set. The
k estimates are averaged to obtain the final (biased) estimate to
MSEm.

Now we focus on a single stage. To obtain an unbiased estimate
to MSE|Qtraining|

, we will compare the estimate answers a′

test

with the noisy answers atest. We first compute m̂se = ||atest −

a′

test||
2/|Qtest|, which uses atest as if true answers to derive the

mean squared error of a′

test. Then we subtract from m̂se the mean
variance of atest to obtain the estimate MSE|Qtraining|

for this
stage. If all noisy answers to Q are independent, then atest and
a′

test are independent, and the obtained estimate MSE|Qtraining|

is unbiased, as supported by the following theorem.

THEOREM 4. Let a1 . . . an be some unknown quantities,

b1 . . . bn be some estimates to {ai}, and c1 . . . cn be some unbiased

estimates to {ai}. Let σ2
i denote the variance of ci. Assuming

that {bi} and {ci} are independent random variables. Then, an

unbiased estimate to the expected mean squared error of {bi} is
1
n

∑
i(bi − ci)

2
−

1
n

∑
i σ

2
i .

PROOF. Because E(ci) = ai and E(c2i ) = a2
i + σ2

i ,

E

(∑

i

(bi − ci)
2
−
∑

i

σ
2
i

)
(22)

=
∑

i

E(b2i − 2bici + c
2
i − σ

2
i ) (23)
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=
∑

i

E(b2i − 2biai + a
2
i ) = E

(∑

i

(bi − ai)
2

)
(24)

The parameter k is chosen by the user. Larger k gives better
estimate to MSEm but requires more computation cost. Usually a
small k (e.g., k ≤ 10) is sufficient to provide good performance.
We can fix the partition of the queries Q, so that we does not need to
recompute the PCA for each trial of α. Hence, in the preprocessing
phase, we pre-compute PCA for each training set Qtraining , which
expends roughly O(km3) time in total. Then, given any choice of
α, the resulting estimate answers atest to all test sets Qtest can be
computed in O(m2) time, from which we can simply derive the
estimate MSEm.

To find the best possible assignment to α, we can make many
different trials of α and select the one that leads to minimal estimate
MSEm. A more efficient way is to use ternary search algorithm,
assuming that the MSEm is a unimodal function of α.

Once the best assignment to α is selected, out approach can even
be used to answer new queries if they are drawn from the same
population that generates past queries, without submitting the new
queries to a differentially private mechanism that expends privacy
budget. If new queries are drawn from a different population,
however, we still need to invoke a differentially private mechanism
on the new queries. In the latter case, our approach is still useful as
a postprocessing algorithm that can be applied on the union of past
and new queries to improve the query accuracy.

4. THE MAXIMUM ENTROPY

APPROACH
In this section, we will present an approach that finds a data
distribution p that is most likely to generate the noisy answers.

4.1 The Objective Function
Our goal is to estimate the distribution of T . Two criterions are
of our interest for choosing the estimate distribution p: U →

[0, 1]. The first is the information entropy, because distribution
with greater entropy makes less assumptions about data. The
second is the likelihood given the noisy answers, which indicates
how probable for the distribution to generate the answers. Let
πi = ai/n, we propose the following objective function to make
leverage between the two criterions.

min
p∈∆

Q(p) = −H(p)− αL(p|{πi}) (25)

= p[ln p] +
∑

i

βi|πi − p[fi]|+ const (26)

where

L(p|{πi}) = lnPr({πi}|p) (27)

= ln
∏

i

Lap(πi − p[fi];
bi

n
) (28)

= −
∑

i

(
n

bi
|πi − p[fi]|+ ln

2bi
n

)
(29)

βi =
αn

bi
(30)

We denote by p[f ] = p[f(t)] the expectation of f w.r.t. probability
distribution p, and ∆ ⊂ [0, 1]U the simplex of the probability

distributions on U . The penalty functions βi|πi − p[fi]| give
soft constraints to the standard maximum entropy model. We
are unaware of any prior study for this type of soft constraints
to maximum entropy model. Note that our goal is to estimate
the distribution of the true database T , rather than learning the
underlying distribution that generates T .

