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F
loods have caused the largest portion of insured losses among all 
natural catastrophes during recent decades, resulting in global 
losses worth ~US$60 bn in 2016 alone1. Climate change, extreme 

rainfall events, and sea-level rise may further increase the frequency 
and severity of flood hazards. Moreover, global exposure to floods is 
expected to grow by a factor of three by 2050 due to the continuous 
increases in population and economic assets in flood-prone areas, 
which are often viewed as economically attractive regions for devel-
opment2. Despite the trillions of dollars of assets allocated to riverine 
and coastal flood-prone areas3, governmental investments in flood 
protection are often inadequate. Moreover, spatial-planning policies 
that purport to reduce the exposure and vulnerability of people and 
assets (for example, zoning and building codes) are unable to reverse 
the trends of rising risk and the increasing number of people who 
choose to live in low-lying, flood-prone areas4.

To cope with these trends, measures in climate-change adap-
tation and disaster risk reduction (DRR) must be implemented 
and prioritized based on reliable risk information. The utilization 
of evidence-based risk-assessment information lies at the fore-
front of discussions on contemporary global climate and disaster 
risk reduction. At the United Nations Framework Convention 
on Climate Change (UNFCCC) Conference of Parties (COP) 22, 
members conducted the first review of the Warsaw International 
Mechanism for Loss and Damage (L&D)5, which highlights the 
importance of limiting the impacts of current and future climate-
related hazards6. Additionally, the recent Global Platform for 
DRR held in Cancun, Mexico, reaffirmed the need for monitor-
ing the implementation of the Sendai Framework for Disaster Risk 
Reduction (SFDRR), coordinated by the United Nations Office for 
Disaster Risk Reduction (UNISDR)7.

Qualitative approaches to DRR can inform the prioritization of 
actions; however, they do not provide sufficient evidence regard-
ing the appropriate amount to invest in risk reduction or the scale 

of actions that may be required8. They need to be supplemented 
by quantitative risk assessments that systematically estimate the 
magnitude and frequency of natural hazards, the exposed assets 
and people, and how vulnerable those assets and people are given 
certain hazard conditions (Fig. 1)9. Such assessments can priori-
tize adaptation policies and assess whether investments in such 
policies are sufficiently robust to be appropriate given uncertain 
future conditions10–12.

One of the key challenges in quantitative risk assessment is how 
to address the role of individual perceptions of risk and how these 
perceptions influence risk-reducing behaviour13. For example, 
which factors (such as previous flooding experience, income, and 
education) drive risk perception, and how do these factors influence 
individuals’ choices to take precautionary measures against flood 
risk? The importance of behavioural and social determinants of vul-
nerability in natural-hazard risk management has been addressed 
throughout decades of work by disaster sociologists, political 
ecologists, hazards geographers, psychologists, and decision scien-
tists14–17. However, the disaster-risk and climate-change adaptation 
communities only recently addressed the role of physical exposure 
and social vulnerability as key determinants of disaster risk and its 
impacts18. One reason for this is that human behaviour and risk 
perception are inherently difficult to quantify; they form a complex 
subject for quantitative-risk scientists to understand and integrate 
into their methodologies. An example of such a complex subject 
is the behaviour of households towards flood adaptation. Survey 
research demonstrates that many households insufficiently invest 
in protecting their property from flood disasters, even when such 
measures are economically efficient19. The reasons for this include 
a variety of determinants that influence risk perception, including 
lack of risk awareness, underestimation of the risk in the absence of 
recent experience of the hazard, and the use of short-term planning 
horizons by stakeholders in risk management20,21. Individuals often 
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use simplified decision rules and heuristics, thereby neglecting or 
underestimating the hazard risk or ignoring it and failing to take pre-
ventive actions22,23. In this regard, Nobel Laureate Daniel Kahneman24  
summarized decades of cognitive-science research showing that  
individuals base complex decisions on intuitive (system 1) and 
deliberative (system 2) thinking processes. Intuitive thinking may 
outweigh deliberative thinking and result in behavioural biases with 
respect to adopting protective measures against flooding, such that 
these steps are taken only after a disaster occurs.

In this Perspective, we demonstrate why it is important to 
include human behaviour and risk perception in quantitative risk-
assessment models. In the first section, we explain the main com-
ponents of risk-assessment models and how they relate to DRR, 
and address how risk perception and other factors influence human 
behaviour and DRR. Next, we address recent research areas that 
capture behavioural aspects of risk management, provide examples 
of how risk perception influences vulnerability, and demonstrate 
how these factors interact over time. Finally, we address key chal-
lenges for future research and risk policy.

Main components in flood-risk assessment research
The main components of current quantitative risk-assessment mod-
els that aim to quantify risk to specific hazards are shown in Fig. 1, 
part (i). In these models, risk, expressed as the expected annual dam-
age (EAD), is a function of three key elements: hazard, exposure, 
and vulnerability. Risk-assessment models were originally devel-
oped by catastrophe-modelling firms to aid the insurance industry 
and financial institutions in assessing the risk of their portfolios25. 
They are currently widely used to evaluate investment decisions in 
flood-risk management. In such approaches, the cost of investing in 
DRR to lower flood risk is compared to the benefits, expressed as the 

degree of risk reduction over time for these investments11. The main 
outputs of risk-assessment studies are risk estimations based on 
‘exceedance probability curves’, which characterize the relationship 
between hazard and the amount of damage that the hazard inflicts 
on assets or peoples’ lives26. Vulnerability in these models is repre-
sented using damage functions (also called ‘vulnerability curves’), 
which show the relationship between potential losses (people and 
assets) and flood hazard (for example, flood depth)27. Such curves 
are often based on empirical loss estimates from historical data or 
expert judgement28. In reviewing the different components of risk 
assessment, it becomes clear that much progress has been made in 
simulating (trends in) flood hazards (for example, flood probabil-
ity, flood extent, and duration and depth). The methods applied are 
statistical methods that use historical data to provide estimates of 
the flood hazard (for example, peak discharges and flood duration), 
or hydrological and hydrodynamic models that simulate the hydro-
logical processes during a flood29. Data on the exposure of people 
and assets to those hazards are also rapidly improving through the 
availability of global census data, earth-observation techniques, and 
land-use modelling30.

