{: SCISPACE

formerly Typeset

@ Open access - Journal Article - DOI:10.1016/J.ENVSOFT.2017.03.011

Integrating hydrological modelling, data assimilation and cloud computing for real-
time management of water resources — Source link [

Wolfgang Kurtz, Andrei Lapin, Oliver S. Schilling, Qi Tang ...+8 more authors

Institutions: University of Bern

Published on: 01 Jul 2017 - Environmental Modelling and Software (Elsevier)

Topics: Cloud computing, Data assimilation, Hydrological modelling, Ensemble Kalman filter and Data acquisition

Related papers:

HydroGeoSphere: A Fully Integrated, Physically Based Hydrological Model

Using tree ring data as a proxy for transpiration to reduce predictive uncertainty of a model simulating
groundwater-surface water-vegetation interactions

Advances in understanding river-groundwater interactions

Advancing Physically-Based Flow Simulations of Alluvial Systems Through Atmospheric Noble Gases and the
Novel 37Ar Tracer Method

Vegetation controls on variably saturated processes between surface water and groundwater and their impact on
the state of connection

Share thispaper: @ ¥ M ™

View more about this paper here: https://typeset.io/papers/integrating-hydrological-modelling-data-assimilation-and-
aidpaituty


https://typeset.io/
https://www.doi.org/10.1016/J.ENVSOFT.2017.03.011
https://typeset.io/papers/integrating-hydrological-modelling-data-assimilation-and-ai4pa1tuty
https://typeset.io/authors/wolfgang-kurtz-4pwc85fx5c
https://typeset.io/authors/andrei-lapin-4uoubmdfvo
https://typeset.io/authors/oliver-s-schilling-irhmor8l51
https://typeset.io/authors/qi-tang-2ltlrg1aos
https://typeset.io/institutions/university-of-bern-39b07wpz
https://typeset.io/journals/environmental-modelling-and-software-1bajpvle
https://typeset.io/topics/cloud-computing-23j8n0mk
https://typeset.io/topics/data-assimilation-209ez2p2
https://typeset.io/topics/hydrological-modelling-31nz0ndv
https://typeset.io/topics/ensemble-kalman-filter-pj4wipge
https://typeset.io/topics/data-acquisition-hiahuhsl
https://typeset.io/papers/hydrogeosphere-a-fully-integrated-physically-based-4xnni8j5l0
https://typeset.io/papers/using-tree-ring-data-as-a-proxy-for-transpiration-to-reduce-4uv2ptwttx
https://typeset.io/papers/advances-in-understanding-river-groundwater-interactions-4x29dg4vyd
https://typeset.io/papers/advancing-physically-based-flow-simulations-of-alluvial-33045xfofj
https://typeset.io/papers/vegetation-controls-on-variably-saturated-processes-between-4583pth19v
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/integrating-hydrological-modelling-data-assimilation-and-ai4pa1tuty
https://twitter.com/intent/tweet?text=Integrating%20hydrological%20modelling,%20data%20assimilation%20and%20cloud%20computing%20for%20real-time%20management%20of%20water%20resources&url=https://typeset.io/papers/integrating-hydrological-modelling-data-assimilation-and-ai4pa1tuty
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/integrating-hydrological-modelling-data-assimilation-and-ai4pa1tuty
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/integrating-hydrological-modelling-data-assimilation-and-ai4pa1tuty
https://typeset.io/papers/integrating-hydrological-modelling-data-assimilation-and-ai4pa1tuty

Zurich Open Repository and

1 [ ° .

2 i %) University of Archive

S o UZH University of Zurich

Z uric h University Library

N Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2017

Integrating hydrological modelling, data assimilation and cloud computing
for real-time management of water resources

Kurtz, Wolfgang ; Lapin, Andrei ; Schilling, Oliver S ; Tang, Qi ; Schiller, Eryk ; Braun, Torsten ;
Hunkeler, Daniel ; Vereecken, Harry ; Sudicky, Edward ; Kropf, Peter ; Hendricks Franssen, Harrie-Jan ;
Brunner, Philip

Abstract: Online data acquisition, data assimilation and integrated hydrological modelling have become
more and more important in hydrological science. In this study, we explore cloud computing for integrat-
ing field data acquisition and stochastic, physically-based hydrological modelling in a data assimilation
and optimisation framework as a service to water resources management. For this purpose, we devel-
oped an ensemble Kalman filter-based data assimilation system for the fully-coupled, physically-based
hydrological model HydroGeoSphere, which is able to run in a cloud computing environment. A syn-
thetic data assimilation experiment based on the widely used tilted V-catchment problem showed that
the computational overhead for the application of the data assimilation platform in a cloud computing
environment is minimal, which makes it well-suited for practical water management problems. Advan-
tages of the cloud-based implementation comprise the independence from computational infrastructure
and the straightforward integration of cloud-based observation databases with the modelling and data
assimilation platform.

DOT: https://doi.org/10.1016/j.envsoft.2017.03.011

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167 /uzh-175057

Journal Article

Accepted Version

Originally published at:

Kurtz, Wolfgang; Lapin, Andrei; Schilling, Oliver S; Tang, Qi; Schiller, Eryk; Braun, Torsten; Hunkeler,
Daniel; Vereecken, Harry; Sudicky, Edward; Kropf, Peter; Hendricks Franssen, Harrie-Jan; Brunner,
Philip (2017). Integrating hydrological modelling, data assimilation and cloud computing for real-time
management of water resources. Environmental Modelling Software, 93:418-435.

DOL: https://doi.org/10.1016/j.envsoft.2017.03.011



Integrating hydrological modelling, data assimilation and cloud computing
for real-time management of water resources

Wolfgang Kurtz®P, Andrei Lapin®, Oliver S. Schilling?, Qi Tang®P, Eryk Schiller®, Torsten Braun®, Daniel
Hunkelerd, Harry Vereecken®P?, Edward Sudicky®®, Peter Kropf¢, Harrie-Jan Hendricks Franssen®", Philip
Brunnerd

@Institute of Bio- and Geosciences (IBG-3): Agrosphere, Forschungszentrum Julich GmbH, Jilich, Germany
bCentre for High-Performance Scientific Computing in Terrestrial Systems (HPSC-TerrSys), Geoverbund ABC/J, Jiilich,
Germany
¢Computer Science Department (IIUN), Université de Neuchdtel, Neuchdtel, Switzerland
dCentre for Hydrogeology and Geothermics (CHYN), Université de Neuchdtel, Neuchdtel, Switzerland
¢ Communication and Distributed Systems (CDS), University of Bern, Bern, Switzerland
IDepartment of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
9 Aquanty, Inc., Waterloo, Ontario, Canada

Abstract

Online data acquisition, data assimilation and integrated hydrological modelling have become more and more
important in hydrological science. The usefulness of these scientific and technological advances for water
resources management have been documented in the literature but their joint application is still limited. In
this study, we explore cloud computing for integrating field data acquisition and stochastic, physically-based
hydrological modelling in a data assimilation and optimization framework as a service to water resources
management. For this purpose, we developed an ensemble Kalman filter-based data assimilation system for
the integrated hydrological model HydroGeoSphere, which was adapted for the use in a cloud computing en-
vironment. The changes in the model codes for the utilization of the cloud infrastructure were minimal and
mainly concerned the forward propagation of the model ensemble. A synthetic data assimilation experiment
based on the widely used tilted V-catchment problem served as a benchmark for testing the usefulness of the
proposed modelling platform and for evaluating the computational efficiency of the cloud-based implementa-
tion. Results showed that the computational overhead for the application of the data assimilation platform
in a cloud computing environment is minimal, which makes it well suited for practical water management
problems. Advantages of the cloud-based implementation comprise the independence from computational
infrastructure and the straightforward integration of cloud-based observation databases with the modelling
and data assimilation platform.

