
Integrating Induction and Coinduction
via Closure Operators and Proof Cycles

Liron Cohen1 and Reuben N. S. Rowe2(B)

1 Department of Computer Science, Ben-Gurion University, Beersheba, Israel
cliron@cs.bgu.ac.il

2 Department of Computer Science, Royal Holloway University of London,
Egham, UK

reuben.rowe@rhul.ac.uk

Abstract. Coinductive reasoning about infinitary data structures has
many applications in computer science. Nonetheless developing natu-
ral proof systems (especially ones amenable to automation) for reason-
ing about coinductive data remains a challenge. This paper presents a
minimal, generic formal framework that uniformly captures applicable
(i.e. finitary) forms of inductive and coinductive reasoning in an intuitive
manner. The logic extends transitive closure logic, a general purpose logic
for inductive reasoning based on the transitive closure operator, with
a dual ‘co-closure’ operator that similarly captures applicable coinduc-
tive reasoning in a natural, effective manner. We develop a sound and
complete non-well-founded proof system for the extended logic, whose
cyclic subsystem provides the basis for an effective system for automated
inductive and coinductive reasoning. To demonstrate the adequacy of the
framework we show that it captures the canonical coinductive data type:
streams.

1 Introduction

The principle of induction is used widely in computer science for reason-
ing about data types such as numbers or lists. The lesser-known principle
of coinduction is used for reasoning about coinductive data types, which
are data structures containing non-well-founded elements, e.g. infinite streams
or trees [7,25,27,32,35,37,44,46,48]. A duality between the two principles is
observed when formulating them within an algebraic, or categorical, frame-
work [49]. However, such formulation does not account well for the way these
principles are commonly used in deduction, where there is a mismatch in how
they are usually applied.

Due to this tension between the abstract theory of coalgebras and its
implementation in formal frameworks [41], coinductive reasoning is generally
not fully and naturally incorporated into major proof assistants (e.g. Coq [7],
Nuprl [20], Agda [8], Idris [9] and Dafny [36]). Even in notable exceptions such
as [33,36,38,44] the combination of induction and coinduction is not intu-
itively accounted for. The standard approach in such formalisations is to define
c© Springer Nature Switzerland AG 2020
N. Peltier and V. Sofronie-Stokkermans (Eds.): IJCAR 2020, LNAI 12166, pp. 375–394, 2020.
https://doi.org/10.1007/978-3-030-51074-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51074-9_21&domain=pdf
http://orcid.org/0000-0002-6608-3000
http://orcid.org/0000-0002-4271-9078
https://doi.org/10.1007/978-3-030-51074-9_21

376 L. Cohen and R. N. S. Rowe

inductive data with constructors and coinductive data with destructors, or obser-
vations [1]. In this paper we propose an alternative approach to formally integrat-
ing induction and coinduction that clearly reveals the duality between the two
principles. Our approach has the advantage that the same signature is shared
for both inductive and coinductive data, making certain aspects of the rela-
tionship between the two principles more apparent. To achieve this, we extend
and combine two powerful frameworks: semantically we follow the approach of
transitive closure logic, a generic logic for expressing inductive structures [3,14–
16,31,39,51]; for deduction, we adopt non-well-founded proof theory [2,5,10–
12,17–19,23,24,26,50,55]. This combination captures the intuitive dynamics of
inductive and coinductive reasoning, reflecting how these principles are under-
stood and applied in practice.

Transitive closure (RTC) logic minimally extends first-order logic by adding
a single, intuitive notion: an operator, RTC , for forming the (reflexive) tran-
sitive closures of an arbitrary formula (more precisely, of the binary relation
induced by the formula). This operator alone is sufficient for capturing all fini-
tary induction schemes within a single, unified language (unlike other systems
that are a priori parametrized by a set of inductive definitions [12,40,42,58]).
Transitive closures arise as least fixed points of certain composition operators. In
this paper we extend RTC logic with the semantically dual notion: an operator,
RTC op, for forming greatest fixed points of these same composition operators.1

We call these transitive co-closures, and show that they are equally as intuitive.
Just as transitive closure captures induction, we show that transitive co-closure
facilitates coinductive definitions and reasoning.

Non-well-founded proof theory formalises the infinite-descent style of induc-
tion. It enables a separation between local steps of deductive inference and global
well-foundedness arguments (i.e. induction), which are encoded in traces of for-
mulas through possibly infinite derivations. A major benefit of these systems
is that inductive invariants do not need to be explicit. On the other hand,
existing approaches for combining induction and coinduction rely on making
(co)invariants explicit within proofs [4,30,59]. In previous work, a non-well-
founded proof system for RTC logic was developed [17,18]. In this paper, we
show that the meaning of the transitive co-closure operator can be captured
proof-theoretically using inference rules having the exact same structure, with
soundness now requiring infinite ascent (i.e. showing productivity) rather than
descent. What obtains is a proof system in which induction and coinduction are
smoothly integrated, and which very clearly highlights their similarities. Their
differences are also thrown into relief, consisting in the way formulas are traced
in a proof derivation. Specifically, traces of RTC formulas show that certain
infinite paths cannot exist (induction is well-founded), while traces of RTC op

formulas show that other infinite paths must exist (coinduction is productive).
To demonstrate that our system naturally captures patterns of mixed induc-

tive/coinductive reasoning, we formalise one of the most well-known examples
of a coinductive data type: streams. In particular, we consider two illustrative

1 The notation RTC op comes from the categorical notion of the opposite (dual)
category.

Integrating Induction and Coinduction via Closure Operators 377

examples: transitivity of the lexicographic ordering on streams; and transitivity
of the substream relation. Both are known to be hard to prove. Our system han-
dles these without recourse to general fixpoint operators or algebraic structures.

The transitive (co-)closure framework is contained in the first-order mu-
calculus [43], but offers several advantages. The concept of transitive (co-)closure
is intuitively simpler than that of general fixed-point operators, and does not
require any syntactic restrictions to ensure monotonicity. Our framework is also
related, but complementary to logic programming with coinductive interpreta-
tions [52,53] and its coalgebraic semantics [34]. Logic programs, built from Horn
clauses, have a fixed intended domain (viz. Herbrand universes), and the seman-
tics of mixing inductive and coinductive interpretations is subtle. Our frame-
work, on the other hand, uses a general syntax that can freely mix closures and
co-closures, and its semantics considers all first-order models. Furthermore, the
notion of proof in our setting is more general than the (semantic) notion of proof
in logic programming, in which, for instance, there is no analogous concept of
global trace condition.

Outline. Section 2 presents the syntax and semantics of the extended logic, RTcC.
Section 3 describes how streams and their properties can be expressed in RTcC.
Section 4 presents non-well-founded proof systems for RTcC, showing soundness
and completeness. Section 5 then illustrates how the examples of Sect. 3 are for-
malised in this system. Section 6 concludes with directions for future work.

2 RTcC Logic: Syntax and Semantics

Transitive closure (RTC) logic [3,15] extends the language of first-order logic
with a predicate-forming operator, RTC , for denoting the (reflexive) transitive
closures of (binary) relations. In this section we extend RTC logic into what we
call transitive (co-)closure (RTcC) logic, by adding a single transitive co-closure
operator, RTC op. Roughly speaking, whilst the RTC operator denotes the set of
all pairs that are related via a finite chain (or path), the RTC op operator gives
the set of all pairs that are ‘related’ via a possibly infinite chain. In Sect. 3 we
show that this allows capturing coinductive definitions and reasoning.

For simplicity of presentation we assume (as is standard practice) a desig-
nated equality symbol. Note also that we use the reflexive transitive closure;
however the reflexive and non-reflexive forms are equivalent in the presence of
equality.

Definition 1 (RTcC Formulas). Let s, t and P range over the terms and pred-
icate symbols, respectively, of a first-order signature Σ. The language LRTcC (of
formulas over Σ) is given by the following grammar:

ϕ,ψ ::=s = t | P (t1, . . . , tn) | ¬ϕ | ∀x . ϕ | ∃x . ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ → ψ |
(RTC x,y ϕ)(s, t) | (RTC op

x,y ϕ)(s, t)

where the variables x and y in the formulas (RTC x,y ϕ)(s, t) and (RTC op
x,y ϕ)(s, t)

must be distinct and are bound in the subformula ϕ, referred to as the body.

