
Integrating Linked Data and Services with

Linked Data Services�

Sebastian Speiser and Andreas Harth

Institute AIFB, Karlsruhe Institute of Technology (KIT), Germany
lastname@kit.edu

Abstract. A sizable amount of data on the Web is currently available
via Web APIs that expose data in formats such as JSON or XML. Com-
bining data from different APIs and data sources requires glue code which
is typically not shared and hence not reused. We propose Linked Data
Services (LIDS), a general, formalised approach for integrating data-
providing services with Linked Data, a popular mechanism for data
publishing which facilitates data integration and allows for decentralised
publishing. We present conventions for service access interfaces that con-
form to Linked Data principles, and an abstract lightweight service de-
scription formalism. We develop algorithms that use LIDS descriptions
to automatically create links between services and existing data sets. To
evaluate our approach, we realise LIDS wrappers and LIDS descriptions
for existing services and measure performance and effectiveness of an
automatic interlinking algorithm over multiple billions of triples.

1 Introduction

The trend towards publishing data on the Web is gaining momentum, particu-
larly spurred by the Linking Open Data (LOD) project1 and several government
initiatives aimed at publishing public sector data. Data publishers often use
Linked Data principles [2]. which leverage established Web standards such as
Uniform Resource Identifiers (URIs), the Hypertext Transfer Protocol (HTTP)
and the Resource Description Framework (RDF) [9]. Data providers can easily
link their data to data from third parties via reuse of URIs. The LOD project
proves that the Linked Data approach is, in principle, capable of integrating data
from a large number of sources. However, there is still a lot of data residing in
silos that could be beneficially linked with other data, but will not be published
as a fully materialised knowledge base. Reasons include:

– data is constantly changing, e.g., stock quotes or sensor data can have update
intervals below one second;

� This paper is an extension of our previous work [15,16]. We have extended the work
with a formal definition of service descriptions, an evaluation of the performance
and effectiveness of the proposed methods – including the implementation of several
Linked Data Services – and an extensive overview of related work.

1 http://linkeddata.org/

G. Antoniou et al. (Eds.): ESWC 2011, Part I, LNCS 6643, pp. 170–184, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://linkeddata.org/

Integrating Linked Data and Services with Linked Data Services 171

– data is generated depending on possibly infinite different input data, e.g.,
the distance between two geographical points can be specified with arbitrary
precision;

– the data provider does not want arbitrary access to the data, e.g., prices of
flight tickets may be only available for specific requests in order to maintain
the possibility for price differentiation.

Such data is commonly provided via Web APIs or services, in the following
also called data or information services, as they provide a restricted view on
a possibly implicit data set. APIs are often based on Representational State
Transfer (REST) principles [4], use HTTP as transport protocol and pass pa-
rameters as name/value pairs in the URI query string. Currently deployed Web
APIs return data as JSON or XML, which requires glue code to combine data
from different APIs.

There are useful examples for the integration of information services and
Linked Data. Linked Data interfaces for services have been created, e.g., in form
of the book mashup [3] which provides RDF about books based on Amazon’s
API, or twitter2foaf, which encodes a Twitter follower network of a given user
based on Twitter’s API. However, the interfaces are not formally described and
thus the link between services and data has to be established manually or by
service-specific algorithms. For example, to establish a link between person in-
stances (e.g., described using the FOAF vocabulary2) and their Twitter account,
one has to hard-code which property relates people to their Twitter username
and the fact that the URI of the person’s Twitter representation is created by
appending the username to http://twitter2foaf.appspot.com/id/.

Vast amounts of idle data can be brought to the Semantic Web via a standard-
ised method for creating Linked Data interfaces to services. The method should
incorporate formal service descriptions that enable (semi-)automatic service dis-
covery and integration. We present such an approach for what we call LInked
Data Services (LIDS). Specifically, we present the following contributions:

– an access mechanism for LIDS interfaces based on generic Web architecture
principles (URIs and HTTP) (Section 3);

– a generic lightweight data service description formalism, instantiated for
RDF and SPARQL graph patterns (Section 4);

– an algorithm for linking existing data sets using LIDS (Section 5)

In Section 6 we describe the creation of LIDS for existing services, and present
the results of an experiment measuring performance and effectiveness of the
approach. The experiment interlinks the 2010 Billion Triple Challenge data set
with a geographic LIDS. We relate our approach to existing work in Section 7
and conclude with Section 8.

