
Integrating Microsecond Circuit Switching
into the Data Center

George Porter Richard Strong Nathan Farrington Alex Forencich Pang Chen-Sun

Tajana Rosing Yeshaiahu Fainman George Papen Amin Vahdat
†

UC San Diego UC San Diego and Google, Inc.
†

ABSTRACT

Recent proposals have employed optical circuit switching (OCS)
to reduce the cost of data center networks. However, the relatively
slow switching times (10–100 ms) assumed by these approaches,
and the accompanying latencies of their control planes, has limited
its use to only the largest data center networks with highly aggre-
gated and constrained workloads. As faster switch technologies
become available, designing a control plane capable of supporting
them becomes a key challenge.

In this paper, we design and implement an OCS prototype capa-
ble of switching in 11.5 µs, and we use this prototype to expose a
set of challenges that arise when supporting switching at microsec-
ond time scales. In response, we propose a microsecond-latency
control plane based on a circuit scheduling approach we call Traf-
fic Matrix Scheduling (TMS) that proactively communicates circuit
assignments to communicating entities so that circuit bandwidth
can be used efficiently.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—circuit-switching networks, packet-switching

networks, network topology

General Terms

Design, Experimentation, Measurement, Performance

Keywords

Data Center Networks; Optical Networks

1. INTRODUCTION
As the size and complexity of data center deployments grow,

meeting their requisite bisection bandwidth needs is a challenge.
Servers with 10 Gbps link rates are common today, and 40 Gbps
NICs are already commercially available. At large scale, this trend
translates into significant bisection bandwidth requirements. For
a large data center with numerous, rapidly changing applications,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGCOMM’13, August 12–16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2056-6/13/08 ...$15.00.

supporting high bisection bandwidth is important, since ultimately
application performance, and hence overall server utilization, may
suffer if insufficient bandwidth is available. The result is that net-
work complexity and expense are increasing.

To meet the required bandwidth demands, data center opera-
tors have adopted multi-layer network topologies [14] (e.g., folded
Clos, or “FatTrees” [1, 16]), shown in Figure 1(a). While these
topologies scale to very high port counts, they are also a significant
source of cost, due in part to the large amount of switches, optical
transceivers, fibers, and power each of their layers requires. Re-
cent efforts have proposed [6, 8, 25] using optical circuit switches
(OCS) to deliver reconfigurable bandwidth throughout the network,
reducing some of the expense of multi-layer scale-out networks,
shown in Figure 1(b). A key challenge to adopting these proposals
has been their slow reconfiguration time, driven largely by exist-
ing 3D-MEMS technology limitations. Two components dominate
this reconfiguration time: (1) the hardware switching time of the
3D-MEMS OCS (10–100 ms), and (2) the software/control plane
overhead required to measure the communication patterns and cal-
culate a new schedule (100ms to 1s). As a result, the control plane
is limited to supporting only highly aggregated traffic at the core
of the network [8], or applications constrained to have high traffic
stability [25].

As optical switches become faster, deploying them more widely
in data center networks (e.g., to interconnect top-of-rack (ToR)
switches) requires a correspondingly faster control plane capable
of efficiently utilizing short-lived circuits. The contribution of this
paper is such a control plane. To gain experience with fast OCS
switching, we start by designing and building a simple 24-port OCS
prototype called Mordia,1 which has a switch time of 11.5 µs. Mor-
dia is built entirely with commercially available components, most
notably 2D-based MEMS wavelength-selective switches (WSS).
We use this prototype as a stand-in for future low-latency OCS de-
vices.

Using the Mordia prototype as a starting point, we then identify a
set of challenges involved in adopting existing OCS control planes
to microsecond-latency switching. In response to these challenges,
we propose a new circuit scheduling approach called Traffic Ma-
trix Scheduling (TMS). Instead of measuring long-lived, prevailing
conditions and configuring the topology in response, TMS instead
leverages application information and short-term demand estimates
to compute short-term circuit schedules. TMS chooses these sched-
ules to rapidly multiplex circuits across a set of end points, making
use of the fast circuit switch time to reduce buffering and network
delay. To obtain high circuit utilization, the computed schedules

1Microsecond Optical Research Data Center Interconnect Archi-
tecture

S0,0 S0,1 S0,2 S0,3 S0,k...

S1,0 S1,1 S1,2 S1,3 S1,k...

S2,0 S2,1 S2,2 S2,3 S2,k...

SN,0 SN,1 SN,k/2... = Core transceiver

= Edge transceiver

Hi Hi Hi Hi Hi

N
-L

a
y
e

rs

(a) A FatTree network topology

S0,0 S0,1 S0,2 S0,3 S0,k...

= Edge transceiver

Hi Hi Hi Hi Hi

OCSkxkEPS

(b) A Hybrid network topology

Figure 1: A comparison of a scale-out, multi-layered FatTree network and a Hybrid electrical/optical network design. In the FatTree

topology (a) each layer of switching incurs additional cost in electronics, core transceivers, fiber cabling, and power. In contrast, the

Hybrid topology (b) requires only a single “layer” assuming that the OCS reconfiguration speed is sufficiently fast.