378 L. Cohen and R. N. S. Rowe

The semantics of formulas is an extension of the standard semantics of first-
order logic. We write M and ν to denote a first-order structure over a (non-
empty) domain D and a valuation of variables in D, respectively. We denote by
ν[x1 := dn, . . . , xn := dn] the valuation that maps xi to di for each i and behaves
as ν otherwise. We write ϕ {t1/x1, . . . , tn/xn} for the result of simultaneously
substituting each ti for the free occurrences of xi in ϕ. We use (di)i≤n to denote a
non-empty sequence of elements d1, . . . , dn; and (di)i>0 for a (countably) infinite
sequence of elements d1, d2, We use ≡ to denote syntactic equality.

Definition 2 (Semantics). Let M be a structure for LRTcC, and ν a valua-
tion in M . The satisfaction relation M,ν |= ϕ extends the standard satisfaction
relation of classical first-order logic with the following clauses:

M,ν |= (RTC x,y ϕ)(s, t) ⇔
∃(di)i≤n . d1 = ν(s) ∧ dn = ν(t) ∧ ∀i < n .M, ν[x := di, y := di+1] |= ϕ

M, ν |= (RTC op
x,y ϕ)(s, t) ⇔

∃(di)i>0 . d1 = ν(s) ∧ ∀i > 0 . di = ν(t) ∨ M,ν[x := di, y := di+1] |= ϕ

Intuitively, the formula (RTC x,y ϕ)(s, t) asserts that there is a (possibly empty)
finite ϕ-path from s to t. The formula (RTC op

x,y ϕ)(s, t) asserts that either there
is a (possibly empty) finite ϕ-path from s to t, or an infinite ϕ-path starting
at s.

We can connect these closure operators to the general theory of fixed points,
with (RTC x,y ϕ) and (RTC op

x,y ϕ) denoting, respectively, the least and greatest
fixed points of a certain operator on binary relations.

Definition 3 (Composition Operator). Given a binary relation X, we def-
ine an operator ΨX on binary relations, which post-composes its input with X,
by: ΨX(R) = X ∪ (X ◦ R) = {(a, c) | (a, c) ∈ X ∨ ∃b . (a, b) ∈ X ∧ (b, c) ∈ R}.
Notice that the set of all binary relations (over some given domain) forms a
complete lattice under the subset ordering ⊆. Moreover, composition operators
ΨX are monotone w.r.t. ⊆. Thus we have the following standard results, from
the Knaster–Tarski theorem. For any binary relation X, the least fixed point
lfp(ΨX) of ΨX is given by lfp(ΨX) =

⋂{R | ΨX(R) ⊆ R}, i.e. the intersection of
all its prefixed points. Dually, the greatest fixed point gfp(ΨX) of ΨX is given
by the union of all its postfixed points, i.e. gfp(ΨX) =

⋃{R | R ⊆ ΨX(R)}.
Via the usual notion of formula definability, RTC and RTC op are easily seen
to be fixed point operators. For a model M and valuation ν, denote the binary
relation defined by a formula ϕ with respect to x and y by [[ϕ]]M,ν

x,y = {(a, b) |
M,ν[x := a, y := b] |= ϕ}.

Proposition 1. The following hold.

(i) M,ν |= (RTC x,y ϕ)(s, t) iff ν(s) = ν(t) or (ν(s), ν(t)) ∈ lfp(Ψ[[ϕ]]M,ν
x,y

).
(ii) M,ν |= (RTC op

x,y ϕ)(s, t) iff ν(s) = ν(t) or (ν(s), ν(t)) ∈ gfp(Ψ[[ϕ]]M,ν
x,y

).

Integrating Induction and Coinduction via Closure Operators 379

Note that labelling the co-closure ‘transitive’ is justified since, for any model M ,
valuation ν, and formula ϕ, the relation gfp(Ψ[[ϕ]]M,ν

x,y
) is indeed transitive.

The RTC op operator enjoys dualisations of properties governing the transi-
tive closure operator (see, e.g., [16, Proposition 3]) that are either symmetrical,
or involve the first component. This is because the semantics of the RTC op has
an embedded asymmetry between the arguments. Reasoning about closures is
based on decomposition into one step and the remaining path. For RTC , this
decomposition can be done in both directions, but for RTC op it can only be
done in one direction.

Proposition 2. The following formulas, connecting the two operators, are valid.

i) (RTC x,y ϕ)(s, t) → (RTC op
x,y ϕ)(s, t)

ii) ¬(RTC x,y ¬ϕ)(s, t) → (RTC op
x,y ϕ)(s, t)

iii) ¬(RTC op
x,y ¬ϕ)(s, t) → (RTC x,y ϕ)(s, t)

iv) ((RTC op
x,y ϕ)(s, t) ∧ ∃z.¬(RTC op

x,y ϕ)(s, z)) → (RTC x,y ϕ)(s, t)
v) ((RTC op

x,y ϕ)(s, t) ∧ ¬(RTC op
x,y ϕ ∧ y = t)(s, t)) → (RTC x,y ϕ)(s, t)

Note that the converse of these properties do not hold in general, thus they do
not provide characterisations of one operator in terms of the other. A counter-
example for the converses of (ii) and (iii) can be obtained by taking ϕ to be
x = y. Then, for any domain D, the formulas (RTC x,y ¬ϕ), (RTC op

x,y ϕ), and
(RTC op

x,y ¬ϕ) all denote the full binary relation D×D, while (RTC x,y ϕ) denotes
the identity relation on D.

3 Streams in RTcC Logic

This section demonstrates the adequacy of RTcC logic for formalising and rea-
soning about coinductive data types. As claimed by Rutten: “streams are the
best known example of a final coalgebra and offer a perfect playground for the use
of coinduction, both for definitions and for proofs.” [47]. Hence, in this section
and Sect. 5 we illustrate that RTcC logic naturally captures the stream data type
(see, e.g., [29,48]).

3.1 The Stream Datatype

We formalise streams as infinite lists, using a signature consisting of the standard
list constructors: the constant nil and the (infix) binary function symbol ‘::’,
traditionally referred to as ‘cons’. These are axiomatized by:

nil = e ::σ ⇒ (1) e ::σ = e′ ::σ′ ⇒ e = e′ (2) e ::σ = e′ ::σ′ ⇒ σ = σ′ (3)

Note that for simplicity of presentation we have not specified that the ele-
ments of possibly infinite lists should be any particular sort (e.g. numbers). Thus,
the theory of streams we formulate here is generic in this respect. To refer specif-
ically to streams over a particular domain, we could use a multisorted signature

380 L. Cohen and R. N. S. Rowe

containing a Base sort, in addition to the sort List∞ of possibly infinite lists, with
nil a constant of type List∞ and :: a function of type Base × List∞ −→ List∞.
Nonetheless, we do use the following conventions for formalising streams in this
section and in Sect. 5. For variables and terms ranging over Base we use a, b, c, . . .
and e, e′, . . . , respectively; and for variables and terms ranging over possibly infi-
nite lists we use x, y, z, . . . and σ, σ′, . . . , respectively.

The (graphs of) the standard head (hd) and tail (tl) functions are definable2

by hd(σ) = e
def
:= ∃x.σ = e ::x and tl(σ) = σ′ def

:= ∃a.σ = a ::σ′. Finite and
possibly infinite lists can be defined by using the transitive closure and co-closure
operators, respectively, as follows.

List(σ)
def
:= (RTC x,y tl(x) = y)(σ, nil)

List∞(σ)
def
:= (RTC op

x,y tl(x) = y)(σ, nil)

Roughly speaking, these formulas assert that we can perform some number of
successive tail decompositions of the term σ. For the RTC formula, this decom-
position must reach the second component, nil, in a finite number of steps. For
the RTC op formula, on the other hand, the decomposition is not required to
reach nil but, in case it does not, must be able to continue indefinitely.

