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Abstract—The fusion of stereo and laser range finders
(LIDARs) has been proposed as a method to compensate
for each individual sensor’s deficiencies − stereo output is
dense, but noisy for large distances, while LIDAR is more
accurate, but sparse. However, stereo usually performs poorly
on textureless areas and on scenes containing repetitive struc-
tures, and the subsequent fusion with LIDAR leads to a
degraded estimation of the 3D structure. In this paper, we
propose to integrate LIDAR data directly into the stereo
algorithm to reduce false positives while increasing the density
of the resulting disparity image on textureless regions. We
demonstrate with extensive experimental results with real data
that the disparity estimation is substantially improved while
speeding up the stereo computation by as much as a factor of
five.
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I. INTRODUCTION

The fusion of stereo and laser range finders (LIDARs)

has been proposed as a method to compensate individual

sensor’s deficiencies − stereo output is dense but noisy

for large distances while LIDAR is accurate but sparse. By

fusing the output of both sensors, accurate and dense range

information can be obtained (Fig.I). Stereo usually performs

poorly on textureless areas and on scenes containing repet-

itive structures. These situations reduce the density of the

output and can lead to the generation of surfaces that actually

don’t exist. In this paper, we propose the early integration

of LIDAR data into the stereo algorithm by providing an a

priori estimate of the disparity.

We propose two novel ways of LIDAR/stereo integration:

disparity space reduction and path promotion:

Disparity Space Reduction. The space of possible stereo

disparities is reduced by defining an appropriate disparity

interval for each pixel in the image based on the more

precise LIDAR range estimates. To accomplish this, the

sparse LIDAR data are transformed into a dense range

image. The range image is used to predict maximum and

minimum disparity images, taking into account the noise

properties of the LIDAR measurements. Our experiments

show that this process results not only in more precise

disparity images, but also reduces the overall computational

requirements, thereby speeding up the stereo computation

Figure 1. Result obtained with LIDAR/stereo fusion.

significantly.

Path Promotion. LIDAR range data is used to predict

the expected dense disparity image and its gradient, both

of which can be used as a prior for computing the final

disparity. When using dynamic programming as the stereo

computation method, predefined paths obtained from the

prior can be promoted within the disparity search space

resulting in fewer stereo artifacts.

A. Related Research

Multi sensor fusion has several advantages as noted in

[1], and it has become standard nowadays in autonomous

robotics systems. The general fusion of LIDARs with pho-

togrammetry is addressed in [2], where the authors identify

and review various levels of integration. However, the fusion

of stereo with LIDARs or time-of-flight (TOF) cameras

has only been approached a few times in the literature.

There are mainly two types of stereo/TOF integration, a

posteriori and a priori integration. A posteriori fusion aims at

integrating the outputs (i.e., disparity maps) of both sensors

to enhance the final output of the system [3], [4], [5], [6].

This is usually accomplished by using evidence grids [6]

or at the object level [4], [3], [2]. A priori integration, on

the other hand, fuses the ranges obtained from the TOF

camera into the stereo computation algorithm in order to
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improve the resulting disparity map. Bayesian approaches

use the output of the TOF camera to provide a prior of the

disparity image [7], [8], [9], [10]. Obtaining the maximum

a posteriori estimate is time consuming and not suitable for

real-time applications. [11] uses a volumetric approach, by

which TOF cameras provide the initial estimate of the 3D

structure, which is later refined by using multiple cameras.

The method is accurate, but computationally expensive. In a

analogous way, TOF cameras were used to provide an initial

disparity estimate in a hierarchical approach in [12], to adapt

window size based on previous range segmentation in [13],

and to modify matching costs in a plane-sweeping algorithm

[14].

In contrast to the above a priori fusion methods, which

use exclusively TOF cameras in indoor environments, we

propose the tight fusion of LIDAR and stereo to support

real-time processing, by reducing the disparity search space

and promoting paths with dynamic programming.

II. PRELIMINARIES

In this section, we introduce the basic concepts used

throughout this paper.

Stereo Computation. We follow the four main steps iden-

tified in [15] to produce disparity images: 1) Matching cost

computation − compute the similarities between the left

and right images; 2) Aggregation − aggregate the resulting

similarity values to reduce noise; 3) Optimization − find

the “optimal” disparity image. Different optimality criteria

lead to the definition of different optimization algorithms;

4) Refinement − reduce outliers and improve the disparity

accuracy.

