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Abs t rac t 
Many researchers have noted the importance of com­
bining inductive and analytical learning, yet we stil l 
lack combined learning methods that are effective 
in practice. We present here a learning method 
that combines explanation-based learning from a 
previously learned approximate domain theory, to­
gether with inductive learning from observations. 
This method, called explanation-based neural net­
work learning (EBNN), is based on a neural net­
work representation of domain knowledge. Explana­
tions are constructed by chaining together inferences 
from multiple neural networks. In contrast with 
symbolic approaches to explanation-based learning 
which extract weakest preconditions from the expla­
nation, EBNN extracts the derivatives of the target 
concept wi th respect to the training example fea­
tures. These derivatives summarize the dependen­
cies within the explanation, and are used to bias 
the inductive learning of the target concept. Ex­
perimental results on a simulated robot control task 
show that EBNN requires significantly fewer train­
ing examples than standard inductive learning. Fur­
thermore, the method is shown to be robust to er­
rors in the domain theory, operating effectively over 
a broad spectrum from very strong to very weak do­
main theories. 

1 The P rob lem 
Analytical learning methods such as explanation-based 
learning (EBL) [DeJong and Mooney, 1986], [Mitchell et 
a/., 1986] use prior knowledge to explain and then gener­
alize from observed training data. While such methods 
may dramatically reduce the number of training exam­
ples needed for successful generalization, in their pure 
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Figure 1: Combin ing induct ive and analyt ical learn­
ing : In the ideal case, a learning system deals with all levels 
of domain theories, i.e., it is robust with respect to severe er­
rors therein. It operates purely inductively if no domain the­
ory is available or the domain theory is random, and purely 
analytically if the domain theory is perfect. 

form they require correct and complete prior knowledge 
of the domain. In contrast, inductive learning meth-
ods require no such prior knowledge, but rely instead 
on many more training examples to guide generaliza­
t ion, together wi th some syntactic inductive bias. One 
of the major open problems in machine learning is to 
combine analytical and inductive learning in order to 
gain the benefits of both approaches: reduced require­
ment for training data, and robustness with respect to 
poor prior knowledge. 

Figure 1 illustrates the spectrum of domain theories 
over which a general learning system should be able to 
operate. At present, we have inductive learning meth­
ods that operate well at the leftmost point on the spec­
t rum, in which no domain theory is available. We also 
have explanation-based methods that operate well on the 
right (under certain assumptions about the character of 
potential errors in the domain knowledge). We seek a 
single unified method, which is 

• R o b u s t wi th respect to severe errors in the domain 
theory, i.e., it should operate across the entire spec­
t rum. In particular, if no domain theory is available 
(or one that is even worse than random), we desire 
that the system learns as well as a purely inductive 
system. At the other extreme, if perfect knowledge is 
available, the system should perform comparably to 
current explanation-based methods. 

• Genera l , i.e., it should be able to employ background 
domain knowledge that it has previously learned from 
scratch, as well as knowledge provided by the designer. 
In particular, we are interested in methods that can 
operate under a broad variety of domain theory er­
rors, such as those typical of inductively learned do-

930 Machine Learning 



Figure 2: Episode: Starting with the initial state s1, the 
action sequence a1, a 2 , . . . , a n - 1 was observed to produce the 
final state sn, a goal state. The domain knowledge repre­
sented by neural networks can be used to explain how the 
observed state-action sequence resulted in achieving the goal. 
EBNN extracts slopes of the target function (i.e., the partial 
derivatives of the goal feature of the final state with respect 
to all features of the initial state) from this explanation. 

main knowledge. We are also interested in interleaving 
learning of the domain theory and the target concept. 

• No ise t o l e r a n t , i.e., it should be able to learn from 
noisy data. Noise may be present both in the features 
that describe instances, and in the given training clas­
sifications. 

2 The E B N N Learn ing A l g o r i t h m 
EBNN is an explanation-based learning method utilizing 
neural network representations that seeks to achieve the 
above three properties. In EBNN, the domain theory is 
represented by a collection of artificial neural networks. 
The target function to be learned is represented sepa­
rately, either by an additional neural network or by an 
alternative representation for real-valued functions (e.g., 
a nearest neighbor scheme). As in symbolic EBL, EBNN 
uses its domain theory to guide learning of the tar­
get function by explaining and analyzing each observed 
training example of the target function in terms of the 
domain theory. The domain theory itself may be learned 
from scratch using Backpropagation [Rumelhart et a/., 
1986] or some other neural network learning procedure, 
either before or during learning of the target function. 

