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Integrating Lidar, GIS And Hedonic Price Modeling To 
Measure Amenity Values In Urban Beach 

Residential Property Markets 

By: Stuart E. Hamilton and Ashton Morgan

Abstract
Hedonic property price models have been used extensively in the economics literature to measure 
the value households place on locating properties close to a given resource, such as a beach, river, 
or lake. This proximity premium consists of two components. First, property owners derive 
benefit from living close to the resource for access purposes. Second, they also derive benefit from 
the view of the resource. Critical to the analyses is the identification and measurement of these two 
components. We augment previous research by providing more accurate and objective measures 
of access and view for urban beach residential properties. Using GIS, we calculate the distance 
from each property to the nearest designated public access point. Using lidar data, we calculate the 
ocean view from each property. These measures are then integrated into a hedonic property price 
model to disentangle and estimate households’ willingness to pay for beach access and view.

Hamilton, S. E. and Morgan, O.A. (2010) “Integrating Lidar, GIS And Hedonic Price Modeling To 
Measure Amenity Values In Urban Beach Residential Property Markets.” Computers, Environment 
and Urban Systems, 34(2): 133-141 (ISSN: 0198-9715). Version Of Record Available At 
www.sciencedirect.com



1. INTRODUCTION

There is a long history of using hedonic property price models to investigate the effects of 

amenities and disamenities on the sales prices of residential properties. For example, Parsons 

and Noailly (2004) measured the implicit amenity value to households from locating properties 

close to the beach in Rehoboth, DE, while Bensen, Hansen, Schwartz, and Smersh (1998) 

examined households’ willingness to pay a premium for properties with proximity to both lakes 

and the ocean in Washington State. Also, Bin and Polasky (2004), and Morgan (2007) 

measured the implicit risk associated with properties located in the Special Hazard Flood Areas 

across counties in North Carolina and Florida, respectively. 

Hedonic models are based on the economic theory of consumer behavior. The theory suggests 

that households value the characteristics of a good rather than the good itself. In hedonic 

property price valuations, the price of a residential home is a function of its structural attributes 

(such as the number of bathrooms, lot size, and age), and also its locational attributes and 

amenities (such as distance to the beach, view, and air quality). In the hedonic framework, 

assuming a competitive housing market, the implicit prices (values) of these attributes and 

amenities can be estimated by observing the prices of differentiated properties and their 

structural and locational characteristics. 

While tax records on sold properties provide the researcher with the majority of the properties’ 

structural attributes for use in the model, locational attributes are not readily available. For 

example, studies examining the implicit value attributable to living close to a given resource, 

such as a beach or lake, require information that captures a property’s proximity and aesthetic 

qualities. Such information is not available in a property appraiser’s database. 

This creates a problem for the researcher. Earlier studies attempted to circumvent this problem 

by using a standard measure of linear distance from the property to the resource to capture the 

amenity value ( [Boyle and Kiel, 2001], [Parsons and Noailly, 2004], [Parsons and Powell, 2001] 

and [Pompe, 2008]). The reasoning is that properties closer to the resource sell for a premium, 

so the value of living close to the amenity can be implicitly estimated, holding all other factors 

constant. While this serves as a useful proxy, its simplicity fails to account for the complex 

nature of the benefits associated with living close to a resource. Essentially, we argue that an 

amenity value, or the benefit of living close to a resource, is comprised of two components. 

First, access is important. Other studies have shown that households are willing to pay a 

premium for properties close to a resource (see [Lansford and Jones, 1995], [Parsons and 

Noailly, 2004] and [Pompe and Reinhart, 1995]; Bin et al., 2004). These studies indicate that 

there is a value associated with being able to access a beach or a lake for recreational and 

leisure purposes. However, as discussed by Bourassa, Hoesli, and Peng (2003), another 

component of amenity value is the view of the resource itself. Again, some previous studies 

indicated that view and property values are positively correlated (see [Bond et al., 2002], 

[Bourassa et al., 2003] and [Tse, 2002]). Further, Bin and Kruse (2006) reasoned that, having 

controlled for access, view will capture most of the residual amenity value. 