2 Preliminaries

In the following we shortly present the basics for our work, namely: data services,
and RDF.
2 http://www.foaf-project.org/

http://twitter2foaf.appspot.com/id/
http://www.foaf-project.org/

172 S. Speiser and A. Harth

2.1 Data Services

Our notion of data services is as follows:

Data services return data dynamically derived (i.e., during service call time)
from supplied input parameters. Data services neither alter the state of
some entity nor modify data. In other words, data services are free of any
side effects. They can be seen as data sources providing information about
some entity, when given input in the form of a set of name/value pairs.
The notion of data services include Web APIs and REST-based services
providing output data in XML or JSON.

Data services are related to Web forms or the “Deep Web” [13], but take and
provide data rather than free text or documents. For example, the GeoNames
findNearbyWikipedia service relates given latitude/longitude parameters to
Wikipedia articles describing geographical features that are nearby.

Table 1. Example data-providing services

API Format Description

GeoNames XML, JSON Functions include besides others: (i) find the
nearest GeoNames feature to a given point and
(ii) link a geographic point to resources from
DBpedia that are nearby
URI: http://www.geonames.org/

Google GeoCoding API XML, JSON Provides latitude and longitude for a given
street address.
URI: http://code.google.com/apis/maps/

Twitter API XML, JSON,
RSS, Atom

Various functions, giving access to Twitter
users, follower networks, and tweets.
URI: http://dev.twitter.com/

Example 1. In Table 1, we list some popular data-providing services. Taking
the Google GeoCoding API, to get the geographical coordinates for Karlsruhe,
we retrieve the URI http://maps.googleapis.com/maps/api/geocode/json?
address=Karlsruhe&sensor=false, with the following (abbreviated) result:
{ "status": "OK",

"results": [{

...

"formatted_address": "Karlsruhe, Germany",

...

"geometry": {

"location": {

"lat": 49.0080848,

"lng": 8.4037563

},

...

} }] }

http://www.geonames.org/
http://code.google.com/apis/maps/
http://dev.twitter.com/
http://maps.googleapis.com/maps/api/geocode/json?address=Karlsruhe&sensor=false
http://maps.googleapis.com/maps/api/geocode/json?address=Karlsruhe&sensor=false

Integrating Linked Data and Services with Linked Data Services 173

Using the retrieved coordinates, we can build the URI for calling the GeoNames
service to find Wikipedia articles about things, that are nearby Karlsruhe:
http://ws.geonames.org/findNearbyWikipedia?lat=49.0080848&lng=8.4037563.
The (abbreviated) result is the following:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<geonames>

<entry>

<lang>en</lang>

<title>Federal Constitutional Court of Germany</title>

...

<lat>49.0125</lat>

<lng>8.4018</lng>

<wikipediaUrl>...</wikipediaUrl>

...

</entry>

<entry>

...

</entry>

</geonames>

This simple example shows that integrating data from several (in this case only
two) services is difficult for the following reasons:

– different serialisation formats are used (e.g., JSON, XML);
– entities are not represented explicitly, and are thus difficult to identify be-

tween different services. For example, the geographical point returned by
the GeoCoding API does not occur in the output of the GeoNames service.
Therefore it is not possible to link the results based on the service outputs
alone, but only with service-specific gluing code.

2.2 RDF and Basic Graph Patterns

In contrast to XML or JSON, the Resource Description Framework (RDF) is a
graph-based data format which allows for easy integration of data from multiple
sources. We now introduce basic RDF notions later reused in the paper; cf. [6].

Let U, B, L, V be disjoint infinite sets of URIs, blank nodes, literals and vari-
ables.

Definition 1. (Triple) A triple t = (s, p, o) is a tuple of length three, t ∈ (U ∪
B)× U × (U ∪ B ∪L). We often write t as s p o, where s is called the subject,
p the predicate and o the object.

Definition 2. (RDF Graph) An RDF graph r is a finite set of triples.