To define the notion of a necessarily infinite list (i.e. a stream), we specify
in the body that, at each step, the decomposition of the stream cannot actually
reach nil (abbreviating ¬(s = t) by s = t). Moreover, since we are using reflexive
forms of the operators we must also stipulate that nil itself is not a stream.

Stream(σ)
def
:= (RTC op

x,y tl(x) = y ∧ y = nil)(σ, nil) ∧ σ = nil

This technique—of specifying that a single step cannot reach nil and then
taking nil to be the terminating case in the RTC op formula—is a general method
we will use in order to restrict attention to the infinite portion in the induced
semantics of an RTC op formula. To this end, we define the following notation.

ϕinf
x,y(σ)

def
:= (RTC op

x,y (ϕ ∧ y = nil))(σ, nil) ∧ σ = nil

3.2 Relations and Operations on Streams

We next show that RTcC also naturally captures properties of streams. Using the
RTC operator we can (inductively) define the extension relation � on possibly
infinite lists as follows:

σ � σ′ def
:= (RTC x,y tl(x) = y)(σ, σ′)

This asserts that σ extends σ′, i.e. that σ is obtained from σ′ by prepending
some finite sequence of elements to σ′. Equivalently, σ′ is obtained by some
finite number of tail decompositions from σ: that is, σ′ is a suffix of σ.
2 Although hd(σ) and tl(σ) could have been defined as terms using Russell’s

ι

operator,
we opted for the above definition for simplicity of the proof theory.

Integrating Induction and Coinduction via Closure Operators 381

We next formalise some standard predicates.

Contains(e, σ)
def
:= ∃x . σ � x ∧ hd(x) = e

Const(e, σ)
def
:= (x = e :: y)

inf

x,y(σ)

Const→∞(σ)
def
:= ∃x . σ � x ∧ ∃a .Const(a, x)

Contains(e, ·) defines the possibly infinite lists that contain the element denoted
by e; Const(e, ·) defines the constant stream consisting of the element denoted
by e; and Const→∞ defines streams that are eventually constant.

We next consider how (functional) relations on streams can be formalised
in RTcC, using some illustrative examples. To capture these we need to use
ordered pairs. For this, we use the notation 〈u, v〉 for u :: (v :: nil),3 then abbreviate
(RTCw,w′ ∃u, u′, v, v′ . w = 〈u, v〉 ∧ w′ = 〈u′, v′〉 ∧ ϕ) by (RTC 〈u,v〉,〈u′,v′〉 ϕ) (and
similarly for RTC op formulas), and also write ϕinf

〈x1,x2〉,〈y1,y2〉(〈σ, σ′〉) to stand for
(RTC op

〈x1,x2〉,〈y1,y2〉 (ϕ ∧ y1 = nil ∧ y2 = nil))(〈σ, σ′〉, 〈nil, nil〉) ∧ σ = nil ∧ σ′ = nil.

Append and Periodicity. With ordered pairs, we can inductively define (the
graph of) the function that appends a possibly infinite list to a finite list.

σ1
	σ2 = σ3

def
:=

(RTC 〈x1,x2〉,〈y1,y2〉 ∃a . x1 = a :: y1 ∧ x2 = a :: y2)(〈σ1, σ3〉, 〈nil, σ2〉)
We remark that the formulas σ � σ′ and ∃z . z	σ′ = σ are equivalent. To define
this as a function requires also proofs that the defined relation is total and
functional. However, this is generally straightforward when the body formula is
deterministic, as is the case in all the examples we present here. Other standard
operations on streams, such as element-wise operations, are also definable in
RTcC as (functional) relations. For example, assuming a unary function ⊕, we
can coinductively define its elementwise extension to streams ⊕∞ as follows.

⊕∞(σ) = σ′ def
:= (∃a . x1 = a :: y1 ∧ x2 = ⊕(a) :: y2)

inf

〈x1,x2〉,〈y1,y2〉(〈σ, σ′〉)
As an example of mixing induction and coinduction, we can express a predicate
coinductively defining the periodic streams using the append function.

Periodic(σ)
def
:= ∃z . z = nil ∧ (z	y = x)

inf

x,y(σ)

Lexicographic Ordering. The lexicographic order on streams extends point-
wise an order on the underlying elements. Thus, we assume a binary relation
symbol ≤ with the standard axiomatisation of a (non-strict) partial order.

⇒ e ≤ e e ≤ e′, e′ ≤ e′′ ⇒ e ≤ e′′ e ≤ e′, e′ ≤ e ⇒ e = e′

3 Here we use the fact that ‘::’ behaves as a pairing function. In other languages one
might need to add a function 〈·, ·〉, and (axiomatically) restrict the semantics to
structures that interpret it as a pairing function. Note that incorporating pairs is
equivalent to taking 2n-ary operators RTCn and RTC op

n for every n ≥ 1.

382 L. Cohen and R. N. S. Rowe

The lexicographic ordering relation ≤� is captured as follows, where we use e < e′

as an abbreviation for e ≤ e′ ∧ e = e′.

σ ≤� σ′ def
:= (RTC op

〈x1,x2〉,〈y1,y2〉 ψ�)(〈σ, σ′〉, 〈nil, nil〉)
where ψ� ≡ ∃a, b, z1, z2 . x1 = a :: z1 ∧ x2 = b :: z2 ∧

Stream(z1) ∧ Stream(z2) ∧ (a < b ∨ (a = b ∧ z1 = y1 ∧ z2 = y2))

The semantics of the RTC op operator require an infinite sequence of pairs such
that, until 〈nil, nil〉 is reached, each two consecutive pairs are related by ψ�. This
formula states that if the heads of the lists in the first pair are equal, the next
pair of lists in the infinite sequence is their two tails, thus the lexicographic
relation must also hold of them. Otherwise, if the head of the first is less than
that of the second, nothing is required of the tails, i.e. they may be any streams.

Substreams. We consider one stream to be a substream of another if the latter
contains every element of the former in the same order (although it may con-
tain other elements too). Equivalently, the latter is obtained by inserting some
(possibly infinite) number of finite sequences of elements in between those of the
former. This description makes it clearer that defining this relation involves mix-
ing (or, rather, nesting) induction and coinduction. We formalise the substream
relation, � using the inductive extension relation � to capture the inserted finite
sequences, wrapping it within a coinductive definition using the RTC op operator.

σ � σ′ def
:= ψ�

inf

〈x1,x2〉,〈y1,y2〉(〈σ, σ′〉)
where ψ� ≡ ∃a . x1 � a :: y1 ∧ x2 = a :: y2

On examination, one can observe that this relation is transitive. However, prov-
ing this is non-trivial and, unsurprisingly, involves applying both induction and
coinduction. In Sect. 5, we give a proof of the transitivity of � in RTcC. This
relation was also considered at length in [6, §5.1.3] where it is formalised in
terms of selectors, which form streams by picking out certain elements from
other streams. The treatment in [6] requires some heavy (coalgebraic) metathe-
ory. While our proof in Sect. 5 requires some (fairly obvious) lemmas, the basic
structure of the (co)inductive reasoning required is made plain by the cycles in
the proof. Furthermore, the RTcC presentation seems to enable a more intu-
itive understanding of the nature of the coinductive definitions and principles
involved.

4 Proof Theory

We now present a non-well-founded proof system for RTcC, which extends (an
equivalent of) the non-well-founded proof system considered in [17,18] for tran-
sitive closure logic (i.e. the RTC-fragment of RTcC).

Integrating Induction and Coinduction via Closure Operators 383

Γ ⇒ Δ, (RTC x,y ϕ)(s, s) (4)

Γ ⇒ Δ, ϕ {s/x, r/y} Γ ⇒ Δ, (RTC x,y ϕ)(r, t)

Γ ⇒ Δ, (RTC x,y ϕ)(s, t)
(5)

Γ, s = t ⇒ Δ Γ, ϕ {s/x, z/y}, (RTC x,y ϕ)(z, t) ⇒ Δ
(†)

Γ, (RTC x,y ϕ)(s, t) ⇒ Δ
(6)

Γ ⇒ Δ, (RTC op
x,y ϕ)(s, s) (7)

Γ ⇒ Δ, ϕ {s/x, r/y} Γ ⇒ Δ, (RTC op
x,y ϕ)(r, t)

Γ ⇒ Δ, (RTC op
x,y ϕ)(s, t)

(8)

Γ, s = t ⇒ Δ Γ, ϕ {s/x, z/y} , (RTC op
x,y ϕ)(z, t) ⇒ Δ

(‡)
Γ, (RTC op

x,y ϕ)(s, t) ⇒ Δ
(9)

where: (†) z �∈ fv(Γ, Δ, (RTC x,y ϕ)(s, t)); and (‡) z �∈ fv(Γ, Δ, (RTC op
x,y ϕ)(s, t)).