However, again, a property’s view is not a component of an appraiser’s database. Some 

research has accepted the challenge and attempted to control for view in the hedonic 



framework by using a single dichotomous variable equal to one if the property has a view of the 

resource, and zero otherwise ( [Bond et al., 2002], [Doss and Taff, 1996] and [Pompe and 

Reinhart, 1995]) More recently, studies used a view scale to try and provide a more continuous 

valuation. For example, Bensen et al. (1998) used three dummy variables for scope (ocean 

front, unobstructed ocean view, and partial ocean view) to capture property views in Washington 

State, while Bourassa et al. (2003) used narrow, medium, and wide definitions of view to 

indicate the quality of a lake view on property values in Auckland, New Zealand. While 

empirically preferable to a single dichotomous parameter of view, these scope measures suffer 

from the subjective nature of the classification. For example, an ocean front property may not 

provide a better view of the resource than a property situated one or two blocks back. Along 

many coastlines, dunes may obstruct the view of some ocean front properties, while more 

elevated in-land properties have an improved view. Unless the researcher can physically 

inspect each property and gauge the applicable level of view for each home, these quality-

based view measures may fail to adequately capture each property’s true view. For these 

reasons, the utilization of lidar is preferred over traditional methods of obtaining view as a 

continuous measure can be obtained for each assessed property. 

Recent advances in laser ranging combined with Geographic Information Systems (GIS) 

facilitates a more precise and objective measure of view for use in hedonic models. Lidar data 

provides information on the topographic surface of the coastal area, including all structures, 

dunes, and vegetation. A view from each property can then be constructed that accurately 

accounts for other structures and vegetation that may obstruct a property’s view of the 

shoreline. As such, capturing a property’s view using lidar data in a GIS environment provides 

an objective and continuous measure of each property’s view that circumvents many of the 

problems inherent in previous view classifications. 

The purpose of this research is to incorporate GIS and lidar data to construct beach access and 

beach viewshed variables and include both in a hedonic property price model to separately 

estimate the two amenity values. In constructing the viewshed variable, we follow work by 

Paterson and Boyle (2002) and Bin, Crawford, Kruse, and Landry (2008) by using lidar data to 

construct a continuous measure of viewshed. As such, the viewshed parameter measures the 

view from each property to capture the home’s aesthetic quality. A priori expectations are that 

households are willing to pay a premium for homes with a greater view of the Gulf of Mexico, 

having controlled for all other structural and locational characteristics. For access, we make a 

departure from other hedonic studies that capture access as the linear distance to the shoreline. 

Instead, to measure access to the beach, we construct the linear distance from each property to 

the nearest beach public access point. We argue that for many coastal communities, residents 

must access the beach at designated access points, so this should be controlled for in the 

modeling process. A priori expectations are that households are willing to pay more for 

properties with improved beach access, all else being equal. Our data provide an interesting 

opportunity to observe, through the hedonic framework, how households value access. In 

communities with restricted beach access, do households value the network access distance or 

do they perceive access benefits to accrue via the linear distance to the shoreline? Economic 

theory suggests, as individuals seek to maximize utility, they will prefer properties that provide 

better access to the shoreline, all else being equal. Therefore, in restricted-access communities, 



having controlled for all other factors, individuals should be willing to pay a premium for 

properties located closer to designated access points, even if these properties are located 

farther from the shoreline. 

 

2. STUDY AREA 

The study area is the urban area of Pensacola Beach, Florida, a barrier island, located in the 

western segment of Florida’s Panhandle. Pensacola Beach’s location on the shores of the Gulf 

of Mexico and the claim of having the “whitest beaches in America” make it a popular tourist 

destination and desired property location (Fig. 1). There is an approximate two-mile stretch of 

residential homes along Pensacola Beach, with 281 single-family residences located on the Gulf 

side of the peninsula. In the study, we do not include properties located on the Bay-side of 

Pensacola Beach. This avoids the analytical complications of quantifying the view of two 

different resources, as there is a distinct premium for properties located on the Gulf side of the 

beach. Also, as other segments of the beach are for commercial use or contain multi-family 

units, they are not analyzed within this study. Merging GIS data, lidar data, and sales 

transactions data for properties sold between 1998 and 2007, we generated a sample of 101 

homes for use in estimation. Property price and structural attribute data come from the 

Pensacola Association of Realtors (PAR) database of property transactions.1 Sales prices are 

adjusted to 2007 prices using the consumer price index for housing. The following sections 

discuss utilizing GIS and lidar data to capture each property’s view and access. We then 

present the hedonic model. Finally, we discuss the model results together with concluding 

remarks. 

 

http://0-www.sciencedirect.com.wncln.wncln.org/science/article/pii/S0198971509000805#fn1�


 

Fig. 1. Study area. 