Keywords: Cloud computing, Integrated hydrological models, Data assimilation, Water resources
management, HydroGeoSphere, Hydrological modelling, Ensemble Kalman filter, Wireless sensor networks

1. Introduction

Hydrological and hydrogeological systems are highly heterogeneous, and the temporal evolution of their
spatially variable states is driven by dynamic forcing functions. Deterministic numerical models are an
important tool for understanding and managing such systems. Such models can support the water man-
agement decision making process with predictions of the temporal evolution and the spatial distribution of
target state variables. Groundwater management often relies on simulations with distributed physically-
based hydrological models, e.g., for well field operations adjacent to a river. The available numerical models
have greatly improved in recent years. For example, there are ongoing efforts towards a better description
of the dynamic feedbacks between subsurface and surface water processes [27, 11]. One of the advantages
of such fully-coupled surface-subsurface models is that the location of surface water features, such as the



position of rivers, no longer needs to be predefined through boundary conditions. They are therefore very
well suited for simulating changing surface water conditions such as floods or droughts.

Deterministic models need to be calibrated based on existing observations. However, there is a growing
awareness of the uncertainty related to such deterministic model predictions [36]. The uncertainties stem
from the limited knowledge about the spatial distribution and magnitude of important model parameters,
such as hydraulic conductivity or porosity [16, 21]. Also, the high spatio-temporal variability of boundary
conditions and input variables, such as precipitation, can highly affect model predictions. Moreover, the
limited availability of spatial and temporal field data limits the reliability of the calibration process. Finally,
the computational requirements of many numerical simulators, especially fully-coupled, physically-based
models, exclude in most cases a solid uncertainty analysis. These uncertainties can be substantial and
they often undermine the credibility of hydrological and hydrogeological models, especially once it comes to
predicting highly dynamic systems.

However, a range of technological and mathematical advances allows overcoming some of the previous
limitations. Above all, these advances are related to three key developments: data acquisition techniques,
the increasing computational capacities of hydrological models, as well as the integration of measurement
data in the modelling process.

Firstly, the acquisition of field data has been greatly facilitated. Traditionally, hydrological field mea-
surements such as piezometer levels, precipitation, soil moisture, discharge or water quality indicators, were
acquired either manually in the field at predefined measurement intervals or recorded with data loggers,
which have to be read out on a weekly or monthly basis. Ongoing advances in sensor technology and teleme-
try make it now possible to obtain hydrological data shortly after their acquisition in the field, even for
very remote field sites. Wireless sensor networks (WSN) are increasingly applied in environmental studies,
e.g., in the context of soil moisture monitoring [46, 45, 10] or surface water [34], studies on wetland dynam-
ics [54] or the acquisition of solute transport data for modelling purposes [37, 4]. Such WSNs consist of
distributed sensors, which transmit the measured data through wireless in-built radio modules to a set of
router units that manage the communication within the network [10]. As a result, the measured data can
be accessed by the user on the permanent storage device in near real-time. This can be of great advantage
for water management purposes, especially when a system (e.g., pumps for river bank filtration) needs to
be controlled and regulated continuously, and the hydraulic forcings (such as the water level in a river) are
highly transient.

Secondly, the computational efficiency of hydrological models is continuously increasing. Recent advances
in numerical mathematics lead to the development of more efficient solvers and preconditioning techniques
[23, 39]. Parallelization of model codes [2, 53, 26, 41] makes it possible to solve hydrogeological problems
with a high spatio-temporal resolution and on large scales. These advancements in computational efficiency
also facilitated the usage of more sophisticated physical process descriptions in the modelling process. For
example, state-of-the-art hydrological models now also provide a full 3D solution of the Richards equation,
and a physically consistent coupling between surface and subsurface flow equations [27, 11].

Finally, the combination of sequential data assimilation techniques like the ensemble Kalman filter [18, 13]
with hydrogeological models now allows integrating real-time data into the modelling process. These meth-
ods can be used to effectively merge uncertain model predictions with uncertain observation data in a
Bayesian sense. The uncertainty of model predictions is approximated through the forward simulation of an
ensemble of model realisations, where each realisation can have a different combination of initial conditions,
model forcings and model parameters. The uncertain model predictions are then sequentially updated with
measurement data. In this updating step, the uncertainties in the model predictions and the uncertainties
of the observations are optimally weighted and the model predictions are effectively adjusted towards the
measured data. Besides the correction of state variables, it is also possible to use observation data to update
model parameters jointly with the model states [21], which makes these methods very effective calibration
tools. This methodology has already been applied to a variety of hydrogeological problems including assim-
ilation of hydraulic head data [16, 42], transport problems [35, 33], river-aquifer interactions [29, 44, 51] or
assimilation of discharge data [15]. This has, for example, been demonstrated in the context of operational
flood forecasting [49, 55] and integrated hydrological modelling [50, 44, 30]. An application in a hydro-
geological setting was given by Hendricks Franssen et al. [22] for groundwater management of the upper
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Limmat aquifer in Zurich (Switzerland). In this case, a groundwater model is run on a daily basis to sup-
port management decisions on groundwater abstraction, and the EnKF methodology is used to continuously
correct the model predictions and model parameters with available piezometric head data. These corrected
model predictions are then used as input for the real-time optimization of groundwater management ac-
tivities [6, 7]. In the particular case of the Limmat aquifer, the updated piezometric distribution from the
groundwater model is used to optimally control the groundwater abstraction from a well field according
to predefined management goals, which include the total abstraction rate and the maintenance of certain
hydraulic conditions to prevent the leakage of contaminants to the well field from a close-by disposal site.
Other applications of real-time optimization of groundwater resources include the energy efficient operation
of well fields [20, 5] or the accounting for the thermal regime within an aquifer [38]. In Schwanenberg et al.
[48], data assimilation methods are used in conjunction with optimal control algorithms for a large-scale
river network.

Such methods, especially in combination with physically-based hydrological models, are usually associ-
ated with a high computational burden due to the need to perform hundreds of model simulations in a Monte
Carlo framework. This requires the availability of a dedicated computer infrastructure, which is not readily
available for every end-user due to the high personal and financial effort for acquiring and maintaining such
systems. This can, in part, be overcome by cloud-based services that provide computational resources on
demand, and has been suggested as a future platform for hydrological modelling and model calibration
[24, 12]. Such cloud-based solutions are flexible and elastic with respect to the choice of the computing envi-
ronment (operating system, CPU, main memory, etc.), and can thus host a variety of simulation platforms
with different computational requirements. Furthermore, such services are paid according to the actually
consumed computation time. Therefore, the costs to the end-user are effectively reduced by avoiding the
financial overhead that is required for installing and maintaining an own in-house computer system.

This study presents a fully-operational architecture for a cloud-based real-time prediction and manage-
ment system in the context of groundwater management. The proposed system allows to perform data
assimilation with the integrated hydrological model HydroGeoSphere in a cloud environment, and to use
the improved model predictions for the optimization of groundwater management. It also includes a link
to the online acquisition of field data, which transfers the measurement data acquired in the field to a
cloud-based storage system. To the best of our knowledge, this is the first time that such a complete system
for real-time water resources management is described in the context of cloud computing. A second main
contribution is that the real-time simulation and management is done with a physically-based, integrated
hydrological model, which is challenging in the context of data assimilation due to the large amount of
required computational resources.

In the next section, a detailed overview over the different components of this cloud-based real-time
monitoring and modelling platform is provided. In Sect. 3, we apply this platform to a synthetic ground-
water management problem in order to demonstrate the usefulness of this approach and to investigate the
performance of the cloud-based solution in comparison to a more conventional (cluster-based) execution
environment. Ultimately, we draw conclusions and provide recommendations for using this platform in
real-world applications.