Speed Radix Depth # Nodes # Core Ports

(x1000) (x1000)

10G
48 5 498 3,484

96 3 28 83

40G
16

7 33 360

9 524 7,864

24
5 16 109

7 560 6,159

Table 1: The complexity of sample multi-layer, fully-

provisioned, scale-out network topologies. Small-radix

switches and link redundancy require more layers, and thus

more switches and optical transceivers, driving up their cost.

are communicated to ToRs connected to Mordia, which adjust the
transmission of packets into the network to coincide with the sched-
uled switch reconfigurations, with full knowledge of when band-
width will be most available to a particular destination. In this way,
both short and long flows can be offloaded into the OCS.

As a result, TMS can achieve 65% of the bandwidth of an identi-
cal link rate electronic packet switch (EPS) with circuits as short as
61µs duration, and 95% of EPS performance with 300-µs circuits
using commodity hardware. Taken together, our work suggests
that continuing to push down the reconfiguration time of optical
switches and reducing the software and control overheads holds
the potential to radically lower the cost for delivering high bisec-
tion bandwidth in the data center.

2. MOTIVATION: REDUCING NETWORK

COST VIA FASTER SWITCHING
We now examine some of the sources of data center costs, and

motivate the need for low-latency circuit switching.

2.1 Multi-layer switching networks
Multi-layer switching topologies like FatTrees are highly scal-

able and flexible — any node can communicate with any other
node on demand. However, they must be provisioned for worst-
case communication patterns, which can require as many as five
to nine layers in the largest networks, with each subsequent layer
less utilized than the next in the common case. Each of these lay-

ers adds substantial cost in terms of the switch hardware, optical
transceivers, fibers, and power.

Consider an N -level scale-out FatTree data center network sup-
porting M servers partitioned into racks (e.g., 20 to 40 servers per
rack). Such a network built from k-radix switches can support
kN/2N−1 servers, with each layer of switching requiring kN−1/2N−2

switches (though layer N itself requires half this amount). The
choice of the number of layers in the network is determined by the
number of hosts and the radix k of each switch. Given a particular
data center, it is straightforward to determine the number of layers
needed to interconnect each of the servers.

There are two trends that impact the cost of the network by in-
creasing the number of necessary layers of switching: fault toler-
ance and high link rates. We consider each in turn.

Fault tolerance: While a FatTree network can survive link fail-
ures by relying on its multi-path topology, doing so incurs a network-
wide reconvergence. This can be highly disruptive at large scale,
and so redundant links are used to survive such failures [24]. Dual
link redundancy, for instance, effectively cuts the radix of the switch
in half since each logical link now requires two switch ports.

High link rates: For relatively mature link technologies like 10
Gbps Ethernet, high-radix switches are widely available commer-
cially: 10 Gbps switches with 64 or even 96 ports are becoming
commodity. In contrast, newer generations of switches based on
40 Gbps have much lower radices, for example 16 to 24 ports per
switch. Hence, as data center operators build out new networks
based on increasingly faster link rates, it will not always be possi-
ble to use high radix switches as the fundamental building block.

These constraints necessitate additional switching layers and, thus,
additional cost and complexity. Table 1 shows the number of core
network ports (ports used to connect one layer of switching to an
adjacent layer) for a set of data center sizes and switch radices.
Note that since this table shows fully-provisioned topologies, it
serves as an upper bound to what might be built in practice since
the network might be only partially provisioned depending on the
number of nodes that need to be supported.

2.2 OCS model
We now describe a simple model of an OCS suitable for inter-

connecting ToR switches. This model is similar to that assumed by
previous hybrid network designs [6, 8, 25], but with a key differ-
ence: orders of magnitude faster switching speed.

The model consists of an N-port optical circuit switch with a re-
configuration latency of O(10) µs. Each input port can be mapped

to any output port, and these mappings can be changed arbitrarily
(with the constraint that only one input port can map to any given
output port). The OCS does not buffer packets, and indeed does
not interpret the bits in packets at all — the mapping of input ports
to output ports is entirely controlled by an external scheduler. This
scheduler is responsible for determining the time-varying mapping
of input ports to output ports and programming the switch accord-
ingly.

We assume that ToRs attached to the OCS support per-destination
flow control, meaning that packets for destination D are only trans-
mitted to an OCS input port when a circuit is setup between that
input port and D. Packets to destinations other than D are queued
in the edge ToR during this time. Furthermore, during the OCS re-
configuration period, all packets are queued in the ToR. Since the
OCS cannot buffer packets, the ToR must be synchronized to only
transmit packets at the appropriate times. This queueing can lead
to significant delay, especially for small flows that are particularly
sensitive to the observed round-trip time. In these cases, packets
can be sent to a packet switch in the spirit of other hybrid network
proposals. In this work, we focus on the OCS and its control plane
in isolation, concentrating particularly on reducing end-to-end re-
configuration latency. In this way, our work is complementary to
other work in designing hybrid networks.