α ≥ 0 is a parameter that trades off between the entropy H(p)
and the log-likelihood L(p|{πi}). If α is small, then distribution
with large entropy is favored. If α gets to infinite, then the
estimate distribution is required being exactly consistent to the
noisy answers if possible.

The objective function Q can also be interpreted in another way.
Consider p ∈ ∆ as an unknown length-N random vector with prior
distribution Φ: ∆→ [0, 1], and as our prior belief we presume that

the expected entropy of p is given by h̃: Φ[H(p)] = h̃. Then
the solution to the problem Eq. 26 corresponds to the maximum a
posteriori probability estimate to p given evidence {πi} and prior
Φ formed by the principle of maximum entropy subject to the
condition Φ[H(p)] = h̃ for a certain h̃.

THEOREM 5. Let the prior Φh̃: ∆ → [0, 1] be the maxi-

mum entropy distribution subject to Φh̃[H(p)] = h̃. Then the

solution to Eq. 26 maximizes the posterior probability density

Φh̃(p)Pr({πi}|p) for a certain h̃.

PROOF. (Sketch) Because Φh̃ is the maximum entropy distribu-
tion, it is the solution to the following problem

max
Φ

H(Φ) = −Φ[lnΦ] (31)

subject to Φ[H(p)] = h̃ (32)

Using Lagrange multipliers [7], it can be shown that Φh̃ can be
expressed as

Φh̃(p) ∝ exp(
H(p)

α
) (33)

for a certain α. Because

ln(Φh̃(p)Pr({πi}|p)) = lnΦ(p) + L(p|{πi}) (34)

∝H(p) + αL(p|{πi}) + const (35)

Maximizing the logarithm of the posterior probability density is the
same as minimizing Q.

By fixing p[fi], thus also fixing the log-likelihood L(p|{πi}),
via Lagrange multipliers, it can be shown that the optimal p that
minimizes Q or maximizes the entropy H(p) can be expressed
as [7]

pw(t) =
1

Zw

exp
∑

i

wifi(t) (36)

which is a Gibbs distribution parameterized by w = {wi}.
6 The

Lagrange multipliers w = {wi} are also called the weights or
factors of the features, and Zw =

∑
t exp

∑
i wifi(t) is a partition

function that ensures pw sums to 1.

6We ignore distributions that have exactly zero probabilities,
because these distributions are never optimal provided that the
answers are noisy.
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The solution to the problem Eq. 26 can be obtained by solving its
dual program, as shown in the following theorem. A sketch of the
proof is presented in [6].

THEOREM 6. The optimal p that minimizes Q(p) is the Gibbs

distribution (Eq. 36) parameterized by w = {wi}, where w is the

solution to the following convex program

max
−βi≤wi≤βi

Q
′(w) =

∑

i

wiπi − lnZw (37)

Eq. 37 describes a constrained convex optimization problem, which
is often easier to solve than its primal form as shown in Eq. 26. It
can also be viewed as a constrained maximum likelihood problem.
Suppose that there exists a database with empirical distribution p̃,
whose feature expectations p̃[fi] exactly match the noisy answers
πi (assuming that the noisy answers are consistent). Because

∑

i

wiπi − lnZw = p̃[
∑

i

wifi − lnZw] = p̃[ln pw] (38)

Q′ is proportional to the log-likelihood of pw w.r.t. p̃. Thus, the
solution to the dual problem (Eq. 37) is the maximum likelihood
Gibbs distribution with box constraints wi ∈ [−βi, βi].

4.2 Learning the Maximum Entropy Model
The convex program Eq. 37 for Q′ is a constrained version of the
well known problem of parameter estimation for a general Markov
random field or conditional random field [3,16,23]. Since extensive
work have devoted to this learning problem, we just present here a
simple algorithm that suffices our need.