2.1 N e u r a l N e t w o r k D o m a i n Theor ies 
To illustrate EBNN, consider an agent (perhaps a robot) 
which must learn a strategy for choosing which of its 
actions to apply in any given state in order to achieve 
its goal. Consider, for example, the episode shown in 
Figure 2. Starting with an init ial state s1, the sequence 
of actions a1, a 2 , . . . , a n - 1 is observed to produce the goal 
state Sn. The learning task in this case is to acquire the 
concept "the class of states, s, for which the action a wil l 
lead eventually to a goal state." The target function in 
this case is a function from states and actions to [0,1] 
(i.e., a 1 indicates that executing this action in this state 
leads to the goal). Once learned, this evaluation function 
allows the agent to select actions that achieve its goal, 
as in [Watkins, 1989], [Barto et a/., 1991]. 

2.2 E x p l a i n i n g a n d A n a l y z i n g Observed 
Episodes 

One could apply standard explanation-based learning 
methods to this problem, provided the agent initially 

possessed a perfect domain theory describing the effects 
of its actions on the world state. Instead, we consider 
the case where the robot has only an approximate, pre-
viously learned theory of the effects of its actions. This 
domain theory is represented by a collection of neural 
networks, one for each action. The network characteris-
ing action ai takes as input the description of an arbi­
trary state, and produces as output a description of the 
predicted resulting state (i.e., each network represents 
the same information typically represented by symbolic 
precondition-postcondition action descriptions). EBNN 
applies these action model networks to explain and learn 
from each observed episode in which it achieves its goal. 
More precisely, EBNN applies the following three-step 
process to each observed episode: 

1. E x p l a i n : An explanation is a post-facto prediction 
of the observed episode using the domain knowledge. 
Explanations are constructed by using the neural net­
work domain theory to post-facto predict, and thus 
explain, how action a1 applied at state s\ led to the 
observed state s2, how a2 led to S3, and so on. Note 
that predicted states usually deviate from the observed 
ones since inductively learned domain theories are only 
approximately correct. 

2. Ana lyze : The role of the explanation is to elucidate 
how achieving the final goal depends on the various 
features of the observed init ial state, s1. In sym­
bolic EBL, this dependence is used to extract the 
weakest precondition under which the same explana­
tion would have produced the same outcome. Since 
EBNN represents its domain theory by neural net­
works, it is difficult to extract weakest preconditions. 
However, since neural networks are real-valued differ-
entiable functions, EBNN uses the dependencies in the 
explanation to extract the derivatives (i.e., slopes) of 
the final goal feature with respect to each feature of 
the init ial state, s1. More specifically, EBNN examines 
the specific chain of neural net activations and weights 
in the explanation to analytically extract these deriva­
tives. 
To see how this is done, consider the last state-action 
pair (S n - i iOn- i ) shown in Figure 2, which led to the 
goal state sn. Neural networks represent differentiable 
functions. Using the last step of the explanation for 
this episode, the slopes of the goal features of the pre­
dicted final state 8n with respect to sn-1 and an-1 can 
be extracted by computing the derivative of the neural 
network function. These slopes describe the depen­
dence of the final state sn on the previous state Sn-1 
and action a n - 1 . In particular, they measure how in-
finitesimally small changes applied to sn-1 or an-1 
will change the final state sn. The extraction of slopes 
can be chained back through the entire episode by ap­
plying the chain rule of differentiation to the multiple 
explanation steps. The result of this analysis is the 
set of derivatives (slopes) of the target concept (goal 
state) with respect to each state-action pair in the ob­
served episode. As stated above, these slopes measure 
the dependence of the target concept on each of the fea­
tures of the states and actions in the observed episode. 
State features believed (by the domain theory) to be 
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Figure 3: F i t t i n g slopes: Let / be a target function for 
which three examples ( x 1 ( x 1 ) ) , (x 2 , f (x 2 ) ) , and (x 3 , f (x 3 ) ) 
are known. Based on these points the learner might generate 
the hypothesis g. If the slopes are also known, the learner 
can do much better: h. 

irrelevant to achieving the final goal wi l l have partial 
derivatives of zero, whereas large slope values indicate 
the presence of strongly relevant features. 