Fig. 1. Proof rules of RTcC∞
G

4.1 A Non-well-Founded Proof System

In non-well-founded proof systems, e.g. [2,5,10–12,23,24,50], proofs are allowed
to be infinite, i.e. non-well-founded trees, but they are subject to the restriction
that every infinite path in the proof admits some infinite progress, witnessed by
tracing terms or formulas. The infinitary proof system for RTcC logic is defined
as an extension of LK=, the sequent calculus for classical first-order logic with
equality and substitution [28,56].4 Sequents are expressions of the form Γ ⇒ Δ,
for finite sets of formulas Γ and Δ. We abbreviate Γ,Δ and Γ, ϕ by Γ ∪ Δ and
Γ ∪{ϕ}, respectively, and write fv(Γ) for the set of free variables of the formulas
in Γ . A sequent Γ ⇒ Δ is valid if and only if the formula

∧
ϕ∈Γ ϕ → ∨

ψ∈Δ ψ is.

Definition 4 (RTcC∞
G). The proof system RTcC∞

G is obtained by adding to LK=

the proof rules given in Fig. 1.

Rules (6), and (8) are the unfolding rules for the two operators that represent
the induction and coinduction principles in the system, respectively. The proof
rules for both operators have exactly the same form, and so the reader may
wonder what it is, then, that distinguishes the behaviour of the two operators.
The difference proceeds from the way the decomposition of the corresponding
formulas is traced in the non-well-founded proof system. For induction, RTC

4 Unlike in the original system, here we take LK= to include the substitution rule.

384 L. Cohen and R. N. S. Rowe

formulas on the left-hand side of the sequents are traced through Rule (6);
for coinduction, RTC op formulas on the right-hand side of sequents are traced
through Rule (8).

Definition 5 (RTcC∞
G Pre-proofs). An RTcC∞

G pre-proof is a rooted, possi-
bly non-well-founded (i.e. infinite) derivation tree constructed using the RTcC∞

G

proof rules. A path in a pre-proof is a possibly infinite sequence S0, S1, . . . (, Sn)
of sequents with S0 the root of the proof, and Si+1 a premise of Si for each i < n.

We adopt the usual proof-theoretic notions of formula occurrence and sub-
occurrence, and of ancestry between formulas [13]. A formula occurrence is called
a proper formula if it is not a sub-occurrence of any formula.

Definition 6 ((Co-)Traces). A trace (resp. co-trace) is a possibly infinite
sequence τ1, τ2, . . . (, τn) of proper RTC (resp. RTC op) formula occurrences in
the left-hand (resp, right-hand) side of sequents in a pre-proof such that τi+1 is
an immediate ancestor of τi for each i > 0. If the trace (resp. co-trace) contains
an infinite number of formula occurrences that are principal for instances of Rule
(6) (resp. Rule (8)), then we say that it is infinitely progressing.

As usual in non-well-founded proof theory, we use the notion of (co-)trace to
define a global trace condition, distinguishing certain ‘valid’ pre-proofs.

Definition 7 (RTcC∞
G Proofs). An RTcC∞

G proof is a pre-proof in which every
infinite path has a tail followed by an infinitely progressing (co-)trace.

In general, one cannot reason effectively about infinite proofs, as found in
RTcC∞

G . In order to do so our attention has to be restricted to those proof trees
which are finitely representable. That is, the regular infinite proof trees, con-
taining only finitely many distinct subtrees. They can be specified as systems of
recursive equations or, alternatively, as cyclic graphs [22]. One way of formalis-
ing such proof graphs is as standard proof trees containing open nodes (called
buds), to each of which is assigned a syntactically equal internal node of the
proof (called a companion). The restriction to cyclic proofs provides the basis
for an effective system for automated inductive and coinductive reasoning. The
system RTcC∞

G can naturally be restricted to a cyclic proof system for RTcC
logic as follows.

Definition 8 (Cyclic Proofs). The cyclic proof system RTcCω
G for RTcC logic

is the subsystem of RTcC∞
G comprising of all and only the finite and regular infi-

nite proofs (i.e. proofs that can be represented as finite, possibly cyclic, graphs).5

It is decidable whether a cyclic pre-proof satisfies the global trace condition,
using a construction involving an inclusion between Büchi automata [10,54].
However since this requires complementing Büchi automata (a PSPACE proce-
dure), RTcCω

G is not a proof system in the Cook-Reckhow sense [21]. Notwith-
standing, checking the trace condition for cyclic proofs found in practice is not
prohibitive [45,57].

5 Note that in [17,18] RTCω
G denoted the full infinitary system for the RTC -fragment.

Integrating Induction and Coinduction via Closure Operators 385

(7)

⇒ (RTC op
x,y ϕ)(u, u)

(Eq)

u = v ⇒ (RTC op
x,y ϕ)(u, v) .

.

.

.

.

.

.

(Ax)

ϕ {u/x, w/y}, (RTCx,y ϕ)(w, v) ⇒ ϕ {u/x, w/y} .
.
.
.

(RTCx,y ϕ)(u, v) ⇒ (RTC op
x,y ϕ)(u, v)

(Subst)

(RTCx,y ϕ)(w, v) ⇒ (RTC op
x,y ϕ)(w, v)

(Wk)

ϕ {u/x, w/y}, (RTCx,y ϕ)(w, v) ⇒ (RTC op
x,y ϕ)(w, v) ∗

(8)

ϕ {u/x, w/y}, (RTCx,y ϕ)(w, v) † ⇒ (RTC op
x,y ϕ)(u, v)

(6)

(RTCx,y ϕ)(u, v) ⇒ (RTC op
x,y ϕ)(u, v)

Fig. 2. Proof in RTcCω
G of (RTC x,y ϕ)(u, v) ⇒ (RTC op

x,y ϕ)(u, v)

Although RTcC∞
G is complete (cf. Theorem 2 below) RTcCω

G is not, since
arithmetic can be encoded in RTcC logic and the set of RTcCω

G proofs is recur-
sively enumerable.6 Nonetheless, RTcCω

G is adequate for RTcC logic in the sense
that it suffices for proving the standard properties of the operators, as in, e.g.,
Proposition 2.

Example 1. Figure 2 demonstrates an RTcCω
G proof that the transitive closure

is contained within the transitive co-closure. Notice that the proof has a single
cycle, and thus a single infinite path. Following this path, there is both a trace
(consisting of the highlighted RTC formulas, on the left-hand side of sequents)
which progresses on traversing Rule (6) (marked †), and a co-trace (consisting
of the highlighted RTC op forumlas, on the right-hand side of sequents), which
progresses on traversing Rule (8) (marked ∗). Thus, Fig. 2 can be seen both as
a proof by induction and a proof by coinduction. It exemplifies how naturally
such reasoning can be captured within RTcCω

G.

A salient feature of non-well-founded proof systems, including this one, is
that (co)induction invariants need not be mentioned explicitly, but instead are
encoded in the cycles of a proof. This facilitates the automation of such reasoning,
as the invariants may be interactively constructed during a proof-search process.