3. MICROSECOND SCHEDULING
A key challenge in supporting microsecond-latency OCS switches

is effectively making use of short-lived circuits. In [7], we proposed
an approach for scheduling circuits, called Traffic Matrix Schedul-
ing (TMS). In this section, we expand on that initial idea, and then
implement and evaluate it in the context of a testbed deployment
later in the paper. For now, we assume that the network-wide traf-
fic demand is known and return to the issue of estimating demand
at the end of the section.

3.1 Overview
Existing approaches that integrate OCS hardware into the data

center amortize the long switching time (tens of milliseconds) of
previous generation optical technology by reconfiguring the OCS
only once every few 100s of milliseconds or even several seconds.
The substantial interval between reconfigurations affords their un-
derlying control loops the opportunity to estimate demand, calcu-
late an optimal OCS configuration, and communicate it across the
network every time the switch is repositioned.

Previous hybrid networks perform what we call hotspot schedul-
ing (HSS). HSS (a) measures the inter-rack traffic matrix, (b) es-
timates the traffic demand matrix, (c) identifies hotspots, and (d)
uses a centralized scheduler to establish physical circuits between
racks to offload only the identified hotspot traffic onto the circuit-
switched network. The remaining traffic is routed over the packet-
switched network. Because of the substantial delay between re-
configurations, HSS can employ complex methods and algorithms
to estimate demand and identify hotspots. Errors in identifying
hotspots, however, can lead to significant losses in efficiency. If a
selected hotspot does not generate sufficient traffic to saturate a cir-
cuit, then the remaining capacity goes to waste for the (non-trivial)
duration of the current configuration.

When the OCS can be reconfigured on the order of 10s of µs,
we argue that it is possible to route most of the traffic over cir-
cuits. In contrast to HSS, we propose an approach called “Traf-
fic Matrix Switching” (TMS) that estimates demand and calculates
a short-term schedule that moves the OCS rapidly through a se-
quence of configurations to service predicted demand. By rapidly
time-sharing circuits across many destinations at microsecond time

(a)

1 2 3 4 5 6 7 8

switch

(b)

1 2 3 4 5 6 7 8

(c)

1 2 3 4 5 6 7 8

1/81/81/8

1/8 1/8 1/8

1/8

1/8

1/8

1/8 1/8 1/8

1/81/8

1/8 1/8

1/8 1/8 1/8

1/81/81/8

1/8 1/8 1/8

1/8

1/8

1/8 1/8

1/8

1/8

1/8

1/81/8

1/81/8

1/8 1/8 1/8

1/81/8

1/8 1/8

1/81/81/8

1/8 1/8 1/8

1/8 1/8

1/81/8

1/8 1/8

1

2

3

4

5

6

7

8

1/8 1/8 1/8

1/81/81/8

1/8 1/8 1/8
src pod

dst pod (rate)

(d)

2T 3T 4T 5T 6T 7T 8TT0

1

2

3

4

5

6

7

8

src port
(dst port)

time

1

2

3

4

5

6

7

8

2

3

4

5

6

7

8

1

3

4

5

6

7

8

1

2

4

5

6

7

8

1

2

3

5

6

7

8

1

2

3

4

6

7

8

1

2

3

4

5

7

8

1

2

3

4

5

6

8

1

2

3

4

5

6

7

loopback waste setup waste

Figure 2: Eight racks running Hadoop with an all-to-all com-

munication pattern: (a) physical topology, (b) logical topology,

(c) inter-rack traffic demand matrix, (d) circuit switch sched-

ule.

scales, TMS is able to make more effective use of the circuit band-
width (and reduces to hotspot scheduling when demand is extremely
concentrated). The key insight is that by sending the upcoming
schedule to both the OCS and the ToRs, they can effectively make
use of each circuit as it becomes available. Moreover, while the
current schedule is being carried out, the control loop can enter its
next iteration. In this way, the running time of the control plane is
decoupled from the switch speed. In particular, the control plane
only needs to recompute schedules fast enough to keep up with
shifts in the underlying traffic patterns, rather than with the OCS
switch speed.

One of the key reasons that we adopted TMS instead of running
a hotspot scheduling algorithm faster is that hotspot scheduling is
inherently stateless. Each iteration of hotspot scheduling greed-
ily chooses a perfect matching of circuit assignments to find the
largest elephants (k for a k-by-k switch). This doesn’t necessarily
result in ideal usage of the OCS. Further, the control plane would
then have to run at the speed of the underlying host burst behavior.
With TMS, we can compute an entire “week” of schedules once,
amortizing the control loop time over a number of switch reconfig-
urations. We believe that this is critical to match the speed of the
OCS.

3.2 Example
Consider eight racks running Hadoop and generating a perfectly

uniform all-to-all communication pattern. Figure 2(a) shows the
racks physically connected to the same core-circuit switch; Fig-

M M´

P1

t1 t2 tk

P2 Pk

+ ++

Step 1. Gather traffic matrix M

Step 3. Decompose M´ into schedule

Step 4. Execute schedule in hardware

Step 2. Scale M into M´

t1 t2 tk

Figure 3: Steps of the traffic matrix scheduling algorithm.

ure 2(b) shows the logical connectivity, and Figure 2(c) shows the
inter-rack traffic demand matrix with sources as rows, destinations
as columns, and values as fractions of the total link rate. The di-
agonal is not zero because hosts send to other hosts in the same
rack. Although this intra-rack traffic does not transit the core cir-
cuit switch, it is still accounted for in the traffic demand matrix.
This matrix is the desired transmission rate of the hosts, and it is
the responsibility of the network to satisfy this demand.

