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Abstract. This paper presents the first framework for integrating pro-
cedural knowledge, or “know-how”, into the Linked Data Cloud. Know-
how available on the Web, such as step-by-step instructions, is largely
unstructured and isolated from other sources of online knowledge. To
overcome these limitations, we propose extending to procedural knowl-
edge the benefits that Linked Data has already brought to representing,
retrieving and reusing declarative knowledge. We describe a framework
for representing generic know-how as Linked Data and for automati-
cally acquiring this representation from existing resources on the Web.
This system also allows the automatic generation of links between differ-
ent know-how resources, and between those resources and other online
knowledge bases, such as DBpedia. We discuss the results of applying
this framework to a real-world scenario and we show how it outperforms
existing manual community-driven integration efforts.

1 Introduction

The Web contains a large amount of procedural knowledge, or know-how, in many
domains of human interests, ranging from cooking recipes to software tutorials
and social skills. As such, it has become one of the major sources of knowl-
edge for anybody who is interested in performing a task. Online knowledge also
has the potential for helping machines to understand and reason over common-
sense human activities [9]. However, the potential for applying this knowledge
is severely restricted due to its lack of structure, the diversity of representation
formats and its isolation from other knowledge sources. In this context, we argue
that Linked Data is an ideal representation for overcoming these restrictions on
using know-how at web-scale. The main contributions of this paper are:

– The description of the first framework that can automate the creation and
the integration of know-how into the Linked Data Cloud.

– The validation of this framework with a concrete implementation which out-
performs existing know-how integration efforts.



The main benefit of a formal representation of human know-how is to allow ma-
chines to better understand human processes, making them reusable in different
applications. We adopt a generic definition of the term process which includes
any entity which has the potential for being performed, such as step-by-step
instructions.

We present a framework that overcomes the limitations of the existing know-
how and enables it to be integrated into the Linked Data Cloud. This framework
can be divided in two components:

– Knowledge Extraction and Representation. This framework allows the auto-
matic formalization of existing know-how based on a generic and lightweight
Linked Data vocabulary. This component addresses the limitation of the lack
of explicit structure and shared semantics.

– Linked Data Integration. This framework can automatically discover links
between processes and other existing Linked Data. This component addresses
the problem of the isolation of individual processes from related knowledge.

This framework has been implemented and validated in a real-world scenario. We
have applied it to two different large-scale know-how repositories and created a
Linked Data representation of over 200,000 processes. These processes have been
integrated both with each other and with DBpedia [2]. We have compared the
quality of the results with existing user-generated links and we have tested them
in a practical application.

2 Problem Formulation

The problem addressed by this paper is the effective integration of a particular
kind of procedural knowledge, that we call human know-how, into the Linked
Data Cloud. The integration will be considered effective if the quality of the
generated links can be shown superior to a real-world benchmark. We define
human know-how as the procedural knowledge that involves humans as the main
actors. Other well-known types of procedural knowledge, such as programming
languages or business workflows, are excluded by this definition as they are meant
to be executed by artificial agents such as computers. The formal representation
of human know-how presents some unique challenges:

– Knowledge can be vague, erroneous or missing. For example, the details on
how to perform a step might not be specified.

– Knowledge is distributed across different repositories on the Web.
– Knowledge is in constant evolution. New processes can be defined and exist-

ing processes can be modified.

Considering these challenges, we propose two requirements that are necessary to
make human know-how machine understandable. The first requirement is that
the knowledge representation language needs to be generic and lightweight. A
generic representation is required because human know-how covers many differ-
ent domains. This representation also needs to be lightweight in order to avoid



inconsistencies or wrong inferences when integrating conflicting or erroneous
information from distributed sources. This does not exclude the possibility of
adopting other logic-heavy representations if required for specific applications.

The second requirement is that it should be possible to automatically gener-
ate structured knowledge about a process from the unstructured user-generated
representation. A manual approach is impractical for two reasons: first, because
of the large number of existing know-how resources and second, because of their
evolution over time, which would require constant revisions.

3 Related Work

3.1 Procedural Knowledge Representation

There is a rich body of research into methods of representing and reasoning with
procedural knowledge, for example in the Automated Planning and Problem
Solving Methods fields. These systems, however, are not sufficiently lightweight
and generic to conveniently represent human know-how. Logic-heavy represen-
tations, such as OWL-S [8] and the Process Specification Language (PSL) [4],
require the information about a process to be complete and correct. Their ap-
plication in the human know-how domain is therefore inconvenient, as it would
constantly face the problem of inconsistencies and wrong inferences.