Although people and assets are exposed, stakeholders in flood-
risk management (individuals, business, and government) lower 
their vulnerability, exposure, and probability of flooding via DRR 
measures (Fig. 1, part (iii)). Such risk-reducing measures include 
early warning systems to evacuate people to safer areas (reduce 
exposure), constructing levees to protect critical infrastructure 
or large urban centres (reduce hazard probability), and reducing 
vulnerability by flood-proofing buildings as enforced by building 
codes (for example, by elevating the ground floor above the level 
of expected flood waters)11. Other measures, such as establishing 
flood-insurance schemes to finance losses in the aftermath of an 
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Fig. 1 | Extended risk assessment framework including behavioural factors and disaster risk reduction. Part (i) shows the main components used in 

current risk assessments (hazard, exposure and vulnerability). Vulnerability and risk can be reduced through the implementation of DRR measures  

(part (iii)). Risk information and flood events, however, also influence factors that influence behaviour and risk perception (for example, flood experience, 

risk communication; part (ii)). Those factors influence stakeholders’ decisions on whether to implement DRR measures. The factors listed in part (ii) are 

based on selected research, but many different factors and methods exist to classify social vulnerability; some DRR measures in part (iii) are developed  

by different stakeholders.
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event, increase the financial resilience to residual risk31. However, 
certain actions or non-actions may exacerbate the risk, such as 
choosing to remain in an area that is about to suffer a flood despite 
warnings, or failing to move a car to higher ground.

However, the use of a single average-vulnerability curve repre-
senting only the relation between flood depth and damage does 
not address the entire range of human behavioural responses. 
Vulnerability and risk are determined by many factors that influ-
ence the behaviour of stakeholders to lower their vulnerability or 
exposure through DRR. For example, it is well known that some 
of the factors listed in (Fig. 1, part (ii)) (for example, flood experi-
ence and communication by media) lead to a high perception of 
flood risks, and that people with high risk perceptions implement 
DRR activities at a relatively higher rate than those with lower 
risk perceptions19,20. More DRR activities (buying flood insurance, 
strengthening levees, and so on) lead to a reduction in risk (Fig. 1, 
part (i)). Finally, risk information and extreme events (Fig. 1, part 
(i)) influence certain behavioural factors in (Fig. 1, part (ii)) (flood 
experience and risk communication), thereby completing the circle.

Current vulnerability-curve approaches, however, largely neglect 
the efforts made in social vulnerability research2,32–37, which widely 
describes the factors that influence DRR behaviour and risk and 
vulnerability (Fig. 1, part (ii). This research has a firm foundation 
in fields such as sociology, geography, and ethnographic studies, 
and has provided greater insight into the social determinants of vul-
nerability (socioeconomic status, age, gender, housing tenure, and 
access to communication systems)38, as well as how implementing 
DRR measures reduces vulnerability39. Social vulnerability research 
also reveals that determinants of vulnerability at a larger national 
scale rarely explain the variance in the vulnerability of local com-
munities39. Research has shown, for example, that while there is no 
direct relation between GDP and flood vulnerability at a national 
scale, flood events at local scales have impacted low-income house-
holds more than wealthier households. This shows that certain 
population groups have more resources than others with which to 
prevent, mitigate, or recover from extreme flood events, and this 
is not reflected in aggregated national-scale indicators such as 
GDP40,41. Furthermore, social vulnerability to flooding at local levels 
may stem from limited access to resources during a flood42, gender-
related issues43, political ideology44, and beliefs in and experience 
with extreme events45, for instance. Other factors explain trends 
in exposure and show that socio-economic motives largely drive 
trends in global urbanization, including the expansion of low-lying 
vulnerable urban centers46.

Some research into social vulnerability uses more quantita-
tive approaches. For example, index-based vulnerability research 
assesses and classifies the main factors underlying vulnerability, 
and subsequently aggregates these factors into a composite index35. 
However, the majority of these indices are static assessments, pro-
viding an estimate of vulnerability for a discrete moment in time 
and space. The same holds for vulnerability curves applied in risk 
models, which can be integrated with scenario methods to address 
the temporal aspects of adaptation, vulnerability, and uncertainty in 
long-term trends47,48.

The challenge is to integrate the dynamic interplay between pro-
cesses captured in the three parts in Fig. 1 (risk assessment, fac-
tors influencing DRR behaviour, and DRR) into one comprehensive 
risk-assessment approach. However, research into the interactions 
between the physical water system and societal processes, as well as 
how DRR and vulnerability change over time, is in its infancy49–51. 
Most risk assessments assume that vulnerability remains constant 
across time and space, as though individuals and other stakeholders 
do not adapt, learn from experience, or prepare for an event based 
on risk information or early warning52. In reality, adaptation dynam-
ics are largely determined by the behaviour and perception of the 
aforementioned stakeholders, influencing both the risk and each 

other’s decisions, sometimes in unpredictable ways53. For example, 
cognitive biases have played a pivotal role in past flood disasters and 
have catalysed adaptation54. In most situations in which significant 
steps were taken to reduce flood risk, these steps were triggered by 
experiences from previous disasters55. Examples include the impacts 
of Hurricanes Katrina and Sandy, which led to investments of over 
US$10 bn in risk-reduction measures, as well as the 1953 floods in 
the Netherlands and southern England, which initiated the Dutch 
Delta Plan and a reformulation of London’s flood protection8.