The Gantt chart in Figure 2(d) shows a circuit switch schedule
that partitions time into eight equal-duration time slots. Over the
course of the schedule, each source port will connect to each des-
tination port for exactly 1/8 of the total time. It thus implements
the logical full mesh topology in Figure 2(b) and allows all of the
traffic to be routed. The schedule then repeats.

A circuit switch schedule, however, has two sources of waste.
First, loopback traffic does not leave the rack and transit the cir-
cuit switch, so any circuit switch loopback assignments are wasted,
such as the assignment from t = 0 to t = T . Second, the cir-
cuit switch takes a non-negligible amount of time to switch and
setup new circuits (tsetup), which we represent as black bars at the
end of each time slot. No traffic can transit the circuit switch dur-
ing this time. Reducing loopback waste requires careful schedul-
ing, whereas reducing setup waste requires faster switching. Fi-
nally, note that although this example produces a repeating sched-
ule, TMS can generate arbitrary time-varying circuit assignments
as we describe below.

3.3 Schedule computation
The TMS algorithm is divided into a set of steps, as shown in

Figure 3. First, the traffic demand matrix (TDM) is scaled into a
bandwidth allocation matrix (BAM). A TDM represents the amount
of traffic, in units of circuit line rate, that the hosts in a source
rack wish to transmit to the hosts in a destination rack. A BAM,
on the other hand, represents the fraction of circuit bandwidth the
switch should allocate between each input-output port pair in an
ideal schedule. In general, the TDM may not be admissible (i.e.,
the total demand is greater than the network capacity). In practice,
though, the network is rarely driven to full utilization, so we need
to scale “up” the TDM to arrive at a BAM. If no rack wishes to send

more than its link rate (its row sum is less than or equal to 1) and
no rack wishes to receive more than its link rate (its column sum
is less than or equal to 1), then we say that the TDM is both ad-
missible and doubly substochastic. The goal of scaling the TDM is
to compute a doubly stochastic BDM where its row sums and col-
umn sums are all exactly equal to 1 — meaning the circuits would
be fully utilized. By scaling the TDM into a BAM, we simulta-
neously preserve the relative demands of the senders and receivers
while satisfying the constraints of the circuit switch. Several matrix
scaling algorithms can be used for this purpose. Sinkhorn’s algo-
rithm [18] is particularly attractive because it works even when the
originally TDM is not admissible (i.e., the network is over driven).

Next, the BAM is decomposed into a circuit switch schedule,
which is a convex combination of permutation matrices that sum to
the original BAM,

BAM =

k∑

i

ciPi (1)

where 0 ≤ i ≤ k, and k = N2−2N+2. Each permutation matrix,
Pi, represents a circuit switch assignment, and each scalar coeffi-
cient, ci, represents a time slot duration as a fraction of the total
schedule duration. A variety of matrix decomposition algorithms
exist. We employ an algorithm originally due to Birkhoff-von Neu-
mann (BvN) [5, 23] that can decompose any doubly stochastic ma-
trix, implying we can always compute a perfect schedule given a
BAM. Improved versions of the classic BvN algorithm have run-
ning times between O(n log2 n) and O(n2) [11].

3.4 Demand estimation
Traffic matrix scheduling, just like hotspot scheduling, requires

an estimate of the network-wide demand. There are several po-
tential sources of this information. First, packet counters in the
ToRs can be polled to determine the traffic matrix, and from that
the demand matrix can be computed using techniques presented in
Hedera [2]. This method would likely introduce significant delays,
given the latency of polling and running the demand estimator. A
second potential approach, if the network is centrally controlled, is
to rely on OpenFlow [15] network controllers to provide a snap-
shot of the overall traffic demand. Third, an approach similar to
that taken by c-Through [25] may be adopted: A central controller,
or even each ToR, can query individual end hosts and retrieve the
TCP send buffer sizes of active connections. Asynchronously send-
ing this information to the ToRs can further reduce the latency of
collecting the measurements. Finally, application controllers, such
as the Hadoop JobTracker [12], can provide hints as to future de-
mands. Our prototype implementation does not implement demand
estimation.

4. ANALYSIS
The throughput of a network that uses circuit switching is con-

strained by the network’s duty cycle, and its feasibility is constrained
by the amount of buffering required and the circuit schedule. We
consider these issues in turn.