We often write a set of triples by separating triples by . (a dot). To be able
to query graphs, we introduce the notion of triple pattern which can include
variables.

http://ws.geonames.org/findNearbyWikipedia?lat=49.0080848&lng=8.4037563

174 S. Speiser and A. Harth

Definition 3. (Triple Pattern) A triple pattern t ∈ (U ∪B∪V)×(U ∪V)×(U ∪
B ∪ L ∪ V) abstracts from single triples by allowing variables in every position.

Definition 4. (Basic Graph Pattern (BGP) and Conjunctive Query (CQ)) A
BGP is a finite set of triple patterns. A conjunctive query CQ = (X, T) consists
of a head, i.e. a set of variables X ⊂ V , and a body, i.e. a BGP T .

Let M be the set of all function µ : U ∪L∪ V → U ∪L, s.t. µ is the identity for
constants, i.e. ∀a : (a ∈ U ∪ L → µ(a) = a). As an abbreviation we also apply a
function µ ∈ M to a triple pattern t = p(t1, . . . , tn) (µ(t) = p(µ(t1), . . . , µ(tn))),
and to a BGP T (µ(T) = {µ(t) | t ∈ T }).
Definition 5. (Variable Binding) A function µ ∈ M is a variable binding for a
conjunctive query CQ = (X, T) and a RDF graph r, if µ(T) ⊆ r. We denote the
set of all mappings for a CQ and a graph as MCQ(r) = {µ ∈ M |µ(T) ⊆ r}.

3 Linked Data Services

Linked Data Services provide a Linked Data interface for data services. To make
these services adhere to Linked Data principles a number of requirements have
to be fulfilled:

– the input for a service invocation with given parameter bindings must be
identified by a URI;

– resolving that URI must return a description of the input entity, relating it
to the service output data;

– the description must be returned in RDF format.

We call such services Linked Data Services (LIDS).

Example 2. Inputs for the LIDS version of the findNearbyWikipedia service
are entities representing geographical points given by latitude and longitude,
which are encoded in the URI of an input entity. Resolving such an input URI
returns a description of the corresponding point, which relates it to Wikipedia
articles which are nearby.

Defining that the URI of a LIDS call identifies an input entity is an important
design decision. Compared to the alternative – directly identifying output entities
with service call URIs – identifying input entities has the following advantages:

– the link between input and output data is made explicit;
– one input entity (e.g., a geographical point) can be related to several results

(e.g., Wikipedia articles);
– the absence of results can be easily represented by an description without

further links;
– the input entity has a constant meaning although data can be dynamic (e.g.,

the input entity still represents the same point, even though a subsequent
service call may relate the input entity to new or updated Wikipedia articles).

Integrating Linked Data and Services with Linked Data Services 175

More formally we characterise a LIDS by:

– Linked Data Service endpoint: ep, an HTTP URI.
– Local identifier i for the input entity of the service.
– Inputs Xi: names of parameters.

The URI of a service call for a parameter assignment µ (mapping Xi to corre-
sponding values) is constructed in the following way (where addition is under-
stood as string concatenation and subtraction removes the corresponding suffix
if it matches):

uri(ep, Xi, µ) = ep + ”?” +
∑

x∈Xi

(x + ”=” + µ(x) + ”&”) − ”&”

Additionally we introduce an abbreviated URI schema that can be used if there
is only one required parameter (i.e. |Xi| = 1, Xi = {x}):

uri(ep, Xi, µ) = ep + ”/” + µ(x)

Please note that the above definition coincides with typical Linked Data URIs.
The input entity described by the output of a service call is defined as inp(ep,
Xi, µ, i) = uri(ep, Xi, µ) + ”#” + i.

Example 3. We illustrate the principle using the openlids.org wrapper for
GeoNames3 findNearbyWikipedia. The wrapper is a LIDS, defined by:

– endpoint ep = gw:findNearbyWikipedia;
– local identifier i = ”point”;
– inputs Xi = {”lat”, ”lng”}.

For a binding µ = {lat �→ 49.01, lng �→ 8.41} the URI for the service call is gw:

findNearbyWikipedia?lat=49.01&lng=8.41 and returns the following description:

@prefix dbpedia: <http://dbpedia.org/resource/> .

gw:findNearbyWikipedia?lat=49.01&lng=8.41#point

foaf:based_near dbpedia:University_of_Karlsruhe_%28TH%29;

foaf:based_near dbpedia:Federal_Constitutional_Court_of_Germany;

foaf:based_near dbpedia:Federal_Court_of_Justice_of_Germany;

foaf:based_near dbpedia:Wildparkstadion;

foaf:based_near dbpedia:Karlsruhe.

