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Abstract

This paper analyzes the optimal procurement, processing and production decisions of

a meat processing company (hereafter a “packer”) in a beef supply chain. The packer

processes fed cattle to produce two beef products, program (premium) boxed beef and

commodity boxed beef, in fixed proportions, but with downward substitution of the

premium product for the commodity product. The packer can source input (fed cattle)

from a contract market, where long-term contracts are signed in advance of the required

delivery time, and from a spot market on the spot day. Contract prices are taken to be of

a general window form, linear in the spot price but capped by upper and lower limits on

realized contract price. Our analysis provides managerial insights on the interaction of

window contract terms with processing options. We show that the packer benefits from

a low correlation between the spot price and product market uncertainties, and this

is independent of the form of the window contract. Although the expected revenues

from processing increase in spot price variability, the overall impact on profitability

depends on the parameters of the window contract. Using a calibration based on the

GIPSA (Grain Inspection, Packers and Stockyards Administration) Report (2007), this

paper elucidates for the first time the value of long-term contracting as a complement

to spot sourcing in the beef supply chain. Our comparative statics results provide some

rules of thumb for the packer for the strategic management of procurement portfolio.

In particular, we show that higher variability (higher spot price variability, product

market variability and correlation) increases the profits of the packer, but decreases the

reliance on the contract market relative to the spot market.

Key Words: Contracting, Beef Supply Chain, Commodity Risk Management, Multi-

product Newsvendor, Window Contracts.



1 Introduction

The purpose of this paper is to develop a theoretical basis for understanding the tradeoffs

facing a meat processing company (hereafter a “packer”) in the choice of alternative ar-

rangements for sourcing fed cattle, when that packer acts as a wholesaler into several final

product markets. This is an example of a broader class of risk management and contracting

problems, including petroleum and many agricultural products, in which a single primary

input gives rise to multiple outputs. The resulting interdependencies between procurement

practices for the primary input and downstream markets present new challenges for supply

chain management.

We examine these challenges in the context of the United States (U.S.) beef industry,

which is the largest single industry within U.S. agriculture, generating between $34 and

$37 billion per year in 2006-2008 and accounting for 20% of the annual total market value

of agricultural products sold in the U.S. (USDA, 2009). A similar analysis would apply to

other cattle producing regions of the world that rely for fed-cattle procurement on a mix of

spot markets and long-term contracts (e.g. Europe and South America). While this paper

will focus on the beef supply chain for specificity, much of our analysis would also apply to

other live-animal supply chains such as pork-hog, broiler-chicken and lamb, and to other

supply chains that have a common input from which multiple outputs are produced.

The beef industry is a combination of assembly and disassembly and of product flow

smoothing. The base production unit in the industry - the beef cow herd - lives outdoors and

consumes grass-based forage. After obtaining cheap growth of the animal frame, the animals

are referred to as “feeder cattle” and are assembled by the cattle feeding industry. Feeder

animals feed for 4-6 months depending on seasonal factors, such as energy requirements due

to living outdoors and seasonal demand for beef consumption, and grain prices relative to

beef prices. Finished animals are referred to as “fed cattle” and are marketed to packers.

As reported in the GIPSA Report (2007), there are some 25 large commercial fed cattle

slaughtering and processing facilities in the U.S. And it is here that disassembly begins.

Each animal can be used to produce a subset of hundreds of standard beef cuts. These are

packaged as premium products (program boxed beef) or commodity products (commodity

boxed beef). Food service firms such as restaurant chains may procure program beef.

Grocery stores market a variety of commodity beef. There are distinct differences in regional

and seasonal demand patterns across the U.S. for different beef products.
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Several interlinked markets operate to determine pricing and delivery quantities at vari-

ous stages along the beef supply chain. We will focus on the two markets of greatest interest

to packers (see Figure 1):

1. The market between Processors/Packers and all upstream elements (including feedlots

and prior elements) of the beef value chain;

2. The market between Processors/Packers and all downstream elements (including

Wholesalers and Retailers) of the beef value chain.

Ranchers
And

Feedlots
(Meatpackers)
Processors Wholesalers

& Retailers

Program

Beef

Commodity

Beef

Contract
Market

Spot

Market

Beef Product
Markets

Input
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a1

a2

a1 + a2 ≤ 1

Proportional Product Outputs

Figure 1: Upstream and Downstream Elements for Packers in Beef Supply Chain

Considering the upstream elements in the beef supply chain, there are actually two

markets of interest: the spot market and the contract market.

Spot markets (also referred to as cash markets) are real-time regional markets for trans-

actions of fed cattle, often through auctions. In keeping with the extensive literature on

the subject, e.g. GIPSA Report (2007), we will assume throughout that spot markets are

competitive, i.e. the price is not sensitive to the actions of any of the agents (Buyers or

Sellers) who participate in this market.

Contract markets feature longer-term arrangements between feedlot owners and packers.

The contracts themselves are often referred to as “marketing agreements”. Such agreements

may allow some flexibility in the quantity delivered, in the usual options form, or have more

advanced features in pricing of yield risks (grid or formula-based) than fixed forwards based

on live-weight metrics. We analyze here a general class of “window” contracts, with contract

price equal to a linear function of the spot price when the resulting contract price is in a

window between fixed upper and lower limits, and otherwise is capped by the indicated
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limits. As also discussed in Li and Kouvelis (1999), window contracts provide a risk sharing

mechanism between the buyer and the seller for spot price risk exposure. This general

contract form includes firm fixed forwards as a special case (when the upper and lower

limits coincide) as well as the “standard contract”, most common in the industry, which

has no upper or lower limits on contract price. The standard contract specifies the price

per unit on the basis of the spot price prevailing at a specified market on delivery day, plus

a fixed surcharge. The fixed surcharge is intended to cover the cost of additional feeding

specifications that are part of the contract and which give rise to the additional value of

contract cattle resulting from the higher percentage of premium product (program beef)

in these cattle. Contract cattle can also be resold in the spot market by the contracting

packer if they are not needed for production.

For packers in the U.S., the spot market is a very important source of physical supply,

averaging for many packers in excess of 60% of total supply according to GIPSA (2007).

The heavy reliance on the spot market noted in the GIPSA Report is driven in part by the

large number of small producers of cattle, who raise cattle as complements to their other

farming activities, and the fact that spot sales in organized markets are an efficient way

of bringing such cattle to market. Contract purchases obtained from larger feedlots offer

certain advantages to packers such as the ability to contract for and monitor special feeding

regimes that are intended to increase the quality of meat produced.

Focusing on a single packer, we consider the optimal mix of contract and spot purchases

in providing input from upstream feedlots and spot markets. Our analysis shows the impact

on this portfolio of spot price and demand uncertainty and correlation and the degree of

substitution between products in final markets. We assume that neither the cattle nor the

finished products can be inventoried–they have a certain “ripe” or sale date towards which

all contracting is directed.1 As the focus is on the short and medium term, capacity and

processing technology are also assumed fixed.

This paper intends to make contributions in two areas: 1) in the analysis of general

window contracts common in agricultural and metals supply chains; and 2) in the analysis of

a benchmark case for the most important U.S. agricultural market, beef. We undertake both

1Following the GIPSA Report (2007), herds are treated as inventory or investment goods but fed cattle

must be marketed within a 2-3 week window or face substantial feeding cost penalties and meat quality

penalties. Likewise, fresh beef is sold under the old adage: “sell it or smell it.”
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of these analyses for fixed proportions technologies, which entail the production of multiple

outputs from a single primary input, with downward product substitution possibilities,

which entail the conversion of premium output to standard output.

Our analysis of window contracts on the primary input focuses on the interactions

of the contract terms with processing options, including product substitution, and the

associated revenues of processed product. We demonstrate (with normally distributed spot

price and symmetric window around the forward price) that the value of using a window

contract instead of a fixed forward contract, and its implications on the optimal procurement

portfolio is determined by the ordering between the forward price and the mean contract

procurement price. Our comparative statics results provide managerial insights on the

interaction of contract terms with processing options. We show that the firm benefits from

a lower correlation between the spot price and product market uncertainties. We also show

that the expected revenues from processing increase in spot price variability, but the overall

impact on profitability depends on the parameters of the window contract. In the absence

of spot procurement, the firm should increase its contract volume with a lower correlation

whereas the same holds with a higher spot price variability if the window contract does not

have a lower upside protection than the downside opportunity loss. With spot procurement,

the impact of the correlation and the spot price variability on the optimal procurement

portfolio is more subtle and is determined by the interplay between the spot price and

product market uncertainties.

Our contributions on the beef industry focus on the central player in these markets, the

packer. Specializing our generalized contract form to the standard contract in use in the

industry, we illustrate the significant impact on profits of integrated risk management in

this fixed proportions supply chain. In particular, using a calibration based on the GIPSA

Report (2007), the paper elucidates for the first time the value of long-term contracting in

the beef supply chain. This has been a point of continuing controversy in the policy debate

concerning the structure and operations of the beef industry. Our analysis provides some

rules of thumb for the packer. We demonstrate that higher variability (higher spot price

variability, product market variability and correlation) increases the profits, but decreases

the value of the contract market relative to the spot market. We also show that higher

demand substitution is detrimental to the packer’s profitability and reduces dependence on

contract procurement, but product substitution does not have any significant effect on the
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packer’s decisions and performance.

The paper proceeds as follows. We review relevant literature in the next section. There-

after follows our model development in §3 and its optimal solution in §4. This model

development provides a general solution for window contracts based on payoffs that are lin-

ear in an underlying spot market, with comparative statics for this general model provided

in §5. §6 provides numerical simulations for the GIPSA data and for the standard contract

form used in US beef markets, a special case of our general window contracts. These re-

sults also provide comparative statics of model results for product market and spot market

parameters of interest. We conclude in §7 with a discussion of limitations of our analysis

and the path forward for future research.

2 Literature Review

The focus of this paper is on supply chain contracting in the presence of spot markets. See

Cachon (2003) and Kleindorfer and Wu (2003) for a review of the literature related to this

theme. Assuming a competitive spot market (i.e., based on large numbers of interacting

Buyers and Sellers), Wu and Kleindorfer (2005) provide conditions such that it is optimal

for Buyers to source from both the contract market and the spot market. Mendelson and

Tunca (2007) provide an alternative rationale for the existence of simultaneous forward

and spot market sourcing, based on strategic spot trading. A similar closed-spot market

model has been used by Chod et al. (2010). We do not consider such strategic spot market

interactions in this paper since (as noted in the GIPSA Report, 2007) spot markets for fed

cattle, our target application, have large numbers of informed participants, transparent in

their function and competitive in their operation.

Two streams of literature are evidently related to the multiple-output character of the

beef problem. The first stream of papers analyzes coproduction systems where multiple

outputs are produced simultaneously in a single production run (Gerchak et al. (1996),

Bitran and Gilbert (1994), Hsu and Bassok (1999), and Tomlin and Wang (2008)). The

standard coproduction problem foresees different grades or quality levels of output, where

yields for these different grades are typically random. The problem of contracting for inputs

(e.g., wafer starts in semi-conductor manufacture) when facing demand schedules for each

of the grades has some similarities to the beef processing problem, including downward

substitution in production. However, the primary focus in the coproduction literature is on
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the production quantity and the allocation of the realized production output to the product

demands, while the primary focus in a proportional output setting such as beef markets is

on integration of upstream and downstream pricing and contracting.

A second stream of papers related to the multiple-output character of the beef problem

is the literature on newsvendor network models. As defined in Van Mieghem and Rudi

(2002), newsvendor networks encompass the structural properties of the single product

newsvendor problem and extend this to the multi-product setting (with non-price sensitive

stochastic demand). We refer the reader to Dong et al. (2010) for a review of papers

using a newsvendor network formulation and for further applications in the context of

multiple markets and transshipment networks. The beef supply chain context requires a

generalization of the newsvendor network model to include pricing and proportional input-

output relationships, with substitution possibilities both in production and in demand.

These are essential generalizations for beef supply chains and many others (e.g., petroleum

and many agricultural products) that involve input-output interdependencies that transcend

the supply network configuration and involve the product structure itself.

The literature on supply chain management issues in the agricultural sector has mainly

focused on uncertain yields and contracting issues related to multi-actor supply chains. In

this regard, Kazaz (2004) analyzes the choice between long-term contracts and a secondary

supply option with yield uncertainty with a special focus on the olive industry. Burer et al.

(2008) look at supply chain coordination issues in the seed industry focusing on different

contract types prevalently used in practice. Lowe and Preckel (2004) provide a summary of

literature on crop production. GIPSA (2007) provides an extensive literature review of the

beef industry, which is updated and supplemented by Boyabatlı et al. (2010). The essential

contribution of the present paper relative to this earlier work is the explicit treatment and

integration of fixed proportion output markets with upstream market characteristics and

contracting decisions.