Through simple calculations, it can be shown that

∂Q′(w)

∂wi

= πi − pw[fi] and
∂2Q′(w)

∂wi∂wj

= Covpw (fi, fj)

(39)
However, exact inference for the marginal pw[fi] is intractable for
general graphical models. Thus, we resort to MCMC (Markov
chain Monte Carlo) methods to approximate the gradients. Due to
the approximation, it is not appropriate to use optimization methods
that are sensitive to gradients or to the Hessian. Instead, we
use stochastic gradient descent, which fits well with approximate
marginal.

The framework of our algorithm is as follows. We start with an
initial parameter estimate w = 0. In each iteration we draw a
sample t from the current estimate distribution pw. Then we update
every wi by wi ← wi+γ(πi−fi(t)). We also truncate wi once we
discover |wi| > βi. The above steps are repeated until convergence
or until a specified number of iterations is reached. The learning
rate γ is set to a small enough number.

The Gibbs sampling [18] is used to generate a sequence of
(dependent) samples from pw. To draw a new sample from a
previous sample t, it generates an instance t[k] from the distribution
pw(Ak|t \ {t[k]}) of each attribute Ak in turn, conditioned on
the current assignments to other attribute values. The sequence of
samples t forms a Markov chain, and t’s distribution will converge
to the target pw. We update the parameter w after every new sample
t is generated. Gibbs sampling is often a slow-mixing process, due
to the auto-correlation between adjacent samples. Thus, t could be
lagging in catching the latest pw, but this issue can be alleviated by
choosing a smaller learning rate γ.

To generate an instance from the conditional distribution pw(Ak|t\

{t[k]}), we employ the Metropolis-Hastings algorithm [18]. In
short, it first draws an proposal instance o from Ak with proposal
distribution q(o), then update t[k] to o with probability min(1,
pw(o|t\{t[k]})q(t[k])
pw(t[k]|t\{t[k]})q(o)

). Without additional knowledge, q can be

chosen as the uniform distribution. This process involves the

calculation of the ratio
pw(t with t[k] = o)

pw(old t)
, which can be derived from

Eq. 36. Not all feature functions are necessary to calculate, but only
those feature functions fj whose results are affected by a change to
t[k] are relevant. Generating instances for all attributes of a tuple
will need at most 2md′ calls to feature functions, where d′ denotes
the average number of attributes a query is relevant to.

To update all weights wi ← wi+γ(πi−fi(t)), we need at most m
calls to feature functions. In total, every iteration will need O(md′)
calls to feature functions.

An interesting special case is, when doing privacy-preserving data
publishing, the set of m queries are often formed by all k-D
marginal queries. In this case, for every tuple t there are only

C(d, k) =

(
d

k

)
feature functions fi with non-zero output

fi(t) 6= 0. With some simple improvement, every iteration will
need only O(kC(d, k)) calls to feature functions, though the total
number m of queries is very large. Due to space limitation, we
omit the details here.

Finally, we obtain the approximate solution pw, which integrates
all noisy answers into an estimate distribution that gives consistent
estimate answers to all queries. In practice, we will generate a
sufficiently large sample from pw to support queries and other data
mining tasks. This sample also serves as a synthetic database
for differentially private data publishing. The weakness of our
algorithm is that, like all other learning algorithms for general
Markov random field, the convergence rate is not guaranteed. In
practice, we may simply set a fixed number of iterations.

4.3 Incorporating the Prior Distribution p0
If a prior distribution p0 is given, we can use relative entropy
instead of the information entropy, and obtain a slightly different
objective function

min
p∈∆

Q(p) = DKL(p||p0)− αL(p|{πi}) (40)

= p[ln
p

p0
] +
∑

i

βi|πi − p[fi]|+ const (41)

where DKL(p||p0) = p[ln p

p0
] is the relative entropy or Kullback-

Leibler divergence. When p0 is the uniform distribution, Eq. 41
differs from Eq. 26 only by a constant. The optimal p for Eq. 41
can be expressed as pw(t) = 1

Zw
p0(t) exp

∑
i wifi(t), where

Zw is again a partition function that ensures pw sums to 1. The
dual program Eq. 37 remains the same form, but the Zw function
in Eq. 37 changes due to change of pw. The previous learning
algorithm for estimating pw still applies.