4.1 Duty cycle and effective link rate
In a circuit-switched network, there is a finite reconfiguration

time, or setup time tsetup, during which no data can be sent. If the
link data rate is Rlink, then the effective data rate R of each circuit
is R = DRlink, where:

D =
tstable

tsetup + tstable
(2)

is the duty cycle and tstable is the time that the circuit is “open” and
can carry traffic. For example, if Rlink is 10 Gbps and D is 90%,

VOQ

Total

Time slot

7

7

7

0

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

6

6

6

6

6

1

11

2

3

4

5

6

7

8

1

11

1

1

1

1

1

2

2

2

2

2

2

2

2

3

3 5 6 74

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

7

0

4

5

6

2

2

3

3

3

3

3

0 0

0

0

0

0

0

0

0

1

7 05 6

7

0

4

5

6

3

7 06 1

7 0 21

0 21 3

421 3

542 3

5 643

3

1 2

7

0

4

5

6

1

0

0

0

0

0

0

0

0 7 13 18 22 25 27 28 28 28 28 28 28 28 28 28 28

Figure 4: Virtual output queue (VOQ) buffer occupancies for a

ToR from cold start.

which is representative of the Mordia OCS, then the effective link
rate R is 9 Gbps.

The duty cycle can be increased by reducing the setup time or
increasing the duration that a circuit is open. Reducing setup time
tsetup depends on switch technology. The duration tstable that a
circuit is open is controllable. However, having circuits that are
open for a long period of time affects the amount of buffering that
is required at the host, as we discuss below. Since the Mordia
OCS is rate agnostic, it is also possible to increase overall delivered
bandwidth by using faster optical transceivers to increase the link
rate while simultaneously reducing the duty cycle for the circuit-
switched portion of the network.

4.2 Buffer requirements
Buffering is required at the source ToR in a circuit-switched net-

work because there is not always a circuit established between a
particular source and destination. In this section, we analyze these
buffering requirements.

Assume that each ToR connected to the Mordia switch maintains
a set of N virtual output queues (VOQs) [20], one for every possi-
ble circuit destination. Strict VOQ is not required, but the ToR must
maintain at least one set of queues for each possible destination.
When a circuit is established, all traffic destined for that particular
destination is drained from the respective queue. Figure 4 shows
the buffer occupancies of these VOQs of a ToR from a cold start,
in units of the slot time T (without loss of generality, we assume
uniform slot times here). In less than one complete scheduling pe-
riod a ToR has filled its VOQs to the steady-state level. A particular
queue fills at a rate dictated by the traffic matrix until a circuit is es-
tablished to the appropriate destination. The queue is drained over
the duration that the circuit is open.

For an all-to-all workload with N ToRs, an effective link rate of
R bits per second, and a slot duration of T seconds, the buffering
required by each host is:

B = R(N − 1)T (bits) (3)

Examining (3) shows why millisecond switching times are sim-
ply too large to support traffic matrix scheduling. For example if R
= 9 Gbps, N = 64, and T = 100 ms, then B is 7.1 GB of buffering
per OCS port, which is not currently practical. Given that R and
N are both likely to increase in future data centers, the only way to
make traffic matrix scheduling practical is to decrease the slot time
T by using, e.g., microsecond switching. Setting T = 100 µs yields
B = 7.1 MB of buffering per port, which is currently practical. Re-
ducing buffering within the ToR leads to more practical and lower
cost designs.

4.3 Longest time-slot first scheduling
While BvN always produces a schedule that eventually serves

all input-output pairs according to their demand, sometimes it may

n Circuit Packet D

0 0% 100.0% N/A
1 39.4% 60.6% 100.0%
2 53.8% 46.2% 98.0%
3 63.8% 36.2% 97.0%
4 72.7% 27.3% 96.0%
5 80.6% 19.4% 95.0%
6 87.3% 12.7% 94.0%
7 92.3% 7.7% 93.0%
8 96.6% 3.4% 92.0%
9 99.3% 0.7% 91.0%

10 100.0% 0% 90.0%

Table 2: Example of the tradeoff between the number of sched-

ule time slots (n), the amount of traffic sent over the optical-

circuit switched network (Circuit) vs. the packet-switched net-

work (Packet), and the duty cycle (D) for a randomly generated

TDM with a reconfiguration latency of 10 µs.

be better not to schedule all traffic over the circuit switch and to
simply schedule only the longest time slots. The reason is that
the BvN decomposition algorithm generates time slots of different
lengths, some of which can be quite short (e.g., less than 1% of
the entire schedule). With such a short time slot, it is likely that
the OCS switching time would dominate any bandwidth delivered
during those small slots. In these cases, it is better to route that
traffic over the packet-switched network.

The greatest benefit comes from scheduling only the first n time
slots, where n is chosen based on both the minimum required duty
cycle, D, as well as the maximum allowed schedule length. Any re-
maining traffic is instead sent to the packet-switched network. Us-
ing the same randomly generated TDM from [7], we calculate the
tradeoffs in different numbers of slots for the schedule, as shown in
Table 2.

As n increases, an increasing fraction of the total traffic transits
the circuit-switched network. In the limit when n = k, all traffic is
sent over the circuit-switched network. However, the duty cycle de-
creases with increasing n, since the schedule invokes more switch
reconfigurations. For example, if the minimum required duty cycle
was 95%, then by setting n = 5, 80.6% of the total traffic would be
routed over circuit switches. Alternatively, at the cost of additional
host buffering, we could increase n to 6 or 7 while keeping the duty
cycle at 95%.