Against the background of the above literature, we note several important lacunae. For

the upstream market, there is no research on the optimal mix of procurement methods

(contract vs. spot) within the beef industry. This is an important matter from a pol-

icy perspective as the above discussion of the GIPSA Report (2007) and the controversy

concerning contract markets make clear. Furthermore, the key issue of quality/yield risks

(which differ across contract and spot cattle) needs to be integrated with production and de-
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mand management. For the downstream market, the key issue is that of multiple products

arising from processing and the demand uncertainties and substitution effects associated

with these. It is on these issues, and their related impacts on optimal processing decisions

for the packer, that we focus our model and our results. We begin with a general treatment

of spot-based window contracts, which we then specialize to the beef supply chain.

3 Model Description

Notation and Preliminaries. A realization of the random variable ỹ is denoted by y.

Bold face letters represent vectors of the required size. Vectors are column vectors and ′

denotes the transpose operator. We have (u)+ = max(u, 0) and Ω12 = Ω1
∪

Ω2. Pr denotes

probability, E denotes the expectation operator. Monotonic relations are used in the weak

sense unless otherwise stated.“C-input” denotes the input sourced from the contract market

and “S-input” denotes the input sourced from the spot market. Φ(.) and �(.) refer to the

cdf and pdf of the standard normal random variable, respectively.

We consider a firm (the packer in the beef setting) that procures and processes a single

primary input (fed cattle) to produce two final products, a premium (program beef) and

a standard product (commodity beef). We model the firm’s procurement, processing and

production decisions in a two-period framework.

3.1 Procurement

We consider two sources for procurement, contracts and spot markets. A typical contract

specifies the volume of C-input committed by the firm in advance of the spot market and

delivered to the firm on the spot day. The firm can also buy S-input from the spot market

on the day. Let QC denote the volume of C-input and QS(PS) denote the volume of S-input

at the prevailing spot price PS . We assume that P̃S has a continuous distribution with

positive support with finite expectation �S and standard deviation �S .

There are differences between C- and S-input in terms of quality, processing cost and

contract price. C-input is priced as a linear function of spot price, capped by upper and lower

limits on C-input price.2 Formally, the unit price of C-input on the day is max[min(u, PS +

2This is in line with practice in the beef industry where C-input is priced through formula pricing that

ties the base price to the spot price, with a specified surcharge for the higher premium content of C-input,

e.g. MacDonald (2003), and in line with the pork-hog industry where window contracts are common, e.g.

Roe et al. (2004). As in the metals industry (e.g. Kleindorfer and Wu (2003), Geman (2005)), the reason

for using the spot price as a benchmark for contract prices is so that neither party to the trade then ends
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�), l] with l ≤ u. Here l is the lower bound, u is the upper bound on the contract price, and

� is a contract-specific per unit adjustment (to account for differences in quality, delivery

terms and other matters that distinguish C-input from S-input). We note that a pure

forward contract is obtained as a special case of the window contract when l = u.

The unit price of S-input is the prevailing spot price PS with an additive transaction

cost t ≥ 0 applied. This transaction cost reflects transportation cost from the spot market

to the firm’s plant. The firm can also resell C-input which it receives in the spot market at a

unit sales price of (1−!)PS where 0 ≤ ! ≤ 1 represents a discount or transaction cost. We

assume E
[
max[min(u, PS + �), l]

]
> (1− !)�S (i.e. expected contract price is higher than

expected spot resale revenue per unit), since otherwise C-input would dominate S-input.

3.2 Processing

We define z′ = (zC , zS) as the processed input vector composed of C-input, zC , and S-input,

zS . We assume a processing capacity constraintK (hereafter referred as plant size) such that

1′z ≤ K; and the total processing cost is denoted by C(z) = c01
′z + �zS + c1(K − 1′z)2.

Here, c0 > 0 is the common processing cost parameter, � ≥ 0 represents the additional

processing cost of S-input due to non-uniformity and c1 ≥ 0 is a utilization cost parameter.

As the total processed input (1′z) increases, the average variable cost C(z)
1′z decreases.3

3.3 Production

For each unit of input, there are two possible outputs, and the maximum proportions of

these depend on the sources of input. We denote aji as the fixed proportion of the processed

type j = {C, S} input for product i = {1, 2}. We assume a′1 =
(
aC1 , a

S
1

)
≤ a′2 =

(
aC2 , a

S
2

)
,

i.e. the maximum premium product available from a unit of input is lower than the potential

standard product available, whatever the source of the input. We also assume aj1+aj2 = s ≤ 1

for j ∈ {C, S}, i.e. the total yield is identical for both input types, with yield losses from

processing (s < 1). To capture quality differences in the two input sources, we assume

aC1 = aS1 + △ and aC2 = aS2 − △ for △ ≥ 0 where △ denotes the quality premium for

up with windfall gains or losses relative to the observable benchmark of the spot market, with consequent

incentives for regret and reneging on the contract.
3Fixed costs are also important elements of the cost structure of processors. They represent payments to

capital providers and indirect facility costs. We neglect these in the model development as they do not affect

the optimal solution. Fixed costs are reflected in the calibration underlying our numerical results in §6.

Decreasing short-term average costs throughout the entire range of feasible input levels are well documented

and important for packers in the beef industry (Koontz and Lawrence, 2010).
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C-input, i.e. C-input provides a higher proportion of premium product than S-input.

The firm-specific demand for final outputs is stochastic, price-dependent and represented

by the linear inverse-demand functions p1(x, �̃1) = �̃1 +�(P̃S−�S)−b1x11−e(x22 +x12) and

p2(x, �̃2) = �̃2+�(P̃S−�S)−b2(x22+x12)−ex11. Here, x′ = (x11, x22, x12) is the production

vector, e represents the cross-price elasticity parameter and bi and pi denote own-price slope

of the inverse demand function and price for product i, respectively. The choke price for

product i is �̃i+�(P̃S−�S), where � determines the correlation between the spot price and

output prices. A positive (negative) � implies a positive (negative) correlation. �̃
′

= (�̃1, �̃2)

is a bivariate random variable with continuous distribution that has bounded expectation

(�1, �2) with covariance matrix Σ, where Σii = �2
�i

and Σij = ����i��j for i ∕= j and

�� denotes the correlation coefficient. We assume that the distributions of P̃S and �̃ are

statistically independent.4 For analytical convenience, we assume � < 1−!
s .5

In the production vector x, xkl denotes the quantity of product l produced from the

capacity (a′kz = aCk z
C + aSk z

S) dedicated to product k. Since the first product is premium

product, we assume that b1 ≥ b2 ≥ 0, i.e. the first product demand is less responsive to

changes in price than the second product. In particular, we assume b2 ≤ b1 a
S
1

aS2
.6

We allow for two different substitution channels for production. There exists downward

product substitution: the firm can produce standard product using the premium product

yield, and not vice versa. We assume that the firm uses a market clearing pricing strategy,

i.e. available input is processed into one or other of the two final products and price is

adjusted in profit-maximizing fashion to sell all finished products. There is also demand

substitution through the cross-price elasticity parameter e. We assume that outputs are

4If we let Ỹi = �̃i + �(P̃S − �S) denote the choke price for product i, then our assumptions here imply

a multivariate distribution on (Y1, Y2, PS) with �Yi = �i, �Yi =
√
�2
�i

+ �2�2
S , Corr(Yi, P

S) = Ψi = � �S
�Yi

,

and Corr(Y1, Y2) = Ψ1Ψ2 + �
√

1−Ψ2
1

√
1−Ψ2

2 where Corr denotes the correlation coefficient.
5This limits the amount of positive correlation between choke price and spot price we can capture in the

model below, but for many applications this is not a tight constraint. For example, for the GIPSA data

examined in §6 below, where � = .04 and s = 0.6, this constraint implies an upper-bound of 1.6 on �. For

estimated values of the variance of spot and product prices, this implies a maximum correlation of 0.75, well

above that required to model realistic correlations in the beef industry.
6This is an appropriate assumption for beef markets where price sensitivity is considerably higher for

premium products than for standard products. However, all of the results related to the characterization of

the optimal solution hold for i) a1 > a2, ii) a1 ≤ a2 and b2 ≤ b1
aS1
aS2

, and iii) a1 ≤ a2 and b2 ∈ [b1
aS1
aS2
, b1)

with an additional restriction on the demand substitution parameter, e ∈ [
b2a

S
2−b1a

S
1

aS2−a
S
1

, b2).
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substitutes so that the price of each product is decreasing in the price of the other product

(e ≥ 0) and this cross-price effect is lower than the own-price effect (e ≤ min(b1, b2)). When

b1 = b2 = e = 0, we have the special case where the firm is a pure price-taker.

3.4 The Firm’s Decision Problem

We model the firm’s decision problem as a two-stage stochastic recourse problem. In stage

0, the firm decides on the volume of C-input (QC) to contract, facing spot price and product

market uncertainties. At stage 1, PS and � are realized and QC is delivered to the firm.

The firm then decides on its spot market purchases (QS), as well as on the volume of input

to process from C- and S-input (zC ≤ QC and zS ≤ QS) respectively. This decision also

implies the firm’s spot market sales, viz. (QC + QS − zC − zS). Finally, the firm decides

on the production quantities of the two products that either come from their own product

yield (x11, x22), or through substitution of the premium product yield to produce standard

product (x12). The objective of the firm is to maximize its expected total profit at stage 0.

We now formulate the firm’s decision problem starting from stage 1:

max
QS ,z,x

−QC
[
max

(
min(u, PS + �), l

)]
−QS(PS + t)

+ (1− !)PS
[
QC +QS − 1′z

]
−
[
c01
′z + �zS + c1(K − 1′z)2

]
(1)

+ x11

(
�1 + �(PS − �S)− b1x11

)
+ (x22 + x12)

(
�2 + �(PS − �S)− b2 (x22 + x12)

)
− 2e (x22 + x12)x11

s.t. zC ≤ QC , zS ≤ QS , 1′z ≤ K

x11 + x12 = a′1z, x22 = a′2z

QS ≥ 0, z ≥ 0, x ≥ 0.

In (1), the first two terms represent the total procurement cost of the firm. The third term

is the revenue from spot market sales and the fourth term is the firm’s total processing

cost. The final terms in the objective function denote the sales revenue from the product

markets. The first two constraints ensure that the firm does not process more than the

available input of each type. The third constraint is the firm’s plant size constraint. The

fourth and the fifth constraints represent the available yield for each output under market

clearing pricing.7 Let Π(QC ;PS , �) denote the optimal stage 1 profit for a given QC .

7It is theoretically possible that a profit-maximizing firm could engage in pure waste in order to attempt

to affect the price of its products, so that a more general model would allow these processing capacity

constraints to hold as inequalities. However, this theoretical possibility is not of interest when final product

markets are highly competitive, as they are in beef for example, where the firm-specific price elasticity of

demand is very high. Thus, to avoid uninteresting complications, we treat these constraints as equalities.
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Anticipating these decisions, at stage 0, the firm solves for the optimal C-input to

contract, QC
∗
, to maximize its expected profit: V ∗ = maxQC≥0 V (QC) = E

[
Π(QC ;PS , �)

]
where the expectation is taken over P̃S and �̃.

4 The Optimal Strategy

In this section, we describe the optimal solution for the firm’s procurement, processing and

production decisions. We solve the problem by backward induction starting from stage 1.

All the proofs are relegated to the Technical Appendix which is available from the authors’

websites.

4.1 Stage 1: Spot Market

To find the optimal solution for (1), we first solve for the firm’s optimal output of product

1 and 2, x′ = (x11, x22, x12), given the vector of processed inputs z′ = (zC , zS):

max
x

x11

(
�1 + �(PS − �S)− b1x11

)
+ (x22 + x12)

(
�2 + �(PS − �S)− b2 (x22 + x12)

)
− 2e (x22 + x12)x11

s.t. x11 + x12 = a′1z, x22 = a′2z, x ≥ 0. (2)

The key decision here is the optimal product substitution level, i.e. the allocation between

the two final products of the available premium product yield a′1z.

Proposition 1 : The unique optimal production vector x∗
(
z, �,PS

)′
= (x11

∗, x22
∗, x12

∗)

for a given processed input vector z′ =
(
zC , zS

)
is given by

x∗
(
z, �,PS

)′
=

⎧⎨⎩
(a′1z,a′2z, 0) if � ∈ Γ1(

(b2−e)
b1+b2−2es1

′z + �1−�2
2(b1+b2−2e) ,a

′
2z, (b1−e)

b1+b2−2ea
′
1z− (b2−e)

b1+b2−2ea
′
2z− �̃1−�̃2

2(b1+b2−2e)

)
if � ∈ Γ2

(0,a′2z,a′1z) if � ∈ Γ3

where Γ1 .
=

{
� : � ≥ 0, �2 ≤ �1 − 2

[
(b1 − e)a′1z− (b2 − e)a′2z

]}
,

Γ2 .
=

{
� : � ≥ 0, �2 > �1 − 2

[
(b1 − e)a′1z− (b2 − e)a′2z

]
, �2 < �1 + 2(b2 − e)s1′z

}
,

Γ3 .
=

{
� : � ≥ 0, �2 ≥ �1 + 2(b2 − e)s1′z

}
.