Another limitation of existing languages is domain specificity. OWL-S, for
example, defines a process as a “specification of the ways a client may interact
with a service” [8]. This definition is not compatible with a more general inter-
pretation of a process which might not involve neither clients nor services. Lastly,
languages might not be sufficiently expressive. For example, the vocabulary de-
fined by Schema.org4 currently lacks relations to define the decomposition of a
process into steps. The arguments that we have made to show the limitations of
OWL-S, PSL and Schema.org can also be applied to other existing languages.

3.2 Human Know-How Extraction

Several research projects have already attempted to extract human know-how
from manually generated instructions. One of the most frequent approaches,
based on Natural Language Processing (NLP), has been used to extract knowl-
edge from domain-independent know-how repositories, such as wikiHow5 [1], [6]
as well as domain-specific ones, like the medical domain [12]. An approach based
on statistical analysis has also been used to extract procedural knowledge from
a more diverse set of Web documents not necessarily focused on know-how [3].

These approaches were used to obtain a deep logical understanding of the
processes which resulted in a loss of accuracy, as most user-generated instructions
are inherently vague and cannot be analyzed reliably. Our system, instead, does
not require a particular level of detail in the formalization. For this reason, the
4 http://schema.org/
5 http://www.wikihow.com/



Fig. 1. Diagram of the human know-how integration framework

structure of a process is extracted only when this can be done with confidence.
This situation occurs when such structure already exists, for example when the
steps of a process have been clearly divided into an ordered list.

3.3 Applications of Human Know-How

A machine understandable representation of human know-how can be applied
in a wide variety of areas ranging from Information Retrieval to Service Recom-
mendation [9]. Two notable applications will be discussed here, namely Activity
Recognition and process automation. The goal of Activity Recognition is to iden-
tify a top level activity (or intention) from a set of observations [7]. The intention
of preparing tea, for example, could be inferred after observing an agent boiling
water and placing a tea bag in a cup. A challenge faced by Activity Recogni-
tion systems is the acquisition of a model of the activities to be recognized. This
model can be extracted from human know-how on the Web and used to recognize
common human activities [11].

Another notable application of formalized human know-how involves the au-
tomation of activities. One experiment that attempted this kind of automation
employed a robotic agent [13]. This agent attempted to perform the activity of
preparing a pancake by following user-generated instructions retrieved from a
wikiHow website. This experiment explored the potential of human know-how
for process automation and highlighted the importance of integrating individual
processes with external sources of knowledge. Artificial agents, in fact, require
more information about a process than what can typically be extracted from a
single set of instructions, as they lack human common sense. Knowledge about
an ingredient, for example, allowed the agent to learn what it looked like and
whether, by virtue of being perishable, it might be found in the refrigerator.

4 Methodology

The integration of human know-how into the Linked Data Cloud requires solving
a number of different problems. The most important of those are the representa-



Table 1. The vocabulary to represent processes

Prefix Namespace

prohow: http://vocab.inf.ed.ac.uk/prohow#

Term Definition when X is the subject and Y is the object

prohow:has_step Y can help accomplishing/obtaining X

prohow:has_method Y can be accomplished/obtained instead of X

prohow:requires Y should be accomplished/obtained before doing X

tion of know-how as Linked Data and the generation of links to external sources
of information. Our framework addresses each of those issues with a different
component. Figure 1 schematizes the general workflow of our system. The input
of the system is a set of human know-how resources. These resources are ana-
lyzed by the first component of our framework, namely Knowledge Extraction
and Representation, and converted into Linked Data. This Linked Data rep-
resentation is integrated with the Linked Data Cloud by the second component
of our framework: Linked Data Integration. This last component generates
two kinds of links, namely links to DBpedia (DBpedia links) and links between
processes (decomposition links). More details about these two components will
be provided in the next subsections.

4.1 Knowledge Extraction and Representation

In section 3.1 we discussed several issues in reusing existing knowledge repre-
sentation languages in the human know-how domain. This lead us to the de-
velopment of a Linked Data vocabulary which is both lightweight and generic
[10]. This vocabulary is sufficient to represent the two main concepts that can
be reliably extracted from semi-structured human know-how. These concepts,
namely dependencies and process decompositions, play a key role in most pro-
cedural knowledge representation formalisms. This vocabulary is based on just
three properties, as shown in Table 1.

prohow:has step This property can be used to decompose a complex process
into its various sub-processes. For example, this property could connect the
process “make a pancake” with its step “mix the ingredients”.

prohow:has method This property can connect a process with an alternative
way of achieving it. For example, this property could connect the process
“make a pancake” with the more specific process “make a lemon pancake”.

prohow:requires This property defines a dependency between two entities. The
process “put the mix on a pan”, for example, depends on the process “mix
the ingredients”, which should be done in advance.