Advances in risk assessment and behavioural research
Including the dynamics of risk perception, behavioural dynamics, 
and DRR in risk assessment requires a multi-disciplinary approach 
that integrates methods from the natural sciences with the social 
sciences. As risk assessment aims to quantify risk trends over time, 
there is a need not only to understand the behavioural patterns 
and factors underlying flood-risk management decisions, but also 
to translate these factors into quantitative approximations regard-
ing how a person, property owner, or community makes an invest-
ment choice in DRR and adaptation, as well as how this affects 
flood risk56. In what follows, we discuss recent advances in the main 
research domains related to flood risk (behavioural sciences, eco-
nomics, social vulnerability, hydrology, and complex systems) that 
make such efforts.

Recent surveys and longitudinal studies provide empirical data 
on human decision processes that enable the integration of theory 
from the behavioural sciences with quantitative approaches to 
flood-risk assessment. For example, recent progress in behaviour 
modelling is based on theories from psychology, such as the pro-
tection motivation theory (PMT). This theory has been imple-
mented in various flood-risk studies, and shows how individuals 
process threats and select responses to cope with those threats57. 
Research into flood-risk management using PMT shows that indi-
viduals implement adaptation measures to protect themselves from 
floods if they believe that the threat of the hazard they face (‘threat 
appraisal’) is high, and if they perceive that the available protective 
measures are effective (high ‘response efficacy’), easy (high ‘self-
efficacy’), and affordable to implement (low ‘response costs’)58.

Furthermore, empirical research in the area of behavioural eco-
nomics and flood-risk management shows that behaviour towards 
risk and adaptation does not comply with the standard economic 
theory of expected utility59. Rather, it reflects bounded rational 
behaviour when facing extreme risk as defined by behavioural 
economics. Prospect theory characterizes this behaviour60 and has 
been used to estimate an individual’s willingness to implement 
adaptation measures61, as well as the interactions of household 
flood-preparedness decisions with incentives from other stake-
holders, such as insurers62. Individual risk perceptions in terms 
of the subjective likelihood and consequences of flooding are 
important determinants of flood-preparedness behaviour63. These 
risk perceptions are based on individuals’ prior expectations, but 
can also be influenced by information provided about risk (for 
example, by governments or insurance companies), as well as their 
personal vulnerability. In addition, hazard experience could lead 
individuals to learn about and update their prior expectations of 
risk and subsequent behaviour55,56,64.

The perspective of integrating behavioural dynamics with quan-
titative risk-assessment methods has recently sparked novel social 
vulnerability research65. In the DRR context, for example, Burton 
and Cutter66 developed vulnerability-assessment models of hypo-
thetical levee breaks and simulated the socio-spatial impacts for 
empirically defined and multi-dimensional social-vulnerability 
metrics. The use of statistical and spatial models of social vulnerabil-
ity67 offers policymakers improved quantification of social impacts 
and benefits in flood-mitigation planning, which was wildly under-
estimated prior to the availability of these tools. Improved spatial 
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modelling of specific socially vulnerable groups68,69 quantifies the 
role of language and culture in flood-risk assessment and protec-
tion-action behaviour. Similarly, the use of mental models to under-
stand the perception of flood risk and protective-action behaviour 
advances the ability to include such data in formal flood-risk assess-
ments through the risk-communication process70. Finally, a spa-
tially explicit forensic analysis of the evolution of urban flood risk 
illustrates the differential power of antecedent decisions in altering 
the natural and social landscapes of places, which in turn heightens 
the risk and its social impact71.

Another recent line of inquiry stems from hydrology research, 
in which simplified dynamic system models are used to study the 
interactions between hydrological systems and human responses. 
Di Baldassarre et al.72 and subsequent studies73 model flood risk as 
a dynamic function of flood events, collective memory, and societal 
decisions on resettlement or investment in flood protection. These 
efforts were extended to a theoretical model of flood occurrence 
and economic growth74. Dadson et al.75 demonstrate the potential 
for communities that are exposed to chronic environmental shocks, 
such as flooding, to become trapped in poverty and be unable to 
invest in beneficial protection. Each of these methods emphasizes 
the role of feedback (for example, between flood losses and the 
capacity to take further adaptation actions). However, these sim-
plified models lack the theoretical underpinning from the social 
sciences, and represent the different behavioural components in a 
lumped manner. Their simplicity, on the other hand, clarifies the 
role and effects of feedback, and allows for the exploration of many 
possible future scenarios76.