The optimal sales revenue in the product markets, �∗
(
z, �,PS

)
, is characterized by

�1(a′1z,a′2z, �, PS)
.
= �1a

′
1z− b1 (a′1z)2 + �2a

′
2z− b2 (a′2z)2 − 2e(a′1z)(a′2z) + �(PS − �S)s1′z if � ∈ Γ1

�2(a′1z,a′2z, �, PS)
.
= (�1−�2)2

4(b1+b2−2e) + �1(b2−e)+�2(b1−e)
b1+b2−2e s1′z− (b1b2−e2)

b1+b2−2e (s1′z)2 + �(PS − �S)s1′z if � ∈ Γ2

�3(a′1z,a′2z, �, PS)
.
= �2s1

′z− b2 (s1′z)2 + �(PS − �S)s1′z if � ∈ Γ3.
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When �1 is sufficiently greater than �2, the first market is highly profitable compared to

the second market; and the firm optimally allocates all the available premium product yield

a′1z to the first product (� ∈ Γ1). We denote this as the no product substitution regime.

Similarly, when �2 is sufficiently greater than �1, the second market is highly profitable

compared to the first market, and the firm optimally allocates all the available premium

product yield a′1z to the second product (� ∈ Γ3). We denote this as the full product

substitution regime. If the difference between �1 and �2 is moderate, then the firm optimally

allocates some part of a′1z to both products (� ∈ Γ2). We denote this as the partial product

substitution regime. The allocation to the standard product decreases as (�1− �2) increases.

For notational convenience, we define �k(a′1z,a′2z, �, PS) as the optimal sales revenue

under a type k product substitution regime (or � ∈ Γk) for k ∈ {1, 2, 3} for given product

i yields a′iz, i ∈ {1, 2}. Here, 1 represents no substitution, 2 represents partial substitution

and 3 represents full substitution.

The firm cannot generate revenue by selling S-input back to the spot market (as there

are transaction costs in both spot procurement (t) and spot sales (�)). Thus, QS
∗

= zS
∗
:

Any input the firm procures from the spot market is processed. As the optimal production

vector is uniquely defined by z, we can optimize the stage 1 problem over the processing

vector z′ =
(
zC , zS

)
. We now state an important property of the optimal solution that will

enable us to simplify further the decision problem in (1).

Proposition 2 : (QC − zC∗)× zS∗ = 0.

The firm only processes S-input after all available C-input has been used. This is because

C-input is preferred over S-input since it has a lower procurement cost (! ≥ 0, t ≥ 0) and

a lower processing cost (� ≥ 0), and a higher proportion of the premium product (Δ ≥ 0)

which is valuable under the no product substitution regime as follows from Proposition 1.

Using Proposition 2, we can redefine the stage 1 decision problem in (1) as a single-

variable optimization problem. We relegate the detailed characterization of this equivalent

formulation to §A of the Technical Appendix. We only provide the highlights of this for-

mulation. Let z denote the total processing amount and Λ(z) denote the stage 1 objective

function. In the optimal solution, we have zC
∗

= min
(
z∗, QC

)
and zS

∗
=
(
z∗ −QC

)+
.

12



To obtain the equivalent formulation, we first define

Λk,C(z) = −QC
[
max

(
min(u, PS + �), u

)]
+ (1− !)PS [QC − z]− c0z − c1(K − z)2 + �k(aC1 z, a

C
2 z, �, P

S)

Λk,S(z) = −QC
[
max

(
min(u, PS + �), u

)]
− (z −QC)(PS + t)− c0z − �(z −QC)− c1(K − z)2

+�k
(
(aC1 − aS1 )QC + aS1 z, (a

C
2 − aS2 )QC + aS2 z, �, P

S
)
,

for k ∈ {1, 2, 3}. Λk,C represents the objective function when the firm only uses C-input for

processing, and the optimal production belongs to a type k product substitution regime.

Notice that the argument of �k is given by aCi z as we are only processing C-input. Simi-

larly, Λk,S denotes the objective function when the firm processes S-input, and the optimal

product substitution regime is of type k. The argument of �k is given by (aCi −aSi )QC +aSi z

as the first QC units of z are C-inputs. The stage 1 objective function Λ(z) is a combination

of Λk,j for k ∈ {1, 2, 3} and j ∈ {C, S}. Λ(z) is strictly concave in z (see the Technical

Appendix).

There exists a 6-region partitioning of (�1, �2) space such that the formulation of the

stage 1 problem takes a unique form in each of these regions. These regions correspond to

each of the three product substitution regimes and which of the processed inputs, C-input

or S-input, is used under these substitution regimes. The six regions are defined as follows:

Ω1 : No substitution for C- and S-input,

Ω2 : No substitution for C-input, no and partial substitution for S-input,

Ω3 : No and partial substitution for C-input, partial substitution for S-input,

Ω4 : Full and partial substitution for C-input, partial substitution for S-input,

Ω5 : Full substitution for C-input, full and partial substitution for S-input,

Ω6 : Full substitution for C- and S-input where

Ω1 .
=

{
� : � ≥ 0, �2 ≤ �1 − 2

[
(b1 − e)aC1 − (b2 − e)aC2

]
K

+2
[
(b1 − e)(aC1 − aS1 )− (b2 − e)(aC2 − aS2 )

]
(K −QC)+

}
Ω2 .

=
{
� : � ≥ 0, �2 ≤ �1 − 2

[
(b1 − e)aC1 − (b2 − e)aC2

]
min(QC ,K),

�2 > �1 − 2
[
(b1 − e)aC1 − (b2 − e)aC2

]
K + 2

[
(b1 − e)(aC1 − aS1 )− (b2 − e)(aC2 − aS2 )

]
(K −QC)+

}
Ω3 .

=
{
� : � ≥ 0, �2 > �1 − 2

[
(b1 − e)aC1 − (b2 − e)aC2

]
min(QC ,K), �2 ≤ �1

}
Ω4 .

=
{
� : � ≥ 0, �2 > �1, �2 ≤ �1 + 2(b2 − e)smin(QC ,K)

}
Ω5 .

=
{
� : � ≥ 0, �2 > �1 + 2(b2 − e)smin(QC ,K), �2 ≤ �1 + 2(b2 − e)sK,

}
Ω6 .

= {� : � ≥ 0, �2 > �1 + 2(b2 − e)sK} .

The above structure is intuitive: As the difference between premium and standard product

market profitability decreases, i.e. �1 − �2 decreases, the firm moves from no substitution
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for either input type (in Ω1) to various degrees of partial substitution (in Ω2345) to full

substitution for either input type (in Ω6) in the product markets.

To provide further intuition, consider the special case in which the firm is a pure price-

taker (b1 = b2 = e = 0). In this case, the above six regions collapse into two (Ω1 and Ω6): the

firm uses no product substitution for either input type when � ∈ Ω1 = {� : � ≥ 0, �2 ≤ �1}
and full product substitution when � ∈ Ω6 = {� : � ≥ 0, �2 > �1}.

The optimal processing decision z∗ for each of the Ω(.) regions is technical, but straight-

forward given the quadratic objective function and linear constraints. In each of these

regions, the optimal processing decision z∗ is unique and is characterized by a number of

spot price thresholds. In particular, 8 spot price thresholds (denoted by P
(.)

) characterize

z∗ for � ∈ Ω123; and another 8 spot price thresholds (denoted by P (.)) characterize z∗ for

� ∈ Ω456. As shown in §B of the Technical Appendix, the 2 sets of 8 spot price thresholds

each have a fixed order, but they appear in different combinations for the optimal solution

for each of the Ω(.) regions.

As an example, consider � ∈ Ω1, where the firms uses no substitution regime for either

input. In this region, z∗ is characterized by

z∗ =

⎧⎨⎩

0 if PS ≥ P 0

z∗1,C = (1−!−�s)(P 0−PS)

2[b1(aC1 )2+b2(aC2 )2+2eaC1 a
C
2 +c1]

if P
0
> PS ≥ P 1

(min(QC ,K))

min(QC ,K) if P
1
(min(QC ,K)) > PS ≥ P 4

(min(QC ,K))

z∗1,S = min(QC ,K) + (P
4−PS)(1−�s)

2[b1(aS1 )2+b2(aS2 )2+2eaS1 a
S
2 +c1]

if P
4
(min(QC ,K)) > PS ≥ P 5

(K)

K if P
5
(K) > PS .

(3)

where

P
0 .

=
�1a

C
1 + �2a

C
2 + 2c1K − c0 − �s�S
1− ! − �s ,

P
1
(min(QC ,K))

.
=
�1a

C
1 + �2a

C
2 + 2c1K − c0 − �s�S − 2

[
b1(aC1 )2 + b2(aC2 )2 + 2eaC1 a

C
2 + c1

]
min(QC ,K)

1− ! − �s ,

P
4
(min(QC ,K))

.
= (1− �s)−1

[
�1a

S
1 + �2a

S
2 + 2c1K − c0 − t− � − �s�S − 2QCΔ

[
(b1 − e)aS1 + (b2 − e)aS2

]
−2
[
b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a

S
2 + c1

]
min(QM ,K)

]
,

P
5
(K)

.
= (1− �s)−1

[
�1a

S
1 + �2a

S
2 + 2c1K − c0 − t− � − �s�S − 2QCΔ

[
(b1 − e)aS1 + (b2 − e)aS2

]
−2
[
b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a

S
2 + c1

]
K
]
.

In P
(.)

(y), the argument y refers to the last term in the definition of the threshold. Here,

z∗k,j is the unique solution to ∂
∂zΛk,j = 0 for k ∈ {1, 2, 3} and j ∈ {C, S}. The intuition

behind (3) is straightforward: As PS decreases the firm processes more units (starting from
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C-input).8 This is because spot sales become less profitable and spot procurement becomes

cheaper. The exact form of the optimal solution is determined by comparing the marginal

revenue of processing an additional unit of C- or S-input with the corresponding spot option

cost (sale or procurement), leading to the various price breakpoints indicated.

4.2 Stage 0: Contract Market

At this stage the firm chooses the volume of C-input to contract to maximize its expected

profit in the presence of spot price and product market uncertainties. The following propo-

sition characterizes the optimal contracting decision QC
∗

with the assumption that P̃S

follows a normal distribution with (�S , �S). The normality assumption is useful in delin-

eating the intuition behind the technical statements. The characterization for a general P̃S

distribution is structurally the same, and is provided in §C of the Technical Appendix.

Proposition 3 : The optimal volume of C-input is never higher than plant size (QC
∗ ≤ K),

and is characterized by the following first-order condition: ∂
∂QC

V =

−
[
u+ �S

(
L

(
l − � − �S

�S

)
− L

(
u− � − �S

�S

))]
+ �S(1− !) (4)

+ �SE

[
(1− ! − �s)L

(
P

1
(QC)− �S
�S

)
− (1− �s)L

(
P

4
(QC)− �S
�S

)∣∣∣∣∣ �̃ ∈ Ω12

]
Pr(�̃ ∈ Ω12)

+ �SE
[

(1− ! − �s)L
(
P 3(QC)− �S

�S

)
− (1− �s)L

(
P 6(QC)− �S

�S

)∣∣∣∣ �̃ ∈ Ω34

]
Pr(�̃ ∈ Ω34)

+ �SE
[

(1− ! − �s)L
(
P 1(QC)− �S

�S

)
− (1− �s)L

(
P 4(QC)− �S

�S

)∣∣∣∣ �̃ ∈ Ω56

]
Pr(�̃ ∈ Ω56)

− Δ
[
(b1 − e)aS1 − (b2 − e)aS2

]
E

⎡⎢⎣ �S(1− �s)
(
L
(
P

4
(QC)−�S
�S

)
− L

(
P

5
(min(I(S),K))−�S

�S

))
b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a

s
2 + c1

∣∣∣∣∣∣∣ �̃ ∈ Ω12

⎤⎥⎦Pr(�̃ ∈ Ω12).

where L(�) =
∫ �
−∞(�−z)�(z)dz is the standard-normal loss function, I(S)

.
=

�1−�2
2
−QCΔ(b1+b2−2e)

(b1−e)aS1−(b2−e)aS2
,

8This result depends on our assumption � < 1−!
s

which insures that the cost effect of PS (due to spot

procurement for S-input, and opportunity loss of spot resale for C-input) dominates the revenue effect (due

to the signaling effect of PS for product market prices through the correlation parameter �) for any input

type, so that a higher spot price has a negative impact on the value of processing. The results for � > 1−!
s

are available from the authors.
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P 3(QC) = P
3
(QC) = P 3(QC)

.
=

[�1(b2−e)+�2(b1−e)]s
b1+b2−2e + 2c1K − c0 − �s�S − 2

[
(b1b2−e2)s2

b1+b2−2e + c1

]
QC

1− ! − �s ,

P 6(QC) = P
6
(QC) = P 6(QC)

.
=

[
[�1(b2−e)+�2(b1−e)]s

b1+b2−2e + 2c1K − c0 − t− � − �s�S − 2
[

(b1b2−e2)s2

b1+b2−2e + c1

]
QC
]

1− �s

P 1(QC)
.
=

�2s+ 2c1K − c0 − �s�S − 2
[
b2s

2 + c1
]

min(II,QC ,K)

1− ! − �s ,

P 4(QC)
.
=

[
�2s+ 2c1K − c0 − t− � − �s�S − 2

[
b2s

2 + c1
]
QC
]

1− �s ,

and thresholds P
1
, P

4
and P

5
are as given in (3). We have QC

∗
= 0 if ∂V

∂QC

∣∣∣
0+
≤ 0,

QC
∗

= K if ∂V
∂QC

∣∣∣
K−
≥ 0; otherwise it is the solution to ∂V

∂QC
= 0.