2. Conceptual framework

The cloud-based real-time monitoring and simulation platform outlined in this paper offers two principal
functionalities to groundwater managers: (I) real-time access to field measurement data, and (IT) real-time
stochastic simulations, which are continuously improved by assimilating the most recent field measurements,
with the possibility for additional real-time control of water resource systems. The first functionality includes
the full process chain from acquiring the measurement data with online sensors, collecting these data via
wireless sensor networks and transferring the data to online storage that can easily be accessed by the
end-user. This allows decision makers to monitor the measured key hydrological variables in real-time.
The data stored in the cloud also serve as a basis for adjusting hydrological model predictions with data
assimilation techniques. The monitoring process chain used in our cloud-based real-time monitoring and
simulation platform has been described in detail by Lapin et al. [31] and is summarized in Sect. 2.1. The
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second functionality is the stochastic real-time prediction of hydrological variables with a physically-based,
distributed hydrological model that is corrected by the assimilation of measurement data from the sensor
network. This module is the main focus of this paper and aims to support management decisions by providing
a probabilistic nowcasting of the system states. This real-time, cloud-based simulation system consists of
several components: (I) an interface for the user to orchestrate the cloud-based simulation service and to
operate on the input/output, (II) a cloud-based computational infrastructure that hosts and manages the
execution of the simulation code, and (III) a software that manages the stochastic forward simulations and
performs the assimilation of measurement data. These system components are described in detail in Sect.
2.2, 2.3 and 2.4.

2.1. Data acquisition and management

Wireless sensor networks (WSNs) and Wireless Mesh Networks (WMNs) can be used to acquire and
collect hydrological sensor data, especially in remote locations. For example, in a typical alpine or pre-
alpine watershed rainfall intensity can vary strongly between sub-catchments, and measuring these variations
properly is crucial for a correct estimation of the water budget of the whole watershed. In such environments
cellular network coverage is often not provided. Accessing such sub-catchments, and even more so, installing
and connecting all the sensors, however, can be a big challenge. WSNs have proven to be a viable solution in
this context due to their portability and relatively low installation costs. A WSN represents a set of smart
devices, called sensor nodes, which are equipped with environmental sensors and transmit data from the
environment in which they are deployed [28, 31]. WSN systems work well on smaller scales of up to a few
hundred meters. On larger distances, i.e., at the scale of a few kilometres, transporting information from
the sensor networks in the field to a fixed Internet network requires an additional WMN infrastructure [25].
Figure 1 illustrates a typical data-flow from a WSN/WMN to the end-user Data from a WSN is delivered
through an intermediate WMN to an Internet Gateway, connecting the WMN with the wired Internet.
The data can then be stored in an online storage system and later accessed by an end-user or any kind of
processing software over the Internet. Such a data acquisition and management system has been presented
by Lapin et al. [31] and provides the first cornerstone of our cloud-based real-time monitoring and modelling
platform.

2.2. HydroGeoSphere

HydroGeoSphere (HGS) is a state-of-the-art numerical code for the fully-integrated simulation of surface
water, groundwater, and vegetation processes [11, 1]. It is able to solve variably-saturated subsurface flow
in three dimensions and uses a fully-consistent coupling between surface and subsurface flow equations. It
has been applied successfully for the simulation of highly complex hydrological systems, such as large-scale
solute transport [8], transport in complicated fractured systems [9], systems with natural and anthropogenic
structures [17], as well as interactions between surface water discharge, groundwater recharge and tree ring
growth [47]. The prediction of surface water discharge, groundwater levels and fluxes demands that the
parameters of HGS are well calibrated, and requires an uncertainty analysis. This in turn requires running
many instances of HGS in a Monte Carlo framework, which makes HGS perfectly suited for parallelization
and implementation in a cloud-based infrastructure.

2.3. Data assimilation with HydroGeoSphere

Data assimilation within the cloud-based modelling system is done via the ensemble Kalman filter [18, 13].
As already mentioned in the introduction, this method uses a Monte Carlo type approach to approximate
the uncertainty of the model predictions. This is done by forward simulations of an ensemble of model
realisations, which can differ with respect to the initial conditions, forcing terms and model parameters.
The model state vector x for each model realisation ¢ at time step ¢ (where observations are available) is
derived by forward propagation of the dynamical model M using as input the state vector from the previous
time step (¢t — 1) and parameters p and forcings q. Parameters and forcings are different for each model
realisation:
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x'ti = M(xfilapiaqi) (1)

The dynamical model M is the integrated hydrological modelling software HGS in our case. The prog-
nostic variables of HGS can be hydraulic head, temperatures and stream discharge amongst others. In this
study, only hydraulic head is simulated and therefore the model state vector x only consists of this prognostic
variable. The measurement equation, which links measured and modelled states is given by:

yi = Hx] (2)

where y is the vector containing the measurements and the matrix H extracts or interpolates the state vector
onto the observation locations. In order to account for measurement uncertainty, the actual observations y°
for time step ¢ are perturbed with values drawn from a normal distribution N with a mean of zero and a
standard deviation corresponding to the estimated measurement error e:

¥ =y"+ N0, 3)

The updated state vector x* for each realisation i is then given by:

x; =x{ +K(y} —y}) (4)

where the Kalman gain matrix K is given by:

K =C,,(HC,, +R)™* (5)

where Cg, is the covariance matrix between the model states x and the predicted observations y and R is
the covariance matrix of the measurement errors.

If the measurement errors can be considered independent the matrix R consists of diagonal elements
representing the individual measurement errors of the observations. As can be seen from Eq. 5, the Kalman
gain matrix K weights the uncertainties in the model predictions (represented by C,,,) with the measurement



errors (represented by R). These weights are used in the updating equation (Eq. 4) to correct the model
prediction x* with the perturbed measurements y°. This state vector can contain several model variables
that are then updated with the measurements y°. This might also include model parameters like hydraulic
conductivity or porosity. In this work, hydraulic head is the only model variable that is used to form x*.

Data assimilation was implemented in combination with the HydroGeoSphere model, in a C program
called EnKF-HGS which manages the forward propagation of the ensemble of HGS model realisations (Eq.
1) and performs the update of the simulated state(-parameter) vector with the measurements (Eq. 2-5).
As the forward propagation of a large ensemble of a highly sophisticated hydrological model like HGS is
very CPU intensive, the program is parallelized with respect to the ensemble forward propagation and the
filtering step in order to speed up calculations. The parallelization is done by the distribution of different
realisations among available CPUs so that each CPU handles the forward propagation and updating steps
of a specific subset of the whole data assimilation problem. The interfacing between EnKF and HGS is done
via the input and output files of HGS. The input of HGS usually consists of a text file that contains all the
information to perform the simulation including the definition of the computational grid, the assignment
of boundary conditions, the definition of initial model states and model parameters, solver settings, and so
forth. Simulations with HGS are then usually performed by first running a pre-processor called ’'GROK’,
which translates the settings specified in the input text file into binary input files which are the actual input
used for the HGS simulator. Certain parts of the text input file for the pre-processor GROK (e.g., transient
boundary conditions, definition of parameters, etc.) can be sourced out into separate text input files. This
feature is used for defining stochastic transient boundary conditions and stochastic model parameters for
HGS in combination with EnKF-HGS. The main program EnKF-HGS writes these specific input files for
boundary conditions and parameters separately for each model realisation and each time step. This, of
course, requires a proper definition of the respective boundary conditions and parameter settings in the text
input files for the pre-processor GROK, i.e., all the input information that should be treated as stochastic
needs to be sourced out in separate input files. The exchange of prognostic variables (i.e., hydraulic head)
between HGS and EnKF-HGS is managed via binary input/output files that are used by HGS. These
binary files are written by EnKF-HGS as an input for HGS for the next model integration. After the HGS-
simulation has finished, the predicted state variables are extracted by EnKF-HGS from the binary output
file of HGS. This information is later used in the ensemble of state vectors of the data assimilation algorithm.
The complete program scheme of EnKF-HGS is summarized in Fig. 2. Note that the ensemble forward
propagation as well as the filtering step are calculated in parallel, meaning that each available processor
handles a subset of the ensemble members. The program was first built and tested on a standard Linux
cluster and then slightly modified to be able to also run in a cloud environment which is described in the
following section.