Novel complex systems studies in flood-risk assessment that use 
agent-based models (ABM) are gaining traction and show that it 
is possible to better integrate scientific theories on human behav-
iour and perception into risk assessment by relating behaviour to 
adaptation actions51,77–80. An ABM simulates individual behaviour79, 
whereby agents represent different models of choice while acting 
in their own interests, such as maximizing their welfare or mini-
mizing adaptation costs, often using simple decision rules. Agents 
can learn, move, and influence (and are influenced by) the risk they 
face, resulting in differing adaptation actions. Patterns of risk over 
time are achieved by aggregating the results of many individual 
actions. More broadly, the results of recent ABM studies show that 
societal water-climate systems all have the characteristics of com-
plex systems, marked by time periods of both stability and large 
dynamics81,82; historical data regarding investments in flood protec-
tion show little change in the behaviour of governments and house-
holds after floods that had a small impact, and large investment 
dynamics in adaptation following large disasters83. For instance, 
recent research into flood-risk trends in the Netherlands shows 
that, without considering behavioural aspects, future risk is overes-
timated by a factor of two (ref. 77). This is confirmed by Wind et al.84  
who observed a 35% decrease in losses for a large flood on the  
River Meuse in 1995 compared to a similar flood in 1993, which was 
primarily caused by the adaptive behaviour of households.

Figure 2 highlights in a simplified yet illustrative manner how a 
risk-assessment model that includes human behaviour can simulate 
the interaction between flood risk and societal behaviour in a select 
number of theoretical examples. The panels in Fig. 2 show future 
flood risk with climate change and socioeconomic growth, while 
allowing for interactions between DRR behaviour, flood events, and 
risk, for theoretical situations with (Fig. 2b,c,d) and without (Fig. 2a)  
extreme flooding events. In Fig. 1a, risk increases as a result of cli-
mate change and socioeconomic trends (for example, urbanization 
in flood zones), with no new DRR measures being taken (‘No DRR 
measures’); rational behaviour (purple curve) leads to proactive, 
cost-efficient DRR investments that are informed by cost-benefit 
analysis. The purple curve is lower as risk is continuously reduced 
through DRR. Figure 1b shows a situation with one flood disaster 

inflicting large losses, assuming that agents (for example, govern-
ments) behave as boundedly rational. Agents are expected to under-
estimate risk before the flood event and invest in DRR reactively 
after the flood, thereby lowering future risk. After some time, risk 
increases again due to the aforementioned trends. Figure 1c depicts a 
situation with two flood disasters that lie 20 years apart and assumes 
boundedly rational agents who also respond reactively to flood 
events. Despite investments after the first flood event, risk increases 
and the learning experience from the first flood (that is, the col-
lective memory of the agents) has disappeared. The second flood 
causes higher losses due to increased exposure, even though the 
flood volumes are similar to the first flood. The final graph, Fig. 1d,  
shows a sequence of large floods that cause multiple investments 
that reduce risk due to availability bias, whereby the likelihood of 
a future disaster is estimated by the salience of the event. The time 
between the first two floods is subsequently shortened to two years, 
and agents continue to have a high-risk perception. Therefore, they 
undertake precautionary measures that minimize the damage from 
the second event. If the time between the two most recent events is 
excessively long, perception between the events decreases, result-
ing in low preparedness and high risk levels; this is identical to the 
process described in Fig. 1c.

Moving forward with disaster risk-assessment science
Recent scientific advances in flood-risk assessment and behavioural 
dynamics reveal several issues that need to be addressed in future 
research. One of those challenges relates to the issue of scale, and 
to better representing local-scale (individual) behavioural dynam-
ics of stakeholders at the larger (regional to national) scales. In 
view of this, it is important to continue social vulnerability research 
into which factors drive vulnerability at the local scales, as well as 
to improve our understanding of how these factors vary between 
developed and developing countries43,44,85.

Another key challenge in integrating behavioural factors into 
quantitative risk-assessment methods is that of deriving solid and 
replicable empirical data on human behaviour. In recent decades, 
multiple surveys in developed and developing countries have pro-
vided new information regarding the behaviour of households facing 
risk43,86,87. However, policymakers need to facilitate the public acces-
sibility of empirical data from surveys, social media, and empirical 
loss data80,88. This point is particularly relevant for risk-assessment 
efforts in developing countries, where information regarding vul-
nerability and exposure is often limited, and significant resources 
and efforts are required to generate and apply this information89. 
Such empirical data on behavioural responses to past flood events 
can be used to calibrate modelling applications to flood risk. These 
surveys detail, for example, how households evaluate the costs and 
benefits of risk mitigation (for example, flood-proofing homes) 
before and after extreme events43,58, how individuals make deci-
sions about purchasing insurance, and how they respond to finan-
cial incentives for risk reduction, such as premium reduction90,91. 
Key findings also show that individual perceptions of the likelihood 
and consequences of flooding are indeed largely shaped by intuitive 
thinking processes, such as past flood experience, worry, trust, and 
threshold models, and are not solely based on the probability of a 
future flood91.

Improved risk assessments, including behavioural dynamics, can 
benefit flood-risk managers in governments by supporting their 
investment decisions, such as in flood protection, building codes, or 
flood zoning92,93. Risk-assessment methods including behavioural 
dynamics can also be applied to adequately determine risk-based 
premiums for disaster-insurance programmes. The role of insur-
ance in flood-risk assessment is particularly relevant for households 
seeking to effectively implement DRR measures to reduce risk to 
their property94. For example, research shows that households in 
high-risk areas are often unaware of flood hazards and have low 
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flood-risk perceptions, and therefore, by treating their risks below 
their threshold level of concern, do not take protective measures20,95. 
Given these trends and policies, insurers increasingly face chal-
lenges in providing viable insurance products that can finance 
extreme losses at an affordable price94.

The spatially explicit modelling of flood-risk perceptions and 
DRR actions can facilitate risk communication and disaster-reduc-
tion policies by targeting the areas or groups that are most exposed, 
most vulnerable, and with the least knowledge and inclination to 
undertake any type of mitigation. Learning about the behaviour of 
individuals towards adaptation and risk, and how people perceive 
risk, can also contribute to improved risk communication between 
the government and those living and working in hazard-prone 
areas. Behavioural risk modelling can compare the effects of such 
communication strategies80 and leverage the enormous collective 
potential of individuals, which can significantly contribute to risk 
reduction.