The first term in (4) is the expected marginal contract procurement cost. We note here

that with l → −∞ and u → ∞, this term equals �S + �. This is the expected unit cost

of C-input, including the adjustment � to account for differences between C-input and S-

input. When l = u, this term equals u, and the resulting contract price is independent of

PS , which represents the case of a fixed forward contract.

To understand the remaining terms in (4), let us first consider the special case in which

the firm can only sell excess C-input into the spot market, but cannot procure S-input.

Corollary 1 : If the firm does not have access to spot procurement, i.e. t → ∞, the

optimality condition in (4) is given by

∂V

∂QC
= −

[
u+ �S

(
L

(
l − � − �S

�S

)
− L

(
u− � − �S

�S

))]
+ �S(1− !) (5)

+ �S(1− ! − �s)
6∑
l=1

E

[
L

(
P̂ l − �S
�S

)∣∣∣∣∣ �̃ ∈ Ωl

]
Pr(�̃ ∈ Ωl),

where P̂ 1 = P̂ 2 = P
1
(QC), P̂ 3 = P̂ 4 = P 3(QC) and P̂ 5 = P̂ 6 = P 1(QC).

The sum of �S(1 − !) and the final term in (5) is the expected marginal revenue of

an additional unit of C-input (without spot procurement, but allowing spot sale of the C-

input). At stage 1, the firm has two options for C-input, spot sale or processing. Therefore,

the indicated expected marginal revenue is the maximum of these two options. This is

represented as the sum of the expected marginal profit from a spot sale (�S(1 − !)) and

the marginal profit over a spot sale from processing the C-input. In the absence of spot

procurement, the additional unit of C-input is processed only if the firm optimally processes

all the available C-input at stage 1, i.e. z∗ = QC . From (3), it can be shown that the
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marginal profit of processing at z = QC is (1 − ! − �s)(P (.) − P̃S)+. The form of P (.)

depends on the product substitution regime used with C-input processing and is different

across the Ω(.) regions. This explains the �SE[(1− ! − �s)L(.)] terms in (4).

Access to spot procurement has a negative impact on the marginal revenue of an ad-

ditional C-input. In (4), this impact is captured by the expression in the last line and

the second terms (−�S(1− �s)E[L(.)]) in lines 2, 3 and 4. Since C-input is preferred over

S-input for processing, the additional unit of C-input is always processed for z∗ ≥ QC . For

spot price realizations inducing z∗ > QC , the firm replaces the first unit of S-input with

the additional unit of C-input. Therefore, the firm loses the marginal profit of processing

the first unit of S-input. From (3), it can be shown that the marginal profit of processing

the first unit of S-input is (1− �s)(P (.) − P̃S)+. The form of P (.) depends on the product

substitution regime used with S-input processing and is different within Ω(.) regions. This

explains −�SE[(1− �s)L(.)] terms in (4).

The expression in the last line of (4) is the impact of an additional unit of C-input on

all S-inputs. When the firm operates under the no product substitution regime for S-input,

i.e. for � ∈ Ω12, the marginal profit of processing an S-input is given by

∂

∂z
Λ1,S = − c0 + 2c1(K − z)− PS − t− � + aS1

(
�1 + �(PS − �S)

)
+ aS2

(
�2 + �(PS − �S)

)
− 2Δ

[
(b1 − e)aS1 − (b2 − e)aS2

]
QC − 2

[
b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a

S
2

]
z. (6)

It follows from (6) that an increase in QC decreases the marginal profit of processing S-

input. The additional C-input is processed before any S-input, and alters the output prices

by providing a higher (lower) yield of premium (standard) product than S-input as Δ ≥
0. This decreases (increases) the marginal production revenue of the premium (standard)

product. Since
[
(b1 − e)aS1 − (b2 − e)aS2

]
≥ 0, the net impact is that the marginal revenue

of processing S-input decreases. This effect does not exist if there is no quality difference,

i.e. Δ = 0, or if the firm is a price-taker, i.e. b1 = b2 = e = 0. This effect also does not

exist under the other product substitution regimes as the firm is indifferent between C- and

S-input with respect to production revenues.9 When this effect exists, it is relevant for all

S-input processed under the no product substitution regime. In fact, if we define z∗1 as the

9As follows from Proposition 1, the optimal sales revenue from product markets depend on fixed propor-

tions a1 and a2 only under the no product substitution regime, and only depend on the total usable input

s1′z under the other substitution regimes.
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optimal processing quantity under the no product substitution regime, the last expression

in (4) is equivalent to Δ[(b1− e)aS1 − (b2− e)aS2 ]E[(z∗1 −QC)+]. Here E[(z∗1 −QC)+] denotes

the optimal expected volume of S-input processed under the no substitution regime.

We close this section with the optimality condition in (4) for the interesting special case

where the firm is a pure price-taker in its product markets.

Corollary 2 : If the firm is a price-taker in the product markets, i.e. b1 = b2 = e = 0, the

optimality condition in (4) is given by

∂V

∂QC
= −

[
u+ �S

(
L

(
l − � − �S

�S

)
− L

(
u− � − �S

�S

))]
+ �S(1− !) (7)

+ �SE

[
(1− ! − �s)L

(
P

1
(QC)− �S
�S

)
− (1− �s)L

(
P

4
(QC)− �S
�S

)∣∣∣∣∣ �̃ ∈ Ω1

]
Pr(�̃ ∈ Ω1)

+ �SE
[

(1− ! − �s)L
(
P 1(QC)− �S

�S

)
− (1− �s)L

(
P 4(QC)− �S

�S

)∣∣∣∣ �̃ ∈ Ω6

]
Pr(�̃ ∈ Ω6).

where Ω1 = {� : � ≥ 0, �2 ≤ �1} is the region of no substitution for either input, and Ω6 = {� :

� ≥ 0, �2 > �1} is the region of full substitution for both C- and S-input.

5 Analysis of Window Contracts

This section describes comparative statics results for the above model focusing on the impact

of the spot price variability �S (§5.1) and the correlation parameter � (§5.2) on the optimal

expected profit and the optimal procurement portfolio (the optimal contract volume and

the expected spot procurement at the optimal solution) of the firm. Our managerial insights

are summarized in §5.3. We continue to assume PS to follow a normal distribution.

5.1 Impact of Spot Price Variability �S

We first analyze the impact of the spot price variability �S on the optimal expected profit.

Proposition 4 : The optimal expected profit of the firm, V ∗, increases in �S if l = u, or

l→ −∞, u→∞, or �S + � > l+u
2 .

An increase in �S impacts both the expected revenue and the expected contract procurement

cost of the firm. On the revenue side, the firm benefits from spot price variability as it buys

cheap when spot price is low and resells to the spot when spot price is high. On the cost

side, a higher spot price variability increases the expected contract procurement cost only if

the window contract caps upside variability in contract prices less than downside variability
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relative to mean contract procurement prices: �S + � < l+u
2 .10 Therefore, if the firm uses

a fixed forward contract (l = u), or an unconstrained contract (l → −∞, u → ∞), or

any contract with higher upside protection than foregone downside contract procurement

savings (�S + � > l+u
2 ), then the optimal expected firm profit increases in �S .

To analyze the impact of �S on the optimal procurement portfolio, we will focus on

the pure price-taker special case of our model as presented in Corollary 2. In this case,

the expected marginal cost of C-input is given by
[
u+ �S

(
L
(
l−�−�S
�S

)
− L

(
u−�−�S

�S

))]
,

and the expected marginal revenue of C-input is given by the value of spot and processing

options at stage 1. In particular, the marginal revenue at stage 1 is characterized by the

processing option when the spot price is in a certain window (the processing window);

and outside this window, it is characterized by the opportunity gain from not using spot

procurement when spot price is lower and spot sale revenue when spot price is higher.

Implicit differentiation of the optimality condition in (7) yields the following expression

characterizing the sign of the impact of �S on the optimal contract volume:

−
(
�

(
l − � − �S

�S

)
− �

(
u− � − �S

�S

))
(8)
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(1− ! − �s)�

(
P

1
(QC

∗
)− �S

�S

)
− (1− �s)�

(
P

4
(QC

∗
)− �S

�S

)∣∣∣∣∣ �̃ ∈ Ω1

]
Pr(�̃ ∈ Ω1)

+ E

[
(1− ! − �s)�

(
P 1(QC

∗
)− �S

�S

)
− (1− �s)�

(
P 4(QC

∗
)− �S

�S

)∣∣∣∣∣ �̃ ∈ Ω6

]
Pr(�̃ ∈ Ω6).

where �(.) is the pdf of the standard normal distribution. The first term in (8) captures

the impact of �S on the expected marginal cost of C-input whereas the latter terms capture

the same on the expected marginal revenue. As discussed above, a higher �S increases the

expected marginal cost, i.e. the first term is negative, only if the window contract provides

a lower upside protection than downside opportunity loss (�S + � < l+u
2 ).

The impact of a higher �S on the expected marginal revenue of C-input is more subtle

and depends on the interplay between the spot price and product market uncertainties.

To demonstrate the intuition, let us focus on a realization of � ∈ Ω1. In this case, the

processing window at stage 1 is characterized by [P
4
(QC

∗
), P

1
(QC

∗
)]. On this sample path

of �, the expected marginal revenue of C-input increases in �S if �S > P
4
(QC

∗
)+P

1
(QC

∗
)

2

10Recall that the unit price of C-input on the day is
[
max

(
min(u, PS + �), u

)]
with l ≤ u. Thus, when

l − � is closer to the mean spot price �S than u − �, the firm cannot benefit from low PS realizations as

much to compensate for the negative impact of high PS realizations.
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(and decreases in �S otherwise). This is because when the mean spot price is sufficiently

high, with a higher �S , C-input benefits from high PS realizations as the value of spot

resale increases, whereas it is not negatively affected from low PS realizations as much due

to the processing window. Although the impact of �S on the expected marginal revenue of

C-input can be characterized for each � realization, the overall impact in expectation with

respect to � is ambiguous as the limits P
4
(QC

∗
), P

1
(QC

∗
) of the processing window depend

on the product market prices, and in turn on �. A stronger result can be obtained in the

special case of no spot procurement access. In the absence of spot procurement, we can

prove that the expected marginal revenue of C-input increases in �S . This is because the

firm uses the spot market only for resale of C-input, and it does so only when the spot price

is sufficiently high. A higher �S increases the probability of a higher spot price to induce

spot resale, so that the expected marginal revenue of C-input increases.

In summary, when there is no access for spot procurement, the optimal contract volume

increases in spot price variability if the firm uses a fixed forward contract (l = u), or an

unconstrained contract (l → −∞, u → ∞), or any contract with higher upside protection

than downside opportunity loss (�S +� > l+u
2 ). This result is proven to hold for the general

model and not only for the special case of price-taker firm. When the firm uses a contract

with lower upside protection than downside opportunity loss or if the firm has access to

spot procurement, the impact of �S on the optimal contract volume is ambiguous and is

determined by the interplay between spot price and product market uncertainties.

The impact of �S on the expected spot procurement at the optimal solution is charac-

terized by its impact on expected spot procurement for a given QC and the change in the

optimal contract volume QC
∗
. The spot procurement at stage 1 is linearly decreasing in the

spot price when this price is in a certain window, and outside this window, it is at full plant

capacity K −QC∗ when spot price is lower, and zero when spot price is higher. Similar to

the impact of �S on the marginal revenue of C-input, the impact of �S on this window is

ambiguous as the limits of it depend on the product market prices. In all of our numerical

experiments reported in the next section, we observe that the expected spot procurement

decreases (increases) when the optimal contract volume increases (decreases). However, we

do not have a proof that this apparent regularity is true in general.

5.2 Impact of Correlation Parameter �

We first analyze the impact of the correlation parameter � on the optimal expected profit.
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Proposition 5 : The optimal expected profit of the firm, V ∗, decreases in �.

The intuition here is that the firm benefits from asymmetry between the spot price and the

product market price. With a lower correlation11, there will be a higher likelihood when the

spot price is low (high) that the product market price will be high (low). When the spot

price is low, the firm can buy S-input at a cheaper price and, after processing, can sell the

two outputs at a high price. When the spot price is high, the firm optimally does not buy

from spot (and indeed, may resell its C-input in the spot) and lower product market price

is less consequential. In short, low product market prices and high spot price become less

consequential with a lower correlation because of the increased likelihood of using available

options upstream or downstream (or both).