4 Describing Linked Data Services

In this section, we define an abstract model of LIDS descriptions.

3 http://km.aifb.kit.edu/services/geowrap/, abbreviated as gw. All other prefixes
can be looked up at http://prefix.cc/

gw:findNearbyWikipedia?lat=49.01&lng=8.41
gw:findNearbyWikipedia?lat=49.01&lng=8.41
http://km.aifb.kit.edu/services/geowrap/
http://prefix.cc/

176 S. Speiser and A. Harth

Definition 6. (LIDS Description) A LIDS description consists of a tuple (ep,
CQi, To, i) where ep denotes the LIDS endpoint, CQi = (Xi, Ti) a conjunctive
query to specify the input to the service, To a basic graph pattern describing the
output data of the service, and i the local identifier for the input entity.

The meaning of ep and Xi were already explained in the previous section. We
define Xi to be the head of a conjunctive query, whose body specifies the required
relation between the input parameters. To specifies the minimum output that is
returned by the service for valid input parameters. More formally:

– µ ∈ M is a valid input, if µ ∈ MCQi(r), where r is the implicit RDF graph
given by all Linked Data;

– for a valid µ, resolving uri(ep, Xi, µ) returns a graph
Do ⊇ {T ′ ⊆ Dimpl | ∃µ ∈ M : µ(i) = Es ∧ µ(To) = T ′}, where Dimpl is the
implicit, potentially infinite data set representing the information provided
by the LIDS.

Example 4. We describe the findNearbyWikipedia openlids.org wrapper ser-
vice as (ep, CQi, To, i) with:
ep = gw:findNearbyWikipedia
CQi = ({lat,lng}, { ?point geo:lat ?lat . ?point geo:long ?lng })
To = {?point foaf:based_near ?feature}
i = point

4.1 Relation to Source Descriptions in Information Integration
Systems

Note that the LIDS descriptions can be transformed to source descriptions with
limited access patterns, in a Local-as-View (LaV) data integration approach [5].
With LaV, the data accessible through a service is described as a view in terms
of a global schema. The variables of a view’s head predicate that have to be
bound in order to retrieve tuples from the view are prefixed with a $. For a
LIDS description (ep, CQi, To, i), we can construct the LaV description:

ep($I1, . . . , $Ik, O1 . . . , Om) :- pi
1(. . .), . . . , p

i
n(. . .), po

1(. . .), . . . , p
o
l (. . .).

Where CQi = (Xi, Ti), Xi = {I1, . . . , Ik}, Ti = {(si
1, p

i
1, o

i
1), . . . , (si

n, pi
n, oi

n)},
To = {(so

1, p
o
1, o

o
1), . . . , (s

o
l , p

o
l , o

o
l)}, and vars(To) \ vars(Ti) = {O1, . . . , Om}.

We propose for LIDS descriptions the separation of input and output condi-
tions for three reasons: (i) the output of a LIDS corresponds to an RDF graph
as described by the output pattern, not to tuples as it is common in LaV ap-
proaches, (ii) it is easier to understand for users, and (iii) it is better suited for
the interlinking algorithm as shown in Section 5.

4.2 Describing LIDS Using RDF and SPARQL Graph Patterns

In the following we present how LIDS descriptions can be represented in RDF,
thus enabling that LIDS descriptions can be published as Linked Data. The
basic format is as follows (unqualified strings consisting only of capital letters
are placeholders and explained below):

Integrating Linked Data and Services with Linked Data Services 177

@prefix lids: <http://openlids.org/vocab#>

LIDS a lids:LIDS;
lids:lids_description [

lids:endpoint ENDPOINT ;
lids:service_entity ENTITY ;
lids:input_bgp INPUT ;
lids:output_bgp OUTPUT ;
lids:required_vars VARS

] .

The RDF description is related to our abstract description formalism in the
following way:

– LIDS is a resource representing the described Linked Data service;
– ENDPOINT is a URI corresponding to ep;
– ENTITY is the name of the entity i;
– INPUT and OUTPUT are basic graph patterns encoded as a string using SPARQL

syntax. INPUT is mapped to Ti and OUTPUT is mapped to To.
– VARS is a string of required variables separated by blanks, which is mapped

to Xi.