Standard risk assessments are likely to overestimate future risk 
by assuming constant vulnerability in a changing climate (Fig. 2, 
grey curve). The assumption, however, that investments in DRR 
are linked to fully rational behaviour results in an underestimation 
of risk (Fig. 1, purple curve). The reality is likely situated between 
these two extremes and is context-specific: future research efforts 
should be concentrated here96. Given the challenges, an appro-
priate way forward is to adopt a multi-disciplinary approach that 
integrates all components of risks, including vulnerability and 
behavioural assessments56,97. This promises to enhance flood-risk 
assessment as addressed in the Sendai Framework for DRR, and 

to drive more effective adaptation and DRR policies to cope with 
future challenges, such as climate change.

Received: 1 February 2017; Accepted: 19 January 2018;  
Published: xx xx xxxx

References
 1. Natural Catastrophe Losses at their Highest for Four Years (Munich RE, 2017).
 2. Jongman, B., Ward, P. J. & Aerts, J. C. J. H. Global exposure to river and 

coastal �ooding: Long term trends and changes. Global Environ. Change 22, 
823–835 (2012).

 3. Winsemius, H. C. et al. Global drivers of future river �ood risk. Nat. Clim. 
Change 6, 381–385 (2015).

 4. Aerts, J. C. J. H. & Botzen, W. J. Managing exposure to �ooding in New York 
City. Nat. Clim. Change 2, 377 (2012).

 5. Mechler, R. & Schinko, T. Identifying the policy space for loss and damage. 
Science 354, 290–292 (2016).

 6. Michel-Kerjan, E. We must build resilience in our communities. Nature 524, 
389 (2015).

 7. Mysiak, J., Surminski, S., �ieken, A., Mechler, R. & Aerts, J. C. J. H. Sendai 
framework for disaster risk reduction — success or warning sign for Paris? 
Nat. Hazards Earth Syst. Sci. 16, 2189–2193 (2016).

 8. Hall, J. W., Brown, S., Nicholls, R. J., Pidgeon, N. & Watson, R. Proportionate 
adaptation. Nat. Clim. Change 2, 833–834 (2012).

 9. Kron, W. Flood Risk =  Hazard · Values · Vulnerability. Water Int. 30, 58–68 (2005).
 10. Merz, B., Hall, J. W., Disse, M. & Schumann, A. Fluvial �ood risk 

management in a changing world. Hydrol. Earth Sys. Sci. 10, 509–527 (2010).
 11. Aerts, C. J. H. J. et al. Evaluating �ood resilience strategies for coastal 

megacities. Science 344, 473–475 (2014).
 12. �ieken, A. H., Cammerer, H., Dobler, C., Lammel, J. & Schorberl, F. 

Estimating changes in �ood risks and bene�ts of non-structural adaptation 
strategies: a case study from Tyrol, Austria. Mitigation Adaptation Strat. 
Global Change 21, 343–376 (2014).

R
is

k
R

is
k

R
is

k
R

is
k

Increase CC + exposure

Increase CC + exposure

Increase CC + exposure

Increase CC + exposure

Time

Time

Time

Time

a c

b d

Flood event

No DRR measures

Rational behaviour + DRR measures

Bounded rational behaviour + DRR measures 

Fig. 2 | Trends in flood risk influenced by events and human behaviour. Each panel shows development of flood risk over time under climate change plus 

socioeconomic growth (grey), assuming only socioeconomic trends (purple). The blue bars represent extreme flood events, and the brown lines represent 

trends in risk, assuming interactions between adaptive behaviour, risk, and flood events. a, The development of risk without flood events. b, A situation 

with one flood disaster, assuming that agents (for example, governments) showing bounded rational behaviour underestimating risk before the flood event 

and invest in disaster risk reduction measures reactively after the event. c,d, Multiple flood events and the same behaviour. When the time between two 

floods is shortened (d), agents continue to have a high-risk perception, and undertake more precautionary measures that minimize the damage from the 

second event.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange

http://www.nature.com/natureclimatechange


PERSPECTIVE NATURE CLIMATE CHANGE

 13. Kleindorfer, P., Kunreuther, H. & Schoemaker, P. Decision Sciences: An 
Integrative Perspective (Cambridge Univ. Press, 1993).

 14. Slovic, P. �e Perception of Risk (Earthscan, London, 2000).
 15. Tierney, K. Social Roots of Risk: Producing Disaster, Promoting Resilience 

(Stanford Univ. Press, Palo Alto, 2014).
 16. Wisner, B., Blaikie, P., Cannon, T. & Davis, I. At Risk: Natural Hazards, 

People’s Vulnerability and Disasters 2nd edn (Routledge, London, 2004).
 17. Birkmann, J. Measuring Vulnerability to Natural Hazards: Towards Disaster 

Resilient Societies (United Nations Univ., Tokyo, New York, Paris, 2013).
 18. IPCC. Managing the Risks of Extreme Events and Disasters to Advance 

Climate Change Adaptation (eds Field, C. B. et al.) (Cambridge Univ. Press, 
Cambridge, 2012).

 19. Bubeck, P., Botzen, W. J. W., Kreibich, H. & Aerts, J. C. J. H. Long-term 
development and e�ectiveness of private �ood mitigation measures: An 
analysis for the German part of the river Rhine. Nat. Haz. Earth Sys. Sci. 12, 
3507–3518 (2012). 
�is article shows the e�ectiveness of household agents contributing to 
�ood risk reduction.