3. Ref ine : The slopes extracted from the explanation, 
along with the observed training example itself, are 
used to refine the learner's description of the target 
function. The target function in EBNN is represented 
by a separate neural network (or any other represen­
tation appropriate for approximating real-valued func­
tions from sample values and sample slopes). This tar­
get function is incrementally updated with each new 
training example, both inductively and analytically, 
to iteratively approximate the true target function. 
In the episode from our example, each state-action 
pair in the episode, <si,ai >is observed to lead to the 
goal state and thus becomes a training example for in-
ductively and analytically refining the target network. 
The i n d u c t i v e componen t of l ea rn i ng corresponds 
to updating the target network to produce the target 
output value (e.g., 1 if the example leads to achieving 
the goal). Inductive learning is crucial for compensat­
ing for errors in the domain theory. The ana l y t i ca l 
componen t of l e a r n i n g corresponds to updating the 
network to fit the target output slopes, extracted ana­
lytically from the explanation. As shown in Figure 3, 
these slopes influence the learned network by overrid­
ing the default bias of interpolating between observed 
points. Therefore the analytical component in EBNN 
enables more correct generalization from less training 
data, if slopes are sufficiently accurate. In the case 
that the target function is represented by a neural 
network, the Backpropagation algorithm can be ex­
tended to fit slopes as well as values, as may be found 
in [Simard et a/., 1992]. 

To summarize, the target function is iteratively approx­
imated by updating it (a) inductively, to fit the empiri­
cally observed training values of the target function, and 
(b) analytically, to fit the analytically derived training 
slopes obtained by explaining the observed example in 
terms of a previously learned domain theory. 

2.3 A c c o m m o d a t i n g I m p e r f e c t D o m a i n 
Theor ies 

Since the domain theory is learned inductively from 
training instances3, its accuracy might be arbitrari ly 

Figure 4: a. The simulated robot world, b. The squared 
generalization error of the domain theory networks decreases 
monotonically as the amount of training data increases. 
These nine alternative domain theories were used in the ex­
periments. 

poor, resulting in arbitrari ly poor explanations and ex­
tracted slopes. How can the learner avoid the damaging 
effects of such incorrect slopes arising from a poor do­
main theory? 

EBNN reduces the undesired influence of incorrect do­
main theory predictions by estimating the accuracy of 
the extracted slopes, based on the fit between the ob­
served sequence of states and those predicted by the ex­
planation (the underlying assumption "prediction errors 
measure slope errors" is called LOB*) . More specifically, 
each time the domain theory is used for post-facto pre­
dicting a state sK+1 its prediction sK+1 may deviate 
from the observed state sK+1

observe. We define the 1-step 
prediction accuracy at state sk, denoted by c1\(i), as 1 
minus the normalized prediction error: 

3This process of inductively learning the domain theory is 
not to be confused with learning the target function. 
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For a given episode we define the n-step accuracy cn( i) 
as the product of the 1-step accuracies in the next n 
steps. The n-step accuracy, which measures the accu­
racy of the extracted slopes n steps away from the end 
of the episode, possesses three desirable properties: a. It 
is 1 if the learned domain theory is perfectly correct, b. it 
decreases monotonically as the length of the chain of in­
ferences increases, and c. it is bounded below by 0. The 
n-step accuracy is used to determine the ratio by which 
the analytical and inductive components are weighted 
when learning the target function. If an observation is 
n steps away from the end of the episode, the analyt­
ically derived training information (slopes) is weighted 
by the n-step accuracy times the weight of the inductive 
component (values). Although the experimental results 
reported in Section 2.4 are promising, the generality of 
this approach is an open question, due to the assumption 
LOB*. 