To analyze the impact of � on the optimal procurement portfolio, we will once more focus

on the pure price-taker special case. The correlation parameter � only affects the expected

marginal revenue of C-input and not the expected marginal cost. We will first note that

� has an opposite impact on the marginal revenue of C-input to that associated with the

impact of �S . Recall that the marginal revenue of C-input at stage 1 is characterized by

the processing option when the spot price is in a certain window; and outside this window,

it is characterized by the opportunity gain from not using spot procurement when spot

price is lower and spot sale revenue when spot price is higher. On the right tail of this

window, a higher �S increases the probability of a spot resale of C-input as the probability

of higher spot price realizations that induce the spot resale increases. In contrast, a higher

� decreases the probability of a spot resale, as the processing option becomes more valuable

when the spot price is high due to the increasing correlation. On the left tail of the processing

window, a higher �S increases the probability of spot procurement as the probability of lower

spot price realizations that induce the spot procurement increases. In contrast, a higher �

decreases the probability of spot procurement as the processing option with S-input becomes

less valuable when the spot price is low due to increasing correlation. Therefore, � and �S

have opposite impacts on the expected marginal revenue of C-input.

11The reader should note that an increase in � increases not just correlation, but also final product price

variability, so the noted effect from � may be due in part to the increased variability in product prices.

Moreover, as noted in the next section, computational examples show that increased product market price

variability itself leads to increased profits, but we have no general proof of this.
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Paralleling the argument above, it can be shown that the impact of � on the optimal

contract volume is of the opposite sign to the impact of �S on the expected marginal revenue

of C-input, i.e. the last two terms in (8), evaluated at ! = 0. This result also holds true

for the general model and not only for the special case of the price-taker firm. Similar to

the impact of spot price variability as discussed in §5.1, the impact of � on the optimal

contract volume is ambiguous. In the absence of spot procurement, it can be proven that

QC
∗

decreases in � in the context of the general model. In this case, the expected marginal

revenue of C-input is the maximum of the two available options, spot sale or processing. A

lower �, and thus a lower correlation provides a natural hedge between these two options:

the value of one option is higher when the other is lower. For the impact of � on the

expected spot procurement at the optimal solution, we can also show for the general model

that this effect is of the opposite sign to the impact of �S .

5.3 Discussion

The managerial insights from our analysis are the following. The firm benefits from a lower

correlation between the spot price and product market uncertainties, and this is independent

of the form of the window contract. The firm benefits from a higher spot price variability if

the firm uses a fixed forward contract, or an unconstrained contract, or any window contract

with higher upside protection than downside opportunity loss. Otherwise, there exists a

trade-off between a higher contract procurement cost and a higher expected revenues from

processing. In the absence of spot procurement, the firm should increase its contract volume

with a lower correlation. The same holds with a higher spot price variability if the window

contract does not have a lower upside protection than the downside opportunity loss. With

spot procurement, the impact of the correlation and the spot price variability on the optimal

procurement portfolio is determined by the interplay between the spot price and product

market uncertainties, and is ambiguous in general.

We close this section with an important remark on the value of window contract with

respect to the fixed forward contract. Let F denote the price of the forward contract, and

l = F − � , u = F + � denote the parameters of the window contract that is symmetric

around F where � < F . The value of using a window contract instead of a fixed forward

contract, and its implications on the optimal procurement portfolio critically depends on

the ordering between the forward price and the mean contract procurement price as the

next result shows.
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Proposition 6 : The optimal contract volume and the optimal expected profit are lower

(higher) whereas the expected spot procurement at the optimal solution is higher (lower) with

the window contract if F > �S + � (F < �S + �).

In the next section, we shed more light on the main drivers of the optimal procurement

portfolio using numerical experiments and analytical results based on beef supply chains.

6 Computational Experiments for the Beef Supply Chain

This section describes computational results for the above model based on data for the

US beef industry described in the GIPSA Report (2007), and complemented by industry

demand and supply studies. The GIPSA data pertain to the period October 2002 through

March 2005. We focus on an average sized U.S. packer (see Tables 3.2, 3.3 and Figure 3.1

of the GIPSA Report) with rated capacity of 25,000 head of cattle per week (corresponding

to the mean plant size of the GIPSA Report of 103,733 cattle per month as reported in

Table 3.2). Tables 1 and 2 provide the benchmark values for this packer and the relevant

range for the sensitivity analysis we will undertake.

Contracting in the US beef market is based on a “framework agreement” signed 6 months

to a year, or longer, in advance of spot deliveries between feedlot owners and packers. While

the quality and delivery terms are specified in the “framework agreement”, quantity is not.

Contracted quantity (i.e. C-input) is determined between a few weeks and a few months in

advance of the spot day, and can depend on regional supplies and other factors. What is fixed

in advance is the structure of the contract for C-input. The most common contract used in

the U.S. fed cattle industry is a window contract benchmarked on spot price. In terms of the

general window contract specified earlier, in which contract price = max
(
min(u, PS + �), l

)
,

the standard industry contract has no limits (l → −∞ and u → ∞), and the contract

adjustment parameter � is specified simply as � = Δv, which represents the value per unit

of the quality difference Δ per unit of C-input relative to S-input. In beef supply chains, this

quality difference results from special feeding regimes undertaken for fed cattle purchased

under contract (C-input) relative to the greater heterogeneity of cattle purchased in the

spot market (S-input).

For computational experiments, we assume �̃
′

= (�̃1, ˜�2) to follow a bivariate normal

distribution and PS to follow a normal distribution.12 As no information is available in the

12It follows from Tables 1 and 2 that the coefficients of variation are not large; hence the non-negativity
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Spot and Contract Market Characteristics

Notation Description Benchmark Value Range

! Transaction cost in spot sales (percentage) 4% of PS

t Transaction cost in spot procurement 4% of �S ($64/head)

�S Mean Spot Price $1600/head -25% to 10% of the benchmark with 5% increments

�S Spot Price Volatility 8% of �S (128) 4% to 9% of �S with 1% increments

v Surcharge parameter for quality difference ($4800/head)

of C-input Δv=3.75% of �S

Table 1: Description of the spot and contract market characteristics in numerical studies.

GIPSA study on correlation between spot price and final product prices, this correlation

was assumed to be zero for these experiments, i.e. � = 0 in the price equations.13 We

programmed the first-order-condition and the other performance measures in MATLAB. We

validated the code against a number of tests that included making comparisons between the

MATLAB results and i) explicitly calculated optimal values for the performance measures

when �̃ and P̃S equaled their mean values (in this case, �� and �S were assigned very

low values so that all the probability mass was located at the mean); ii) results of several

special cases of the problem for which analytical results exist on the behavior of the optimal

performance measures. We note some of these analytical results below.

Our computational experiments focus on the impact of spot price uncertainty (�S , �S),

product market uncertainty (�i, ��, ��) and the cross-price elasticity parameter (e) on the

optimal procurement portfolio (the optimal contract volume QC
∗
, the expected spot pro-

curement at the optimal solution E[QS
∗
], the optimal portfolio ratio QC

∗

QC∗+E[QS∗]
) and the

optimal expected profit V ∗ of the packer.14 Table 3 summarizes the impact of these pa-

rameters over their entire range as specified in Tables 1 and 2. A detailed discussion of the

model calibration, and a more extensive analysis of the impact of several other parameters

of the random variables embodied in our normality assumption is unproblematical.
13The appropriate correlation measure between final product prices and spot prices is that associated with

the contracting decisions (1 to 2 months in advance of the spot). The authors’ analysis of this shows that for

the past decade this correlation has been relatively low, on the order of 0.1 to 0.3, depending on how far in

advance of the spot day the contract delivery quantity is agreed. If prices are averaged on a quarterly basis

over a longer time period, this correlation is significantly higher, and can exceed 0.75 for US beef markets.

However, the relevant correlation for the problem studied here is the much lower correlation corresponding

to quantity decisions in the 4 to 8 week advance contract market. In particular, neglecting this correlation

in the simulation studies here is not likely to have a significant effect on results.
14The expected profit includes $900,000 in fixed costs (including payments to owners/investors) per week.
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Processing Characteristics

Notation Description Benchmark Value Range

c1 Utilization cost parameter $0.001

c0 Common processing cost parameter $100/head

� Non-uniformity cost of S-input $1.39/head

K Plant Size 25000 head/week

e Cross-price elasticity parameter 0.005 0 to 0.01 with 0.0025 increments

b1 Own price coefficient for program beef 0.035

b2 Own price coefficient for commodity beef 0.01

�1 Mean demand of program beef 3800 2% to 12% of the benchmark with 2% increments

�2 Mean demand of commodity beef 3000

��1 = ��2 = �� Demand variability 6% of �2 (180) 3% to 8% of �2 with 1% increments

�� Demand correlation 0.9 0.75 to 1 with 0.05 increments

aS1 Fixed proportion of program beef 0.18

with S-input processing

aS2 Fixed proportion of commodity beef 0.42

with S-input processing

Δ Quality Difference 0.0125

= aC1 − aS1 = aS2 − aC2
s Total proportion of usable carcass 0.60

= aC1 + aC2 = aS1 + aS2

Table 2: Description of the processing characteristics in numerical studies.

of interest on a broader set of performance measures are available in Boyabatlı et al. (2010).

Two remarks are helpful before reporting our numerical results: First, in all of our

numerical experiments reported below, we observe that the firm optimally sells at most

3.7% of the C-input to the spot market on expectation. Therefore, although the firm has

both the sale and procurement options on the spot market, for the particular plant and

markets modeled here, only the spot procurement option has a significant value. Second,

in all of our numerical experiments, in the optimal solution, all of the probability mass �

is located in the Ω1 region. Therefore, we can focus only on this region in delineating the

intuition behind the numerical observations. This observation also enables us to prove the

sign of some of the comparative static results analytically. These results are highlighted in

Table 3 with a “box” around the relevant cell, indicating that the specific numerical result

shown is actually provable by assuming all of the probability mass of � is located in the

Ω1 region. The results that can be proven without this assumption, i.e. for the general

window contract of §4, are denoted with a “double box” around the cell. The proofs for the

analytical results are relegated to §E of the Technical Appendix.
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An Increase In
Contract Expected Spot Portfolio Expected

Volume Procurement Ratio Profit

�S ↓ ↑↓ ↓ ↓
�S ↓ ↑ ↓ ↑

�i ↑ ↓ ↑ ↑

�� ↓ ↑ ↓ ↑
�� ↓ ↑ ↓ ↑

e ↓ ↑ ↓ ↓

Table 3: Impact of Parameters on The Performance Measures: ↑↓ implies that expected

spot procurement first increases then decreases with an increase in �S .

We now discuss the intuition behind the results in Table 3. §6.1 and §6.2 focus on

the impact of spot price and product market uncertainty respectively. We investigate the

impact of product and demand substitution on the key performance measures in §6.3. Our

managerial insights are summarized in §6.4.

6.1 Effect of Spot Price Uncertainty (�S, �S)

An increase in the mean spot price �S decreases the optimal expected profit of the packer.15

This is because both the expected C-input and S-input procurement cost increase. Since

the expected spot procurement cost increases, the marginal revenue of C-input increases

with a higher �S . However, a higher �S also increases the marginal procurement cost of

C-input, and this outweighs the increase in the marginal revenue. Therefore, QC
∗

decreases.

On the impact of a higher �S on the expected spot procurement, two effects work in the

opposite directions: A lower QC
∗

works to increase it whereas a higher expected spot

procurement cost works to decrease it. For sufficiently low �S , the former effect dominates,

and the expected spot procurement increases. For sufficiently large �S , the packer does not

contract any C-input, and only the latter effect exists. Thus, the expected spot procurement

decreases with an increase in �S . As QC
∗

decreases, the optimal portfolio ratio decreases

with an increase in �S .

An increase in the spot price variability �S increases the optimal expected profit as

follows from Proposition 4. The optimal contract volume decreases in �S . The packer uses

15The same result is proven to hold for general window contract for � ≥ 0 and Φ
(
u−�−�S

�s

)
−Φ

(
l−�−�S
�s

)
≥

1− ! where Φ(.) is the cdf of the standard normal distribution.
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the spot market almost exclusively for procurement, and it does so when the spot price is

low. A higher �S means a higher probability that the spot price is sufficiently low to induce

spot procurement. The larger reliance on the spot market decreases the marginal revenue of

C-input and the optimal contract volume decreases. Since QC
∗

decreases with an increase

in �S , the expected spot procurement at the optimal solution increases and the portfolio

ratio decreases.

6.2 Effect of Product Market Uncertainty (�i, ��, ��)

An increase in the mean demand parameter �i increases the optimal expected profit of the

packer. This is because the average product price increases, increasing also the expected

revenues from processing. Since the value of processing increases, the marginal revenue of

C-input increases, and the packer increases the optimal contract volume with a higher �i.

Since QC
∗

increases with an increase in �i, the expected spot procurement at the optimal

solution decreases and the portfolio ratio increases.

For the effect of �� and ��, we note here that �̃ appears in the form of W̃ = ℎ1�̃1+ℎ2�̃2 for

ℎi ∈ {aCi , aSi } in a linearly-increasing fashion both in the marginal revenue of C-input and

the expected profit of the packer for a given QC . Since �̃ is bivariate normal, W̃ is normally

distributed with mean ℎ1�1 + ℎ2�2 and standard deviation �
.
= ��

√
ℎ2

1 + ℎ2
2 + 2ℎ1ℎ2��.