 20. Botzen, W. J. W., Aerts, J. C. J. H. & van den Bergh, J. C. J. M. Dependence of 
�ood-risk perceptions on socio-economic and objective risk factors. Water 
Res. Research 45, 1–15 (2009).

 21. Kellens, W., Terpstra, T. & De Maeyer, P. Perception and communication of �ood 
risks: A systematic review of empirical research. Risk Anal. 33, 24–49 (2013).

 22. Tversky, A. & Kahneman, D. Availability: A heuristic for judging frequency 
and probability. Cognitive Psychol. 5, 207–232 (1973).

 23. Kunreuther, H. �e role of insurance in reducing losses from extreme events: 
�e need for public–private partnerships. Geneva Papers 40, 741–762 (2015).

 24. Kahneman, D. �inking, Fast and Slow (Farrar, Straus and Giroux, 2011).
 25. Grossi, P. & Kunreuther, H. Catastrophe Modeling: A New Approach to 

Managing Risk (Springer, 2005).
 26. Jonkman, S. N., Vrijling, J. K. & Vrouwenvelder, A. C. W. M. Methods for the 

estimation of loss of life due to �oods: A literature review and a proposal for 
a new method. Nat. Hazards 46, 353–389 (2008).

 27. Merz, B., Kreibich, H., Schwarze, R. & �ieken, A. Assessment of economic 
�ood damage. Nat. Hazards Earth Syst. Sci. 10, 1697–1724 (2010).

 28. Kreibich., H., Botto, A., Merz, B. & Schroter, K. Probabilistic, multivariable 
�ood loss modeling on the mesoscale with BT-FLEMO. Risk Anal. 37, 
774–787 (2016).

 29. Merz, B. et al. Floods and climate: emerging perspectives for �ood risk 
assessment and management. Nat. Hazards Earth Syst. 14, 1921–1942 (2014).

 30. Ward, P. J. et al. Usefulness and limitations of global �ood risk models. Nat. 
Clim. Change 5, 712–715 (2015).

 31. Michel-Kerjan, E. & Kunreuther, H. Redesigning �ood insurance. Science 333, 
408–409 (2011).

 32. Turner, B. L. et al. A framework for vulnerability analysis in sustainability 
science. Proc. Natl Acad. Sci. USA 100, 8057–8059 (2003).

 33. Cutter, S. L., Boru�, B. J. & Shirley, W. L. Social vulnerability to 
environmental hazards. Social Sci. Q 84, 242–261 (2003).

 34. Adger, W. N. Vulnerability. Glob. Environ. Change 16, 268–281 (2006).
 35. Cutter, S. L., Boru�, B. J. & Shirley, W. L. Social vulnerability to 

environmental hazards. Soc. Sci. Q. 84, 242–261 (2003). 
�is paper demonstrates the importance of social vulnerability in natural 
hazard management.

 36. Rufat, S., Tate, E., Burton, C. G. & Maroof, A. S. Social vulnerability to 
�oods: review of case studies and implications for measurement. Int. J. 
Disaster. Risk 14, 470–486 (2015).

 37. Emrich, C. T. & Cutter, S. L. Social vulnerability to climate-sensitive hazards 
in the southern United States. Weather Clim. Soc. 3, 193–208 (2011).

 38. Tate, E. Uncertainty analysis for a social vulnerability index. Ann. Assoc. Am. 
Geogr. 103, 526–543 (2013).

 39. Carr, E. R., Daniel, A. A., De la Poterie, T., Suarez, P. & Koelle, B. 
Vulnerability assessments, identity and spatial scale challenges in disaster–risk 
reduction. J. Disaster Risk Studies 7, 1–17 (2015).

 40. Masozera, M., Bailey, M. & Kerchner, C. Distribution of impacts of natural 
disasters across income groups: A case study of New Orleans. Ecol. Econ. 63, 
299–306 (2007).

 41. Downey, L. Environmental injustice: is race or income a better predictor?  
Soc. Sci. Q. 79, 766–778 (1998).

 42. Brouwer, R., Akter, S., Brander, L. & Haque, E. Socioeconomic vulnerability 
and adaptation to environmental risk: a case study of climate change and 
�ooding in Bangladesh. Risk Anal. 27, 313–326 (2007).

 43. Sultana, F. Living in hazardous waterscapes: gendered vulnerabilities and 
experiences of �oods and disasters. Environ. Hazards 9, 43–53 (2010).

 44. Botzen, W. J. W., Michel-Kerjan, E., Kunreuther, H., De Moel, H. &  
Aerts, J. C. J. H. Political a�liation a�ects adaptation to climate risks: 
Evidence from New York City. Clim. Change Lett. 138, 353–360 (2016).

 45. Schmidtlein, M. C., Deutsch, R. C., Piegorsch, W. W. & Cutter, S. L. A 
sensitivity analysis of the social vulnerability index. Risk Anal. 28,  
1099–1114 (2008).

 46. Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 
756–760 (2008).

 47. Berkhout, F., Hertin, J. & Jordan, A. Socio-economic futures in climate 
change impact assessment: using scenarios as ‘learning machines’. Global 
Environ. Change 12, 83–95 (2002).

 48. Hall, J. W. et al. Quanti�ed scenarios analysis of drivers and impacts of 
changing �ood risk in England and Wales: 2030–2100. Environ. Hazards 5, 
51–65 (2003).

 49. Folke, C. Resilience: the emergence of a perspective for social–ecological 
system analyses. Global Environ. Change 16, 253–267 (2006).