Depending on the similarity measure used to compute

the disparity space image, the second step might be actually

merged with the first or not performed at all.

Disparity Space Image. Matching cost computation

requires computing the differences between pixels of the

left and right views to produce a disparity space image

(Fig. 3d). The disparity space image (DSI) is a 3D array

where each component contains a similarity/dissimilarity

measure between corresponding points in the left and right

images. Specifically DSI(u, v, d) is a scalar containing

the similarity/dissimilarity between pixel (u, v) in the left

image and (u + d, v) in the right image (assuming that the

images have been rectified into the standard left-right stereo

configuration). The computational complexity of generating

the DSI is linear with image size and disparity interval.

It is critical to choose the disparity interval D in order to

cover the expected distances to all objects in the scene. A

large disparity interval ensures the observability of more

ranges, but increases the computational requirements.

Spherical Range Image. We use range images to generate

disparity predictions from LIDAR data. A spherical range

image (SRI) is a function s(θ, φ) in which the domain

(θ, φ) represents the azimuth and elevation components,

and the codomain s() is a real value that represents a

distance or range (Fig. 3a, bottom). The three components

of the image − azimuth (column), elevation (row) and

range (image value) − define the coordinate vector of a 3D

point, i.e., (θ, φ, r)T with r = s(θ, φ).

Calibration. We assume the sensors have been calibrated

to enable the appropriate geometrical transformations of

LIDAR and stereo measurements.

III. DISPARITY SEARCH SPACE REDUCTION

Typical stereo algorithms define a single disparity interval

D for the entire image. We propose to use the LIDAR data

to predict an expected range interval for each pixel of the

image. This idea has two benefits. First, it reduces errors in

the computation of stereo because the optimization algorithm

is less likely to get stuck in a local minima. Second, it

reduces the computation time, which reduces linearly with

the reduction of D.

The main difficulty is to efficiently transform sparse

LIDAR range measurements into dense disparity intervals.

We propose the following four step procedure (Fig. 3):

1) Calculate the spherical range image.

2) Apply maximum and minimum filters to the SRI.

3) Compute minimum and maximum disparity images.

4) Compute the reduced DSI.

We now describe these steps in more detail.

Step 1: SRI Calculation. SRIs are generated using the

measurements mi = (θ, φ, r)T from a LIDAR sensor. The

range image position corresponding to coordinate (θ, φ)
is identified, and the range r is stored at that position

of the image. To consider the measurement noise, and

the uncertainty produced by possible inaccuracies of time

synchronization, calibration, and registration errors given by

the motion of the scene while the data was acquired, we

assume that the measurements are independent and affected

by zero mean noise with variances σ2

θ , σ2

φ, σ2

r .

Since the LIDAR measurements are usually not equally

distributed over the measurement space, the resulting range

image obtained is sparse (Fig. 2a). Linear interpolation

is performed in two steps, first horizontally (Fig. 2b),

then vertically (Fig. 2c). Holes are not filled across

large gaps or depth discontinuities. A depth discontinuity

exists between two range measurements ri and rj if the

ratio of ranges, max(ri, rj)/min(ri, rj), is larger than an

empirically determined constant K (1.1 in our experiments).

Observe from the interpolated SRI in Fig. 2c that depth

discontinuities around the pedestrian (black regions) are

correctly preserved.

Step 2: Minimum and Maximum Filters. The next step

is to define the minimum and maximum possible range for

each angular direction considering the noise properties of



(a) Raw sparse SRI (b) Horizontal interpolation (c) Vertical interpolation

Figure 2. Vertical and horizontal interpolation. The color encodes the range.

(a) Calculate SRI (b) Apply Min/Max filters (c) Predict Max/Min disparity images (d) Calculate reduced DSI

Figure 3. The four steps to generate a reduced Disparity Space Image. The color of the spherical range image encodes the range.

the measurements (Fig. 3b). The minimum and maximum

filters are implemented using a two step procedure. First,

for the min filter, an erosion morphological operation is

applied using a rectangular-shaped structuring element. The

analogous dilation operator is used for the max filter. The

size of the rectangle should be chosen taking into account

the noise properties of the measurements. We use a filter

size of three times the standard deviation (3σθ × 3σφ).