4.2 Soundness

To show soundness, i.e. that all derived sequents are valid, we establish that
the infinitely progressing (co-)traces in proofs preclude the existence of counter-
models. By local soundness of the proof rules, any given counter-model for a
sequent derived by a proof identifies an infinite path in the proof consisting of

6 The RTC -fragment of RTcCω
G was shown complete for a Henkin-style semantics [17].

386 L. Cohen and R. N. S. Rowe

invalid sequents. However, the presence of a (co-)trace along this path entails a
contradiction (and so conclude that no counter-models exist). From a trace, one
may infer the existence of an infinitely descending chain of natural numbers. This
relies on a notion of (well-founded) measure for RTC formulas, viz. the measure
of φ ≡ (RTC x,y ϕ)(s, t) with respect to a given model M and valuation ν—
denoted by δφ(M,ν)—is defined to be the minimum number of ϕ-steps needed to
connect ν(s) and ν(t) in M . Conversely, from a co-trace beginning with a formula
(RTC op

x,y ϕ)(s, t) one can construct an infinite sequence of ϕ-steps beginning at
s, i.e. a witness that the counter-model does in fact satisfy (RTC op

x,y ϕ)(s, t).
The key property needed for soundness of the proof system is the following

strong form of local soundness for the proof rules.

Proposition 3 (Trace Local Soundness). Let M be a model and ν a valu-
ation that invalidate the conclusion of an instance of an RTcC∞

G inference rule;
then there exists a valuation ν′ that invalidates some premise of the inference
rule such that the following hold.

1. If (τ, τ ′) is a trace following the path from the conclusion to the invalid
premise, then δτ ′(M,ν′) ≤ δτ (M,ν); moreover δτ ′(M,ν′) < δτ (M,ν) if the
rule is an instance of (6) and τ is the principal formula.

2. If (τ, τ ′) is a co-trace following the path from the conclusion to the invalid
premise, with τ ≡ (RTC op

x,y ϕ)(s, t) and τ ′ ≡ (RTC op
x,y ϕ′)(r, t′), then: (a)

M,ν[x := d, y := d′] |= ϕ if and only if M,ν′[x := d, y := d′] |= ϕ′, for all ele-
ments d and d′ in M ; and (b) M,ν′ |= ϕ {s/x, r/y} if τ is the principal formula
of an instance of (8), and ν(s) = ν′(r) otherwise.

The global soundness of the proof system then follows.

Theorem 1 (Soundness of RTcC∞
G). Sequents derivable in RTcC∞

G are valid.

Proof. Take a proof deriving Γ ⇒ Δ. Suppose, for contradiction, that there is
a model M and valuation ν1 invalidating Γ ⇒ Δ. Then by Proposition 3 there
exists an infinite path of sequents (Si)i>0 in the proof and an infinite sequence
of valuations (νi)i>0 such that M and νi invalidate Si for each i > 0. Since the
proof must satisfy the global trace condition, this infinite path has a tail (Si)i>k

followed by an infinitely progressing (co-)trace (τ i)i>0.

– If (τ i)i>0 is a trace, Proposition 3 implies an infinitely descending chain of
natural numbers: δτ1(Mk+1, νk+1) ≤ δτ2(Mk+2, νk+2) ≤ . . .

– If (τ i)i>0 is a co-trace, with τ1 ≡ (RTC op
x,y ϕ)(s, t) and M,νk+1 |= τ1, then

Proposition 3 entails that there is an infinite sequence of terms t0, t1, t2, . . .
with s ≡ t0 such that M,νk+1[x:=νk+1(tj), y:=νk+1(tj+1)] |= ϕ for each
j ≥ 0. That is, it follows from Definition 2 that M,νk+1 |= (RTC op

x,y ϕ)(s, t).

In both cases we have a contradiction, so conclude that Γ ⇒ Δ is valid. ��
Since every RTcCω

G proof is also an RTcC∞
G proof, soundness of RTcCω

G is an
immediate corollary.

Corollary 1. A sequent Γ ⇒ Δ is valid if there is an RTcCω
G proof deriving it.

Integrating Induction and Coinduction via Closure Operators 387

4.3 Completeness

The completeness proof for RTcC∞
G is obtained by extending the completeness

proof of the RTC -fragment of RTcC∞
G found in [17,18], which, in turn, follows a

standard technique used in e.g. [12]. We next outline the core of the proof, full
details can be found in the appendix.

Roughly speaking, for a given sequent Γ ⇒ Δ one constructs a ‘search
tree’ which corresponds to an exhaustive search strategy for a cut-free proof
for the sequent. Search trees are, by construction, recursive and cut-free. In
case the search tree is not an RTcC∞

G proof (and there are no open nodes) it
must contain some untraceable infinite branch, i.e. one that does not satisfy
the global trace condition. We then collect the formulas occurring along such
an untraceable branch to construct a (possibly infinite) ‘sequent’, Γω ⇒ Δω

(called a limit sequent), and construct the Herbrand model Mω of open terms
quotiented by the equalities it contains. That is, taking ∼ to be the smallest
congruence on terms such that s ∼ t whenever s = t ∈ Γω, the elements of
Mω are ∼-equivalence classes and every k-ary relation symbol q is interpreted
as {([t1], . . . , [tk]) | q(t1, . . . , tk) ∈ Γω} (here [t] denotes the ∼-equivalence class
containing t). This model, together with the valuation νω defined by νω(x) = [x]
for all variables x, can be shown to invalidate the sequent Γ ⇒ Δ. The com-
pleteness result therefore follows.

Theorem 2 (Completeness). All valid sequents are derivable in RTcC∞
G .

Proof. Given any sequent S, if some search tree for S is not an RTcC∞
G proof then

it has an untraceable branch, and the model Mω and valuation νω constructed
from the corresponding limit sequent invalidate S. Thus if S is valid, then the
search tree is a recursive RTcC∞

G proof deriving S. ��
We obtain admissibility of cut for the full infinitary system as the search tree,

by construction, is cut-free. Since the construction of the search tree does not
necessarily produce RTcCω

G pre-proofs, we do not obtain a regular completeness
result using this technique.

Corollary 2 (Cut admissibility). Cut is admissible in RTcC∞
G .

5 Proving Properties of Streams

We now demonstrate how (co)inductive reasoning about streams and their prop-
erties is formalised in the cyclic fragment of the proof system presented above.
For the sake of clarity, in the derivations below we elide detailed applications of
the proof rules (including the axioms for list constructors), instead indicating
the principal rules involved at each step. We also elide (using ‘. . .’) formulas in
sequents that are not relevant to the local reasoning at that point.

Transitivity of Lexicographic Ordering. Fig. 3 outlines the main structure
of an RTcCω

G proof deriving the sequent x ≤� y, y ≤� z ⇒ x ≤� z, where x, y,

388 L. Cohen and R. N. S. Rowe

(∃R)/(Ax)
···

a < c, . . . ⇒ ψ� {x/x1, z/x2, nil/y1, nil/y2}
(7)

. . . ⇒ nil ≤� nil
(8)

a < c, . . . ⇒ x ≤� z ×3 .
.
.
.
.
.
.

(∃R)/(Ax)
···

a = c, . . . ⇒ ψ� {x/x1, z/x2, x′/y1, z′/y2}

x ≤� y, y ≤� z ⇒ x ≤� z
(Wk)/(Subst)

x
′ ≤� y

′
, y

′ ≤� z
′
, . . . ⇒ x′ ≤� z′ ∗

(8)

a = c, . . . , x
′ ≤� y

′
, y

′ ≤� z
′ ⇒ x ≤� z

(∨L)
x = a :: x′

, y = b :: y′
, z = c :: z′

, a < b ∨ (a = b ∧ x
′ = x

′′ ∧ y
′ = y

′′
1),

b < c ∨ (b = c ∧ y
′ = y

′′
2 ∧ z

′ = z
′′), x

′′ ≤� y
′′
1 , y

′′
2 ≤� z

′′
, . . . ⇒ x ≤� z

(2), (3)

U�(x, y, x
′
, y

′), U�(y, z, y
′′

, z
′) ⇒ x ≤� z

(a) Sub-proof containing non-trivial cases.

.

.

.

.

.

.

.

.

.

.

.

.

(Ax)

x ≤� z ⇒ x ≤� z
(Eq)

x = y = nil, y ≤� z ⇒ x ≤� z

(∃R)/(Ax)
··· (8)

U�(x, y, x
′
, y

′) ⇒ x ≤� w
(Eq)

U�(x, y, x
′
, y

′), w = z = nil ⇒ x ≤� z .
.
.
.
.
.