 50. Di Baldassarre, G. et al. Debates — Perspectives on socio-hydrology: 
Capturing feedbacks between physical and social processes. Water Resour. 
Res. 51, 4770–4781 (2015). 
�is article shows the importance of integrating societal activities with 
hydrological processes in quantitative �ood simulations.

 51. Dawson, R. J., Peppe, R. & Wang, M. An agent-based model for risk-based 
�ood incident management. Nat. Hazards 59, 167–189 (2011).

 52. Surminski, S. et al. in UK Climate Change Risk Assessment Evidence Report. 
Ch. 6 (Committee on Climate Change, 2016).

 53. Merz, B., Vorogushyn, S., Lall, U., Viglione, A. & Blöschl, G. Charting 
unknown waters — On the role of surprise in �ood risk assessment and 
management. Water Resources Res. 51, 6399–6416 (2015).

 54. Hall, J. W., Berkhout, F. & Douglas, R. Responding to adaptation emergencies. 
Nat. Clim. Change 5, 6–7 (2015).

 55. Adger, W. N., Quinn, T., Lorenzoni, I., Murphy, C. & Sweeney, J. Changing 
social contracts in climate change adaptation. Nat. Clim. Change 3,  
330–333 (2013).

 56. Palmer, P. I. & Smith, M. J. Model human adaptation to climate change. 
Nature 512, 365 (2014).

 57. Rogers, R. W. in Social Psychophysiology (eds Cacioppo, J. & Petty, R.) Ch. 6 
(Guilford Press, 1983).

 58. Poussin, J. K., Botzen, W. J. W. & Aerts, J. C. J. H. E�ectiveness of �ood 
damage mitigation measures: Empirical evidence from French �ood disasters. 
Global Environ. Change 31, 74–84 (2015).

 59. Von Neumann, J. & Morgenstern, O. �eory of Games and Economic Behavior 
(Princeton Univ. Press, 1947).

 60. Kahneman, D. & Tversky, A. Prospect theory: An analysis of decision under 
risk. Econometrica 47, 263–291 (1979). 
�is article demonstrates that boundedly rational behaviour under risk 
deviates from standard rational behaviour.

 61. Botzen, W. J. W. & van den Bergh, J. C. J. M. Bounded rationality, climate 
risks and insurance: Is there a market for natural disasters? Land Econ. 85, 
266–279 (2009).

 62. Hudson, P., Botzen, W. J. W., Feyen, L. & Aerts, J. C. J. H. Incentivising �ood 
risk adaptation through risk based insurance premiums: trade-o�s between 
a�ordability and risk reduction. Ecol. Econ. 125, 1–13 (2016).

 63. Tversky, A. & Kahneman, D. Advances in prospect theory: Cumulative 
representation of uncertainty. J. Risk Uncertainty 5, 297–323 (1992).

 64. Viscusi, W. K. Prospective reference theory: Toward an explanation of the 
paradoxes. J. Risk Uncertainty 2, 235–264 (1989).

 65. Rai, V. & Henry, D. A. Agent-based modelling of consumer energy choices. 
Nat. Clim. Change 6, 556–562 (2016).

 66. Burton, C. & Cutter, S. L. Levee failures and social vulnerability in the 
Sacramento-San Joaquin delta area, California. Nat. Hazards Rev. 9,  
136–149 (2008).

 67. Cutter, S. L., Emrich, C., Morath, D. & Dunning, C. M. Integrating social 
vulnerability into federal �ood risk management planning. J. Flood Risk 
Management 6, 332–344 (2013).

 68. Maldonado, A., Collins, T. W., Grineski, S. E. & Chakraborty, J. Exposure to 
�ood hazards in Miami and Houston: Are Hispanic immigrants at greater 
risk than other social groups? Int. J. Environ. Res. Public Health 13,  
775 (2016).

 69. Fielding, J. L. Flood risk and inequalities between ethnic groups in the 
�oodplains of England and Wales. Disasters 42, 101–123 (2017).

 70. Lazrus, H., Morss, R. E., Demuth, J. L., Lazo, J. K. & Bostrom, A. “Know 
what to do if you encounter a �ash �ood”: Mental models analysis for 
improving �ash �ood risk communication and public decision making. Risk 
Anal. 36, 411–427 (2016).

 71. Cutter, S. L., Emrich, C. T., Gall, M. & Reeves, R. Flash �ood risk and the 
paradox of urban development. Nat. Hazard Rev. https://doi.org/10.1061/
(ASCE)NH.1527-6996.0000268 (2018).

 72. Di Baldassarre, G. et al. Socio-hydrology: conceptualising human-�ood 
interactions. Hydrol. Earth Syst. Sci. 17, 3295–3303 (2013).

 73. Viglione, A. et al. Insights from socio-hydrology modelling on dealing with 
�ood risk — roles of collective memory, risk-taking attitude and trust.  
J. Hydrol. 518, 71–82 (2014).

 74. Grames, J., Prskawetz, A., Grass, D. & Bloschl, G. Modelling the interaction 
between �ooding events and economic growth. Proc. Int. Assoc. Hydrol. Sci. 
369, 3–6 (2015).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange

https://doi.org/10.1061/(ASCE)NH.1527-6996.0000268
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000268
http://www.nature.com/natureclimatechange


PERSPECTIVENATURE CLIMATE CHANGE

 75. Dadson, S. et al. Water security, risk and economic growth: lessons from a 
dynamical systems model. Water Resour. Res. 53, 6425–6438 (2017).

 76. Sivapalan, M., Savenije, H. H. G. & Blöschl, G. Socio-hydrology: A new 
science of people and water. Hydrol. Proc. 26, 1270–1276 (2012).