Second, a scalar of size 3σr is added/subtracted to the

resulting max/min SRIs to account for range noise.

Step 3: Prediction of Max/Min Disparity Images.

Maximum and minimum disparity images are obtained from

the minimum and maximum range images, respectively,

providing an expected disparity interval for each pixel of the

image (Fig. 3c). The LADAR-to-disparity transformation

is performed by a remapping operation. Each pixel in the

SRI, which corresponds to a 3D point (X, Y, Z), is mapped

to the image coordinate of its corresponding projection

onto the left image. This is performed by using a look-up

table containing the corresponding image displacements.

Ranges are then transformed into disparities by the equation

d = Bf/Z, where d is the disparity corresponding to the

depth Z, and Bf are the stereo system baseline and focal

length.

Step 4: Reduced DSI Computation. Finally, a reduced DSI

is computed by using an individual disparity interval for

each pixel. The next three steps of the stereo computation

(Section II) can now be applied to obtain the final disparity

output using the reduced disparity space. Missing range data

and occlusions can generate empty regions in the max/min

disparity images (black regions on Fig. 3c). The full disparity

interval D is used on those regions.

The above procedure reduces the overall computational

requirements in the calculation of the DSI. Observe that

the computational overhead of the first three steps is quite

low, since they involve only simple filters and remapping

operations that can be highly optimized in current CPUs

and GPUs.



IV. PROMOTING PATHS IN DYNAMIC PROGRAMMING

The information obtained from LIDAR sensors can be

used for more than just restricting the valid disparity interval.

In this section we show how a simple dynamic programming

(DP) optimization algorithm (Fig. 4) can be easily adapted

to fuse image and LIDAR to substantially improve the final

disparity image.

A. Dynamic Programming

Dynamic programming has been widely used for the fast

computation of stereo [15], since it offers a good trade-

off between efficiency and computation time. This section

introduces the basic DP algorithm, which is adapted in the

next section to include LIDAR predictions.

The energy function minimized by DP can be expressed in

recursive form and usually contains a data and a smoothness

term:

E(i, j) = arg min
k

(E(i − 1, k) + S(j, k)) + D(i, j) (1)

where E(i − 1, k) corresponds to the energy function of a

preceding node, D(i, j) is the cost added to the path if

the solution goes through the node (i, j) and S(j, k) is a

term penalizing the solution going from node (i, j) to node

(i − 1, k).

In our basic implementation of the DP algorithm, we have

chosen the following data and smoothness terms:

D(i, j) = DSI(i, v, j) (2)

S(j, k) =

{

CS .|j − k| ; if |j − k| < tS
CS .tS ; otherwise

(3)

The data term is the corresponding value of the DSI for

column i and disparity j for the current scan line v being

evaluated. The smoothness term linearly penalizes the jumps

in disparity up to a threshold. The threshold has the effect

of assigning the same cost to disparity jumps larger than

tS , thus preserving depth discontinuities. The real potential

of DP lies in the smoothness term. Without the smoothness

term (i.e., CS = 0), DP equals winner-take-all (WTA) opti-

mization.

Figure 4. DP finds the optimal path in a directed graph without cycles.
Columns of the graph represent image columns while rows represent
disparities. Values in the nodes represent costs obtained from the DSI. DP
is used to optimize the disparity computation at each row of the image.

B. Disparity Promotion

The ranges obtained from LIDAR can be used to compute

expected disparities. The disparity prediction can help to find

a solution in the DSI. The energy function described above

can be expanded to include an additional term P penalizing

the deviation of the solution from the expected value, i.e.,

E(i, j) = arg min
k

(E(i − 1, k) + S(j, k)) +

D(i, j) + P (j, d(i)) (4)

The last term is a penalty imposed on the energy function

when the solution over node j deviates from the expected

solution d(i) for image column i. P has the same form as

the smoothness term

P (j, d) =

{

CP .|j − d| ; if |j − d| < tP
CP .tP ; otherwise

(5)

The parameter CP controls the confidence of the prediction

obtained from LIDAR. If CP = 0, no penalty is imposed,

and the solution equals standard DP. When CP is large, the

solution equals the LIDAR prediction. The threshold tP can

be used to truncate the penalty imposed.