 

 

3. LIDAR DATA 

Accurately capturing beach view is a critical component in the analysis. We use lidar data to 

provide a continuous and objective measure. Airborne lidar systems are comprised of three 

components that allow for accurate measures of elevation over large swaths: (i) a laser range 

finder and sensor for accurate distance measures; (ii) an inertial navigation unit that constantly 

monitors the orientation of the laser sensor and corrects for errors that would be caused by the 

pitch, yaw and roll of the aircraft; and (iii) a DGPS that constantly measures the location of the 

laser sensor in three-dimensional space (Deronde et al., 2006). Lidar sensors typically generate 

three-dimensional mass-point structures that record not only the elevation of the objects 

detected by the laser pulse but the multiple return signals that may be returned to the sensor in 

addition to the initial return (Wehr & Lohr, 1999). For example, in environments with few 

structures or vegetation (such as a beach-face or desert), the only return would be the actual 

ground location. In an area covered by forest or other vegetation, a single emitted pulse may 



return numerous differing returns as it travels through the canopy or vegetation to the ground. 

This multiple return facet of lidar sensors allows for the creation of bare-earth digital models as 

well as models of surface features that include structures. 

Lidar data are highly suitable for any analysis that requires not only a highly accurate 

topographic representation of the environment but also a highly accurate vertical representation 

of the structural component of a landscape. Indeed, lidar data may be the only option to conduct 

a mass view analysis in an urban environment. Other elevation technologies such as IFSAR, 

SRTM, traditional rod and laser survey, and even stereo-photography lack either the ability to 

accurately measure structural features in the landscape, the required horizontal and vertical 

resolution to account for small obstructions, or the ability to collect a suitable amount of 

elevation when taking into account cost and access considerations. SRTM and IFSAR lack the 

spatial resolutions required and stereo-photography may lack the spatial resolution dependent 

on the survey quality. The cost of deriving all the structural information from stereo-photography 

is also prohibitive. A traditional laser survey would be prohibitively expensive and time-

consuming if it attempted to capture the elevation and structural data for an area of many 

square miles even assuming the surveyor had all the required property access permissions. 

For our study, the Leica ALS-50 instrument collected elevation data during June and July of 

2006 and was flown by 3001 Inc. under the supervision of a licensed surveyor. These data were 

provided in LAS format by Escambia County GIS. Metadata and flight parameters were 

calculated and provided by NOAA (2007). The vertical Root Mean Square Error (RMSEz) of the 

elevation data in open areas was determined to be 13 cm using the ASPRS guidelines for 

vertical reporting of lidar data accuracy at the 95% confidence interval. Within all land cover 

categories, the RMSEz increased to 33 cm. The RMSEz was determined utilizing a sample of 

101 pre-established ground control points. The testing method is consistent with those specified 

in the National Standard for Spatial Data Accuracy and ASPRS and was conducted by 

Dewberry & Davis LLC., across five different land cover categories. The RSME of non-forested 

and lightly vegetated beach environments such as those found in the study area falls between 

13 cm and 33 cm for this dataset. One of the primary benefits of utilizing lidar data is the 

relatively small level of vertical error when compared to other elevation products. Assuming an 

RMSEz of 33 cm lidar data can place an observer and all potential structures and vegetation 

that may alter the view of the observer with a sub-meter level of accuracy. This combined with 

the potential for creating high-resolution horizontal grids of each location minimizes errors in the 

viewshed analysis that are caused by small changes in the elevation or location of structures 

and vegetation. All lidar data utilized in this study and resultant elevation model are referenced 

horizontally to UTM zone 16 N utilizing NAD 1983, and vertically to NAVD 1988. 

The data were processed according to procedures developed by Houser, Hapke, and Hamilton 

(2008) and Houser and Hamilton (2009) in their analysis of costal impacts of storms that 

included Pensacola Beach. The lidar mass-point files were converted to continuous grid data 

using ArcGIS. The resolution of each elevation grid-derived LAS file was set to 1 m to capture 

vegetation and features such as the shoreline berm. The bare-earth grid was created utilizing 

the Visual Learning Systems’ (VLS) bare-earth algorithm. The first-return elevation grid was 

interpolated using the inverse distance weighting (IDW) equation: 



(1) 

 

IDW was required to assign cells a value that had missing elevation values due to the zigzag 

manner of lidar returns (Deronde et al., 2006). The power function, r, was set to 3 to negate the 

influence of more distant sample points and the neighborhood function, n, was set to 4 to allow 

only the closest neighbors to determine the actual elevation of cells without a return. It should 

be noted that most 1 m cells contained at least one elevation value so the interpolation with the 

above parameters merely assigned values to these empty cells using the closest four points, 

with the closest points having the heaviest influence. 