5. IMPLEMENTATION
We evaluated the Mordia OCS in a testbed environment. This

implementation effort consists of two primary tasks: (1) selecting
an OCS capable of switching at O(10) µs, and (2) modifying ToRs
to support flow control on a per-destination basis at microsecond
timescales. Unfortunately, as we discuss in Section 8, the only
practical commercially available OCSes that can switch in sub-
100 µs timescales have small port counts (e.g., 4 or 8 ports). To
evaluate at the scale of a ToR (e.g., 24–48 hosts), we instead build
our own prototype OCS supporting 24 ports based on commercial
wavelength-selective switches, described in Section 5.1. Instead of
building our own ToRs with our flow control requirements, we in-
stead emulate them using commodity Linux servers, as described
in Section 5.2.

λ{1-24}WSS

T1 T2 T3 T4

λ8
λ6

λ1 λ4

λ{5-24}

Station 1
WSS

T5 T6 T7 T8

λ4

λ6 λ8

Station 2

Station 3

Ti

Station 4

Ti

Station 5

Ti

Station 6

Ti

λ{1-4,9-24}

Figure 5: The Mordia OCS prototype, which consists of a ring

conveying N wavelengths through six stations. Each source

ToR transmits on its own wavelength, and each station for-

wards a subset of four wavelengths to the ToRs attached to it.

This prototype supports an arbitrary reconfigurable mapping

of source to destination ports with a switch time of 11.5 µs.

5.1 Mordia prototype
The Mordia prototype is a 24-port OCS that supports arbitrary

reconfiguration of the input-to-output port mappings. We first de-
scribe the underlying technology we leveraged in building the OCS,
then describe its design.

5.1.1 Technology

Unlike previous data center OCS designs [8, 25], we chose not
to use 3D-MEMS based switching due to its high reconfiguration
time. The maximum achievable speed of a 3D-MEMS space switch
depends on the number of ports, since more ports require precise
analog control of the 2-axis orientation of relatively large mirrors.
Since the mirror response time depends on the size and angular
range, there is in general a design tradeoff between the switch port
count, insertion loss, and switching speed. As a result, commer-
cial 3D-MEMS switches support reconfiguration times in the 10s
of milliseconds range [10].

Another type of optical circuit switch is a wavelength-selective

switch (WSS). It takes as input a fiber with N wavelengths in it, and
it can be configured to carry any subset of those N wavelengths to
M output ports. Typically a WSS switch has an extra “bypass” port
that carries the remaining N − M frequencies. We call this type
of WSS switch a 1 × M switch, and in our prototype, M = 4.
Our switch does not have a bypass port, and so we implement the
bypass functionality external to the WSS using additional optical
components.

The internal switching elements used in a wavelength-selective
switch can be built using liquid crystal technology or MEMS [9].
Most MEMS WSSes use analog tilt to address multiple outputs, but
at least one commercial WSS has been built using binary MEMS-
based switches [19]. Binary MEMS switching technology uses
only two positions for each mirror moving between two mechan-
ically stopped angles, and also uses much smaller mirrors with re-
spect to a 3D-MEMS space switch. A similar binary MEMS switch
is used for commercial projection televisions. The binary switching
of small mirror elements results in an achievable switching speed
that is several orders of magnitude faster than a commercial 3D-
MEMS switch.

In general, there is a tradeoff between 3D-MEMS, which offers
high port count at relatively slow reconfiguration time, and 2D-
MEMS, which offers microsecond switching time at small port
counts (e.g., 1 × 4 or 1 × 8). The key idea in the Mordia OCS
prototype is to harness six 1 × 4 switches with bypass ports to

build a single 24× 24-port switch. We now briefly summarize the
operation of the data path.

5.1.2 Data plane

The Mordia OCS prototype is physically constructed as a unidi-
rectional ring of N = 24 individual wavelengths carried in a single
optical fiber. Each wavelength is an individual channel connecting
an input port to an output port, and each input port is assigned its
own specific wavelength that is not used by any other input port.
An output port can tune to receive any of the wavelengths in the
ring, and deliver packets from any of the input ports. Consequently,
this architecture supports circuit unicast, circuit multicast, circuit
broadcast, and also circuit loopback, in which traffic from each port
transits the entire ring before returning back to the source. We note
that although the data plane is physically a ring, any host can send
to any other host, and the input-to-output mapping can be config-
ured arbitrarily (an example of which is shown in Figure 5).

Wavelengths are dropped and added from/to the ring at six sta-

tions. A station is an interconnection point for ToRs to receive and
transmit packets from/to the Mordia prototype. To receive packets,
the input containing all N wavelengths enters the WSS to be wave-
length multiplexed. The WSS selects four of these wavelengths,
and routes one of each to the four WSS output ports, and onto the
four ToRs at that station. To transmit packets, each station adds
four wavelengths to the ring, identical to the four wavelengths the
station initially drops. To enable this scheme, each station contains
a commercial 1× 4-port WSS.