From this mapping, we can construct an abstract LIDS description (ep, (Xi, Ti),
To, i) for the service identified by LIDS.

Example 5. In the following we show the RDF representation of the formal LIDS
description from Example 4:

:GeowrapNearbyWikipedia a lids:LIDS;

lids:lids_description [

lids:endpoint

<http://km.aifb.kit.edu/services/geowrap/findNearbyWikipedia>;

lids:service_entity "point" ;

lids:input_bgp "?point a Point . ?point geo:lat ?lat .

?point geo:long ?long" ;

lids:output_bgp "?point foaf:based_near ?feature" ;

lids:required_vars "lat long"

] .

In future, we expect a standardised RDF representation of SPARQL, which does
not rely on string encoding of basic graph patterns. One such candidate is the
SPIN SPARQL Syntax4, which is part of the SPARQL Inferencing Notation
(SPIN)5. We are planning to reuse such a standardised RDF representation of
basic graph patterns and variables in future versions of the LIDS description
model.
4 http://spinrdf.org/sp.html
5 http://spinrdf.org/

http://spinrdf.org/sp.html
http://spinrdf.org/

178 S. Speiser and A. Harth

5 Algorithm for Interlinking Data with LIDS

In the following, we describe how existing data sets can be automatically enriched
with links to LIDS, which can happen in different settings. Consider for example:

– processing of a static data set, inserting links to LIDS and storing the new
data;

– an endpoint that serves data (e.g., a Linked Data server), and dynamically
adds links to LIDS;

– a data browser that locally augments retrieved data with data retrieved from
LIDS.

We present an algorithm that, based on a fixed local dataset, determines and
invokes the appropriate LIDS and adds the output to the local dataset.

Given an RDF graph r and a LIDS description l = (ep, CQi, To) the following
formula defines a set of entities in r and equivalent entities that are inputs for
the LIDS (i is determined from Ti and To and + is again string concatenation):

equivsr,l =
{(

µ(i), uri(ep, Xi, µ) + ”#” + i
) | µ ∈ MCQi(r)}

}
.

The obtained equivalences can be either used to immediately resolve the LIDS
URIs and add the data to r, or to make the equivalences explicit in r, for example,
by adding the following triples to r:

{
x1 owl:sameAs x2 | (x1, x2) ∈ equivsr,l

}
.

Based on the services shown in Figure 1 together with descriptions, we illustrate
the algorithm using the following example: consider as starting point an entity
URI (e.g., an entity #aifb), which, when visited, returns an RDF graph with
latitude and longitude properties:

#aifb
rdfs:label "AIFB - Building 11.40";
geo:lat "49.01";
geo:long "8.41".

In the first step, the data is matched against the available LIDS descriptions
(for brevity we assume a static set of LIDS descriptions) and a set of bindings
are derived. Further processing uses the GeoNames LIDS which accepts lati-
tude/longitude as input. After constructing a URI which represents the service
entity, an equivalence (owl:sameAs) link is created between the original entity
#aifb and the service entity:

#aifb owl:sameAs
gw:findWikipediaNearby?lat=49.01&long=8.41#point.

#aifb
owl:sameAs
#aifb

Integrating Linked Data and Services with Linked Data Services 179

Retrieve
Data

Add Data
to DS

Interlink
LIDS

Add Links
to DS

Data Set (DS)

Web

#aifb

8.41 49.01

latlong

...?lng=8.41&
lat=49.01#point

owl:sameAs

dbp:KIT

dbp:Karlsruhe

based_near

GeoNames
LIDS Desc

GeoCoder
LIDS Desc

Twitter
LIDS Desc

Fig. 1. Interlinking example for GeoNames LIDS

Next, the data from the service entity URI can be retrieved, to obtain the
following data:

@prefix dbpedia: <http://dbpedia.org/resource/> .
gw:findWikipediaNearby?lat=49.01&long=8.41#point

foaf:based_near foaf:based_near dbpedia:Wildparkstadion;
foaf:based_near dbpedia:Karlsruhe.

...