These relations can also be used to connect processes with objects. In our exam-
ple, the process “put the mix on a pan” could specify the object “pancake mix”
as a requirement using the prohow:requires relation. In the human know-how
domain, the distinction between processes and objects is often vague.



Fig. 2. Extraction of the Linked Data representation of human know-how

Knowledge Extraction from Know-How Repositories. Our approach to
knowledge extraction is focused on semi-structured resources. Examples of those
resources can be found in the wikiHow and Snapguide6 websites. The structure
of those resources typically contains: (1) a title denoting the main task that
the process achieves, (2) the category of the process, (3) a list of the distinct
requirements of the process, (4) a hierarchical structure of the steps of the process
and (5) the order in which the various steps should be performed. Our approach
extracts this structure to reliably decompose a process into a number of entities
and relations. A simplified example of such extraction is depicted in Figure 2.
Each extracted entity is given a unique URI and it is linked with the other
entities of the same process. Finally, each entity is connected with its human-
understandable representation using the Open Annotation Data Model.7

The main advantages of our approach are two. First, our extraction is accu-
rate because it is only based on the existing structure of the processes. Second,
our approach is applicable to processes described in different formats, like pic-
tures and videos, as it does not rely on format-specific techniques like NLP. The
main disadvantage of our approach is that it is only applicable to semi-structured
resources. We argue that this is not a severe limitation because a large amount
of know-how on the Web has some degree of structure. This structure is sponta-
neously created by Web users as it leads to less ambiguous instructions which are
more human understandable. Like the DBpedia project [2], our system exploits
the existing structure of a particular kind of Web repositories to create a large
and generic nucleus of Linked Data.

4.2 Linked Data Integration

The representation of human know-how as Linked Data is an important step in
making such processes machine understandable. The benefits of this represen-
tation, however, are limited by the amount of knowledge contained in a single
6 http://snapguide.com/
7 http://www.openannotation.org/



set of instructions. Instructions on “how to apply for a job”, for example, might
mention the step “submit a resume” without explaining what a “resume” is, and
how it can be produced. This is a limitation for human users, which might need
to search for additional knowledge in order to understand the instructions. This
limitation is even more critical for machines, which cannot compensate for the
missing knowledge with common sense.

Linked Data integration can overcome this limitation by allowing artificial
agents to complement the information contained in a single set of instructions
with existing related knowledge. Linked Data is the ideal infrastructure for this
type of integration, as it allows the creation of links between distributed knowl-
edge sources on the Web. Our framework allows the discovery of two of the most
common kinds of links for human know-how. The first kind follows the concepts
of inputs and outputs by linking the objects involved in a process with the cor-
responding DBpedia entities of the same type. The second kind links the steps
of a process with other related processes. It should be noted that our Linked
Data Integration component creates new links which did not exist before. Un-
like our Knowledge Extraction and Representation component, it is not only
based on user-generated structure but it utilizes also other techniques, like NLP
and Machine Learning, which result in a margin of error.

DBpedia Links. Integrating human know-how with DBpedia involves finding
links between procedural and declarative knowledge. Two of the most common
relations at the intersection of these types of knowledge are the concepts of
inputs and outputs. The process “make a pancake”, for example, can be seen
as a process which outputs an object of type “pancake” and requires, among
others, the ingredient “milk” as an input. Our system attempts to identify the
DBpedia type of inputs and outputs by analyzing their textual label. The label
of each entity is processed by the DBpedia Lookup service8 to identify related
DBpedia entities. Among those entities, our system chooses the one which has
the highest textual similarity with the original label.

Input entities are selected among the requirements of a process. Output en-
tities, instead, are selected among the labels of the top-level processes which
contain a creation verb. A creation verb is verb which semantically implies the
creation of its object, such as the verbs “create”, “produce” and “build”. The
object of the creation verb is considered as a candidate output. For example, for
the top-level process “make a pancake”, the word “pancake” would be considered
as a possible output because the verb “make” is a creation verb.