2.4 E x p e r i m e n t a l Resu l ts 
EBNN was evaluated in a simulated robot navigation 
domain. The world and the action space are depicted 
in Figure 4a. The learning task is to find an evaluation 
function Q for which the greedy policy navigates the 
agent to its goal location (circle) from arbitrary starting 
locations, while avoiding collisions wi th the walls or the 



Figure 5: E B N N : Performance curves for EBNN with 
(black) and without (gray) analytical training information 
(slope fitting) for three examples each, measured on an in-
dependent set of problem instances. The dashed lines indi­
cate average performance. In this experiment, the agent used 
well-trained predictive action models as its domain theory. 

obstacle (square). States are described by the local view 
of the agent, in terms of distances and angles to the 
center of the goal and to the center of the obstacle. Note 
that the world is deterministic in these experiments, and 
there is no sensor noise. 

In order to allow exploration of the robot environment 
and to compensate for the necessary non-optimal ac­
tion choices, we applied EBNN to Watkins'Qi-Learning 
[Watkins, 1989] together with Sutton's temporal differ­
ence learning TD [Sutton, 1988] (with = 0.7 and 
a reward discount = 0.8)4. Each discrete action was 
modeled in the domain theory by a separate neural net­
work. We used neural network Backpropagation learning 
for learning action models. The evaluation functions Q 
were approximated by an instance-based local approxi­
mation technique, modeling Q separately for each action. 
In this instance-based technique, each training instance 
together with its slopes was explicitly memorized. Given 
a new point as a query, generalization was achieved by 
fitting a local second order polynomial over the three 
nearest neighbors in the instance memory. This polyno­
mial fit both the values and the slopes. In our init ial 
experiments, this instance-based technique was found to 
outperform neural networks for representing the target 
functions. 

E x p e r i m e n t 1: "What is the impact of the analyt­
ical component of EBNN, given a strong domain the­
ory?" In the first experiment, we init ial ly allowed the 
agent to train each of the action modeling networks that 
form its domain theory using 8 192 randomly generated 
training examples. This results in a fairly accurate, but 
sti l l imperfect, domain theory. Figure 5 shows results of 
applying EBNN using this pre-learned domain theory, 
compared to using just the inductive learning compo­
nent alone. In this figure, the performance was measured 
on an independent test set of 20 init ial locations. Both 
techniques exhibit asymptotically the same performance 
and learn the desired control function successfully. How-

4 We will omit the somewhat lengthy details here, since 
they are not essential for the understanding of EBNN. See 
[Mitchell and Thrun, 1993b] for a detailed description. 

Figure 6: How does domain knowledge improve general­
ization? a. Averaged results for EBNN domain theories of 
differing accuracies, pre-trained with from 5 to 8 192 train­
ing examples for each action model network. In contrast, the 
bold gray line reflects the learning curve for pure inductive 
learning, i.e., Q-Learning and TD(A). b. Same experiments, 
but without weighting the analytical component of EBNN 
by its accuracy, illustrating the importance of LOB*. All 
curves are averaged over 3 runs and are also locally window-
averaged. The performance (vertical axis) is measured on an 
independent test set of starting positions. 

ever, there is a significant reduction in the number of 
training episodes needed by EBNN in order to reach the 
same level of performance as inductive learning (i.e., the 
EBNN learning curve is steeper, indicating more correct 
generalization from the same data). 

E x p e r i m e n t 2: "How does EBNN degrade with pro­
gressively weaker domain theories?" We repeated Exper­
iment 1 using weaker domain theories, trained with 5, 10, 
20, 35, 50, 75, 100, 150, and 8192 training examples per 
action network (c.f. Figure 4b). Figure 6a shows clearly 
that (1) EBNN outperforms purely inductive learning at 
all accuracy levels, and (2) the more accurate the domain 
theory, the steeper the learning curve. Thus, EBNN in 
this experiment degrades gracefully to the performance 
of a pure inductive system as the accuracy of the domain 
theory decreases. 

E x p e r i m e n t 3: "How important is the heuristic 
LOB* for the graceful degradation of EBNN?" We then 
repeated Experiment 2 without weighting the slopes rel­
ative to their observed accuracy. Figure 6b shows the 
results. For high-quality domain theories, the learning 
curves are not affected. As the quality of the domain 
theory decreases, however, the learning speed of EBNN 
without LOB* is significantly worse than pure inductive 
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learning. This result justifies LOB* and illustrates its 
importance in EBNN. 