Please observe that by equating the URI from the input data with the LIDS
entity URI, we essentially add the returned foaf:based_near statements to #
aifb. Should the database underlying the service change, a lookup on the LIDS
entity URI returns the updated data which can then be integrated. As such,
entity URIs can be linked in the same manner as plain Linked Data URIs.

6 Evaluation of Performance and Effectiveness

We first present several LIDS services which we have made available, and then
cover the evaluation of performance and effectiveness of the presented algorithm.
Source code and test data for the implementation of the interlinking algorithm,
as well as other general code for handling LIDS and their descriptions can be
found online6. All experiments were conducted on a 2.4 GHz Intel Core2Duo
laptop with 4 GB of main memory.

6 http://code.google.com/p/openlids/

foaf:based_near
#aifb
#aifb
http://code.google.com/p/openlids/

180 S. Speiser and A. Harth

6.1 Implemented LIDS Services

In this section, we show how we applied the LIDS approach to construct publicly
available Linked Data interfaces for selected existing services.

The following services are hosted on Google’s App Engine cloud environment.
The services are also linked on http://openlids.org/ together with their for-
mal LIDS descriptions and further information, such as URIs of example entities.

– GeoNames Wrapper7 provides three functions:
• finding the nearest GeoNames feature to a given point,
• finding the nearest GeoNames populated place to a given point,
• linking a geographic point to resources from DBpedia that are nearby.

– GeoCoding Wrapper, returning the geographic coordinates of a street ad-
dress.

– Twitter Wrapper8 links Twitter account holders to the messages they post.

The effort to produce a LIDS wrapper is typically low. The interface code that
handles the service URIs and extracts parameters can be realised by standardised
code or even generated automatically from a LIDS description. The main effort
lies in accessing the service and generating a mapping from the service’s native
output to a Linked Data representation. For some services it is sufficient to write
XSLTs that transform XML to RDF, or simple pieces of procedural code that
transform JSON to RDF. Effort is higher for services that map Web page sources,
as this often requires session and cookie handling and parsing of faulty HTML
code. However, the underlying data conversion has to be carried out whether or
not LIDS are used. Following the LIDS principles is only a minor overhead in
implementation; adding a LIDS description requires a SPARQL query to describe
the service.

6.2 Interlinking Existing Data Sets with LIDS

We implemented a streaming version of the interlinking algorithm shown in
Section 5 based on NxParser9. For evaluation of the algorithm’s performance and
effectiveness we interlinked the Billion Triple Challenge (BTC) 2010 data set10

with the findNearby geowrapper. In total the data set consisted of 3,162,149,151
triples and was annotated in 40,746 seconds (< 12 hours) plus about 12 hours
for uncompressing the data set, result cleaning, and statistics gathering. In the
cleaning phase we filtered out links to the geowrapper that were redundant, i.e.,
entities that were already linked to GeoNames, including the GeoNames data
set itself. The original BTC data contained 74 different domains that referenced
GeoNames URIs. Our interlinking process added 891 new domains that are now
linked to GeoNames via the geowrap service. In total 2,448,160 new links were

7 http://km.aifb.kit.edu/services/geowrap/
8 http://km.aifb.kit.edu/services/twitterwrap/
9 http://sw.deri.org/2006/08/nxparser/

10 http://km.aifb.kit.edu/projects/btc-2010/

http://openlids.org/
http://km.aifb.kit.edu/services/geowrap/
http://km.aifb.kit.edu/services/twitterwrap/
http://sw.deri.org/2006/08/nxparser/
http://km.aifb.kit.edu/projects/btc-2010/

Integrating Linked Data and Services with Linked Data Services 181

added11. Many links referred to the same locations, all in all there were links
to ca. 160,000 different geowrap service calls. These results show that even with
a very large data set, interlinking based on LIDS descriptions is feasible on
commodity hardware. Furthermore, the experiment showed that there is much
idle potential for links between data sets, which can be uncovered with our
approach.

7 Related Work

Our work provides an approach to open up data silos for the Web of Data. Previ-
ous efforts in this direction are confined to specialised wrappers, for example the
book mashup [3]. Other state-of-the-art data integration systems [18] use wrap-
pers to generate RDF and then publish that RDF online rather than providing
access to the services that generate RDF directly. In contrast to these ad-hoc
interfaces, we provide a uniform way to construct such interfaces, and thus our
work is applicable not only to specific examples but generally to all kinds of
data silos. Furthermore, we present a method for formal service description that
enables the automatic interface generation and service integration into existing
data sets.