Figure 3a···
U�(x, y, x

′
, y

′), U�(y, z, y
′′

, z
′) ⇒ x ≤� z

U�(x, y, x
′
, y

′), y ≤� z ⇒ x ≤� z
(9)

z ≤� y, y ≤� z ⇒ x ≤� z

(b) Root of the proof, with trivial cases.

Fig. 3. High-level structure of an RTcCω
G proof of transitivity of ≤�.

and z are distinct variables. All other variables in Fig. 3 are freshly introduced.
U�(σ1, σ2, σ

′
1, σ

′
2) abbreviates the set {ψ� {σ1/x1, σ2/x2, σ′

1/y1, σ′
2/y2} , σ′

1 ≤� σ′
2}

(i.e. the result of unfolding the step case of the formula σ1 ≤� σ2 using σ′
1

and σ′
2 as the intermediate terms).

The proof begins by unfolding the definitions of x ≤� y and y ≤� z, shown
in Fig. 3b. The interesting part is the sub-proof shown in Fig. 3a, when each of
the lists is not nil. Here, we perform case splits on the relationship between the
head elements a, b, and c. For the case a = c, i.e. the heads are equal, when
unfolding the formula x ≤� z on the right-hand side, we instantiate the second
components of the RTC op formula to be the tails of the streams, x′ and z′. In the
left-hand premise we must show ψ� {x/x1, z/x2, x′/y1, z′/y2}, which can be done by
matching with formulas already present in the sequent. The right-hand premise
must derive x′ ≤� z′, i.e. the tails are lexicographically related. This is where we
apply the coinduction principle, by renaming the variables and forming a cycle in

Integrating Induction and Coinduction via Closure Operators 389

(Ax)
···

. . . ⇒ ψ� {x/x1, z/x2, x′/y1, z′/y2}

x � y, y � z ⇒ x � z
(Wk)/(Subst)

x
′ � y

′′
, y

′′ � z
′
, . . . ⇒ x′ � z′ ∗

(8)

x � b :: x′
, z = b :: z′

, x
′ � y

′′
, y

′′ � z
′
, . . . ⇒ x � z .

.

.

.

.

.

.

.

.

.

x
′ � y

′
, y′ � b :: y′′ ⇒ ∃x

′′
. x

′
� b :: x′′ ∧ x

′′ � y
′′ .

.

.

x � a :: x′ , x
′
� b :: x′′ ⇒ x � b :: x′′ .

.

.

.

.

.

(Ax)
···

. . . ⇒ ψ� {x/x1, z/x2, x′/y1, z′/y2} x � y, y � z ⇒ x � z
(Wk)/(Subst)

x
′′ � y

′′
, y

′′ � z
′
, . . . ⇒ x′ � z′ ∗

(8)

x � b :: x′′
, z = b :: z′

, x
′′ � y

′′
, y

′′ � z
′
, . . . ⇒ x � z

(Cut)

x � a :: x′
, x

′
� b :: x′′

, . . . ⇒ x � z

(Cut)

x
′ � y

′
, y

′
� b :: y′′

, . . . ⇒ x � z

(6)

U�(x, y, x
′
, y

′), U�(y, z, y
′′

, z
′) ⇒ x � z

··· (6), sim. fig. 3b

x � y, y � z ⇒ x � z

Fig. 4. High-level structure of an RTcCω
G proof of transitivity of �.

the proof back to the root. This does indeed produce a proof, since we can form
a co-trace by following the formulas x ≤� z, . . . , x′ ≤� z′ on the right-hand side
of sequents along this cycle. This co-trace progresses as it traverses the instance
of Rule (8) each time around the cycle (marked ∗).

Transitivity of the Substream Relation. Fig. 4 outlines the structure of an
RTcCω

G proof of the sequent x � y, y � z ⇒ x � z, for distinct variables x, y, and
z. As above, other variables are freshly introduced, and we use U�(σ1, σ2, σ

′
1, σ

′
2)

to denote the set {ψ� {σ1/x1, σ2/x2, σ′
1/y1, σ′

2/y2}, σ′
1 � σ′

2} (i.e. the result of unfold-
ing the step-case of the formula σ1 � σ2 using σ′

1 and σ′
2 as the intermediate

terms).
The reflexive cases are handled similarly to the previous example. Again,

the work is in proving the step cases. After unfolding both x � y and y � z,
we obtain x′ � y′ and y′′ � z′, as part of U�(x, y, x′, y′) and U�(y, z, y′′, z′),
respectively. We also have (for fresh variables a and b) that: (i) x � a ::x′; (ii)
y = a :: y′ (y′ is the immediate tail of y); (iii) y � b :: y′′ (y′′ is some tail of y);
and (iv) z = b :: z′ (z′ is the immediate tail of z). Ultimately, we are looking
to obtain x � b ::x′′ and x′′ � y′′ (for some tail x′′), so that we can unfold the
formula x � z on the right-hand side to obtain x′′ � z′ and thus be able to form
a (coinductive) cycle.

390 L. Cohen and R. N. S. Rowe

The application of Rule (6) shown in Fig. 4 performs a case-split on the
formula y � b :: y′′. The left-hand branch handles the case that y′′ is, in fact, the
immediate tail of y; thus y′ = y′′ and a = b, and so we can substitute b and
y′′ in place of a and y′, respectively, and take x′′ to be x′. In the right-hand
branch, corresponding to the case that y′′ is not the immediate tail of y, we
obtain y′ � b :: y′′ from the case-split. Then we apply two lemmas; namely: (i) if
x′ � y′ and y′ � b :: y′′, then there is some x′′ such that x′ � b ::x′′ and x′′ � y′′;
and (ii) if x � a ::x′ and x′ � b ::x′′, then x � b ::x′′ (a form of transitivity for
the extends relation). For space reasons we do not show the structure of the
sub-proofs deriving these, however, as marked in the figure, we note that they
are both carried out by induction on the � relation.

In summary the proof contains two (inductive) sub-proofs, each validated
by infinitely progressing inductive traces, and also two overlapping outer cycles.
Infinite paths following these outer cycles have co-traces consisting of the high-
lighted formulas in Fig. 4, which progress infinitely often as they traverse the
instances of Rule (8) (marked ∗).

6 Conclusion and Future Work

This paper presented a new framework that extends the well-known, powerful
transitive closure logic with a dual transitive co-closure operator. An infinitary
proof system for the logic was developed and shown to be sound and com-
plete. Its cyclic subsystem was shown to be powerful enough for reasoning over
streams, and in particular automating combinations of inductive and coinductive
arguments.

Much remains to be done to fully develop the new logic and its proof the-
ory, and to study its implications. Although we have shown that our framework
captures many interesting properties of the canonical coinductive data type,
streams, a primary task for future research is to formally characterise its ability
to capture finitary coinductive definitions in general. In particular, it seems plau-
sible that RTcC is a good candidate setting in which to look for characterisations
that complement and bridge existing results for coinductive data in automata
theory and coalgebra. That is, it may potentially mirror (and also perhaps even
replace) the role that monadic second order logic plays for (ω-)regular languages.

Another important research task is to further develop the structural proof
theory of the systems RTcC∞

G and RTcCω
G in order to describe the natural process

and dynamics of inductive and coinductive reasoning. This includes properties
such as cut elimination, admissibility of rules, regular forms for proofs, focussing,
and proof search strategies. For example, syntactic cut elimination for non-well-
founded systems has been studied extensively in the context of linear logic [5,26].
The basic approach would seem to work for RTcC, however, one expects that
cut-elimination will not preserve regularity.

Through the proofs-as-programs paradigm (a.k.a. the Curry-Howard corre-
spondence) our proof-theoretic synthesis of induction and coinduction has a num-
ber of applications that invite further investigation. Namely, our framework pro-
vides a general setting for verifying program correctness against specifications

Integrating Induction and Coinduction via Closure Operators 391

of coinductive (safety) and inductive (liveness) properties. Implementing proof-
search procedures can lead to automation, as well as correct-by-construction
synthesis of programs operating on (co)inductive data. Finally, grounding proof
assistants in our framework will provide a robust, proof-theoretic basis for mech-
anistic coinductive reasoning.