2.4. Cloud computing with CLAUDE

Cloud computing [52] is a still evolving paradigm, in which various computing resources are delivered
to an end-user as services (e.g., Platform as a Service (PaaS), Infrastructure as a Service (IaaS), Software
as a Service (SaaS), or XaaS (Everything as a Service)). Virtualization is a fundamental element of cloud
computing. In computing, the term wvirtualization refers to provisioning of a virtual resource (e.g., a com-
puter network resource, a storage device, a server) that behaves identically to its physical counterpart.
Virtualization allows for physical resource sharing. Virtual resources access the infrastructure through a
specialized middleware (i.e., a hypervisor) to improve the infrastructure flexibility and elasticity. While
end-users experience cloud computing as an easy-access and easy-to-use technology, cloud computing is a
complex and powerful technology with a multitude of important characteristics [40]:

e Rapid elasticity and scalability in near real-time via dynamic resource provisioning upon a self-service
basis, which allows to on-the-fly adapt system resources to momentary load conditions.

e Measured resource consumption: Cloud computing resource usage can be transparently measured,
controlled, and reported by both the provider and consumer.
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indicate the ensemble calculations and red colours represent the model forward propagation and filtering step.
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e On-demand self-service: The consumer can purchase various services such as applications, networking,
or computing using little interaction with the cloud provider.

e Broadband access to the cloud infrastructure is provided by the Internet making use of standard
network infrastructures and protocols.

Figure 3 presents a simplified picture of a) traditional computation and b) typical cloud infrastructures.
Traditional computation infrastructure is usually provided by the users themselves, which often results
in one of two extremes: (i) Overprovisioning, i.e., a waste of money on the maintenance of non-utilized
computational resources, or (ii) Underprovisioning, i.e., limited computing performance due to missing
storage or processing infrastructure. Contrarily, cloud users do not need to care about the infrastructure
capacity, as they only temporarily purchase computing resources from a cloud provider. The cloud provider
is therefore responsible for the maintenance of resources dimensioned for the needs of all the cloud-users.

Cloud computing offers SaaS as a major service delivery model. SaaS may provision applications that
use a Web browser as their user interface, or predefined Application Program Interfaces (APIs). In the
following, we describe our cloud-based simulation service, which we hereinafter refer to as CLAUDE [32],
that implements a typical provisioning model for applications delivered as SaaS. CLAUDE provides an easily
migratable SaaS supporting a wide range of cloud platforms (e.g., Amazon EC2 (Amazon Web Services, Inc.
2016), OpenNebula (OpenNebula Project 2016), OpenStack (OpenStack Foundation 2016)), while at the
same time allowing users to benefit from the features of cloud environments for ordinary, non-interactive,
computation-intensive applications commonly used in the high performance computing domain.

A basic CLAUDE deployment requires a physical or virtual machine for the installation of the CLAUDE
core, access to a Cloud Data Storage that supports the Amazon S3 protocol (Amazon Web Services, Inc.
2016) for input/output data storage, and access to a cloud resource pool through an Amazon EC2 endpoint.
CLAUDE automatically distributes work among available resources, and allows an end-user to balance
between minimizing the execution time by exploiting parallel execution (e.g., for Monte Carlo applications)
and the final costs by minimizing the amount of consumed resources. CLAUDE allows including data from
external data sources (e.g., online databases, WSNs). Figure 4 depicts the integration of the EnKF-HGS
real-time modelling using CLAUDE in a cloud environment with a sensor-based live data-flow. The user
interacts with the system through a web interface and controls the simulation process (e.g., initialisation,
monitoring), the input/output, and the amount of consumed cloud resources. CLAUDE, in turn, orchestrates
the running applications on the available computing resources.
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Figure 4: CLAUDE-based setup of the EnKF-HGS modelling system.

Accessing and launching EnKF-HGS through CLAUDE has been specifically designed in a very user-
friendly way, so that no prior knowledge of running applications on a cloud is required. Furthermore,
CLAUDE can easily be generalized for other non-interactive user applications. Once the CLAUDE core is
installed and configured, one needs to prepare an Operating System (OS) image for the Virtual Machine
(VM) with the required software installed (in our case EnKF-HGS and HGS) and uploading the OS image to
the cloud repository. The image is used to create virtual machines, which allow executing the pre-installed
software. The uploading process may slightly differ depending on the cloud platform, but the most popular
providers (e.g., Amazon EC2, OpenNebula, OpenStack) have step-by-step tutorials explaining the whole
process. Additionally, the user is expected to provide the CLAUDE core with a sample Python script that
defines execution parameters and input/output locations. After completing all these steps, the system is pre-
pared for execution. As an advantage, CLAUDE provides a set of communication drivers, which implement
communication operations in the cloud. This minimizes the necessary changes of the original application
source codes. The drivers interact with the CLAUDE core through a standard messaging mechanism pro-
vided by a widely used message broker RabbitMQ (Present Pivotal Software, Inc. 2007). CLAUDE therefore
allows to easily port an existing application, which was not designed for a cloud environment, to a cloud
environment.

In order to port EnKF-HGS (using HGS) to a cloud, the CLAUDE driver was integrated in the program
source code, and all the direct execution calls of HGS were replaced with their CLAUDE-based counterparts.
This cloudification procedure changes the initial MPI-based execution stack of EnKF-HGS. The cloudified
EnKF-HGS separates the main EnKF-HGS simulation loop from the HGS instance, which run on remote
computing resources. For this purpose, the CLAUDE driver transmits the relevant input for each HGS model
realisation to the Cloud Data Storage, and requests the CLAUDE core to execute corresponding simulations
on available cloud computation resources. When all the simulations are completed, the CLAUDE driver
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retrieves the relevant output from the Cloud Data Storage. The data is then returned to EnKF-HGS,
which continues the data assimilation loop. This service oriented approach allows dynamically adjusting
the amount of computing resources to momentary workload conditions. Moreover, one can benefit from an
external scheduling component for better resource utilization. Additionally, CLAUDE allows minimizing
the network Input/Output (I/O) operation using data locality.

3. Validation example

For the demonstration of the cloud-based real-time modelling system, the well-known tilted V-catchment
problem [e.g., 43, 27] is used to perform a synthetic data assimilation experiment. The tilted V-catchment
problem was selected, because it is often used as a benchmark for integrated hydrological models [e.g., 43, 27]
and has also been applied in the context of data assimilation with integrated hydrological models before [e.g.,
15, 3]. The internal flow dynamics of the tilted V-catchment model have furthermore been systematically
analysed in original and modified configurations [19]. The original model consists of a V-shaped valley, which
is inclined in order to form a sloping stream at the bottom of the valley. The model is forced with one or more
precipitation events followed by a recession phase, resulting in distinct discharge peaks at the catchment
outlet. The temporal evolution of these peaks also depends on the assigned surface flow properties and the
exchange between the surface water and the groundwater domain. Similarly to Gaukroger and Werner [19],
the original V-catchment model was modified to better fit the purpose of this study. First of all, the tilted
V-catchment model was extended to allow for more substantial SW-GW interactions: Instead of using the
original setup that consisted of a 3 m deep soil-layer to represent the subsurface, a permeable aquifer of 33 m
vertical extent was used, allowing significantly more GW dynamics. Secondly, the model was enhanced with
eight groundwater wells that simulate typical alluvial groundwater extraction processes for drinking water
purposes in the vicinity of the stream. With these modifications to the original model, the modified tilted
V-catchment model allows the simulation of substantial SW-GW interactions in a typical alluvial setting
with realistic drinking water management. For the synthetic data assimilation experiment, a reference
HGS simulation with the modified tilted V-catchment model provides observation data (hydraulic heads)
that are subsequently used to correct stochastic model predictions with the EnKF. In addition to the data
assimilation aspect, the synthetic experiment used in this study also includes a groundwater management
component, where the corrected stochastic model predictions are used to control the groundwater withdrawal
of the pumps. This setup represents a simplified groundwater management problem at the catchment scale,
where ensemble-based real-time simulations are corrected with observed groundwater levels at regular time
intervals and are subsequently used to assist decision makers in the management of groundwater resources
(i.e. a synthetic representation of a real world system such as presented by Hendricks Franssen et al.
[22] and Bauser et al. [6, 7]). The access to measurement data from the field is treated in a simplified
manner in this synthetic experiment by assuming that the observation data are already provided to the
cloud infrastructure by the sensor network. For real-world cases, the access to data from the EnKF-HGS
modelling and data assimilation platform would involve the data gathering system described in Jamakovic
et al. [25] and Lapin et al. [31], followed by some steps to treat potentially missing values and to assure the
quality of each measurement. Such additional pre-processing of the data is usually quite case-specific and
is therefore neglected in our synthetic case.