SILK [19] can be used to discover links between Linked Data from different
sources. Using a declarative language, a developer specifies conditions that data
from different sources has to fulfill to be merged, optionally using heuristics in
case merging rules can lead to ambiguous results. In contrast, we use Linked
Data principles for exposing content of data-providing services, and specify the
construction of URIs which can be related to already existing data.

There exists extensive literature about semantic descriptions of Web services.
We distinguish between two kinds of works: (i) general semantic Web service
(SWS) frameworks, and (ii) stateless service descriptions.

General SWS approaches include OWL-S [11] and WSMO [14] and aim at
providing extensive expressivity in order to formalise every kind of Web service,
including complex business services with state changes and non-trivial choreogra-
phies. The expressivity comes at a price: SWS require complex modeling even
for simple data services using formalisms that are not familiar to all Semantic
Web developers. In contrast, our approach focuses on simple data services and
their lightweight integration with Linked Data.

Most closely related to our service description formalism are works on seman-
tic descriptions of stateless services (e.g., [8,7,20]). Similar to our approach these
solutions define service functionality in terms of input and output conditions.
Most of them, except [8], employ proprietary description formalisms. In contrast,
our approach relies on standard SPARQL. Moreover, our work provides the fol-
lowing key advantages: (i) a methodology to provide a Linked Data interface
to services, (ii) semi-structured input and output definitions, compared to the
static definition of required inputs and outputs in previous approaches.

11 Linking data is available online: http://people.aifb.kit.edu/ssp/geolink.tgz

http://people.aifb.kit.edu/ssp/geolink.tgz

182 S. Speiser and A. Harth

Norton and Krummenacher propose an alternative approach to integrate
Linked Data and services, so-called Linked Open Services (LOS) [12]. LOS de-
scriptions also use basic graph patterns for defining service inputs and outputs.
One difference to our work is that LOS consume RDF instead of name-value
pairs. With the LIDS approach, service calls are directly linkable from within
Linked Data, as service inputs are encoded in the query string of a URI.

Other related work to integrating data comes from the database community,
specifically information integration. Mediator systems (e.g., Information Mani-
fold [10]) are able to answer queries over heterogeneous data sources, including
services on the Web. Information-providing data services were explicitly treated,
e.g., in [17,1]. For an extensive overview of query answering in information in-
tegration systems, we refer the reader to [5]. All these works have in common
that they answer queries using services, but do not provide methods to expose
services with a standardised interface and link-able interfaces. Thus information
integration is only done at the time of query answering, which is in contrast to
our proposed approach that allows data sets to be directly interlinked, indepen-
dent of a query processor.

8 Conclusions

A large portion of data on the Web is attainable through a large number of
data services with a variety of interfaces that require procedural code for the
integration of different data sources. We presented a general method for exposing
data services as Linked Data, which enables the integration of different data
sources without specialised code. Our method includes an interface convention
that allows service inputs to be given as URIs and thus linked from other Linked
Data sources. By exposing URIs for service inputs in addition to service outputs,
the model neatly integrates with existing data, can handle multiple outputs for
one input and makes the relation between input and output data explicit.

Furthermore, we proposed a lightweight description formalism and showed
how it can be used for automatically interlinking Linked Data Services with
appropriate data sets. We showed how the descriptions can be instantiated in
SPARQL. We applied our method to create LIDS for existing real-world service,
thus contributing new data to the Web. The approach was evaluated for per-
formance and effectiveness in an experiment in which we interlinked the Billion
Triple Challenge (BTC) 2010 data set with the GeoNames LIDS wrapper. We
showed that the algorithm scales even to this very large data set and produces
large numbers (around 2.5 million) of new links between entities. A possible av-
enue for future work would be to integrate fuzzy matching algorithms, similar
to [19], in case the input to a web service is ambiguous, e.g., for services which
take keywords as input.

We further plan future work in three main areas:

– improve tool support, so that Semantic Web developers can easily adopt the
LIDS method for their applications and services;

Integrating Linked Data and Services with Linked Data Services 183

– develop approaches for integrating LIDS into SPARQL query processing;
– integrate provenance information and usage policies in the service descrip-

tions, in order to ensure legal compliance and traceability of integrated data
sets.