 

4. DETERMINING OBSERVER LOCATION 

In capturing beach view for each property, we first needed to determine a common desired 

observer location in each property from which to make the measurement. To do this, the 

building footprints were extracted from the lidar data using the VLS bare-earth algorithm. 

Identification (and elimination) of structures is a necessary part of the process of creating a 

bare-earth elevation model. Within the study area, building footprints were also digitized 

manually from orthorectified 2006 imagery of Pensacola Beach. These polygonal building 

footprints were then joined back to the property appraisers’ data that contains information on the 

roof structure. At this point, the footprint file was clipped to remove all property with usage other 

than single-family residential. The next step was to attribute each identified roof structure with 

an elevation variable from the first-return lidar elevation model. This was achieved by averaging 

the value of all first-return elevation readings with the polygonal outline of the roof structure. 

Upon achieving a mean value for each roof structure, the polygonal data were converted to 

point data, and the point location was manually moved to the Gulf side of the property just 

outside of the roof polygon. This allows an optimal view to be recorded during the view analysis 

and prevents any property from blocking its own view of the amenity. 

The desired observer location is the window level of the highest livable story of each home, with 

the observer located at the Gulf side of each property. By utilizing a top-down method for 

recording the observer location, difficulties related to variable storied homes, homes built on 

pylons, and homes built on raised fill are mitigated when calculating the most desirable view 

observer location for viewshed analysis. Earlier studies that utilized lidar-derived view within 

economic models used a standard distance from the elevation of the roof to place the observer 

(Bin et al., 2008). This study expands on the process of using a standard offset to derive an 

observer location from a roof height by not assuming a common roof type, but actually using the 

lidar data and property data to delineate roof type, and hence adjust the offset according to the 

roof structure. The first-return lidar data allows not only for depiction of the horizontal location of 

a roof but allows for measures of the vertical structure of the roof type. 



Two markedly different roof types, and hence two different observer locations exist on single-

family structures located in Pensacola Beach. Roof type one was assigned to flat roofs and 

Mansard style roofs in which the observer height is only slightly below the lidar derived mean 

roof height. These roof types were noted in the property appraiser data and further verified in 

the lidar point cloud by observing the maximum and mean elevation difference of all laser first-

returns from the roof surface. A nominal difference in elevation range indicates a flat style roof 

and hence a smaller offset is required for the spot elevation. The observer location offset 

distance for roof type one is 1.5 m below the mean height of the roof structure. That is, the 

observer location is assumed to be 1.5 m below the mean height of the roof. The second type of 

roof structure common on single-family homes in Pensacola Beach comprised hip roofs, gabled 

roofs, and more complex combination roofs. A substantial difference in the mean and maximum 

values indicates a non-flat style roof, and hence a larger offset is required for the observer 

location correction. The offset distance for roof type two is 3 m below the mean height of the 

roof structure. That is, the observer location is assumed to be 3 m below the mean height of the 

roof. Each spot elevation was then compared back against the bare-earth lidar model to ensure 

than the all spot elevations are at least 1 m above the ground level determined for each 

structure. 

 

5. CALCULATING VIEW 

Determining the view of all 101 properties utilized the lidar derived three-dimensional first-return 

grid and a point layer of three-dimensional observer locations. In addition to the first-return 

topographic DEM and the spot elevation point file, a digital elevation model of the Gulf was 

required to allow the views to continue out over the surface of the water. An artificial elevation 

model was created from the shoreline to 1500 m out into the Gulf of Mexico, and given the 

elevation value of NAVD 88.0 m. The first-return lidar-derived topographic model and the Gulf 

surface water model were then combined using simple cartographic modeling techniques to 

create a continuous elevation model that includes the study area and the ocean surface (Fig. 2). 

This elevation model, containing all structures and elevation, was the basis for delineating each 

property’s view. 

 



 

Fig. 2. Surface elevation model, shoreline and ocean surface. 

 

Although intuitive to the individual, the quantification view can utilize numerous differing metrics. 

The most common are variants of square area viewable or an angular measure of view based 

on a radii measure. The decision to measure view as angle of view or area of view does not 

alter the analysis as presented. As it is the relative measure of view that is critical either metric 

will suffice as an observer location with twice the view angle of another will have the same linear 

relationship in viewable area (beyond a nominal distance from the observer location). For this 

analysis view angle is the metric utilized as the measure of view in keeping with other measures 

of view in lidar derived viewscape analyses ( [Bin et al., 2008] and [Paterson and Boyle, 2002]). 