5. EXPERIMENTS
In this section, we evaluate the performance of our approaches
based on the Adult dataset7, which contains personal information
of about 500, 000 American adults and has 9 attributes. The list
of attributes is presented in Fig. 1. All numeric attribute values are
integers.

7available at http://www.ipums.org
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Attribute Type Domain

Age numeric [16,94]
Gender categorical 2

Education numeric [1,17]
Birth-place categorical 51

Race categorical 9
Work-class categorical 7

Marital categorical 6
Occupation categorical 50

Salary numeric [0,49]

Histogram

A

G

E

B

R

W

M

O

S

Figure 1: Adult dataset used in our experiments

We have conducted two sets of experiments. In the first set
of experiments, we provide a collection of randomly generated
queries and noisy answers to our approaches, then study their
ability in improving accuracy. In the second set of experiments, we
use the maximum entropy approach as a privacy preserving data
publishing tool and compare its performance with a few existing
techniques. As default setting for the maximum entropy approach,
we set the learning rate γ to 10−4 and perform roughly about 106

iterations for each run.

Although there are some relevant techniques that also process
a collection of differentially private queries that may be given
arbitrarily, such as [4, 11, 13, 14, 17, 22], we did not test these
techniques because their computation cost are extremely high even
for datasets of moderate size. These techniques have running time
at least linear or polynomial in the size of data universe U .

5.1 Integrating Past Query Answers and Im-

proving Accuracy
In these experiments, we consider two kinds of queries. The first
kind is 2-D range query, which specifies an interval for each of a
pair of randomly chosen attributes. Every attribute is chosen with
equal probability. The predicate intervals for a range query are also
randomly generated. The second kind is arbitrary 2-D counting
query. Each 2-D counting query q is defined by a binary function
f : Ai × Aj → {0, 1}, i 6= j. All entries f(x, y) are generated at
random.

We first generate m = 5000 random queries, and compute the
answers based on the 500, 000 tuples in the Adult dataset. Every
answer is then introduced with an independent Laplace noise
Lap(b) with scale b = 5000. Because the sensitivity of m random
queries is at most m = 5000, we guarantee to satisfy at least
1-differential privacy.

In Fig. 2a and 2b, we study the performance of our approaches
with varying assignments to α. The performance is measured by
the RMSE (root mean square error) of the estimate answers to past
queries. For each of our approaches, we have tested two versions
— the version that does not utilize prior distribution (amounts to
a uniform prior distribution) and the version that incorporates the
prior distribution into the computation. The prior distribution is
obtained by computing all 1-D marginal queries from the dataset,
and each marginal is added by some noises so that the set of all
marginal queries satisfies 0.02 differential privacy.

Fig. 2a and 2b reveal that an appropriate setting to α can give very
good estimate answers. When α is infinitely large, our approaches,
in particular the kernel PCA approach, can only utilize the linear
dependency among the past queries to reduce the noises. With
smaller α, high correlation between past queries is also helpful to
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Figure 3: Estimating RMSEs by cross-validation. The dashed

lines denote the estimate RMSEs obtained by 5 cross-validation

on m = 5000 2-D range queries. The solid lines denote the true

RMSEs for the following setting — the past queries are 2-D

general queries, and the RMSEs are computed on randomly

generated new 2-D range queries. The solid lines match the

result presented in Fig. 2c.
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Figure 5: Running time with growing number of input queries

improve the accuracy. But if we set α too small, then the estimate
answers will be too biased and the RMSE grows. We also observe
that the incorporation of prior distribution gives significant boost to
the query accuracy, especially for the kernel PCA approach. But
the effect of the prior distribution vanishes when α grows.

In above experiments we only address the accuracy of estimate
answers to past queries. But the experimental results also make
sense when we are more concerned about new queries, because
by applying our approaches to the union of past queries and new
queries, the accuracy of answers to new queries also improves.