C. Disparity Gradient Promotion

The same concept of disparity (magnitude) promotion can

be applied to gradients. The smoothness term S defined

in Eq. 3 is motivated by the observation that the world

is usually continuous, i.e., we assume that disparities vary

smoothly almost everywhere. The penalty is applied to the

change in disparity between consecutive columns (i.e., |j−k|
in Eq. 3), which is reasonable if the expected change in

disparity is unknown. But if the disparity change is known

or can be predicted, the penalty should be imposed only if

disparity change is different from its prediction. Therefore,

we propose to replace the smoothness term S with the

following:

S(i, j, k) =
{

CS .|j − k − d′u(i)| ; if |j − k − d′u(i)| < tS
CS .tS ; otherwise

(6)

where d′u(i) is the expected disparity gradient at column i.
The smoothness term has a minimal impact in the com-

putational requirements and does not add any additional

parameter to the energy function. In the case of missing

Figure 5. A custom stereo platform and a Velodyne LIDAR.
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(a) “Unpaved terrain” data set
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(b) “Pedestrian” data set

Figure 6. Relative time required by the reduced DSI algorithm.

information (i.e., no prediction), d′u(i) can be set to zero,

equaling the original smoothness term.

D. Disparity and Gradient Prediction

To promote paths in the DSI space using the predictions

of disparity magnitude, d(i) and gradient d′u(i) must be

first obtained. The estimation of a disparity image based

on LIDAR can be obtained following the same procedure of

Section III, but where the original SRI is used instead of a

min/max SRI. The estimation for the gradient is obtained by

applying a Prewitt filter on the resulting predicted disparity

image (Fig. 7). The computation time of this step is negligi-

ble compared to the total time required for the computation

of the final disparity image.

V. EXPERIMENTAL RESULTS

We validated the proposed algorithms using a sensor suite

consisting of a Velodyne HDL-64E LIDAR and a custom-

built stereo camera rig (Fig. 5). The Velodyne rotates at

10 Hz and records one million points per second using 64

horizontally scanned beams. The stereo rig uses two Flea2

Point Grey cameras operating at 10 Hz and 800×600 pixels

resolution. The baseline of the stereo cameras is 33 cm with

a focal length of approximately 1280 pixels. The sensors

were mounted on the roof of an experimental test vehicle,

and the data for the experiments was acquired while the

vehicle was driving. The DP parameters CS , tS , CP , and tP
of Eqs. 1-6 were empirically determined, while the variances

σ2

θ , σ2

φ, and σ2

r for the max/min filters (Section III) were

obtained from the LIDAR specifications.

Figure 7. Benefit of path promotion on the DP algorithm. The gradient
image is encoded from black (-1 disparity/pixel) to white (1 disparity/pixel).

A. Disparity Search Space Reduction

The use of LIDAR data to restrict the search of the

disparity space allows not only a faster stereo computation,

but also an improvement in the precision of the resulting

disparity image. The next two subsections demonstrate this.

1) Time Reduction: We illustrate the speed improvements

achieved with the proposed method using two different real

sequences. As a baseline, we measured the computation time

required for each stereo pair in each sequence for a fixed

disparity range of 110 pixels. We then computed the time

required by our disparity space reduction algorithm for the

same sequences. The relative time for the proposed method

with respect to the baseline is shown in Fig. 6. Depending

on the depth discontinuities and the number of valid returns

of the LIDAR, the time required is reduced between 2.5 and

5 times.

2) Disparity Image Improvement: Reducing the DSI not

only allows a faster computation, but also a reduction of the

errors of the final disparity image. To show the improvement



Figure 8. Comparison of disparity images for two frames of the “House” data set. Each subfigure shows the left image of the stereo system (top-left); SRI,
where the range color encoding has been changed to show the original gray value obtained from the left image (top-right), the disparity image obtained
from the full DSI (bottom-left); and the improved disparity image obtained by using the reduced DSI (bottom-right). The marked regions on the images
show the areas that were improved using our proposed algorithm.

achieved, we have computed a final disparity image from

a DSI by applying WTA optimization to select the best

disparity. The zero-mean sum of square differences with a

window size of 15×15 pixels was used as the dissimilarity

measure. Since no further refinements are performed, the

resulting disparity images are noisy, especially at occluded

areas (see Fig. 8). However, our objective here is to show

the advantages of using a reduced DSI in comparison to the

full DSI. In Section V-D, we refine this raw output to obtain

high precision disparity images.