3 Related work 
Recent research has produced a variety of proposals for 
combining inductive and analytical learning methods 
(e.g., see the Workshop of Combining Inductive and An­
alytical Learning [Machine Learning Workshop, 1989]), 
though none of these achieves a final solution to the 
problem. Indeed, as research in this area matures we 
may find that mult iple approaches are needed, depend­
ing on the type of representations used for the domain 
theory and target function (e.g., first order domain theo­
ries versus prepositional, or discrete-valued target func­
tions versus real-valued). Approaches differ in the types 
of domain theory imperfections they can accommodate, 
the representations they use for the domain theory and 
the target concept, and the particular mechanisms by 
which they combine inductive and analytical compo­
nents. Mechanisms for combining induction and analysis 
can be grouped roughly into three categories: 

• A n a l y t i c a l , t h e n i n d u c t i v e . Here, each training 
example is first generalized analytically, and inductive 
methods are then applied to the results. For exam­
ple, Hirsh's IVSM [Hirsh, 1989] applies explanation-
based generalization to each training example, then 
combines the results from different examples using an 
inductive method based on version spaces. In some 
systems, it is the explanations over which induction 
is applied (e.g., [Dietterich and Flann, 1988], [Kedar-
Cabelli, 1988]). In others, inductive methods are ap­
plied to the remaining unexplained features to catch 
relevant features that may have been missed by the 
domain theory (e.g., [Mooney and Ourston, 1989]). 

• I n d u c t i v e , t h e n ana l y t i ca l . Lebowitz [Lebowitz, 
1987] has suggested an approach in which statistical 
regularities are first found from a large set of data. 
These empirical regularities (e.g., "midwest congress­
man typically vote in favor of farm subsidies") are then 
explained (e.g., "midwest states contain many farm­
ers" , "congressmen typically vote to help their voters") 
in order to further refine them and guide the search 
for variants on this regularity. 

• I n te r l eave i n d u c t i v e a n d ana l y t i ca l processes. 
Some systems interleave inductive and analytical 
steps. For example, Bergadano and Giordana 
[Bergadano and Giordana, 1990] construct the expla­
nation not for one example, but simultaneously con­
sidering all available examples. Systems such as Van-
Lehn's [VanLehn, 1987], Hall's [Hall, 1988], and Paz-
zani's [Pazzani, 1989] learn by inductively fi l l ing in 
the gaps in incomplete explanations. Others such as 
Widmer [Widmer, 1989] and Mahadevan [Mahadevan, 
1989] use abstracted domain knowledge such as de­
terminations [Russell, 1988] to form abstract explana­
tions, and then to specialize the domain theory based 
on the observed example. Oursten and Mooney pro­
pose a system that inductively refines an ini t ial do­
main theory based on noisy training data [Ourston 
and Mooney, 1991] using IDS'[Quinlan, 1986] as the 

inductive component. Like EBNN, their system is 
able to deal with a whole spectrum of domain theo­
ries, from weak to strong. Rosenbloom and Aasman 
[Rosenbloom and Aasman, 1990] and Miller and Laird 
[Miller and Laird, 1991] have demonstrated that in­
duction can be achieved wi th purely analytical learn­
ing mechanisms by inserting appropriate "inductive 
rules" into the domain theory. 

The EBNN method presented here falls into the first of 
these categories: each example is explained to extract 
general information, and the results of these explana­
tions are then combined. However, EBNN differs signif­
icantly from previous explanation-based approaches in 
that it is based on neural network representations for 
both the domain theory and the target concept. This 
leads to two useful properties. First, it enables the use 
of standard inductive methods for learning the domain 
theory from noisy data (e.g., it can use Backpropagation 
[Rumelhart et a/., 1986], or EBNN itself). Second, it 
provides a natural method for incrementally refining the 
learned target concept based both on observed training 
examples (the inductive component) and on information 
extracted from explanations (the analytical component). 

Researchers working on neural network learning meth­
ods have also noted the importance of using prior knowl­
edge to learn more complex functions from less training 
data. For example, Simard and colleagues [Simard et 
a/., 1992] have shown that network training algorithms 
can be developed that fit certain types of user-provided 
constraints on the target function. They developed a sys­
tem for recognizing visual objects, constraining the net­
work output to be invariant to translation of the object 
within the image. The key difference between this work 
and EBNN is that in Simard's work the designer must 
embed his own knowledge into a task-specific learning al­
gori thm, whereas EBNN is a task-independent method 
that learns and then uses its own prior (learned) knowl­
edge to constrain subsequent learning. 