Therefore, increasing �� or �� leads to a higher product market variability �. Since the

firm optimally processes only when product market return is sufficiently high, a higher �

increases the value of the processing option of the firm, and the optimal expected profit of

the firm increases. For the impact of �� and �� on the optimal contract volume, the packer

uses spot procurement only when the product market return is sufficiently high (for a given

spot price realization). A higher � means a higher probability that the product market

return is sufficiently high to induce spot procurement. The larger reliance on spot market

decreases the marginal revenue of C-input and the optimal contract volume decreases. Since

QC
∗

decreases with an increase in �� or ��, the expected spot procurement at the optimal

solution increases and the portfolio ratio decreases.

6.3 Effect of Demand and Product Substitution

The effect of demand substitution (through the cross-price elasticity parameter e) is driven

by the change in the product market profitability. As e increases, since the two outputs are

substitutes, the firm is not able to price differentiate between the two markets due to the

higher cross-price effect, and the profitability of the product market decreases. Therefore,
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a higher e decreases the value of processing, and thus, the optimal expected profit of the

packer. With an increase in e, since the value of processing decreases, the marginal revenue

of C-input, and thus, QC
∗

decreases. A lower dependence on contract purchases leads to a

higher expected spot procurement and a lower contract ratio.

The effect of product substitution is driven by the product substitution regime used by

the firm. From our computational experiments, we observe that product substitution does

not have any value for the calibration implied by the GIPSA data: The packer optimally does

not use any product substitution. This observation is consistent with empirical observations,

as packers rarely convert premium product (program beef) to standard product (commodity

beef) in practice. We note here that the ineffectiveness of product substitution partly

depends on the high value of ��. As follows from Proposition 1, the optimal substitution

regime is determined by the difference between two market prospects (�̃1 − �̃2). As ��

decreases, the asymmetry between �̃1 and �̃2 increases and the packer starts using partial

and full product substitution regimes. We numerically observe that the expected premium

product substitution ratio,
E[x∗12]

E[x∗11+x∗12] , increases with a decrease in �� for sufficiently negative

correlation levels. In this case, product substitution does have a significant effect on the

optimal procurement portfolio and the expected profit of the packer.

6.4 Discussion

The managerial insights from our analysis are the following. A lower mean spot price and

a higher mean demand increases the packer’s profitability as well as increasing contract

procurement relative to spot procurement. The packer also benefits from a higher spot

price variability, a higher product market variability, and a higher correlation between

product markets. With an increase in any three of these variability measures, the packer

should decrease contract volumes and rely more on spot procurement. Higher demand

substitution is detrimental to the packer’s profitability and reduces dependence on contract

procurement, but product substitution does not have any significant effect on the packer’s

decisions and performance.

These results on variability, both upstream and downstream, show the interplay between

the options value of contract markets and the volatility of prices. One of the most important

elements of the beef context is the fact that contract prices and spot prices are closely

linked through the standard contract. Even with this close link, the sensitivity of the

optimal portfolio to variability in both upstream and downstream markets is evident from
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Table 3. What this indicates is a strong interaction among upstream and downstream

factors. These factors vary considerably over time depending on supply and demand of

the respective cattle entering into these two markets (e.g., See Figure 2.1 and the ensuing

discussion in the GIPSA Report (2007). As a result, what one can expect is that the optimal

portfolio, and the value of the contract market itself, will change over time as determinants

of supply-demand and prices change. Indeed, an important contribution of the framework

developed here is providing improved understanding on how the optimal supply portfolio

should change in response to varying environmental conditions in a context in which plant

size and technology are fixed and high plant utilization is fundamental to profitability.

7 Conclusions

The model and results here provide insights on optimal procurement decisions for a fixed

proportions, multiple-product technology with uncertainties in the both input prices and

output prices/demands. The central question analyzed has been the structure of optimal

sourcing portfolios between spot sourcing and long-term contracts, with the latter taken to

be of a general window form, linear in the spot price but capped by upper and lower limits

on realized contract price. Our analysis provides managerial insights, as summarized in

§5.3, on the interaction of window contract terms with processing options. Specializing our

generalized contract form to the standard contract in use in the beef industry, we illustrate

the significant impact on profits of integrated risk management in this fixed proportions

supply chain. In particular, using a calibration based on the GIPSA Report (2007), the

paper elucidates for the first time the value of long-term contracting in the beef supply

chain. Our comparative statics results provide some rules of thumb for the packer for the

strategic management of procurement portfolio, as summarized in §6.4.

The results of this paper underline the significant benefits of coupling input risk man-

agement (through sourcing decisions) and output risk management (through pricing, pro-

duction and product substitution decisions). This theme of integrated risk management of

supply is becoming increasingly central as commoditization of intermediate product mar-

kets continues, driven by global markets and the need for standardization, and as B2B

markets continue to develop in providing the requisite contracting and hedging instruments

for integrated risk management.

Relaxing the assumptions made here on the production environment gives rise to a
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number of interesting areas for future research, both in the theory of multi-product pro-

duction as well as in specific application areas such as cocoa, oil and soybeans where a

single input gives rise to multiple outputs in fixed proportions. First, there are our sim-

plifying assumptions of a single-period, single-contract world with only two final products.

The fixed proportions technology problem in the presence of multiple suppliers is examined

in Boyabatlı (2010). The single-period clearly needs to be generalized to a dynamic set-

ting, following the examples of Kouvelis et al. (2010) and Secomandi (2010), who provide

some results for the case of a single input and single output. Second, we have allowed free

downward substitution in production, which is reasonable in the case of beef processing,

but might well entail penalty and options costs in other contexts as analyzed in Dong et

al. (2010). Third, while our model encompasses fairly general contract forms, including

fixed forwards and general window contracts common in many markets, in other contexts,

the price of contract purchases could well include alternative options features and could

be subject to other determining factors (e.g., the competitive model developed in Wu and

Kleindorfer (2005)). Moreover, even for other live animal supply chains, such as pork-hog

and broiler-chicken, there are important differences from the beef market (e.g., for the pork-

hog market, one would see a1 > a2 in contrast to the beef supply chain, and the optimal

operating regime would therefore occur in different regions of the �̃ space, with important

consequences for substitution results). These comments and noted limitations suggest a

number of open research questions.

Concerning risk management, our focus has been on physical procurement only. Ex-

tensions to overlay the cash flows from this physical problem with financial hedging are an

important area of future research. In the beef industry, for example, there are significant

variations over time in market conditions and operating profits of packers. To the extent

that profit smoothing would avoid financial transactions costs under such variable market

conditions, financial hedging can be of significant value. Financial derivatives defined on

either input or output markets can serve this purpose. The existence of such hedging op-

portunities can also affect operational decisions, as the work of Chod et al. (2010) and

Secomandi (2010) shows.

In addition to short-term issues, there are also important capacity investment and tech-

nology choice issues in the longer term. Intuitively, it is clear that the tradeoffs involved

between scale economies, operational flexibility (in downward substitution and yields) are
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likely to be richer and more complex in a fixed proportions technology world as analyzed

in the present paper than in the single-input, single-output world that has been the focus

of the supply risk management literature to date.
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Technical Appendix

The proofs for Propositions 1 and 2 are omitted. §A provides the equivalent formulation to the
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stage 1 optimization problem. The optimal processing decision z∗ is relegated to §B. §C illustrates

the proof for Proposition 3. The proofs for technical statements in the general “window contracts”

model and the beef market model (as summarized in Table 3) are provided in §D and §E, respectively.

A Characterization of Stage 1 Optimization Problem

Proposition A.1 The stage 1 optimization problem in (1) can be restated as Π(QC ;PS , �) =

max0≤z≤K Λ(z) where Λ(.) is continuous and strictly concave in z. We have

Λ(z) =

⎧⎨⎩

Λ1,C(z) for 0 ≤ z ≤ min(I(M), QC ,K)

Λ2,C(z) for min(I(M), QC ,K) < z ≤ min(QC ,K)

Λ1,S(z) for min(QC ,K) < z ≤ min
(
max(I(S), QC),K

)
Λ2,S(z) for min

(
max(I(S), QC),K

)
< z ≤ K,

(9)

Λ(z) =

⎧⎨⎩

Λ3,C(z) for 0 ≤ z ≤ min(II,QC ,K)

Λ2,C(z) for min(II,QC ,K) < z ≤ min(QC ,K)

Λ3,S(z) for min(QC ,K) < z ≤ min
(
max(II,QC),K

)
Λ2,S(z) for min

(
max(II,QC),K

)
< z ≤ K,

(10)

for �1 ≥ �2 and for �1 < �2, respectively, where

Λk,C(z) = −QC
[
max

(
min(u, PS + �), u

)]
+ (1− !)PS [QC − z]− c0z − c1(K − z)2 + �k(aC1 z, a

C
2 z, �),

Λk,S(z) = −QC
[
max

(
min(u, PS + �), u

)]
− (z −QC)(PS + t)− c0z − �(z −QC)− c1(K − z)2

+�k
(
(aC1 − aS1 )QC + aS1 z, (a

C
2 − aS2 )QC + aS2 z, �

)
,

for k ∈ {1, 2, 3} and I(j)
.
=

�1−�2
2 −QC [(b1−e)(aC1 −a

j
1)+(b2−e)(aj2−a

C
2 )]

(b1−e)aj1−(b2−e)aj2
for j ∈ {C, S} and II

.
= �2−�1

2(b2−e)s .
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B Characterization of The Optimal Processing Decision z∗

Proposition B.1 For �1 ≥ �2 (�1 < �2), there exist 8 spot price thresholds P
(.)

(P (.)) that charac-

terizes the optimal processing decision z∗. These spot price thresholds are given by

P
0 .

=
�1a

C
1 + �2a

C
2 + 2c1K − c0 − �s�S
1− ! − �s ,

P
1
(min(I(M), QC ,K))

.
=

�1a
C
1 + �2a

C
2 + 2c1K − c0 − �s�S
1− ! − �s

−2
[
b1(aC1 )2 + b2(aC2 )2 + 2eaC1 a

C
2 + c1

]
min(I(M), QC ,K)

1− ! − �s ,

P
2
(min(I(M), QC ,K))

.
=

[�1(b2−e)+�2(b1−e)]s
b1+b2−2e + 2c1K − c0 − �s�S − 2

[
(b1b2−e2)s2

b1+b2−2e + c1

]
min(I(M), QC ,K)

1− ! − �s ,

P
3
(min(QC ,K))

.
=

[�1(b2−e)+�2(b1−e)]s
b1+b2−2e + 2c1K − c0 − �s�S − 2

[
(b1b2−e2)s2

b1+b2−2e + c1

]
min(QC ,K)

1− ! − �s ,

P
4
(min(QC ,K))

.
= (1− �s)−1

[
�1a

S
1 + �2a

S
2 + 2c1K − c0 − t− � − �s�S

−2QC
[
(aC1 − aS1 )(b1a

S
1 + eaS2 ) + (aC2 − aS2 )(b2a

S
2 + eaS1 )

]
−2
[
b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a

S
2 + c1

]
min(QC ,K)

]
,

P
5 (

min
[
max(QC , I(S)),K

]) .
= (1− �s)−1

[
�1a

S
1 + �2a

S
2 + 2c1K − c0 − t− � − �s�S

−2QC
[
(aC1 − aS1 )(b1a

S
1 + eaS2 ) + (aC2 − aS2 )(b2a

S
2 + eaS1 )

]
−2
[
b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a

S
2 + c1

]
min

[
max(QC , I(S)),K

]]
,

P
6 (

min
[
max(QC , I(S)),K

]) .
= (1− �s)−1

[
[�1(b2 − e) + �2(b1 − e)] s

b1 + b2 − 2e
+ 2c1K − c0 − t− � − �s�S

−2

[
(b1b2 − e2)s2

b1 + b2 − 2e
+ c1

]
min

[
max(QC , I(S)),K

]]
,

P
7 .

= (1− �s)−1

[
[�1(b2 − e) + �2(b1 − e)] s

b1 + b2 − 2e
− c0 − t− � − �s�S − 2

[
(b1b2 − e2)s2

b1 + b2 − 2e

]
K

]

P 0 .
=

�2s+ 2c1K − c0 − �s�S
1− ! − �s ,

P 1(min(II,QC ,K))
.
=

�2s+ 2c1K − c0 − �s�S − 2
[
b2s

2 + c1
]

min(II,QC ,K)

1− ! − �s ,

P 2(min(II,QC ,K))
.
=

[�1(b2−e)+�2(b1−e)]s
b1+b2−2e + 2c1K − c0 − �s�S − 2

[
(b1b2−e2)s2

b1+b2−2e + c1

]
min(II,QC ,K)

1− ! − �s ,

P 3(min(QC ,K))
.
= P

3
(min(QC ,K)),

P 4(min(QC ,K))
.
= (1− �s)−1

[
�2s+ 2c1K − c0 − t− � − �s�S − 2

[
b2s

2 + c1
]

min(QC ,K)
]
,

P 5(min
[
max(QC , II),K

]
)

.
= (1− �s)−1

[
�2s+ 2c1K − c0 − t− � − �s�S − 2

[
b2s

2 + c1
]

min
[
max(QC , II),K

]]
,

P 6(min
[
max(QC , II),K

]
)

.
= (1− �s)−1

[
[�1(b2 − e) + �2(b1 − e)] s

b1 + b2 − 2e
+ 2c1K − c0 − t− � − �s�S

−2

[
(b1b2 − e2)s2

b1 + b2 − 2e
+ c1

]
min

[
max(QC , II),K

]]
,

P 7 .
= P

7
.
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where in P
k
(y) (P k(y)), for k ∈ {1, 2, 3, 4, 5, 6}, the argument y refers to the last term in the

definition of the thresholds on the right-hand side.