In next experiments, we consider another scenario where we derive
the estimate answers to new queries purely based on noisy answers
to past queries. This scenario is important when the privacy budget
is already exhausted but we still want to make some inference about
the data. The experimental results are presented in Fig. 2c and
2d. The past queries and new queries are independently generated,
hence they are expected to be very different. Moreover, in Fig. 2d
the kind of new queries is not the same as the past queries. It
is shown that for the kernel PCA approach to obtain reasonable
answers to new queries, we have to use a small and appropriate α

and tolerate biased answers. Overall, our approaches still work fine
in this scenario.

Because α is important for obtaining good estimate answers, we
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(a) 2-D range queries
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(b) 2-D counting queries
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(c) Past queries: 2-D range queries
New queries: a different set of 2-D range queries
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(d) Past queries: 2-D range queries
New queries: 2-D counting queries

Figure 2: RMSE with varying α. Fig. (a) and (b) study the ability of our approaches in improving the accuracy of estimate answers to

past queries. Fig. (c) and (d) investigate whether our approaches can give reasonable answers to new queries that are different from

the past queries, and the derivation of the estimate answers to new queries are purely based on the noisy answers to past queries. In

Fig. (c) and (d), the RMSEs of the estimate answers to new queries are presented.

should set α very carefully. To do this, we need to know how good
an assignment to α is, and choose the best possible assignment. In
Fig. 3, we estimate the RMSEs via 5 cross-validation on m = 5000
2-D range queries, and study how the estimate RMSEs are different
from the true RMSEs. It is shown that, the curves of the estimate
RMSEs are almost identical to the curves of the true RMSEs,
except that the cross-validation often overestimates the RMSEs.
The overestimation is because in each stage of cross-validation only
a fraction k−1

k
of the m queries is used. Nonetheless, the α that

minimizes the estimate RMSE usually minimizes the true RMSE
too. Hence, it is often a good way to adopt estimate RMSE as
the performance measure to select α. Moreover, from Fig. 2 we
observe that the best choice of α is often irrelevant to whether we
focus on new queries or past queries.

In Fig. 4, we show how RMSE changes with different settings to the
experimental parameters. Overall, the maximum entropy approach
often gives lower RMSE, and the kernel PCA approach can achieve
comparable performance if we utilize prior distribution and set α
appropriately. Fig. 5 presents the running time of both approaches,
with growing number of input queries. Because the kernel PCA
approach has O(n2r) computation cost, it is inapplicable when
there are too many queries. The computation costs for both
approaches are insensitive to the database size and to the size of
data universe.

5.2 Data Publishing

In this set of experiments, we test the maximum entropy approach
as a privacy-preserving data publishing tool. Given the input
database, we will first issue a collection of 2-D marginal queries
to capture all bivariate relations. Specifically, for every pair of
attributes and for every possible assignment to them, a counting
query is issued. For each query answer, we add a Laplace noise
with scale b = d(d − 1)/2 = 36, where d = 9 is the dimension
of the Adult dataset. Because the sensitivity of the set of all 2-D
marginal queries is only d(d − 1)/2, we achieve 1-differential
privacy. There are totally 29570 2-D marginal queries. Given
the noisy answers to those queries as input, the maximum entropy
approach generates a synthetic database as the output, on which
succeeding queries are computed for evaluating the data utility.

We compare our approach with two randomized response meth-
ods — retention replace perturbation [1] and flipping perturba-
tion [20]. They guarantee γ-amplification privacy by independently
perturbing every attribute value. Retention replacement replaces
each value by another value with certain probability, and flipping

represents each value as a bit-vector and randomly flips every bit.
We set γ = eǫ so that γ-amplification is implied by ǫ-differential
privacy, but the converse is not true. Hence, the experiments are
not only fair, but even favorable to competing algorithms because
our approach offers stronger privacy guarantee. We did not test
other differentially private data publishing methods [4, 11] due to
the prohibitively expensive computation cost for large data universe
|U |.
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Figure 6: Errors of estimate bivariate and trivariate joint distributions. Each row and column specifies an attribute as a dimension

of the joint distribution. Those error values greater than 1 have been truncated to 1.