Figure 8 compares the results of standard and reduced

DSI using one of our data sets. Most of the errors in

the standard method are caused by the lack of texture,

repetitive structures, or perspective distortions. These errors

are mitigated by using the reduced DSI, providing smoother

and more precise disparity images.

B. Path Promotion in DP

In this experiment, we have computed DSIs using the

zero-mean sum of squared differences with a window size

of 5×5 pixels. No refinements were performed on the

obtained disparity images.

Magnitude and Gradient Promotion. Fig. 7 shows the

individual contributions of the magnitude and gradient

promotion in the DP algorithm. The figure compares the

results of WTA, standard DP (Eqs. 1-3), only magnitude

promotion DP (Eqs. 4 and 5 with S as defined in Eq. 3),

only gradient promotion (Eqs. 1 with S as defined in Eq. 6),

and full path promotion (Eqs. 4-6). Observe that the main

benefit of the gradient promotion occurs in horizontally

slanted regions (e.g., handrail at the left).

Full Path Promotion and Reduced DSI. Fig. 9 compares

the results of WTA and DP at two frames of one of the

acquired data sets. As it can be seen from the disparity

images, both WTA and DP greatly benefit from the LIDAR

information, producing smoother disparity images with less

false correspondences. The proposed DP with path promo-

tion performs best, providing disparity images with fewer

artifacts.

C. Limitations of the Proposed Approach

In general, better stereo results are obtained when LIDAR

data is used to guide the search in the disparity space image.

Nevertheless, there are some cases in which LIDAR fails to

deliver accurate or complete information, leading the stereo

algorithm to fail in the estimation of the best disparity.

In the example shown in Fig. 10, the LIDAR does not

see vehicle’s back windshield. Since the LIDAR is to the

right of the camera, it can also measure some of the points

on the street that are occluded from the camera point of

view. Normally, when predicting the disparity images, these

points would be occluded by foreground points from the

windshield. Since the foreground data is missing, a wrong

prediction of disparities occurs. We are currently evaluating

a possible solution to this problem, which is to detect “holes”

in the DSI due to missing data and then relax the DP

prediction penalty in the vicinity of holes.

D. Final Refinement of Disparity Images

The obtained disparity images can be further refined to

reduce artifacts and improve the accuracy of the, up to now,

integer stereo disparity computed (Fig. 11). The refinement

consists of three steps. First, a median filter is applied to

eliminate isolated outliers. Second, a sub-pixel estimation



(a) Frame Number 110 (b) Frame Number 240

Figure 9. Comparison results of disparity images at two frames of the “House” data set. Top-left: left stereo image; top-right: predicted disparity image
from SRI; middle-left: plain WTA optimization results; middle-right: WTA with reduced DSI; bottom-left: standard DP (using Eqs. 1-3); bottom-right: DP
with reduced DSI and full path promotion (using Eqs. 4-6).

Figure 10. The proposed method can break down when LIDAR data is not measured, such as on the vehicle’s back windshield.

Figure 11. Results of disparity images before the refinement step (second row) and after (third row) for five video frames.



(a) “Black Vehicle” data set (b) “House” data set

Figure 12. 3D reconstructions obtained from the refined disparity images.

procedure is applied by fitting a parabola to the disparity

score and its two neighbors. The sub-pixel disparity is

found as the location of the curve where the slope is zero.

Third, a left-right-left consistency check is performed by

obtaining not only a left, but also a right disparity image, and

eliminating the inconsistencies between both views. Figs. I

and 12 shows three 3D reconstructions obtained with our

proposed methods, including this refinement step.

VI. CONCLUSION AND FUTURE WORK

The fusion of LIDAR and stereo leads to a clear im-

provement of the final disparity image. The computational

time is reduced by the appropriate computation of maximum

and minimum disparity images. Regrettably, the lack of

outdoor sequences with ground truth data prevents us from

objectively quantifying the level of improvement achieved.

We are planning to generate ground truth data in a controlled

environment to address this limitation.
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