The discovery of both input and output types allows the discovery of in-
put/output (I/O) links between processes. An I/O link indirectly connects a
process that outputs an entity of a given type with another process that requires
an entity of the same type. For example, the same DBpedia entity might be
linked to (1) the input “cover letter” of the process on “how to apply for a job”
and (2) the output of the process “how to write a cover letter”. The combination
of these two links forms an I/O link between the two processes.
8 http://wiki.dbpedia.org/lookup/



Fig. 3. Diagram of the generation of the decomposition links between processes

Decomposition Links. Step decomposition links are used to connect abstract
processes with their steps, steps with their sub-steps and so forth. Within a finite
set of instructions, the steps at the bottom of this decomposition hierarchy can
be considered primitive processes. A primitive process is a process that cannot be
decomposed further into sub-processes. Instructions on “how to apply for a job”,
for example, might mention the step “prepare a resume” without explaining how
this can be achieved. Processes which are not primitive are called complex.

The execution of a primitive process assumes that the agent following the
instructions is able to perform it without requiring any further information. This
assumption might be incorrect both for human and artificial agents, thus creating
the need to retrieve additional information. In order to exploit related knowl-
edge, our system generates decomposition links between primitive processes and
related complex processes. For example, the primitive step “prepare a resume”
could be linked to a set of detailed instructions on “how to prepare a resume”.

Our system for generating decomposition links is divided into the three main
phases schematized in Figure 3. The first phase involves indexing the textual
descriptions of all the processes using an efficient text search engine. This phase
addresses the scalability issue caused by the large number of links to consider.

During the second phase, the index is queried to retrieve a small subset of
candidate primitive entities to link. These are chosen on the basis of their textual
similarity with the the complex process considered. When analysing the complex
process with label “how to prepare a resume”, for example, we might search the
index for primitive entities containing the words “prepare” and “resume”.

The third and last phase is meant to refine the set of candidate entities by re-
moving those which are not related with the complex process considered despite
having a high text similarity. To do this, a number of features are extracted from
each candidate entity with the respect to the complex process considered. These
features are then processed by a classifier to decide whether an entity should be
linked or not. Examples of the features that can be computed between two enti-
ties are the Inverse Document Frequency of the words in common, the number
of shared categories, and the number of words in common between the contexts.
The context of an entity can be obtained by considering the description of the
other entities belonging to the same set of instructions. The keywords “apply”



Table 2. Statistics of the knowledge extraction (May 23rd 2014)

wikiHow Snapguide Total

Number of main processes 167,232 44,464 211,696

Total number of entities 1,871,468 737,768 2,609,236

Table 3. Results of the DBpedia integration experiment

Inputs Outputs Total

Number of linked entities 255,101 4,467 259,568

Number of different DBpedia types linked 8,453 3,439 10,166

Precision 96% (PI) 98.3% (PO) 96% (PI+O)

and “job”, for example, could be included in the context of the step “prepare a
resume” if this step is related to the task “how to apply for a job”.

5 Implementation

To evaluate our framework we have applied it in a large-scale real-world scenario.
Our knowledge extraction system analyzed the web pages of the wikiHow and
Snapguide websites, two of the largest sources of semi-structured human know-
how on the Web. Each web page containing instructions was analyzed and its
structure was converted into Linked Data. In total, over 200,000 processes were
extracted. More details about this extraction are listed in in Table 2.

After extracting the Linked Data representation of a large number of pro-
cesses, we applied our Linked Data integration system. Our system followed the
method described in section 4.2 to discover the links between DBpedia entities
and the inputs and the outputs of the processes. The results of this experiment
can be found in Table 3. The precision was manually evaluated separately for
the inputs (PI) and the outputs (PO) on 300 randomly selected links for each
type. A link was considered wrong (1) if it linked an entity which was not an
input or an output of the process or (2) if the type of the input or output did
not correspond to the linked DBpedia type.

Lastly, our Linked Data integration system generated decomposition links
between different processes. Following the method described in section 4.2, all
the entities extracted from human know-how were indexed using the text search
engine Apache Lucene.9 For each complex and primitive process pair, 34 features
were computed and classified by the WEKA [5] implementation of a Random
Forest classifier. The process pairs classified as correct were linked and added to
the set of the discovered decomposition links. The classifier was trained using a
manually classified set of 1000 randomly-generated links.

The results of our knowledge extraction and integration experiment are avail-
able online through the HowLinks10 Web application. This application demon-
9 http://lucene.apache.org/core/

10 http://w3id.org/prohow/main/



strates how Linked Data can be used to have an integrated visualization of both
procedural and declarative knowledge retrieved from different sources.