The 101 property viewsheds were calculated using radii of 1000 m from the spot location of 

each individual property. The measurement of an individual property’s view in this study is an 

angular measurement noting the amount of ocean and beach visible from each individual 

property. 

Due to the linear nature of the shoreline (Fig. 2) in this area, the maximum view angle (MVA°) of 

the Gulf of Mexico is180. Although it is theoretically possible to have a MVA° greater than 180, a 

structure would have to extend beyond the shoreline into the Gulf to achieve this level of view, 

and this does not occur at our area site of interest. A severely meandering shoreline would also 

theoretically allow for a MVA° greater than 180 but this also does not occur. Within the study 

area, the actual maximum of any individual property’s view angle (IPVA°) is 173 deg, and the 

IPVA° minimum is 0 deg. Within the study area, any IPVA° is primarily obstructed by other 

structures, trees, and an artificial shoreline berm, all of which are depicted in the lidar first-return 

DEM but would be omitted using other elevation products. 

The ocean view from any observer location is returned by the GIS as a semi-circular grid 

dataset, with one representing view, and zero representing no view. The circular raster is then 

reclassified to remove all zero values, clipped by the shoreline, and converted to a line feature. 



The length of each property’s circular line feature (IPAL) is then fed into the equation below to 

return an angular unit of view: 

(2) 

 

For all 101 properties sold in Pensacola Beach between 1998 and 2007, an angular measure of 

view of the Gulf of Mexico was added to each individual property transaction record. This 

method of assigning views is similar to the method utilized in Bin et al. (2008) in their research 

into the role of viewscapes and flood hazards and Paterson and Boyle (2002) in their analysis of 

bare-earth viewshed in hedonic models. Fig. 3 demonstrates the method of calculating view. In 

this example, two properties are selected to demonstrate the procedure. Property ID 012 is 

located one block (Row 2) from the Gulf of Mexico and has a vacant lot in front of its property. 

By extending out radii viewfield of 1000 m from the spot elevation determined for this home, an 

angular measure of view is determined for the property. This particular property has an IPVA° of 

131 that means that from the observer location the property has 131 deg of Gulf view. This is 

due mainly to the lack of any property obstruction directly in-between the property and the Gulf. 

Some of the near-shore view is blocked by vegetation on the berm and some of the view 

towards the edges of the view is blocked by Gulf front properties that are opposite and 

cattycorner to the property. Property 006 is located two blocks from the Gulf of Mexico and has 

a vacant property directly in front. It has an IPVA° of 39. Again, this property has substantial 

view of the Gulf straight-ahead but its view is far more limited due to the additional structures 

present on the Gulf side of the property. A summary of these data are found in Table 1. 

 

 

Fig. 3. Sample properties. 

 



 

 

Horizontal and vertical errors in the lidar dataset could influence the accuracy of the IPVA° on 

any designated structure by causing obstructing structures to have incorrect vertical and 

horizontal bounds, this error would then propagate into the hedonic price model. For example, 

an overestimation of a Gulf front property’s vertical and horizontal bounds would result in 

properties further in-land having an artificially low view measure and the resultant hedonic 

model would likely produce ambiguous results when accounting for view as a component of 

value. 

Lidar data errors originating from the instrument and the pulse’s interaction with the measured 

surface are usually divided into random and systematic errors (Habib, Bang, Kersting, & Lee, 

2009), with the random error more difficult to isolate and control. Within this analysis, site and 

instrument considerations limit the extent and influence of systematic error but the random error 

component is uncontrolled. The vertical component of the random error is reported as an 

unknown component of the total RSMEz. It is worth evaluating the potential impact of the 

horizontal and vertical errors individually and collectively. 

DGPS horizontal accuracy on a lidar survey can range from 5 to 15 cm (Baltsavias, 1999) and 

although no horizontal error is reported in the survey utilized it is known that DGPS was utilized. 