 77. Haer, T., Botzen., W. J. & Aerts, J. C. J. H Integrating household mitigation 
behaviour in �ood risk analysis: an agent based model approach. Risk Anal. 
12740, 1–15 (2016).  
�is research uses an agent-based model to demonstrate that without 
considering behavioural aspects, future risk is overestimated by a factor  
of two.

 78. Jenkins, K., Surminski, S., Hall, J. & Crick, F. Assessing surface water �ood 
risk and management strategies under future climate change: Insights from 
an Agent-Based Model. Sci. Total Environ. 595, 159–168 (2017).

 79. Jenkins, K., Dubbelboer, J., Nikolic, I. & Hall, J. W. An Agent-Based  
Model of �ood risk and insurance. J. Arti�cial Societies Soc. Simulation 
https://doi.org/10.18564/jasss.3135 (in the press).

 80. Haer, T., Botzen, W. & Aerts, J. C. J. H. �e e�ectiveness of �ood risk 
communication strategies and the in�uence of social networks — Insights 
from an agent-based model. Environ. Science Pol. 60, 44–42 (2016).

 81. Waldrop, M. M. Complexity: the Emerging Science at the Edge of Order and 
Chaos (Simon & Schuster, 1993).

 82. Clarke, K. C. in Handbook of Regional Science (eds Fischer, M. M. &  
Nijkamp, P.) Ch. 62 (Springer, 2014).

 83. Kreibich, H. et al. Adaptation to �ood risk — results of international paired 
�ood event studies. Earth’s Future 5, 953–965 (2017).

 84. Wind, H. G., Nierop, T. M., de Blois, C. J. & Kok, J. L. Analysis of �ood 
damages from the 1993 and 1995 Meuse �oods. Water Resourses Res. 35, 
3459–3465 (1999).

 85. Pelling, M. �e political ecology of �ood hazard in urban Guyana. Geoforum 
30, 249–261 (1999).

 86. Bubeck, P., Botzen, W. J. W. & Aerts, J. C. J. H. A review of risk perceptions 
and other factors that in�uence �ood mitigation behavior. Risk Anal. 32, 
1481–1495 (2012).

 87. Koerth, J., Vafeidis, A. T. & Hinkel, J. Household-level coastal adaptation and 
its drivers: A systematic case study review. Risk Anal. 37, 629–646 (2017).

 88. Mechler, R. et al. Managing unnatural disaster risk from climate extremes. 
Nat. Clim. Change 4, 235–237 (2014).

 89. Cutter, S. L. & Gall, M. Sendai targets at risk. Nat. Clim. Change 5,  
707–709 (2015).

 90. Kunreuther, H., Pauly, M. & McMorrow, S. Insurance and Behavioral 
Economics: Improving Decisions in the Most Misunderstood Industry 
(Cambridge Univ. Press, 2013).

 91. Botzen, W. J. W. & van den Bergh, J. C. J. M. Risk attitudes to low-probability 
climate change risks: WTP for �ood insurance. J. Econ. Behavior Org. 82, 
151–166 (2012).

 92. Surminski, S. & Lopez, A. Concept of loss and damage of climate change — a 
new challenge for climate decision-making? A climate science perspective. 
Clim. Dev. 7, 267–277 (2014).

 93. Jongman, B. et al. Declining vulnerability to river �oods and the  
global bene�ts of adaptation. Proc. Natl Acad. Sci. USA 1073,  
2271–2280 (2015).

 94. Kunreuther, H. C. & Michel-Kerjan, E. O. At War with the Weather (MIT 
Press, 2011).

 95. Kunreuther, H. C. Mitigating disaster losses through insurance. J. Risk 
Uncertainty 12, 171–187 (1996).

 96. ASC UK Climate Change Risk Assessment 2017 Synthesis Report: Priorities for 
the Next Five Years (eds Humphrey, K. et al.) (CCC, London, 2016).

 97. Aerts, J. C. J. H. et al. in Novel Multi-Sector Partnerships in Disaster Risk 
Management (eds Aerts, J. & Mysiak, J.) Ch 2, 31–48 (VU Univ. Press, 2016).

Acknowledgements
Many thanks to K. Clarke, S. Sweeney, D. Lopez-Carr, C. Funk and the Climate 

Hazard Group for their support (Department of Geography and Broome Center for 

Demography, University of California, Santa Barbara. The research was financially 

supported by NWO Vici grant no. 453-13-006, NWO Vidi grant no. 452.14.005; EU 

H2020 grant agreement no. 730482; and the UK Economic and Social Research Council 

(ESRC) through the Centre for Climate Change Economics and Policy.

Author contributions
All authors contributed ideas and edited the manuscript. In addition, J.A and W.B. 

conceptually developed the figures. J.A, W.B., K.C., J.H., B.M., J.M., S.S., E.M-K, S.C., 

H.K., wrote the manuscript.

Competing interests
The authors declare no competing financial interests.

Additional information
Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to J.C.J.H.A.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 

published maps and institutional affiliations.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange

https://doi.org/10.18564/jasss.3135
http://www.nature.com/reprints
http://www.nature.com/natureclimatechange

	Integrating human behaviour dynamics into flood disaster risk assessment
	Main components in flood-risk assessment research
	Advances in risk assessment and behavioural research
	Moving forward with disaster risk-assessment science
	Acknowledgements
	Fig. 1 Extended risk assessment framework including behavioural factors and disaster risk reduction.
	Fig. 2 Trends in flood risk influenced by events and human behaviour.