Others, such as Shavlik and Towell [Shavlik and Tow-
ell, 1989], Fu [Fu, 1989] and Mahoney and Mooney [Ma-
honey and Mooney, 1992] have proposed methods that 
use explicitly represented domain knowledge to bias neu­
ral network learning by init ializing the network to reflect 
this prior knowledge. In their methods, a symbolic do­
main theory is used to define a neural network (both its 
topology and weights) so that it infers exactly the same 
example classifications as the given domain theory. This 
network is then refined inductively using Backpropaga­
tion. EBNN differs from this approach in that (1) EBNN 
constructs a distinct explanation for each observed ex­
ample, rather than "compil ing" the domain theory in 
one shot into a neural network, (2) EBNN uses a self-
learned domain theory represented by neural networks, 
rather than a user-provided domain theory represented 
by symbolic rules, (3) because it uses the domain theory 
to explain each example, EBNN can use available data to 
refine both the domain theory and target concept, with 
domain theory improvements having a direct effect on 
subsequent analytical steps. 
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4 Discussion 

This paper presents a learning method, EBNN, which 
combines inductive and analytical learning. An induc­
tively learned approximate domain theory is used to 
guide learning a separate target function, by a combined 
inductive and analytical process. The domain theory in 
EBNN is represented by a collection of learned neural 
networks (e.g., one to model each action in our robotic 
example). The target function (e.g., the state-action 
evaluation function in our example) may be represented 
by any approximator for real-valued functions that can 
fit both training values and training slopes of the tar­
get function. F i t t ing the observed training values pro­
vides a purely inductive component for learning the tar­
get function, whereas fitting the slopes extracted from 
explanations provides the analytical component. EBNN 
is demonstrated to learn the target function better from 
fewer examples, when compared against purely inductive 
learning, and to degrade gracefully as the quality of the 
domain theory decreases. The LOB* heuristic appears 
effective as a means for decreasing the contribution of 
the analytical component for those training examples for 
which the domain theory produces poor explanations. 

EBNN at least partially fulfills all three of the require­
ments discussed in section 1, i.e., it is robust, general, and 
in part noise tolerant. It is robust to errors in the domain 
theory, because inaccurate slopes resulting from inaccu­
rate domain knowledge are identified and their effect re­
duced, via the n-step accuracy estimate, and because the 
inductive learning component competes with the analyt­
ical learning component. It is general, since no a priori 
domain knowledge is required to initialize the system-it 
can learn the necessary domain theory inductively. Fur­
thermore, it is noise tolerant to the extent that neural 
networks are capable of dealing with noisy training data. 

While these first results suggest EBNN is a promising 
learning method, there are a number of significant issues 
that warrant further research: 

• In contrast to many other approaches to EBL which 
utilize first-order predicate logic to represent domain 
knowledge, the EBNN domain theory expressed by 
neural networks is propositional. 

• The capability of EBNN in stochastic domains is un­
clear, since the LOB* heuristic for weighting the an­
alytical component of learning relies on the observed 
prediction error of the deterministic predictions of the 
domain theory. 

• Derivatives, or slopes, represent only one kind of 
knowledge that can be analytically extracted from ex­
planations. It would be interesting to extract other 
forms of knowledge as well, to further accelerate learn­
ing. 

• There are several fundamental differences between 
EBNN and explanation-based approaches that utilize 
symbolic representations. For example, representing 
the target function by a single neural network, instead 
of a collection of learned rules, leads to different scal­
ing problems. When learning collections of rules, the 
learner can encounter a slowdown in overall perfor­

mance arising from the rising cost of matching an in-
creasing number of learned rules. If the target func­
tion is instead represented by a single neural network, 
there is no corresponding slowdown as learning pro­
ceeds. However, a different scaling issue arises: the 
correctness of the single-network approximation to the 
target function might degrade when learning very com­
plex target functions. See [Mitchell and Thrun, 1993a] 
for a detailed discussion of these issues. 

• In EBNN, the complete domain theory is learned from 
scratch. If a priori domain knowledge is available, it 
wil l be interesting to study the correspondence and 
the interaction between learned and pre-given domain 
theories. 
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