The actual horizontal error of the lidar and the GPS combined is likely to be greater than the 

vertical error but the development of a metric to measure and potentially correct this error are 

still in the formative stages (Habib et al., 2009). For two reasons, it is assumed that only the 

random error component of the horizontal accuracy will alter the accuracy of the IPVA° measure 

and this error would only be in limited areas of topographic obstruction. Firstly, the primary 

obstruction of view in an urban environment is the presence of other structures. The horizontal 

bounds of structures in this analysis are constructed from aerial photography and survey data 

and not the horizontal component of the lidar data. Therefore, the GPS and lidar error is only 

influencing the non-structural components limiting view such as the vegetation and dune 

structure that in turn are a minor factor limiting view in urban environments. Secondly, 

systematic spatially auto-correlated GPS and lidar errors would be expected to influence similar 

features in a similar manner to nearby features. Within a single lidar swath operating in the 

same environmental conditions it is unlikely that any structure would have a vertical or 

horizontal error dissimilar in magnitude and direction of other nearby structures. That is, if 

horizontal errors introduced by GPS or lidar instrument or vertical errors introduced by the lidar 

instrument are present in any structure or topographic feature a similar error would be expected 



in nearby structures and features and hence the IPVA° is still a precise representation of the 

actual viewshed. 

The vertical error introduced by lidar error is the potentially more detrimental to this analysis as 

it is the lidar derived elevation data that attributes the horizontal building structures with height 

values and therefore it is the vertical error in the lidar that could potentially compromise the view 

calculation. Vertical lidar data errors are minimized in areas of clear canopy, limited slope and 

when the lidar pulse is returned from hard urban surfaces such as pavement (Hodgson & 

Breshahan, 2004). The Pensacola Beach study site meets all of the aforementioned criteria for 

accuracy with limited tree cover, limited slope, and a majority urban or sand groundcover. The 

reported RSMEz of 13 cm at the 95% confidence interval of the utilized survey is in close 

agreement with other studies in similar environments that report 18.9 cm on pavement 

(Hodgson & Breshahan, 2004) and 13 cm in beach environments (Huising & Gomes Pereira, 

1998). A 13 cm horizontal or vertical error has no potential for introducing error on the IPVA° of 

Gulf front properties as raising the primary dune vegetation 13 cm and having an error in the 

property height of −13 cm would not impact the potential view of any analyzed Gulf front 
structure from the upper level living space. In-land homes are more-adversely affected by the 

potential horizontal and vertical errors but even then the error margins are tolerable. Assuming a 

vertical error of −13 cm on the measured structure and +13 cm on the obstructing structure the 
effect on IPVA° on the measured structure is negligible and within the bounds of the varying 

height of a human observer. For example, an obstructing structure that is 6 m in vertical height 

and has a maximum error of 13 cm would alter the total height of the structure by 2%. A 2% 

increase or decrease in structural height causes little IPVA° change for structures located one, 

two, three or four blocks behind the obstructing structure. 

Additional horizontal and vertical errors could potentially be introduced by the interpolation 

process, creation of building footprints, roof structure designation and variance and by the 

datum accuracy at the study site. These errors are more difficult to enumerate then potential 

horizontal or vertical error and often require substantial field survey obtaining the exact location 

of building corners and then comparing these corners against the same feature in the lidar data. 

Again, some of these errors are limited by considerations specific to this study. Interpolation 

error is limited in this study by the dense nature of the survey in such that an interpolation was 

only required to populate very few cells within the study area. Localized datum errors are 

negated by the nature of the IPVA° calculation as the IPVA° is not sensitive to actual geodetic 

inaccuracies or inconsistencies, the data utilized need only be precise for accurate results to be 

obtained. 

 

6. MEASURING BEACH ACCESS 

Another essential component of the hedonic analysis is to provide a measure of actual access 

distance from each property to enable the implicit value of living close to the beach to be 

quantified. Other hedonic studies typically use the Euclidean distance from each property to the 

shoreline to capture access ( [Boyle and Kiel, 2001], [Parsons and Noailly, 2004], [Parsons and 

Powell, 2001] and [Pompe, 2008]). While this provides an appropriate approximation of access, 



it fails to truly account for the actual distance to the nearest public beach access point. For most 

beaches in Florida, such as Pensacola Beach, beach access is controlled and provided via 

signed beach access points. Within Pensacola Beach, these beach access points provide the 

only access to the beach, as Gulf front private property, a vegetated dune structure, and local 

ordinance prohibit merely crossing directly to the beach at other points. All beach access points 

are clearly marked and mapped by the local county. 