5.1.3 ToRs

Each ToR connects to the OCS via one or more optical uplinks,
and internally maintains N − 1 queues of outgoing packets, one
for each of the N − 1 OCS output ports. The ToR participates in a
control plane, which informs each ToR of the short-term schedule
of impending circuit configurations. In this way, the ToRs know
which circuits will be established in the near future, and can use
that foreknowledge to make efficient use of circuits once they are
established.

Initially, the ToR does not send any packets into the network, and
simply waits to become synchronized with the Mordia OCS. This
synchronization is necessary since the OCS cannot buffer any pack-
ets, and so the ToR must drain packets from the appropriate queue
in sync with the OCS’s circuit establishment. Synchronization con-
sists of two steps: (1) receiving a schedule from the scheduler via an
out-of-band channel (e.g., an Ethernet-based management port on
the ToR), and (2) determining the current state of the OCS. Step 2
can be accomplished by having the ToR monitor the link up and
down events and matching their timings with the schedule received
in Step 1. Given the duration of circuit reconfiguration is always
11.5 µs, the scheduler can artificially extend one reconfiguration
delay periodically to serve as a synchronization point. The delay
must exceed the error of its measurement and any variation in re-
configuration times to be detectable (i.e., must be greater than 1 µs
in our case). Adding this extra delay incurs negligible overhead
since it is done infrequently (e.g., every second).

We use the terminology day to refer to a period when a circuit is
established and packets can transit a circuit, and we say that night

is when the switch is being reconfigured, and no light (and hence
no packets) are transiting the circuit. The length of a single sched-
ule is called a week, and the day and week lengths can vary from
day-to-day and from week-to-week. When the OCS is undergoing
reconfiguration, each ToR port detects a link down event, and night
begins. Once the reconfiguration is complete, the link comes back
up and the next “day” begins.

During normal-time operation, any data received by the ToR
from its connected hosts is simply buffered internally into the ap-
propriate queue based on the destination. The mapping of the packet
destination and the queue number is topology-specific, and is con-
figured out-of-band via the control plane at initialization time and
whenever the topology changes. When the ToR detects that day i
has started, it begins draining packets from queue i into the OCS.
When it detects night time (link down), it re-buffers the packet
it was transmitting (since that packet likely was truncated mid-
transmission), and stops sending any packets into the network.

5.1.4 Data plane example

Figure 5 shows an overview of the Mordia prototype’s data path.
In this example, there are three circuits established: one from T6

to T4, one from T8 to T1, and one from T4 to T5. Consider the
circuit from T4 to T5. T4 has a transceiver with its own frequency,
shown in the Figure as λ4. This signal is introduced into the ring by
an optical mux, shown as a black diamond, and transits to the next
station, along with the other N−1 frequencies. The WSS switch in
Station 2 is configured to forward λ4 to its first output port, which
corresponds to T5. In this way, the signal from T4 terminates at T5.
The N − 4 signals that the WSS is not configured to map to local
ToRs bypass the WSS, which is shown as λ{1−4,9−24}. These are
re-integrated with the signals from ToRs T5 through T8 originating
in Station 2, and sent back into the ring. A lower-bound on the
end-to-end reconfiguration time of such a network is gated on the
switching speed of the individual WSS switches, which we evaluate
in Section 6.1.

5.1.5 Implementation details

The implementation of the hardware for the Mordia prototype
consists of four rack-mounted sliding trays. Three of these trays
contain the components for the six stations with each tray housing
the components for two stations. The fourth tray contains power
supplies and an FPGA control board that implements the scheduler.
This board is based on a Xilinx Spartan-6 XC6SLX45 FPGA de-
vice. Each tray contains two wavelength-selective switches, which
are 1×4 Nistica Full Fledge 100 switches. Although these switches
can be programmed arbitrarily, the signaling path to do so has not
yet been optimized for low latency. Thus we asked the vendor to
modify the WSS switches to enable low-latency operation by sup-
porting a single signaling pin to step the switch forward through a
programmable schedule. As a result, although our prototype only
supports weighted round-robin schedules, those schedules can be
reprogrammed on a week-to-week basis. This limitation is not fun-
damental, but rather one of engineering expediency.

5.2 Emulating ToRs with commodity servers
To construct our prototype, we use commodity servers to emu-

late each of the ToRs. Although the Mordia OCS supports 24 ports,
our transceiver vendor was not able to meet specifications on one
of those transceivers, leaving us with 23 usable ports in total. Each
of our 23 servers is an HP DL 380G6 with two Intel E5520 4-core
CPUs, 24 GB of memory, and a dual-port Myricom 10G-PCIE-8B
10 Gbps NIC. One port on each server contains a DWDM 10 Gbps
transceiver, taken from the following ITU-T DWDM laser chan-
nels: 15–18, 23–26, 31–34, 39–42, 47–50, and 55–58. Each server
runs Linux 2.6.32.