For � ∈ Ω1, the unique optimal processing decision z∗ is characterized by

z∗ =

⎧⎨⎩

0 if PS ≥ P 0

z∗1,C = (1−!−�s)(P 0−PS)

2[b1(aC1 )2+b2(aC2 )2+2eaC1 a
C
2 +c1]

if P
0
> PS ≥ P 1

(min(QC ,K))

min(QC ,K) if P
1
(min(QC ,K)) > PS ≥ P 4

(min(QC ,K))

z∗1,S = min(QC ,K) + (P
4
(min(QC ,K))−PS)(1−�s)

2[b1(aS1 )2+b2(aS2 )2+2eaS1 a
S
2 +c1]

if P
4
(min(QC ,K)) > PS ≥ P 5

(K)

K if P
5
(K) > PS.

For � ∈ Ω2, the unique optimal processing decision z∗ is characterized by

z∗ =

⎧⎨⎩

0 if PS ≥ P 0

z∗1,C = (1−!−�s)(P 0−PS)

2[b1(aC1 )2+b2(aC2 )2+2eaC1 a
C
2 +c1]

if P
0
> PS ≥ P 1

(QC)

QC if P
1
(QC) > PS ≥ P 4

(QC)

z∗1,S = QC + (P
4
(QC)−PS)(1−�s)

2[b1(aS1 )2+b2(aS2 )2+2eaS1 a
S
2 +c1]

if P
4
(QC) > PS ≥ P 5

(I(S))

z∗2,S = I(S) + (P
6
(I(S))−PS)(1−�s)

2
[

(b1b2−e2)s2

b1+b2−2e +c1
] if P

5
(I(S)) = P

6
(I(S)) > PS ≥ P 7

K if P
7
> PS.

For � ∈ Ω3, the unique optimal processing decision z∗ is characterized by

z∗ =

⎧⎨⎩

0 if PS ≥ P 0

z∗1,C = (1−!−�s)(P 0−PS)

2[b1(aC1 )2+b2(aC2 )2+2eaC1 a
C
2 +c1]

if P
0
> PS ≥ P 1

(I(M))

z∗2,C = I(M) + (1−!−�s)(P 2
(I(M)−PS)

2
[

(b1b2−e2)s2

b1+b2−2e +c1
] if P

1
(I(M)) = P

2
(I(M)) > PS ≥ P 3

(min(QC ,K))

min(QC ,K) if P
3
(min(QC ,K)) > PS ≥ P 6

(min(QC ,K))

z∗2,S = min(QC ,K) + (P
6
(min(QC ,K))−PS)(1−�s)

2
[

(b1b2−e2)s2

b1+b2−2e +c1
] if P

6
(min(QC ,K)) > PS ≥ P 7

K if P
7
> PS.

For � ∈ Ω4, the unique optimal processing decision z∗ is characterized by

z∗ =

⎧⎨⎩

0 if PS ≥ P 0

z∗3,C = (1−!−�s)(P 0−PS)
2[b2s2+c1] if P 0 > PS ≥ P 1(II)

z∗2,C = II + (1−!−�s)(P 2(II)−PS)

2
[

(b1b2−e2)s2

b1+b2−2e +c1
] if P 1(II) = P 2(II) > PS ≥ P 3(min(QC ,K))

min(QC ,K) if P 3(min(QC ,K)) > PS ≥ P 6(min(QC ,K))

z∗2,S = min(QC ,K) + (P 6(min(QC ,K))−PS)(1−�s)
2
[

(b1b2−e2)s2

b1+b2−2e +c1
] if P 6(min(QC ,K)) > PS ≥ P 7

K if P 7 > PS.
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For � ∈ Ω5, the unique optimal processing decision z∗ is characterized by

z∗ =

⎧⎨⎩

0 if PS ≥ P 0

z∗3,C = (1−!−�s)(P 0−PS)
2[b2s2+c1] if P 0 > PS ≥ P 1(QC)

QC if P 1(QC) > PS ≥ P 4(QC)

z∗3,S = QC + (P 4(QC)−PS)(1−�s)
2[b2s2+c1] if P 4(QC) > PS ≥ P 5(II)

z∗2,S = II + (P 6(II)−PS)(1−�s)
2
[

(b1b2−e2)s2

b1+b2−2e +c1
] if P 5(II) = P 6(II) > PS ≥ P 7

K if P 7 > PS.

For � ∈ Ω6, the unique optimal processing decision z∗ is characterized by

z∗ =

⎧⎨⎩

0 if PS ≥ P 0

z∗3,C = (1−!−�s)(P 0−PS)
2[b2s2+c1] if P 0 > PS ≥ P 1(min(QC ,K))

min(QC ,K) if P 1(min(QC ,K)) > PS ≥ P 4(min(QC ,K))

z∗3,S = min(QC ,K) + (P 4(min(QC ,K))−PS)(1−�s)
2[b2s2+c1] if P 4(min(QC ,K)) > PS ≥ P 5(K)

K if P 5(K) > PS.

C Characterization of the First-Order Condition at Stage 0

Proof of Proposition 3: Using Proposition B.1, we can characterize the expected profit E[Π(QC)]

for QC ≤ K and QC > K. Let f(�̃1, �̃2) denote the density function of �̃
′

= (�̃1, �̃2). We define

Πk(QC , �̃) for k = 1, .., 6 such that E[Π(QC)] =
∑6
k=1 E[Πk(QC , �̃)∣�̃ ∈ Ωk]Pr{�̃ ∈ Ωk}. For

example, for QC ≤ K, we have Π1(QC , �̃) =
∫∞
P

0 Λ1,C(0) dF (P̃S) +
∫ P 0

P
1
(QC)

Λ1,C(z∗1,C) dF (P̃S) +∫ P 1
(QC)

P
4
(QC)

Λ1,C(QC) dF (P̃S) +
∫ P 4

(QC)

P
5
(K)

Λ1,S(z∗1,S) dF (P̃S) +
∫ P 5

(K)

0
Λ1,S(K) dF (P̃S). Πk(QC , �̃) for

the other regions can be established in the same manner, and is omitted. For QC > K, we have

Ω2 = Ω5 = ∅, and we obtain

∂E[Π(QC)]

∂QC
= −E

[
max

(
min(u, P̃S + �), l

)]
+ E[P̃S(1− !)] < 0 (11)

by assumption. For QC ≤ K, we analyze each ∂Πk

∂QC
separately. We only provide the characterization

for �̃ ∈ Ω1, the rest can be established similarly. We obtain ∂Π1

∂QC
=

− E
[
max

(
min(u, P̃S + �), l

)]
+

∫ ∞
P

1
(QC)

[
P̃S(1− !)

]
dF (P̃S)

+

∫ P
1
(QC)

P
4
(QC)

[
�̃1a

S
1 + �̃2a

S
2 + Δ(�̃1 − �̃2) + 2c1K − c0 + �s(P̃S − �S)

−2(QC)[b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a
S
2 + c1 + (Δ)2(b1 + b2 − 2e) + 2Δ[(b1 − e)aS1 − (b2 − e)aS2 ]]

]
dF (P̃S)

+

∫ P
4
(QC)

P
5
(K)

[
P̃S + t+ � + Δ[�̃1 − �̃2]− 2QC(Δ)2[b1 + b2 − 2e]− Δ[(b1 − e)aS1 − (b2 − e)aS2 ]

[b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a
S
2 + c1][

�̃1a
S
1 + �̃2a

S
2 + 2c1K − c0 − �s�S − P̃S(1− �s)− t− � − 2ΔQC [(b1 − e)aS1 − (b2 − e)aS2 ]

]]
dF (P̃S)

+

∫ P
5
(K)

0

[
P̃S + t+ � + Δ[�̃1 − �̃2]− 2QC(Δ)2[b1 + b2 − 2e]− 2ΔK[(b1 − e)aS1 − (b2 − e)aS2 ]

]
dF (P̃S)
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To establish the concavity of E[Π(QC)], we obtain ∂2E[Π(QC)]
∂(QC)2 =

∑6
k=1

∫ ∫
Ωk

∂2Πk(QC ,�̃)

∂QC2 f(�̃1, �̃2)d�̃1d�̃2.

From (11), we have ∂2E[Π(QC)]
∂(QC)2 = 0; hence E[Π(QC)] is concave for QC > K. For QC < K, for con-

cavity, it is sufficient to prove that ∂2Πk(QC)

∂(QC)2 < 0 for k = 1, .., 6. For �̃ ∈ Ω1, we obtain ∂2Π1

∂(QC)2 =

∫ P
1
(QC)

P
4
(QC)

−2
[
b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a

S
2 + c1 + (Δ)2(b1 + b2 − 2e) + 2Δ[(b1 − e)aS1 − (b2 − e)aS2 ]

]
dF (P̃S)

+

∫ P
4
(QC)

P
5
(K)

−
[
2(Δ)2 (b1b2 − e2)(aS1 + aS2 )2 + (b1 + b2 − 2e)c1

b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a
S
2 + c1

]
dF (P̃S)+

∫ P
5
(K)

0

−2(Δ)2(b1+b2−2e)dF (P̃S) < 0.

The other regions can be established in the same manner, and the proof is omitted. Combining all

Ωk, we have ∂2E[Π(QC)]
∂(QC)2 < 0 for QC < K; hence E[Π(QC)] is also concave for QC < K. It is easy to

establish that E[Π(QC)] is kinked at QC = K. Therefore it is not differentiable at QC = K. It is

easy to establish that ∂E[Π(QC)]
∂QC

∣∣∣
K−

> ∂E[Π(QC)]
∂QC

∣∣∣
K+

. Therefore E[Π(QC)] is globally concave.

By using the definitions of P
(.)

, P
(.)

and z∗(.), for QC < K, we obtain

∂E[Π(QC)]

∂QC
= −E

[
max

(
min(u, P̃S + �), l

)]
(12)

+ E[(1− !)P̃S + (1− ! − �s)(P 1
(QC)− P̃S)+∣�̃ ∈ Ω12]Pr

{
�̃ ∈ Ω12

}
+ E[(1− !)P̃S + (1− ! − �s)(P 3(QC)− P̃S)+∣�̃ ∈ Ω34]Pr

{
�̃ ∈ Ω34

}
+ E[(1− !)P̃S + (1− ! − �s)(P 1(QC)− P̃S)+∣�̃ ∈ Ω56]Pr

{
�̃ ∈ Ω56

}
− E

[∫ P
4
(QC)

0

[
(P

4
(QC)− P̃S)(1− �s)

]
dF (P̃S)

+

∫ P
4
(QC)

P
5
(K)

2Δℎ(z∗1,S −QC)dF (P̃S) +

∫ P
5
(K)

0

2Δℎ(K −QC)dF (P̃S)

∣∣∣∣∣ �̃ ∈ Ω1

]
Pr
{
�̃ ∈ Ω1

}
− E

[∫ P
4
(QC)

P
5
(I(S))

[
(P

4
(QC)− P̃S)(1− �s)

]
dF (P̃S)

+

∫ P
4
(QC)

P
5
(K)

2Δℎ(z∗1,S −QC)dF (P̃S) +

∫ P
6
(I(S))

0

2Δℎ(I(S)−QC)dF (P̃S)

∣∣∣∣∣ �̃ ∈ Ω2

]
Pr
{
�̃ ∈ Ω2

}
− E

[∫ P 6(QC)

0

[
(P 6(QC)− P̃S)(1− �s)

]
dF (P̃S)

∣∣∣∣∣ �̃ ∈ Ω34

]
Pr
{
�̃ ∈ Ω34

}
− E

[∫ P 4(QC)

0

[
(P 4(QC)− P̃S)(1− �s)

]
dF (P̃S)

∣∣∣∣∣ �̃ ∈ Ω56

]
Pr
{
�̃ ∈ Ω56

}
.

where ℎ = (b1− e)aS1 − (b2− e)aS2 . From (11), we have ∂E[Π(QC)]
∂QC

< 0 for QC > K; hence QC
∗ ≤ K.

Since E[Π(QC)] is concave function, QC
∗

= 0 if ∂E[Π(QC)]
∂QC

∣0+ ≤ 0. QC
∗

= K if ∂E[Π(QC)]
∂QC

∣K− > 0.