We argue that the distance to the actual access point from each property provides a more 

accurate measure of beach access than the measurements used in previous studies. While, in 

other locations, linear distance to the amenity and the linear distance to the amenity access 

point can be identical or very similar, this is not the case when evaluating coastal access in 

Pensacola Beach. In many scenarios, homes further from the beach may actually be closer to a 

beach access point than homes closer to the beach. To illustrate this point, Fig. 4 depicts two 

properties in Pensacola Beach. Property A is approximately 210 m away from the shoreline and 

Property B is only 80 m away from the shoreline. Despite the fact that Property B is more than 

twice as close to the beach, Property A is actually closer to the nearest public access point, and 

so has improved access to the beach than Property B. Property A is only 134 m away from a 

beach access point, whereas Property B is 295 m away. Traditional methods of capturing 

access would incorrectly imply that Property B has improved access relative to Property A. 

 



 

Fig. 4. Differing IPVA calculations. 

 

Pensacola Beach Gulf access points were provided by Escambia County GIS division in 

September 2006 and filed verified the same month. The distance to each beach access point 

from each property was determined using a simple distance calculation in a GIS environment. 

The beach access layer was joined spatially to a point centroid of each property and a distance 

between the two calculated. All properties with direct access to the beach (Gulf front homes) 

had their distance reset to zero as they may walk directly onto the beach, but all other homes 

kept their distance value to the nearest access point. These data were then joined back to the 

property point data containing view angle information. 

 



7. HEDONIC DATA 

The variables used in the hedonic property price model are shown in Table 2 together with 

descriptive statistics. The variables of interest are our measures of amenity value (DISTANCE 

and VIEW). The average linear distance from each home to the nearest beach access point is 

164 m, while the average linear distance to the shoreline is 112 m. The average property in our 

dataset has a 42-deg view of the Gulf. The average sales price of a home in the sample is 

$559,000, while the average size of a home is 1808 square feet with two bathrooms, and 

30 years of age. Approximately 8% of homes have a pool. To capture the general increase in 

property prices over time, we also include a time trend variable. 

 

 

 

 

8. ECONOMIC MODEL 

In hedonic property price valuations, the price of the property is a function of the structural and 

locational attributes. Therefore, the relationship between property price and a property’s various 

attributes can be expressed as: 

(3) 

P=P(S,N,Q) 

where P is a vector of property sales prices, and is assumed to be a function of a vector of 

structural attributes, S, (such as size and age of home, number of bathrooms, and so on) a 

neighborhood attribute, N, (linear distance to closest beach access point), and an aesthetic 

quality or coastal amenity measure, Q, (representing view from properties).The housing market 

is assumed to be in equilibrium, and so, prices are at the market clearing level. Each individual 

chooses a property and location by maximizing the utility function: 



(4) 

U=U(Z,S,N,Q) 

where Z is a composite, representing a bundle of other goods with price equal to one, subject to 

a utility constraint: 

(5) 

Y=P+Z 

where Y is income. Taking the partial derivative of Eq. (3) with respect to each housing attribute 

variable yields the corresponding implicit price of the housing attribute. So, estimating the partial 

derivative of Eq. (3) with respect to the specific aesthetic quality attribute variable (view) yields 

the first-order necessary condition: 

(6) 

 

Eq. (6) represents the individual’s marginal willingness to pay for a view of the Gulf. 

 

9. RESULTS 

In Table 3 we estimate two log linear (with the log of price as the dependent variable) models 

with property structural and amenity measures as the right-hand side variables. Model 1 follows 

the standard convention of measuring the linear distance from each property to the shoreline to 

provide a single proxy for a property’s proximity to the resource. Model 2 includes our network 

access measure and provides the two separate measures for access and view to fully 

disentangle the amenity value. 

 



 

 

Beginning with the conventional model (Model 1), the structural parameters, bath, home size, 

and age all have the expected statistical impact on home values. The positive coefficients on 

bath and sqft indicate that households are willing to pay more for larger homes and homes with 

more bathrooms, while the negative coefficient on AGE implies that the value of homes 

decrease as they age. While in some markets the age of a property may be positively correlated 

with price, we expected a negative coefficient on age. This is because due to the occasional 

tropical storm/hurricane activity experienced in the region, newer homes tend to be built to 

higher building code specifications, which we perceived to be of value to households. A pool 

has a marginal impact on property prices (perhaps not surprising given the proximity of the Gulf 

of Mexico). As expected, the time trend dummy is positive and significant indicating the general 

increase in property prices over the sample period. Finally, there is a strong negative correlation 

between distance to the shoreline and property values so properties closer to the beach sell for 

a premium, ceteris paribus, but we cannot make any further inference regarding the relative 

values access and view on the household’s utility function. 