6 Evaluation

To understand the significance of the results of our integration experiment, we
need to compare them with a relevant benchmark. Since our system is the first
to integrate human know-how, we cannot compare our results with a previous
experiment. We can however compare them with an existing manual integration
effort that is being performed by the wikiHow community. The members of
this community, in fact, are not only active in the creation and the refinement
of individual sets of instructions, but are also actively creating links between
different processes. This community effort can be seen as evidence of the human
benefits of know-how integration.

To evaluate the results of this community effort we have extracted all the
user-generated links found in the description of each wikiHow process. These
links have been split into two groups. The first group consists of the links found
in the requirements of a process. These links typically connect a required object
to a process that can produce such object. As such, they have the same functional
role of the I/O links found by our system. The second group is made of the links
found in the steps of the process. These links connect a step with another process
which provides additional information about that step. As such, they have the
same functional role of the decomposition links found by our system.

Having identified a comparable set of links, we proceeded to compute three
quality metrics on both results set. These quality metrics are the following:

– Precision of the links. Correct links should provide relevant information on
how to perform or obtain the linked entity. For example, our system correctly
linked the step “Avoid smoking cigarettes, cigars or pipes around the baby”
with the relevant process “How to Avoid Smoking”. The wikiHow community
integration, instead, linked this step with the irrelevant processes “How to
Smoke a Cigar” and “How to Prevent Frozen Water Pipes”.

– Number of links found.
– Coverage of the links. This metric evaluates the number of processes which

contain at least one link to another process. A better integration is achieved
when the links are evenly spread between the various entities.

The result of this comparison can be seen in Table 4. For each of the two types
of links generated by the wikiHow community (WH-C), the precision has been
evaluated manually on 200 randomly selected links. The precision of the I/O
links generated by our system (WH+S) is defined as the probability that both
the input and the output links involved are correct: PI/O = PI ∗ PO. As such,
it can be derived from the precision values shown in Table 3. The precision of
the decomposition links generated by our system (WH+S) is determined by
the precision of the classifier used to select them. This precision was evaluated
using 10-fold cross validation.



Table 4. Comparison of the wikiHow community integration (WH-C) with the results
of our integration of wikiHow (WH) and of both wikiHow and Snapguide (WH+S)

WH-C WH WH+S

Precision of I/O links 65% 94.3% 94.1%

Number of I/O links 4,560 93,883 183,094

Coverage of I/O links 3,342 (1.9%) 35,169 (21%) 58,029 (27.4%)

Precision of decomposition links 71% 82.1% 82.4%

Number of decomposition links 101,496 127,468 193,701

Coverage of decomposition links 45,250 (27.1%) 69,859 (41.8%) 90,217 (42.6%)

Total precision of the links 70.7% 87.3% 88.1%

Total number of links 106,056 221,351 376,795

Total coverage of the links 45,999 (27.5%) 84,350 (50.4%) 114,166 (53.9%)

It should be noted that the links generated by the wikiHow community only
interlink wikiHow resources. On the contrary, our system integrates procedural
knowledge both from the wikiHow and the Snapguide repositories. To make a
fair comparison, Table 4 also shows the evaluation of the links generated by our
system which only connect wikiHow resources (WH).

The result of our evaluation shows how our automatic approach to human
know-how integration significantly outperforms manual community-based inte-
gration efforts. This is shown for all the metrics considered and for both types of
links. This result demonstrates how our framework can be used to significantly
increase the value of human know-how by automatic means. We take this result
as strong evidence for the effectiveness of our integration framework.

7 Conclusion

This paper has described the first framework for the integration of human know-
how into the Linked Data Cloud. Human know-how is an important source of
knowledge on the Web, but its potential applications are limited by a general
lack of structure and isolation from other knowledge. We have surveyed attempts
to overcome these limitations both by user communities, trying to manually
add structure and links to human know-how, and by existing research projects,
trying to exploit this knowledge to develop intelligent systems. None of these
approaches, however, automated the integration of this type of knowledge.

We proposed a Linked Data framework to automate both the extraction of
human know-how, and its integration with related knowledge. We chose Linked
Data as the ideal format to represent distributed knowledge on the Web. To
validate this framework, we have applied it in a real-world scenario. First, this
framework generated the Linked Data representation of over 200,000 processes by
extracting human know-how from the wikiHow and Snapguide websites. Lastly,
we have used our framework to link these processes both with each other and
with DBpedia entities. We have evaluated the quality of these links and showed
how they significantly outperform existing community-based integration efforts.



This result demonstrates how the integration of human know-how as Linked Data
can immediately benefit Web users by allowing them to access the vast amount
of know-how on the Web more efficiently. The application of this knowledge to
develop intelligent systems has not been investigated and remains a promising
direction for future work.
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