Acknowledgements

The authors acknowledge the support of the European Community’s Seventh
Framework Programme FP7/2007-2013 (PlanetData, Grant 257641) and of the
Deutsche Forschungsgemeinschaft (Information Management and Engineering
Graduate School, GRK 895).

References

1. Barhamgi, M., Champin, P.-A., Benslimane, D.: A Framework for Web Services-
Based Query Rewriting and Resolution in Loosely Coupled Information Systems
(2007)

2. Berners-Lee, T.: Linked Data. Design Issues (2009), http://www.w3.org/

DesignIssues/LinkedData

3. Bizer, C., Cyganiak, R., Gauss, T.: The RDF Book Mashup: From Web APIs to a
Web of Data. In: Workshop on Scripting for the Semantic Web (2007)

4. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture.
ACM Trans. Internet Technol. 2, 115–150 (2002)

5. Halevy, A.Y.: Answering queries using views: A survey. The VLDB Journal 10,
270–294 (2001)

6. Hayes, P.: RDF Semantics. W3C Recommendation (February 2004), http://www.
w3.org/TR/rdf-mt/

7. Hull, D., Zolin, E., Bovykin, A., Horrocks, I., Sattler, U., Stevens, R.: Deciding
Semantic Matching of Stateless Services. In: AAAI Conference on Artificial Intel-
ligence, AAAI (2006)

8. Iqbal, K., Sbodio, M.L., Peristeras, V., Giuliani, G.: Semantic Service Discovery
using SAWSDL and SPARQL. In: International Conference on Semantics, Knowl-
edge and Grid, SKG (2008)

9. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts
and Abstract Syntax. W3C Rec. (February 2004), http://www.w3.org/TR/

rdf-concepts/

10. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying Heterogeneous Information
Sources Using Source Descriptions. In: International Conference on Very Large
Data Bases, VLDB (1996)

11. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N.,
Sycara, K.: OWL-S: Semantic Markup for Web Services (2004), http://www.w3.
org/Submission/OWL-S/

12. Norton, B., Krummenacher, R.: Consuming dynamic linked data. In: First Inter-
national Workshop on Consuming Linked Data, COLD 2010 (2010)

13. Raghavan, S., Garcia-Molina, H.: Crawling the hidden web. In: International Con-
ference on Very Large Data Bases (VLDB), pp. 129–138 (2001)

http://www.w3.org/DesignIssues/LinkedData
http://www.w3.org/DesignIssues/LinkedData
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/

184 S. Speiser and A. Harth

14. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres,
A., Feier, C., Bussler, C., Fensel, D.: Web service modeling ontology. Applied On-
tology 1(1), 77–106 (2005)

15. Speiser, S., Harth, A.: Taking the LIDS off Data Silos. In: Triplification Challenge
at I-SEMANTICS (2010)

16. Speiser, S., Harth, A.: Towards Linked Data Services. In: The Semantic Web -
Posters and Demonstrations, ISWC (2010)

17. Thakkar, S., Ambite, J.L., Knoblock, C.A.: A Data Integration Approach to Au-
tomatically Composing and Optimizing Web Services. In: Workshop on Planning
and Scheduling for Web and Grid Services (2004)

18. Troncy, R., Fialho, A., Hardman, L., Saathoff, C.: Experiencing events through
user-generated media. In: First International Workshop on Consuming Linked
Data, COLD 2010 (2010)

19. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links
on the web of data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,
Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 650–665. Springer, Heidelberg (2009)

20. Zhao, W.-F., Chen, J.-L.: Toward Automatic Discovery and Invocation of
Information-Providing Web Services. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia,
F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 474–480. Springer, Heidelberg (2006)

	Integrating Linked Data and Services with Linked Data Services
	Introduction
	Preliminaries
	Data Services
	RDF and Basic Graph Patterns

	Linked Data Services
	Describing Linked Data Services
	Relation to Source Descriptions in Information Integration Systems
	Describing LIDS Using RDF and SPARQL Graph Patterns

	Algorithm for Interlinking Data with LIDS
	Evaluation of Performance and Effectiveness
	Implemented LIDS Services
	Interlinking Existing Data Sets with LIDS

	Related Work
	Conclusions
	References