3.1. Hydrological model and data assimilation setup

The modified tilted V-catchment that is used for the data assimilation experiments has a spatial extent
of 1620 x 1000 x 33 m and is discretised into 81 x 50 x 11 model nodes. The horizontal discretisation is 20
m in x- and y-direction. The 10 vertical model layers span a total of 33 m and have a variable thickness with
increasing resolution towards the top of the model domain (10 m, 10 m, 6 m, 3 m, 2 m, 1.10 m, 0.50 m, 0.25
m, 0.10 m, 0.05 m from bottom to top). The tilted V-catchment topography is formed by assigning a slope
of £ 0.05 m/m in x-direction for the western and eastern half of the model. The whole model domain is
additionally inclined in y-direction with a slope of -0.02 m/m. The resulting topography for the uppermost
model layer is shown in Fig. 5.
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Figure 5: Topography and observation network for the modified tilted V-catchment model.

A constant head boundary condition of 23.2 m is assigned to the upstream model face (y = 0 m), which
provides a temporally constant base flow to the river. A critical depth boundary condition is assigned to
the surface water domain at the downstream model face (y = 1000 m). The lateral model boundaries (x =
0 m and 1620 m) are impermeable. Four wells are placed on either side of the river in the downstream part
of the model domain, which operate at a constant withdrawal rate of 0.45 m®/s per well. The hydraulic
parameters for surface and subsurface flow are spatially constant and are summarized in Tab. 1. The total
simulation time for the model forward runs is 72 hours, which is discretised in 144 time steps of 1800 s.
The reference run is forced with transient time series for rainfall and evapotranspiration (see Fig. 6). The
rainfall time series includes three rainfall events, each with a duration of 6 hours and a precipitation rate
of 2.6x107% m/s. In-between the precipitation events, evapotranspiration follows a diurnal cycle with an
amplitude of 2x10~7 m/s and a duration of 12 hours. Figure 6 shows the temporal sequence of rain and
recession phases. During recession, the evapotranspiration follows an ideal diurnal cycle with most of the
uncertainty occurring around noon.

The observation data (hydraulic heads) are taken from the reference simulation. In total, 20 observation
points are used. The observations are made on the bottom layer of the model (see Fig. 5), and are assimilated
every time step (i.e. every 1800 s) with the EnKF. A measurement error of 0.01 m is assumed for these
observation data. The ensemble of model realisations (100 ensemble members) is generated by perturbing
the rainfall and evapotranspiration rates with multiplicative noise drawn from a log-normal distribution with
a standard deviation of 0.3 (see Fig. 6). Additionally, a constant bias of 10% is added to the precipitation
rates. Precipitation input for hydrological models is typically derived from radar or rain gauge data, or
a combination of both. The precipitation rates derived from these measurement techniques are usually
associated with a considerable uncertainty range [36]. The uncertainty in the precipitation input and the
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Figure 6: Precipitation (left) and evapotranspiration (right) rates for the reference run (in red) and the ensemble simulations
(in grey). The different grey areas represent 10%-percentiles of the ensemble distribution and black lines represent the ensemble
median value.

Table 1: Model parameters for the modified tilted V-catchment problem.

Variable Value Unit
Saturated hydraulic conductivity 2.9x107% m/s
Porosity 0.43 m? m—3
van Genuchten o 3.48 m~!
van Genuchten n 1.75 -
Residual saturation 0.05 m3 m—3
Manning’s coefficient 0.15 s/m'/3
Coupling length 1x1007  m

Rill storage height 0.1 m

additional bias used in this setup intends to resemble the uncertainty of these precipitation measurements.
Figure 6 shows the assigned uncertainties of precipitation and evapotranspiration in relation to the reference
case. Uncertainties in precipitation are quite large and cover the reference precipitation.

In addition to the assimilation of hydraulic head observations, a simple groundwater management scheme
is used in the simulations. This illustrates that the cloud-based EnKF-HGS modelling and data assimilation
platform can also be used for real-time adaptation of water resources management, for example to avoid
negative impacts of excessive pumping. The example in this paper targets to maintain a minimum ’ecological’
river flow by adjusting the well pumping rates based on the simulated ensemble river discharge. The
management rule is as follows: If the 30%-percentile of the simulated discharge distribution of the ensemble
falls below a threshold value of 1.6 m3/s, the pumping rates are reduced by 5% in the following time step.

3.2. Simulation results

Three scenarios were considered with the setup described above, with each scenario including an open-
loop run (runs without feedback, i.e., no assimilation of hydraulic head data) and an assimilation run: (I) No
well management for the reference and the ensemble simulations. This scenario is intended to first verify the
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Figure 7: Simulated discharge for the open-loop simulations (left) and the assimilation experiment (right) of scenario I.
The red lines show the discharge for the reference run and the dashed blue lines mark the discharge threshold for the well
management (which, however, was not enforced in this scenario). The different grey areas represent 10%-percentiles of the
ensemble distribution, and the black lines represent the ensemble median value.

effectiveness of the data assimilation within this setup. (II) Well management for the ensemble simulations
but not for the reference. This scenario is intended to test the stochastic well management in conjunction
with data assimilation with a large bias between observations and model predictions. (IIT) Well management
for ensemble and the reference simulations. In this case, the measurement data from the reference run are
also influenced by the well management which would be typically the case in real-world settings.

Figure 7 shows the temporal evolution of simulated discharge for the open-loop simulation and the
assimilation experiment without well management (scenario I). The simulated discharge for the open-loop
simulation shows a positive bias (compared to the reference), which is related to the assigned bias of 10% in
the precipitation input data. The spread in the simulated discharge is more pronounced during the rainfall
events. During the recession phase, however, the positive bias in the precipitation input data leads to a
mismatch that is increasing with time: in the open-loop simulation the overall groundwater withdrawal
through the wells is slightly lower than the precipitation input, compared to the reference simulation. The
assimilation of hydraulic head values from the reference run leads to a correction of these discharge values
towards the reference discharge, particularly during the recession phases but also during the rainfall events,
and especially in the later phase of the simulation period. The correction of simulated groundwater levels
towards the observations leads to a correction of the mass balance within the aquifer, which indirectly
improves the integrated discharge signal and effectively adjusts it to the true observations.

The improvement of model predictions was also quantitatively assessed by calculating the Mean Absolute
Error (MAE) for hydraulic heads and discharge:

N, N,

1 = re
MAE(r) = - 3 D 173 — @i (6)

where N, is the number of model nodes (only used in case of hydraulic heads), N; is the number of model
time steps, Z;; is the simulated ensemble mean of hydraulic head or discharge and z¢ is the corresponding

reference value. For scenario I (no well management), the MAE of hydraulic heads improved from 0.48
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Figure 8: Mean absolute error of hydraulic heads for the five uppermost model layers for the open-loop simulation (upper row)
and the assimilation run (lower row) of scenario I.

to 0.21 m with the assimilation of hydraulic head values. The MAE of discharge reduced from 0.033 to
0.015 m?®/s. Figure 8 shows the spatial distribution of MAE values for hydraulic heads (averaged over the
simulation time) for the open-loop simulation and the assimilation run. It can be seen that the assimilation
of hydraulic head data in this setup has a significant positive effect on the predicted hydraulic heads, which
leads to a significant reduction of errors in hydraulic head and discharge of about 50% compared to the open
loop simulations.