In Model 2, the two variables of interest (ACCESS and VIEW) have the expected signs. The 

negative sign on the ACCESS coefficient indicates that individuals are willing to pay more for 

homes located closer to public access points, ceteris paribus. This result is well supported in the 

hedonic literature ( [Lansford and Jones, 1995], [Parsons and Noailly, 2004] and [Pompe and 

Reinhart, 1995]; Bin et al., 2004). Based on this result, we estimate that decreasing distance 

from each property to the nearest access point by 1 m increases property values by 

approximately $1119. Bin et al. (2008) also separate viewshed and access but use a 

conventional linear shoreline distance measure for access in coastal community property 

markets across North Carolina. They find that a ten yard decrease in linear distance to the 

shoreline increases property values by approximately $854. 

Our results also indicate that a property’s view of the resource is a significant component of a 

home’s value, and highlights the importance of properly disentangling its effect on property 



values from an access measure. As use of lidar data allows the impact of view to be isolated in 

the model, the positive and significant coefficient on VIEW implies that households are willing to 

pay a premium for a view of the Gulf, as well as access. We find that the average household’s 

willingness to pay for an increase in Gulf view by 1 deg is $1627. This result is larger in value 

than Bin et al. (2008) estimate, who find a WTP of $995 for a 1-deg increase in viewshed. As a 

priori, the hedonic specification is not known, we also ran other standard model specifications. 

This also provided a test for the robustness of the viewshed coefficient. The semi-log model 

provided the best statistical fit and the viewshed coefficient remained statistically significant 

under all model specifications. 

Fig. 5 and Fig. 6 provide graphical representations of the relationship between our two amenity 

variables and property prices (without controlling for properties’ structural characteristics). Data 

on access and view respectively are aggregated into three groups along the horizontal axes 

based on the lower, median, and upper quartiles of the data. 

 

 

Fig. 5. Box plot of access and value. 

 



 

Fig. 6. Box plot of view and value. 

 

In Fig. 5, low access refers to the lower quartile of access data. These are the properties with 

the least access to the beach. Conversely, high access refers to properties with the most 

access to the beach. Fig. 5, shows that the majority of property values for homes with low 

access are lower than values associated with medium and high access. Further, the median 

values for low access are marginally lower than for medium access, which, in turn, are far lower 

than for high access properties. 

 

In Fig. 6, we can observe the relationship between low, medium, and high viewshed levels and 

property values, again without controlling for properties’ structural characteristics. 

As expected, Fig. 6 illustrates a stepwise function with the median values of properties with 

improved viewshed (high) higher than properties with medium and low viewsheds. 

 

10. CONCLUSION 

The hedonic property price literature is well versed in measuring the value of amenities. Results 

from these studies indicate that households are willing to pay a premium for living close to the 

water. While this benefit is comprised of both access value and aesthetics (view), due to limited 

availability of data and the problematical nature of truly capturing a property’s view, earlier 

studies only incorporated a single distance measure as a proxy for amenity value. More 

recently, researchers attempted to separate the benefits of view and access by providing scope 

measures of the quality of a view, such as narrow, medium, and wide. While conceptually 



appealing, these measures still suffer from the subjective nature of the measurement, requiring 

the researcher to physically inspect the property. 

Utilizing lidar GIS data to provide an objective and continuous measure of viewshed enables the 

access and view components of amenity value in residential coastal property markets to be fully 

disentangled. In the hedonic framework, having controlled for view, any residual amenity value 

should reflect the ease of access to the shoreline. Economic theory suggests, as individuals 

seek to maximize utility, they will prefer properties that provide better access to the shoreline, all 

else being equal. While it is common in hedonic modeling to capture access as the linear 

distance from each property to the shoreline, many residential coastal communities have beach-

front private property, and/or a vegetated dune structure, and/or local ordinance that restricts 

access to non beach-front homes to state-designated public access points. In these 

communities, true access is provided by the linear network distance from each property to the 

nearest designated access point. 

Our research examines how individuals evaluate access in their property purchase decision for 

such communities. Results from our semi-log hedonic model that includes separate measures 

of access and viewshed indicate that households are willing to pay a premium of $1119 for a 

1 m decrease in distance to the shoreline and $1627 for a 1 deg increase in viewshed of the 

shoreline. Overall, we believe that this paper provides a platform for further exploration into 

appropriately disentangling access and viewshed in hedonic studies designed to capture 

amenity values. 
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