Acknowledgements. We are grateful to Alexandra Silva for valuable coinductive
reasoning examples, and Juriaan Rot for helpful comments and pointers. We also extend
thanks to the anonymous reviewers for their questions and comments.

References

1. Abel, A., Pientka, B.: Well-founded recursion with copatterns and sized types. J.
Funct. Program. 26, e2 (2016). https://doi.org/10.1017/S0956796816000022

2. Afshari, B., Leigh, G.E.: Cut-free completeness for modal mu-calculus. In: Proceed-
ings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS 2017), Reykjavik, Iceland, 20–23 June 2017, pp. 1–12 (2017). https://doi.
org/10.1109/LICS.2017.8005088

3. Avron, A.: Transitive closure and the mechanization of mathematics. In: Kamared-
dine, F.D. (ed.) Thirty Five Years of Automating Mathematics, Applied Logic
Series. APLS 2013, vol. 28, pp. 149–171. Springer, Netherlands (2003). https://
doi.org/10.1007/978-94-017-0253-9 7

4. Baelde, D.: Least and greatest fixed points in linear logic. ACM Trans. Comput.
Log. 13(1), 2:1–2:44 (2012). https://doi.org/10.1145/2071368.2071370

5. Baelde, D., Doumane, A., Saurin, A.: Infinitary proof theory: the multiplicative
additive case. In: Proceedings of the 25th EACSL Annual Conference on Computer
Science Logic (CSL 2016), 29 August–1 September 2016, Marseille, France, pp.
42:1–42:17 (2016). https://doi.org/10.4230/LIPIcs.CSL.2016.42

6. Basold, H.: Mixed Inductive-Coinductive Reasoning Types, Programs and Logic.
Ph.D. thesis, Radboud University (2018). https://hdl.handle.net/2066/190323

7. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-07964-5

8. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda – a functional language
with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-03359-9 6

9. Brady, E.: Idris, a general-purpose dependently typed programming language:
design and implementation. J. Funct. Program. 23, 552–593 (2013). https://doi.
org/10.1017/S095679681300018X

10. Brotherston, J.: Formalised inductive reasoning in the logic of bunched implica-
tions. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 87–103.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74061-2 6

11. Brotherston, J., Bornat, R., Calcagno, C.: Cyclic proofs of program termination
in separation logic. In: Proceedings of the 35th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL 2008), pp. 101–112 (2008).
https://doi.org/10.1145/1328438.1328453

12. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J.
Log. Comput. 21(6), 1177–1216 (2010). https://doi.org/10.1093/logcom/exq052

https://doi.org/10.1017/S0956796816000022
https://doi.org/10.1109/LICS.2017.8005088
https://doi.org/10.1109/LICS.2017.8005088
https://doi.org/10.1007/978-94-017-0253-9_7
https://doi.org/10.1007/978-94-017-0253-9_7
https://doi.org/10.1145/2071368.2071370
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://hdl.handle.net/2066/190323
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1007/978-3-540-74061-2_6
https://doi.org/10.1145/1328438.1328453
https://doi.org/10.1093/logcom/exq052

392 L. Cohen and R. N. S. Rowe

13. Buss, S.R.: Handbook of proof theory. In: Studies in Logic and the Foundations of
Mathematics. Elsevier Science (1998)

14. Cohen, L.: Completeness for ancestral logic via a computationally-meaningful
semantics. In: Schmidt, R.A., Nalon, C. (eds.) TABLEAUX 2017. LNCS (LNAI),
vol. 10501, pp. 247–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66902-1 15

15. Cohen, L., Avron, A.: Ancestral logic: a proof theoretical study. In: Kohlenbach,
U., Barceló, P., de Queiroz, R. (eds.) WoLLIC 2014. LNCS, vol. 8652, pp. 137–151.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44145-9 10

16. Cohen, L., Avron, A.: The middle ground-ancestral logic. Synthese, 1–23 (2015).
https://doi.org/10.1007/s11229-015-0784-3

17. Cohen, L., Rowe, R.N.S.: Uniform inductive reasoning in transitive closure logic
via infinite descent. In: Proceedings of the 27th EACSL Annual Conference on
Computer Science Logic (CSL 2018), 4–7 September 2018, Birmingham, UK, pp.
16:1–16:17 (2018). https://doi.org/10.4230/LIPIcs.CSL.2018.16

18. Cohen, L., Rowe, R.N.S.: Non-well-founded proof theory of transitive closure logic.
Trans. Comput. Logic (2020, to appear). https://arxiv.org/pdf/1802.00756.pdf

19. Cohen, L., Rowe, R.N.S., Zohar, Y.: Towards automated reasoning in Her-
brand structures. J. Log. Comput. 29(5), 693–721 (2019). https://doi.org/10.1093/
logcom/exz011

20. Constable, R.L., et al.: Implementing Mathematics with the Nuprl Proof Develop-
ment System. Prentice-Hall Inc, Upper Saddle River (1986)

21. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
J. Symbolic Log. 44(1), 36–50 (1979). https://doi.org/10.2307/2273702

22. Courcelle, B.: Fundamental properties of infinite trees. Theor. Comput. Sci. 25,
95–169 (1983). https://doi.org/10.1016/0304-3975(83)90059-2

23. Das, A., Pous, D.: Non-Wellfounded Proof Theory for (Kleene+Action)(Algebras+
Lattices). In: Proceedings of the 27th EACSL Annual Conference on Computer
Science Logic (CSL 2018), pp. 19:1–19:18 (2018). https://doi.org/10.4230/LIPIcs.
CSL.2018.19

24. Doumane, A.: Constructive completeness for the linear-time μ-calculus. In: Pro-
ceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS 2017), pp. 1–12 (2017). https://doi.org/10.1109/LICS.2017.8005075

25. Endrullis, J., Hansen, H., Hendriks, D., Polonsky, A., Silva, A.: A coinductive
framework for infinitary rewriting and equational reasoning. In: 26th International
Conference on Rewriting Techniques and Applications (RTA 2015), vol. 36, pp.
143–159 (2015). https://doi.org/10.4230/LIPIcs.RTA.2015.143

26. Fortier, J., Santocanale, L.: Cuts for circular proofs: semantics and cut-elimination.
In: Rocca, S.R.D. (ed.) Computer Science Logic 2013 (CSL 2013). Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 23, pp. 248–262. Dagstuhl, Ger-
many (2013). https://doi.org/10.4230/LIPIcs.CSL.2013.248

27. Gapeyev, V., Levin, M.Y., Pierce, B.C.: Recursive subtyping revealed. J. Funct.
Program. 12(6), 511–548 (2002). https://doi.org/10.1017/S0956796802004318

28. Gentzen, G.: Untersuchungen über das Logische Schließen. I. Mathematische
Zeitschrift 39(1), 176–210 (1935). https://doi.org/10.1007/BF01201353

29. Hansen, H.H., Kupke, C., Rutten, J.: Stream differential equations: specification
formats and solution methods. In: Logical Methods in Computer Science, vol. 13(1),
February 2017. https://doi.org/10.23638/LMCS-13(1:3)2017

30. Heath, Q., Miller, D.: A proof theory for model checking. J. Autom. Reasoning
63(4), 857–885 (2019). https://doi.org/10.1007/s10817-018-9475-3

https://doi.org/10.1007/978-3-319-66902-1_15
https://doi.org/10.1007/978-3-319-66902-1_15
https://doi.org/10.1007/978-3-662-44145-9_10
https://doi.org/10.1007/s11229-015-0784-3
https://doi.org/10.4230/LIPIcs.CSL.2018.16
https://arxiv.org/pdf/1802.00756.pdf
https://doi.org/10.1093/logcom/exz011
https://doi.org/10.1093/logcom/exz011
https://doi.org/10.2307/2273702
https://doi.org/10.1016/0304-3975(83)90059-2
https://doi.org/10.4230/LIPIcs.CSL.2018.19
https://doi.org/10.4230/LIPIcs.CSL.2018.19
https://doi.org/10.1109/LICS.2017.8005075
https://doi.org/10.4230/LIPIcs.RTA.2015.143
https://doi.org/10.4230/LIPIcs.CSL.2013.248
https://doi.org/10.1017/S0956796802004318
https://doi.org/10.1007/BF01201353
https://doi.org/10.23638/LMCS-13(1:3)2017
https://doi.org/10.1007/s10817-018-9475-3