To measure the utility of the output database, we compute the
estimate joint distribution for a chosen set of attributes, then
examine how different the answer is from the true distribution. The
error of an estimate (bivariate) joint distribution is defined as

Err(X,Y ) =
∑

x,y

|p(x, y)− p̃(x, y)| (42)

where p is computed based on the output database, and p̃ denotes
the true distribution of the input database. The same definition also
applies to multivariate case. If the attributes have many possible
values, the data universe is partitioned into smaller granularity with
fewer supporting samples at each location, resulting in greater error
due to sampling variance.

We first investigate whether the bivariate relations can be preserved
in the output database, as presented in Fig. 6a. It is shown that the
maximum entropy approach achieves the best utility in all cases.
Randomized response methods behave well only when attribute
domains are small. When an attribute has too many possible values,
randomized response methods give extremely poor performance.

Comparison based on the ability for capturing bivariate relations
might be unfair for randomized response methods, because in the
experiments our approach has used bivariate statistics as training
features. We also examined the errors of estimate trivariate
joint distributions, as reported in Fig. 6b. We can observe that
randomized response methods no longer give meaningful results,
while the performance of the maximum entropy approach is still
reasonable. Finally, in Fig. 7, we present the RMSEs for randomly
generated k-D range queries. The maximum entropy approach
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shows remarkable advantage.

6. RELATED WORK
Since differential privacy was introduced [10], a lot of work has
been dedicated to data publishing mechanisms and data analysis
techniques that suffice differential privacy [2, 4, 5, 8, 9, 11–15, 17,
19, 21, 22, 24, 25]. Due to linear queries’ simplicity and impor-
tance, most of existing work focuses on answering linear queries
and seeks to develop techniques that can outperform Laplace
mechanism. For example, a class of work [4, 11, 13, 22] studied
data publication mechanisms that output a synthetic dataset to
simultaneously answer all or most counting queries in a given
concept. Another work, matrix mechanism [17], optimizes a batch
of linear queries by invoking Laplace mechanism on a carefully
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chosen query sequence that is called a query strategy. K-norm
mechanism [14] proposes to draw noise from a more complex high
dimensional joint distribution that is tailored to the geometry of the
query sequence. However, all of these techniques (except Laplace
mechanism) require computation cost that is at least polynomial
or even super-polynomial in the size of data domain and the
number of queries (unless in a very special situation). In particular,
matrix mechanism [17] tries to solve two semidefinite programs
iteratively, and each semidefinite program has size O(mN) and can
be solved in roughly O(m3N3) time. Furthermore, the number of
iterations required for convergence is unknown, and the algorithm
does not guarantee to terminate in polynomial time. K-norm
mechanism [14] and its improved version are based on uniformly
sampling from a m-dimensional convex polytope that has O(N)
vertices, which is very time consuming. The computation cost for
obtaining an almost uniform sample from the polytope is roughly
O(m3N3), while the improved version demands O(m3) such
approximately independent samples. The multiplicative weights
mechanism [13] is one of the most efficient techniques in the
literature, which has Õ(mN |T |) running time. The time of this
mechanism can be further reduced to sublinearity in N if the data
is drawn from a so called smooth distribution — a distribution that
does not place too much weight on any single data item (that is,
it can not be too skewed and should be close to a uniform distri-
bution). Because real datasets often have very large data domains,
especially for datasets that have many attributes or dimensions, the
computation cost of such techniques is prohibitively expensive for
practical use.

Meanwhile, many studies concentrate on more specific data mining
tasks for pursuing better performance. One mostly studied subject
is the release of low dimensional histograms or marginals from
private data. Such work includes but not limited to [2, 8, 15, 25],
where consistency is often an important issue because consistency
can improve query accuracy and data utility. Usually, computation
cost for these techniques is (near-)linear to the number of queries,
since more specific problems allow better and simpler solutions.

7. CONCLUSIONS
In this paper, we propose the kernel PCA approach and the
maximum entropy approach to integrate all available linear query
answers into a consistent form that embodies our knowledge
learned from the noisy answers, so that more accurate answers to
past queries are obtained. The running time of our approaches does
not explicitly depend on the cardinality of data universe, hence they
can be applied to high dimensional data with very large domain.
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