Results for the discharge behaviour of scenario II are shown in Fig. 9. In both the open-loop and the
data assimilation cases, the reduction of pumping rates on the basis of the management criterion effectively
keeps the simulated discharge around the predefined discharge threshold value of 1.6 m3/s. In both cases,
slight oscillations in discharge occur, which are related to a switching off of the management criterion during
the recession phases. When the discharge threshold value of 1.6 m3/s is reached, the pumping wells are shut
off until the management criterion is again satisfied, which keeps the discharge of the following time steps
above the threshold. The lag time between two consecutive activations of the pump management depends
on the response time of the groundwater flow field to the pumping in the wells, which is relatively short in
this particular case. At certain times, slightly lower discharge values can be observed in the assimilation
experiment during the recession phases, compared to the open loop simulation. This is related to the
fact that the correction of simulated groundwater levels in the assimilation run leads to a decrease of the
simulated discharge towards the values of the reference run (see Fig. 7), which also affects the scheduling
of the well management. Overall, the management module provides an effective way to keep the discharge
around the predefined level (i.e., minimum ecological flow) even if there is a quite large discrepancy between
the ensemble simulations and the actual measurements. The MAE values for hydraulic heads and discharge
for scenario II are higher than for scenario I due to the management in the ensemble simulations, which
is not present in the reference case. MAE of hydraulic head decreases from 0.48 to 0.28 m and MAE of
discharge decreases from 0.05 m?/s to 0.04 m3/s in the assimilation run.

For scenario III, both the ensemble simulations as well as the reference case include well management.
Now, the measurements from the reference case better resemble the aquifer response to the management
in the ensemble simulations as compared to scenario II (where measurements are not influenced by the
management). However, due to the uncertain and biased precipitation input in the ensemble, there is a
discrepancy between the measurements (from the reference run) and the ensemble model predictions, which
nonetheless needs to be corrected by EnKF. In Fig. 10, one can see that the open-loop simulations and
the reference show a very similar behaviour during the recession phase where management takes place. For
the open-loop simulations the predicted discharge is slightly higher and the amount of correction with the
management module is lower than in the reference case, which is due to the positive bias in precipitation.
When measurement data are assimilated (right hand side of Fig. 10), the ensemble discharge prediction in
the recession phase is almost identical to the reference, which shows that the precipitation uncertainty can
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Figure 9: Simulated discharge for open-loop simulations (left) and assimilation experiment for scenario II. The red lines show
the discharge for the reference run and the dashed blue lines mark the discharge threshold for well management. The different
grey areas represent 10%-percentiles of the ensemble distribution, and the black lines represent the ensemble median value.

effectively be corrected for by data assimilation in combination with the management module. For scenario
111, the MAE values are reduced to a similar magnitude as in scenario I, with a reduction from 0.48 to 0.21
m for hydraulic heads and 0.024 to 0.015 m?/s for discharge.

3.3. Performance analysis of the EnKF-HGS modelling and data assimilation platform in the cloud envi-
ronment

The EnKF-HGS simulator uses a Monte Carlo approach with an iterative workflow. In every iteration,
two essential phases can be identified: (i) simulation of an ensemble (i.e., a set) of model realisations
(referred to as the forward simulation phase), and (ii) an update, or feedback, phase for state vectors (and
optionally parameters) (referred to as the filtering phase). One forward simulation phase computes all
individual model realisations of the ensemble. Computing a single model realisation requires executing two
applications, i.e., GROK and HGS. GROK is a pre-processor of HGS, which prepares the input files for
HGS. The run-time of each HGS realisation strongly depends on input parameters and model complexity,
but normally, HGS is a comparably long-running and compute-intensive process due to a high non-linearity of
the hydrological processes that are simulated. Moreover, due to a large number of parallel model realisations
in the forward simulation phase, the main demand for computing power in EnKF-HGS modelling platform
comes from the execution of HGS. In the cloudified version of the EnKF-HGS modelling platform, the forward
simulation phase is therefore distributed over multiple cloud computing resources. The filtering phase
remains centralized. The focus of this analysis therefore is on the performance of the forward simulation
phase (Sec. 3.3.2) by measuring the execution time of each implementation. However, execution results of
the filtering phase are also presented and discussed (Sec. 3.3.3). The execution times of two implementations
of the EnKF-HGS platform are directly compared in sections (Sec. 3.3.4 and 3.3.5). In particular, CPU
utilization, scheduling, and data locality aspects are discussed.

3.83.1. Setup of performance comparison
As discussed in Sect. 2.4, the original EnKF-HGS was designed for execution in a traditional cluster
environment (i.e., MPI-based), which normally provides: (i) a low latency broadband network (e.g., Infini-
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Figure 10: Simulated discharge for open-loop simulations (left) and assimilation for scenario III. The red lines show the discharge
for the reference run and the dashed blue lines mark the discharge threshold for well management. The different grey areas
represent 10%-percentiles of the ensemble distribution, and the black lines represent the ensemble median value.

Band, Myrinet 10G), (ii) access to a Network File System (e.g., NFS), and (iii) homogeneity of computing
resources. None of these properties are guaranteed in a typical cloud environment. This can result in a
dramatic performance loss of EnKF-HGS. In order to properly compare the performance of the regular and
the cloudified EnKF-HGS, both versions were executed on a local computing infrastructure, rather than
the cloudified version being executed on a different infrastructure. Two distinct execution approaches can
be identified: Approach 1: an execution of the original MPI-based EnKF-HGS in a virtual cluster environ-
ment (i.e., a single VM resource pool), and Approach 2: execution of the cloudified EnKF-HGS with the
CLAUDE driver integrated in a cloud environment. Each approach uses a different network file storage. In
Approach 1, a VM-based deployment of GlusterF'S (Red Hat, Inc. 2016) was used. The storage nodes were
organized in a distributed volume with no data replication employed to maximize storage performance. On
the computing nodes, the FUSE-based Gluster Native Client (Red Hat, Inc. 2016) was installed, enabling
highly concurrent access to the file system. In Approach 2, a VM-based deployment of Riak CS (Basho
Technologies, Inc. 2016) was used.

The modified tilted V-catchment model served as a test case. In the experiment, the model performs 144
iterations with an ensemble of 100 model realisations. Since all realisations are independent HGS instances,
a set of 4 experiments with varying numbers of CPU cores was conducted: (a) 10, (b) 20, (c¢) 50, (d)
100. In each experiment, one single CPU core was assigned per HGS instance. In the original MPI-based
implementation of EnKF-HGS, this resulted in 10, 5, 2, and 1 HGS executions per CPU core, for (a),
(b), (c), and (d) respectively. Whereas for the cloudified version of EnKF-HGS, CLAUDE automatically
distributed the execution of the HGS instances over available computing resources for every iteration, using
the First-In-First-Out (FIFO) algorithm, which maximized resource utilization. Tab. 2 summarizes the
characteristics of selected VM instances for both execution approaches. All VMs were connected via 1GB/s
network.

3.8.2. Performance analysis of the forward simulation phase
In this first experiment, only the duration of the forward simulation phase is considered. Figure 11
illustrates the computing time ratio between Approach 1 and 2 against the iteration step. In Approach 1,
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Table 2: VM instance selection for the execution of the original MPI-based implementation and the cloudified version of the
EnKF-HGS modelling platform. As the memory requirement per HGS instance for the test model is less than 500 MB, the
available memory per computing VM is sufficient.