Integrating Induction and Coinduction via Closure Operators 393

31. Immerman, N.: Languages that capture complexity classes. SIAM J. Comput.
16(4), 760–778 (1987). https://doi.org/10.1137/0216051

32. Jacobs, B., Rutten, J.: A tutorial on (co) algebras and (co) induction. Bull. Eur.
Assoc. Theor. Comput. Sci. 62, 222–259 (1997)

33. Jeannin, J.B., Kozen, D., Silva, A.: CoCaml: functional programming with regular
coinductive types. Fundamenta Informaticae 150, 347–377 (2017). https://doi.org/
10.3233/FI-2017-1473

34. Komendantskaya, E., Power, J.: Coalgebraic semantics for derivations in logic pro-
gramming. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011. LNCS,
vol. 6859, pp. 268–282. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22944-2 19

35. Kozen, D., Silva, A.: Practical coinduction. Math. Struct. Comput. Sci. 27(7),
1132–1152 (2017). https://doi.org/10.1017/S0960129515000493

36. Leino, R., Moskal, M.: Co-induction simply: automatic co-inductive proofs
in a program verifier. Technical report MSR-TR-2013-49, Microsoft Research,
July 2013. https://www.microsoft.com/en-us/research/publication/co-induction-
simply-automatic-co-inductive-proofs-in-a-program-verifier/

37. Leroy, X., Grall, H.: Coinductive big-step operational semantics. Inf. Comput.
207(2), 284–304 (2009). https://doi.org/10.1016/j.ic.2007.12.004

38. Lucanu, D., Roşu, G.: CIRC: a circular coinductive prover. In: Mossakowski, T.,
Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 372–378.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73859-6 25

39. Martin, R.M.: A homogeneous system for formal logic. J. Symbolic Log. 8(1), 1–23
(1943). https://doi.org/10.2307/2267976

40. Martin-Löf, P.: Hauptsatz for the intuitionistic theory of iterated inductive def-
initions. In: Fenstad, J.E. (ed.) Proceedings of the Second Scandinavian Logic
Symposium, Studies in Logic and the Foundations of Mathematics, vol. 63, pp.
179–216. Elsevier (1971). https://doi.org/10.1016/S0049-237X(08)70847-4

41. McBride, C.: Let’s see how things unfold: reconciling the infinite with the inten-
sional (extended abstract). In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO
2009. LNCS, vol. 5728, pp. 113–126. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03741-2 9

42. McDowell, R., Miller, D.: Cut-elimination for a logic with definitions and induction.
Theor. Comput. Sci. 232(1–2), 91–119 (2000). https://doi.org/10.1016/S0304-
3975(99)00171-1

43. Park, D.M.R.: Finiteness is mu-ineffable. Theor. Comput. Sci. 3(2), 173–181
(1976). https://doi.org/10.1016/0304-3975(76)90022-0

44. Roşu, G., Lucanu, D.: Circular coinduction: a proof theoretical foundation. In:
Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 127–
144. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03741-2 10

45. Rowe, R.N.S., Brotherston, J.: Automatic cyclic termination proofs for recursive
procedures in separation logic. In: Proceedings of the 6th ACM SIGPLAN Confer-
ence on Certified Programs and Proofs (CPP 2017), Paris, France, 16–17 January
2017, pp. 53–65 (2017). https://doi.org/10.1145/3018610.3018623

46. Rutten, J.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249(1),
3–80 (2000)

47. Rutten, J.: On Streams and Coinduction (2002). https://homepages.cwi.nl/∼janr/
papers/files-of-papers/CRM.pdf

48. Rutten, J.: The Method of Coalgebra: Exercises in Coinduction. CWI, Amsterdam
(2019)

https://doi.org/10.1137/0216051
https://doi.org/10.3233/FI-2017-1473
https://doi.org/10.3233/FI-2017-1473
https://doi.org/10.1007/978-3-642-22944-2_19
https://doi.org/10.1007/978-3-642-22944-2_19
https://doi.org/10.1017/S0960129515000493
https://www.microsoft.com/en-us/research/publication/co-induction-simply-automatic-co-inductive-proofs-in-a-program-verifier/
https://www.microsoft.com/en-us/research/publication/co-induction-simply-automatic-co-inductive-proofs-in-a-program-verifier/
https://doi.org/10.1016/j.ic.2007.12.004
https://doi.org/10.1007/978-3-540-73859-6_25
https://doi.org/10.2307/2267976
https://doi.org/10.1016/S0049-237X(08)70847-4
https://doi.org/10.1007/978-3-642-03741-2_9
https://doi.org/10.1007/978-3-642-03741-2_9
https://doi.org/10.1016/S0304-3975(99)00171-1
https://doi.org/10.1016/S0304-3975(99)00171-1
https://doi.org/10.1016/0304-3975(76)90022-0
https://doi.org/10.1007/978-3-642-03741-2_10
https://doi.org/10.1145/3018610.3018623
https://homepages.cwi.nl/~janr/papers/files-of-papers/CRM.pdf
https://homepages.cwi.nl/~janr/papers/files-of-papers/CRM.pdf

394 L. Cohen and R. N. S. Rowe

49. Sangiorgi, D., Rutten, J.: Advanced Topics in Bisimulation and Coinduction, 1st
edn. Cambridge University Press, Cambridge (2011)

50. Santocanale, L.: A calculus of circular proofs and its categorical semantics. In:
Nielsen, M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 357–371.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45931-6 25

51. Shapiro, S.: Foundations Without Foundationalism : A Case for Second-order
Logic. Clarendon Press, Oxford Logic Guides (1991)

52. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-logic programming: extending
logic programming with coinduction. In: Arge, L., Cachin, C., Jurdziński, T., Tar-
lecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 472–483. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73420-8 42

53. Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive logic programming.
In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 330–345.
Springer, Heidelberg (2006). https://doi.org/10.1007/11799573 25

54. Simpson, A.: Cyclic arithmetic is equivalent to peano arithmetic. In: Esparza, J.,
Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 283–300. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7 17

55. Sprenger, C., Dam, M.: On the structure of inductive reasoning: circular and tree-
shaped proofs in the μcalculus. In: Gordon, A.D. (ed.) FoSSaCS 2003. LNCS,
vol. 2620, pp. 425–440. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36576-1 27

56. Takeuti, G.: Proof Theory. Dover Books on Mathematics. Dover Publications,
Incorporated, New York (2013)

57. Tellez, G., Brotherston, J.: Automatically verifying temporal properties of pointer
programs with cyclic proof. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI),
vol. 10395, pp. 491–508. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63046-5 30

58. Tiu, A.: A Logical Framework For Reasoning About Logical Specifications. Ph.D.
thesis, Penn. State University (2004)

59. Tiu, A., Momigliano, A.: Cut elimination for a logic with induction and co-
induction. J. Appl. Log. 10(4), 330–367 (2012). https://doi.org/10.1016/j.jal.2012.
07.007

https://doi.org/10.1007/3-540-45931-6_25
https://doi.org/10.1007/978-3-540-73420-8_42
https://doi.org/10.1007/11799573_25
https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.1007/978-3-319-63046-5_30
https://doi.org/10.1007/978-3-319-63046-5_30
https://doi.org/10.1016/j.jal.2012.07.007
https://doi.org/10.1016/j.jal.2012.07.007

	Integrating Induction and Coinduction via Closure Operators and Proof Cycles
	1 Introduction
	2 RTcC Logic: Syntax and Semantics
	3 Streams in RTcC Logic
	3.1 The Stream Datatype
	3.2 Relations and Operations on Streams

	4 Proof Theory
	4.1 A Non-well-Founded Proof System
	4.2 Soundness
	4.3 Completeness

	5 Proving Properties of Streams
	6 Conclusion and Future Work
	References