Otherwise QC
∗

is the solution to the first order condition as depicted in (12).The equivalence between

(12) and the optimality condition in (4) can be obtained after standardizing P̃S as �S + z�S , and

using the identities of the standard normal distribution.
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D Proofs for the “Window Contracts” Model

Proof of Proposition 4: We have V (QC) =
∑6
l=1 E�̃

[
EP̃S

[
Πl(QC , �̃, P̃S)

]∣∣∣ �̃ ∈ Ωl
]
Pr{�̃ ∈ Ωl}.

We define G(l, u)
.
= E

[
max

(
min(u, P̃S + �), l

)]
. For a given QC , we can separate V (QC) as follows:

V (QC) = −G(l, u)QC + �S(1− !)QC +

6∑
l=1

E�̃

[
EP̃S

[
Πl

Θ(QC , �̃, P̃S)
]∣∣∣ �̃ ∈ Ωl

]
Pr{�̃ ∈ Ωl} (13)

where the first term is the expected contract procurement cost, the second term is the expected rev-

enues from spot sales, and the remaining terms denote the additional expected profit from processing

over spot sale. For QC < K, we have in Ω1 region, EP̃S [Π1
Θ] =

∫∞
P

0

[
−c1K2

]
dF (P̃S)

+

∫ P
0

P
1
(QC)

[
−c1K2+

[�1a
S
1 + �2a

S
2 + Δ(�1 − �2) + 2c1K − c0 − �s�S − P̃S(1− �− �s)]2

4[b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a
S
2 + c1 + (Δ)

2
(b1 + b2 − 2e) + 2Δ[(b1 − e)aS1 − (b2 − e)aS2 ]]

]
dF (P̃S)

+

∫ P
1
(QC)

P
4
(QC)

[
−P̃S(1− !)QC − c1K2 +QC [�1a

S
1 + �2a

S
2 + Δ(�1 − �2) + 2c1K − c0 + �s(P̃S − �S)]

−(QC)2[b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a
S
2 + c1 + (Δ)2(b1 + b2 − 2e) + 2Δ[(b1 − e)aS1 − (b2 − e)aS2 ]]

]
dF (P̃S)

+

∫ P
4
(QC)

P
5
(K)

[
−P̃S(1− !)QC +QC(P̃S + t+ �)− c1K2 +QCΔ[�1 − �2]− (QC)2(Δ)2[b1 + b2 − 2e]

+
[�1a

S
1 + �2a

S
2 + 2c1K − c0 − �s�S − P̃S(1− �s)− t− � − 2ΔQC [(b1 − e)aS1 − (b2 − e)aS2 ]]2

4[b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a
S
2 + c1]

]
dF (P̃S)

+

∫ P
5
(K)

0

[
−P̃S(1− !)QC +QC(P̃S + t+ �) +QCΔ[�1 − �2]− (QC)2(Δ)2[b1 + b2 − 2e]

+K[�1a
S
1 + �2a

S
2 − c0 − �s�S − P̃S(1− �s)− t− � − 2ΔQC [(b1 − e)aS1 − (b2 − e)aS2 ]]

−K2[b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a
S
2 ]
]
dF (P̃S).

EP̃S [Π1
Θ] for the other Ωl regions can be characterized in a similar fashion. By using the normal-

ity assumption of P̃S , we obtain G(l, u) =
[
u+ �S

(
L
(
l−�−�S
�S

)
− L

(
u−�−�S

�S

))]
where L(z) =

zΦ(z) + �(z) is the standard normal loss function, and Φ(.) and �(.) is cdf and pdf of standard

normal random variable, respectively. Using the identity �
′
(z) = −z�(z), we obtain ∂G(l,u)

∂�S
=

�
(
l−�−�S
�S

)
− �

(
u−�−�S

�S

)
. It follows that ∂G(l,u)

∂�S
> (<)0 if �S + � < l+u

2 (�S + � > l+u
2 ); and

∂G(l,u)
∂�S

= 0 if �S + � = l+u
2 or l = u or l→ −∞, u→∞.

We now analyze the effect of �S on the expected value from processing over spot sale. We have

6∑
l=1

E�̃

[
EP̃S

[
Πl

Θ(QC , �̃, P̃S)
]∣∣∣ �̃ ∈ Ωl

]
Pr{�̃ ∈ Ωl} = EP̃S

[
6∑
l=1

E�̃

[
Πl

Θ(QC , �̃, P̃S)
∣∣∣ �̃ ∈ Ωl

]
Pr{�̃ ∈ Ωl}

]
Let EP̃S [Ψ(P̃S)] denote the right-hand side term. We use the following result from Müller (2001):

Lemma D.1 Let P̃S (P̃
S

) to have a normal distribution with mean �S (�
S

) and standard deviation

�S (�S). If �S = �
S

and �S ≤ �S, then, P̃S ≤ P̃
S

in the convex order, i.e. E[f(P̃S)] ≤ E[f(P̃
S

)]

for any convex function f .
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For convexity of Ψ(PS) in PS , it is sufficient to show that each Πl
Θ is a convex function of PS . We

will only provide the proof for Ω1 region, i.e. Π1
Θ. The same result for the other regions can be

proven in a similar fashion. We obtain

∂Π1
Θ

∂PS
=

⎧⎨⎩

0 if PS ∈ [P
0
,∞)

(�s+ ! − 1) f1(PS)
2ℎ1

if PS ∈ [P
1
(QC), P

0
)

(�s+ ! − 1)QC if PS ∈ [P
4
(QC), P

1
(QC))

!QC − (1− �s) f2(PS)
2ℎ2

if PS ∈ [P
5
(K), P

4
(QC))

!QC − (1− �s)K if PS ∈ [0, P
5
(K))

(14)

where f1, ℎ1, f2, ℎ2 are given by

f1(PS) = �1a
S
1 + �2a

S
2 + Δ(�1 − �2) + 2c1K − c0 − �s�S − PS(1− ! − �s) (15)

ℎ1 = b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a
S
2 + c1 + Δ2(b1 + b2 − 2e) + 2Δ[(b1 − e)aS1 − (b2 − e)aS2 ]

f2(PS) = �1a
S
1 + �2a

S
2 + 2c1K − c0 − �s�S − PS(1− �s)− t− � − 2ΔQC [(b1 − e)aS1 − (b2 − e)aS2 ]

ℎ2 = b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a
S
2 + c1.

From (14), it can be easily established that Π1
Θ is convexly decreasing in PS by using ∂f1

∂PS
=

(1−!−�s)2

2ℎ1
> 0, ∂f2

∂PS
= (1−�s)2

2ℎ2
> 0 and the fact that Π1

Θ is a smooth function of PS , i.e. left-hand

side and right-hand side derivative at boundaries in (14) are equal. This concludes the proof.

Proof of Proposition 5: The correlation parameter � only affects the expected value of processing

over spot sale in (13). For Ω1 region, we obtain
∂EP̃S [Π1

Θ]

∂� =∫ P
0

P
1
(QC)

[s(P̃ s − �S)
f1(P̃S)

2ℎ1
] dF (P̃S) +

∫ P
1
(QC)

P
4
(QC)

[s(P̃ s − �S)QC ] dF (P̃S) (16)

+

∫ P
4
(QC)

P
5
(K)

[s(P̃ s − �S)
f2(P̃S)

2ℎ2
] dF (P̃S) +

∫ P
5
(K)

0

[s(P̃ s − �S)K] dF (P̃S)

where f1, ℎ1, f2, ℎ2 are given in (15). Observe that f1(PS)
2ℎ1

= z∗1,C , f2(PS)
2ℎ2

= z∗1,S . Thus, using

Proposition B.1, (16) can be written as EP̃S
[
Z∗(P̃S)s(P̃ s − �S)

]
where Z∗ is the random vari-

able that denotes the optimal processing decision. Since P̃S is normally distributed, we have

EP̃S
[
Z∗(P̃S)s(P̃ s − �S)

]
= s�SE [Z∗(�S + z�S)z] where the second expectation is taken over the

standard normal random variable. As follows from Stein’s Lemma, for a differentiable function g

and a standard normal random variable z, we have E[g(z)z] = E[g
′
(z)] (see for example, Rubinstein

(1976)). By using this identity, we obtain

E [Z∗(�S + z�S)z] =

∫ P
0

P
1
(QC)

−(1− ! − �s)
2ℎ1

dF (P̃S) +

∫ P
4
(QC)

P
5
(K)

−(1− �s)
2ℎ2

dF (P̃S) < 0

as � < 1−!
s . The desired result follows as this argument also holds for the other Ω(.) regions.

Proof of Proposition 6: As can be observed from (13), the comparison of V (QC) with window

contract and forward contract reduces to the comparison of the expected contract procurement cost
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G(l, u). We define H(F )
.
= G(F − �, F + �) − F as the cost differential between the window and

forward contract for � < F . We obtain ∂H
∂F

= Φ
(
F−�−�−�S

�S

)
− �

(
F+�−�−�S

�S

)
< 0. By using

�(z) = �(−z) and Φ(z) = 1 − Φ(−z) for the standard normal distribution, it is easy to establish

that H(�S + �) = 0. Therefore, if F > �S + � (F < �S + �), the expected cost of window contract

is higher (lower) than the forward contract. As follows from (12), the type of the contract only

affects the expected marginal procurement cost G(l, u) of C-input in the optimality condition. Since

V (QC) is a concave function of QC , it follows that QC
∗

is lower (higher) with the window contract

if F > �S + � (F < �S + �). It is easy to establish that the expected spot procurement at the

optimal solution depends on the contract type only through the optimal volume of C-input, and is

decreasing in QC
∗
. This concludes the proof.

E Proofs for the Analytical Statements in Table 3

We only provide the proof for the impact of �� and �� on the expected profit by using the assumption

that all the probability mass of �̃ is located in Ω1 region. The proof for the impact of �S follows

from Proposition 4, and the proof for �S and �i can be obtained using a similar technique. In

each of the proofs, we will demonstrate the impact on V (QC) for QC < K. This also implies

the same effect on the expected optimal profit V ∗(QC
∗
). For notational convenience, we define

Υ(�)
.
= EP̃S

[
Πl

Θ(QC , �, P̃S)
]

so that V (QC)
.
= E�̃

[
Υ(�̃)

]
.

Proof of �� effect on V (QC) : We use the following result result from Müller (2001):

Lemma E.1 Let �̃ (�̃) to have a bivariate normal distribution with mean � (�) and covariance

matrix Σ (Σ). If � = �, �̃ and �̃ have the same marginal distributions, Σij ≤ Σij, then �̃ ≤ �̃ in

the supermodular order, i.e. E[f(�̃)] ≤ E[f(�̃)] for any supermodular function f .

Since we have symmetric ��, it follows from Lemma E.1 that increasing �� leads to another bivariate

normal distribution that is preferred over �̃ in the supermodular order. It is sufficient to show that

Υ(�) is supermodular in �. To prove supermodularity, it is sufficient to show ∂2Υ(�)
∂�1∂�2

≥ 0. We obtain

∂2Υ(�)

∂�1∂�2
=

∫ P
0

P
1
(QC)

aC1 a
C
2

2ℎ1
dF (P̃S) +

∫ P
4
(QC)

P
5
(K)

aS1 a
S
2

2ℎ2
dF (P̃S) > 0

where ℎ1 and ℎ2 are as defined in (15). This concludes the proof.

Proof of �� effect on V (QC) : We use the following result result from Müller (2001):

Lemma E.2 Let �̃ (�̃) to have a bivariate normal distribution with mean � (�) and covariance

matrix Σ (Σ) with ��1 = ��2 = �� (��
1

= ��
2

= ��). If � = �, and �� ≤ �� then �̃ ≤ �̃ in the

convex order, i.e. E[f(�̃)] ≤ E[f(�̃)] for any convex function f .

To prove the result, as defined in V (QC) = E�̃

[
Υ(�̃)

]
, it is sufficiently show that Υ(�) is jointly
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convex in �. We obtain

∂2Υ(�)

∂�2
1

=

∫ P
0

P
1
(QC)

aC1 a
C
1

2ℎ1
dF (P̃S) +

∫ P
4
(QC)

P
5
(K)

aS1 a
S
1

2ℎ2
dF (P̃S) > 0,

∂2Υ(�)

∂�2
2

=

∫ P
0

P
1
(QC)

aC2 a
C
2

2ℎ1
dF (P̃S) +

∫ P
4
(QC)

P
5
(K)

aS2 a
S
2

2ℎ2
dF (P̃S) > 0

where ℎ1 and ℎ2 are as defined in (15) and

∂2Υ(�)

∂�2
1

∂2Υ(�)

∂�2
2

−
(
∂2Υ(�)

∂�i�j

)2

= (sΔ)2

(∫ P
0

P
1
(QC)

dF (P̃S)

)(∫ P
4
(QC)

P
5
(K)

dF (P̃S)

)
≥ 0.

Hence, Υ(�) is jointly convex in �. This concludes the proof.

F References

Müller, A. 2001. Stochastic Ordering of Multivariate Normal Distributions. Annals of the Institute

of Statistical Mathematics, 53, 567–575.

Rubinstein, M. 1976. The valuation of uncertain income streams and the pricing of options. The

Bell Journal of Economics, 7, 407–425.

41



 

  