Approach 1: MPI-based Approach 2: Cloudified version
implementation
VAT BRbGS o [ HOE T BT, o
execution
Number of VMs 2/3/7/13 3 2/3/7/13 1 1
CPU cores per
VM 8 4 8 1 4
Memory (GB) 7.4 3.5 7.4 2.5 3.5

this time is defined as the elapsed time between the beginning of the forward simulation phase and the end
of the longest running MPI process. In Approach 2, it is the time interval between the beginning of the
forward simulation phase and the end of the last finishing HGS instance. In Approach 2, the overhead of
input/output transmissions and cloud scheduling is therefore also accounted for. The execution time of the
forward simulation phase for the two approaches is comparable. A small difference of 4-15% in favour of the
original MPI-based approach can be observed in experiments (¢) and (d).

3.8.8. Performance analysis of the filtering phase

In contrast to the forward simulation phase, the filtering phase was not distributed, as it requires signif-
icantly less computing power and thus much shorter execution times. The EnKF-HGS modelling platform
performs filtering on initially allocated system resources. In Approach 1, it includes the entire resource pool
ranging from 10 to 100 CPU cores. In Approach 2, only 1 CPU core is initially provided to the filtering step
(see Tab. 2). The relative execution time ratios of the filtering phase of Approaches 1 and 2 are shown in
Fig. 12. Surprisingly, in (d), the filtering phase running on 100 CPU cores is 20% slower than on a single
CPU. This difference in performance is a result of the network connection of a virtual cluster in the cloud
environment. A regular physical cluster guarantees high throughput and low latency. On a cloud, physical
machines can be geographically distributed, and therefore might be connected with links of lower capacity
and higher latency. In our experiments, cloud workers were connected with a regular 1 GbE-T Ethernet
connection, which is considered slow from the point of view of a regular cluster environment. As a result, the
data transmission time between multiple MPI processes surpassed the benefit of parallel computation. The
regular, MPI-based EnKF-HGS setup is therefore not suited for cloud computations with heterogeneous or
low capacity resources.

3.3.4. Performance analysis of the original implementation

In order to measure the impact of the concurrent access to a network file storage on the execution time
of the HGS simulator, it needs to be assured that each HGS instance performs the same amount of I/0
operations. We therefore use a similar technique for assessing I/O saturation as Caino-Lores et al. [14],
running a similar I/O stress experiment in a cloud setup, which is described in Tab. 2. In our case, we use
the tilted V-catchment problem as the input hydrogeological model. To this end, a modification of EnKF-
HGS to compute the same model N times in a row instead of simulating N different realisations was made.
The modified EnKF-HGS modelling platform was executed using a range of 1 to 64 available CPU cores (see
Fig. 13) to measure the execution time of a HGS instance in every step against the iteration count. The
HGS performance plots resemble the results of Caino-Lores et al. [14]. They are, however, skewed towards
longer relative execution times for a growing number of concurrent HGS instances. As shown in Fig. 13, the
concurrent access to network file storage significantly affects the performance due to increased I/0 latency.
This is a result of the saturation of the network link. In this experiment, however, the concurrent I/0
operations were artificially equalized. This resulted in a large performance drop as all individual simulations
last for the same amount of time and thus highly stress the storage by performing I/O access at the same
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Figure 11: Relative computation time of the forward simulation phase for the two different execution approaches.

time. In a realistic ensemble simulation, however, the influence of concurrent execution is less likely to result
in such a large number of overlapping I/O operations of parallel HGS instances on input and output.

The second important aspect of the MPI implementation is a statically assigned number of model reali-
sations per MPI process. This is a typical design choice of an MPI-based application due to a lack of load
balancing, e.g., through a built-in job-stealing mechanism. In an ensemble with individual simulations of
heterogeneous duration, EnKF-HGS might result in relatively poor performance, because some MPI pro-
cesses finish all assigned simulations sooner than others, and EnKF-HGS needs to wait for all individual
realisations to finish before the filtering step can be performed. Therefore, the CPU idle time during the
simulation was measured. Figure 14 shows the CPU idle time per iteration for the four experiments (a), (b),
(c), and (d) described above. The majority of the realisations, or ensemble members, have a comparable
simulation time, which results in a relatively short CPU idle time. However, in some cases, especially when
a single MPI process executes multiple assigned simulations, the CPU idle time grows up to 150 seconds,
which corresponds to 34% of the overall iteration time. For more complex scenarios than the modified
tilted V-catchment, with longer simulations runs, the overall execution time of EnKF-HGS could increase
substantially due to the possibly long wait for all individual realisations to finish.
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3.8.5. Performance analysis of the cloudified version
The forward simulation phase in the cloudified EnKF-HGS accommodates three individual, time-consuming

processes: (i) input / output data transmission, (ii) scheduling, and (iii) the simulation phase. In the initial
four experiments, the duration of every phase was measured. Moreover, we separated the communication
overhead (i.e., worker overhead) of the HGS computing resources with the CLAUDE core from the actual
simulation time. Figure 15 shows the relative duration of all these processes. The time spikes in the sim-
ulation phase correspond to long-running realisations. Figure 16 shows the absolute overhead. The I/0O
data transmission time is almost constant for the full ensemble execution, as well as, for the duration of
each individual realisation. The total overhead slightly decreases with the growing number of the parallel
instances of HGS, but is constant for the duration of one single realisation. The scheduling time grows with
the amount of available resources, however, is constant for the duration of each realisation. In practice,
this allows parallel execution of complex hydrogeological models with long-running individual realisations
in the cloud, while still having comparable constant overhead. While CLAUDE is still in a proof-of-concept
phase, it already indicates the benefits of the service-oriented execution approach with external scheduling
and enhanced data locality techniques. By using an I/O-optimized implementation and a high-performance
scheduler the total overhead could be significantly reduced, as at the moment it corresponds to 40% to 80%
of the total overhead.

4. Discussion

The data assimilation and modelling platform described in this paper provides a fully-operational archi-
tecture for a real-time water management system using the integrated hydrological model HydroGeoSphere
in a cloud computing environment. This system is able to provide stochastic predictions of key hydrological
variables, which can be continuously improved by assimilating real-time measurement data acquired through
wireless sensor networks. The stochastic predictions can then be used to optimize water management in a
subsequent step. As individual components of such a real-time modelling system, like online data acquisi-
tion, data assimilation, or real-time optimization, have already been described in literature [e.g. 10, 22, 7],
this paper intends to show the integration of these different methodological advances into an overarching
water management framework. An important aspect of this overarching framework is the deployment of
such a system in a cloud computing environment. Given the fact that stochastic simulations with integrated
hydrological models are usually very CPU-intensive, practitioners in water management may often shy away
from the investments in computational infrastructure that is necessary for performing stochastic predictions
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Figure 15: Processes involved in the forward simulation phase for the cloudified modification of the simulator.

with such kinds of models. However, integrated hydrological models are useful for many water management
problems, especially, for systems with coupled surface water - groundwater flow. In such cases, integrated
models have a clear advantage over traditional groundwater models due to their physically more consistent
process description of water exchange and surface water routing, which enhances, e.g., the prediction of
discharge. In addition, stochastic model predictions in conjunction with data assimilation techniques allow
to assess the uncertainty of model predictions and to incorporate field measurements sequentially into the
modelling process, which is particularly useful in the context of flood forecasting and contaminant transport.

Cloud technology has the advantage that the computation time for such kind of simulations can be
requested on an on-demand basis, meaning that there is no financial and personal overhead for acquiring and
maintaining the required computational infrastructure. In this work, the initially cluster-based EnKF-HGS
data assimilation system for HydroGeoSphere was translated to a cloud infrastructure with only minimal
changes in the original model code and a linkage to pre-existing management tools for the cloud-based
computation. These implementation changes were relatively straightforward as EnKF is a Monte Carlo-
based data assimilation approach. In the Monte Carlo approach a whole set, or ensemble, of slightly differing
model realisations is integrated forward in time to approximate the uncertainties and mutual correlations
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Figure 16: Absolute time of the overhead processes.

within the model. This ensemble of simulations can easily be distributed among different CPUs or nodes,
and a cloud infrastructure, therefore, provides an ideal environment for such tasks. These findings are
also promising for the usage of other, already existing, simulation and data assimilation platforms, since
we have been able to show that only a minimal effort is required to port such systems for the use in a
cloud infrastructure. Our comparison of the performance of the EnKF-HGS data assimilation platform in
a cloud-based and cluster-based computation environment showed that the cloud implementation produced
an affordable overhead with respect to data transfer and execution time. Considering the cloud execution,
we created the cloud-oriented service CLAUDE that allows distributing an application over available cloud
resources. As a result, we obtained a functional, cloud-based version of EnKF-HGS with an execution
performance that is comparable to a cluster-like environment, and a predictable service-related overhead.
The usage of CLAUDE gives us the possibility to rely on external services for automatic job distribution,
efficient job scheduling and optimal utilization of computational resources, which in turn facilitates the
performance of the application and eases the application development process. Additionally, CLAUDE
offers a well-integrated data storage service, which lowers the demands for the target infrastructure. The
comparison between the cloud and the cluster infrastructure was made with a relatively simple model setup
with considerably smaller problem size and execution time than real-world applications. On the one hand, a
larger number of model grid cells, as encountered in many practical applications, would increase the size of
the data packages that need to be transferred through the network in the cloud-based execution. This would
certainly increase the overhead related to data transfer as compared to a cluster-based solution. On the
other hand, however, the simulation times for more complex real-world model setups would be considerably
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higher than the model that was used here in the comparison study. As a consequence, the relative overhead
for data exchange in the filtering part of the cloud execution for more complex models should still be in a
comparable range to what has been found in this study.

The application of the proposed cloud-based real-time modelling platform to real-world applications,
of course, raises some additional issues. One of them is the question of data security/data ownership in
cloud-based services. Field measurements as well as simulation results may have to be kept confidential by
water managers. This means that the data policy of the cloud provider needs to be thoroughly checked
for ownership rights before a data acquisition or simulation system is deployed in such environments. In
addition, water managers need to be sure that they have a continuous access to their data and modelling
systems, because they usually need these services on an operational basis. If the connection to these services
fails, for example, related to a problem with the cloud provider, this could result in considerable problems
for water managers, for example, when such a system is used for short-term predictions like flood forecast-
ing. Therefore, when such a system is deployed in a cloud-computing infrastructure, a reliable access and
functioning of the services needs to be guaranteed. This could be achieved, for example, by providing a
backup management system on a second cloud. However, as cloud computing is a continuously growing
business, and more and more IT companies move towards cloud-based infrastructures, water managers have
some flexibility with respect to potential cloud providers. Hence, when a cloud-based modelling and mon-
itoring platform needs to be deployed in practice, practitioners can choose between a variety of different
cloud service providers in order to meet their specific requirements for data security and operational stabil-
ity. Another issue in real-world applications is the connection of the modelling system to the online data
storage of any kind of wireless sensor networks. In our test-case it was assumed that the measurement data
are readily available in the cloud infrastructure. However, in real-world applications it is also necessary to
account for sensor failure, non-physical values of the measurements, disconnection from the measurement
data base and the quality of the measurement data. This would require an additional pre-processing step
which includes an exception handling for such events, which needs to be adjusted to the actually used data
type and sensor network. The cloud-based modelling and data assimilation system proposed in this paper
is, in general, specifically designed for the assimilation of hydraulic heads with the integrated hydrological
model HydroGeoSphere. Most parts of this system are not generic, meaning that the assimilation of another
data type (e.g., concentration data) would require additional programming effort in the data assimilation
module. Additionally, if another hydrological model with a different model input structure should be used
in conjunction with the cloud-based data assimilation, the interface between this model and the data assim-
ilation system would need to be re-programmed and the CLAUDE driver would have to be adjusted to the
new model input structure. Our experience from the setting up of the data assimilation system is that the
coupling of a new model with the data assimilation software constitutes a large part of the work. Moving
the execution from a cluster-based environment to the cloud computation was, on the other hand, relatively
straight-forward given the fact that the CLAUDE system took care of the management and scheduling of
the ensemble simulations.

5. Conclusions

In this paper we established a cloud-based real-time modelling and data assimilation platform for the
integrated hydrological model HydroGeoSphere. As a first step, a data assimilation system was created
that is able to perform stochastic predictions with HydroGeoSphere, taking into account uncertainties in
model parameters as well as boundary and initial conditions. Additionally, the system allows to assimilate
hydraulic head data sequentially with the ensemble Kalman filter. Updated model predictions may then
be subsequently used to perform real-time management of water resources. In a second step, the originally
cluster-based data assimilation and modelling platform was adapted to a cloud computing environment. The
necessary changes in the code structure were minor and basically affected the forward propagation of the
different model realisations: in the originally cluster-based implementation, the ensemble integration was
achieved by spawning a certain number of MPI processes on a computing cluster whereas in the cloud-based
implementation the calculation of different model realisations was achieved by distributing the workload
among different nodes in the cloud environment with CLAUDE. This workload distribution involved the
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sending of necessary input data to the nodes, the forward simulation on the worker nodes and the subsequent
retrieval of simulation results from these nodes. A performance comparison of the cluster-based and cloud-
based implementation with a relatively simple tilted V-catchment model showed that the overhead in the
cloud-based implementation is within an affordable range, showing that such a system is also well-suited for
real-world applications.

Generally, we expect that stochastic real-time simulations using integrated, physically-based hydrologi-
cal models are going to become more common in practical water resources management applications. The
reason is that integrated hydrological models provide major advantages over traditional groundwater models
with respect to process description and the coupling between groundwater, surface water, and land surface
processes, which are, for example, useful for flood and drought predictions and water balance calculations.
Furthermore, there is a growing awareness that uncertainties in model predictions need to be taken into ac-
count for successful water management. Along with that, data assimilation offers the opportunity to correct
such uncertain model predictions with measurement data, which are increasingly collected by online sensors.
Data assimilation can be used in conjunction with real-time optimization methods to improve water resources
management. The deployment of such a hydrological data assimilation system in a cloud environment, as
shown in this paper, offers several advantages for the application in practical water management problems:
(i) Cloud computing resources can be requested on an on-demand basis, which reduces the financial over-
head for acquiring and maintaining the computation infrastructure that is required for the computationally
demanding ensemble predictions with integrated hydrological models. (ii) Moving to cloud-based computa-
tions is relatively straightforward for ensemble-based methods like the ensemble Kalman filter, which only
require minimal code changes in the forward propagation of the model realisations. (iii) The computational
overhead for cloud-based implementations of ensemble predictions is in an affordable range, as shown for the
tilted V-catchment problem in this paper (iv) Cloud infrastructure is able to provide a seamless integration
of observation data acquired in the field through wireless sensor networks and stochastic real-time simu-
lations with integrated hydrological models for the purpose of data assimilation. Additionally, assessment
and control of such systems can be achieved through customized web services, which ease the usability for
practitioners.

In this paper, we describe the architecture of a fully operational system for a cloud-based modelling and
data assimilation using the integrated hydrological model HydroGeoSphere. Such systems might assist to
tackle a wide range of hydrological problems, like the adaptive operation of well fields, flood forecasting,
monitoring and management of contaminated sites or optimal irrigation scheduling. In the future, we plan
to set up such a system for the Emme catchment in Switzerland, which is equipped with a wireless sensor
network for several hydrological variables, and where accurate predictions of discharge and the effect of
water withdrawal are highly desired by water managers. This will provide more insights into the practical
implementation of cloud-based services in the context of water management.

Code availability

The EnKF-HGS data assimilation software and the CLAUDE driver are available on request from the
authors (email to w.kurtz@fz-juelich.de or andrei.lapin@unine.ch).
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