5.2.1 Explicit synchronization and control

Each of the emulated ToRs must transmit packets from the ap-
propriate queue in sync with the OCS with microsecond precision.
The source code to our NIC firmware is not publicly available,

Application

Operating System

NIC

Network

process_sync_frame()

qdisc_dequeue()
slot #

slot duration

setup/teardown

TDMA State

Sync Frame

current slot #

slot start (ns)

tokens

destination

TCP/IP Stack

send()

qdisc_enqueue()

Queues

select_queue(ip_address)

dma_copy()

Transmit Data Frame Receive Sync Frame

yield()

1

14

15

2

3

4

5
6

7

8

9 10

11

12

13

16

TDMA State

Figure 6: A software implementation of multi-queue support

in Linux using commodity Ethernet NICs. Sync frames co-

ordinate state between each emulated ToR (server) and the

scheduler, so that each Qdisc knows when to transmit Ether-

net frames.

and so we cannot detect link up and down events in real time and
cannot implement the synchronization approach presented in Sec-
tion 5.1.3. Instead, we have modified our prototype to include a
separate synchronization channel between the scheduler and the
servers that the scheduler uses to notify the servers when the switch
is being reconfigured. Ethernet NICs do not typically provide much
direct control over the scheduling of packet transmissions. Thus we
have implemented a Linux kernel module to carry out these tasks.
We now describe how we modified the Linux networking stack on
each server to support circuit scheduling, and to remain synchro-
nized with the OCS.

We modify the OS in three key ways. First, we adapt the Ethernet
NIC driver to listen for synchronization packets from the scheduler
so that the host knows the current state of the OCS. Second, we
modify the NIC driver to ignore the “link-down” events that occur
when the OCS is reconfiguring. Third, we add a custom queu-
ing discipline (Qdisc) that drains packets from queues based on the
configuration of the OCS.

Synchronization packets: The OCS FPGA controller transmits
synchronization packets to a separate 10G packet-switched net-
work which connects to a second Ethernet port on each server.
These packets are sent before and after reconfiguration so that all
connected devices know the state of the OCS. The packets include
the slot number, the slot duration, and whether the circuits are be-
ing setup or torn down. The connected devices maintain a map
between the slot number and each destination. The Ethernet NIC
driver also maintains a data structure with a set of per-circuit tokens
to control the data transmission time and rate. Note that this sepa-
rate signaling network would not be needed in a production system
where access to the NIC firmware would be available.

Link-down events: Since the OCS is switching rapidly, the host
NIC ports attached to the OCS experience numerous link-up and
link-down events. When Linux receives a link-down event, it nor-
mally disables the interface and resets and closes any open sockets

and TCP connections. To prevent these resets, we disable the link-
down and link-up calls in the NIC driver.

Mordia Qdisc (shown in Figure 6): When a user’s application
sends data, that data transits the TCP/IP stack (1) and is encap-
sulated into a sequence of Ethernet frames. The kernel enqueues
these frames into our custom Qdisc (2), which then selects (3) one
of multiple virtual output queues (VOQs) based on the packet’s IP
address and the queue-to-destination map (4). The Ethernet frame
is enqueued (5) and the qdisc_dequeue function is scheduled (6)
using a softirq. The qdisc_dequeue function reads the current com-
munication slot number (7) and checks the queue length (8). If
there is no frame to transmit, control is yielded back to the OS (9).
If there is a frame to transmit, the frame is DMA copied to the
Ethernet NIC (10–12). The total number of packets sent directly
corresponds to the number of tokens accumulated in the Ethernet
NIC’s data structure to control the timing and the rate. The kernel
then schedules the qdisc_dequeue function again (13) until VOQ is
empty and control is yielded back to the OS (9). When the next
sync frame arrives from the controller (14), it is processed, and
the scheduling state is updated (15). Then the kernel schedules the
qdisc_dequeue function with a softirq in case there are frames en-
queued that can now be transmitted (16). Given that all the packets
are only transmitted during the times that the slot is active, the code
for receiving packets did not need to be modified.

6. EVALUATION
Our evaluation seeks to:

1. Determine the baseline end-to-end reconfiguration time

of the Mordia OCS as seen by ToRs. We find that, ac-
counting for the hardware and software overheads, this re-
configuration time is 11.5 µs.

2. Determine how precisely the control plane can keep ToR

devices synchronized with the OCS. On average, ToRs can
be synchronized within 1 µs. However, due to the non-realtime
nature of our Linux-based emulated ToRs, about 1% of syn-
chronization messages are received at the wrong times, lead-
ing to reduced link utilization.

3. Find the overall throughput and circuit utilization deliv-

ered by the Mordia OCS. We find that despite the long-
tailed nature of our synchronization strategy, emulated ToRs
can utilize up to 95.4% of the link’s bandwidth.

4. Determine how well TCP performs on the OCS. We find
that the emulated ToR can reach 87.9% of the bandwidth of
a comparable EPS for TCP traffic, when disabling the NIC’s
TSO functionality. The gap between the EPS and OCS is due
to the use of commodity hardware and OS in our prototype,
and would not be expected in a real deployment.

We evaluate each of these questions below.

6.1 End-to-end reconfiguration time
We know from other work [8] that the raw switching speed of

the underlying OCS does not determine the end-to-end switching
speed, since additional time is required for reinitializing the op-
tics and software overheads. In this section, we empirically mea-
sure the OCS switching speed as perceived at a packet level by the
devices connected to it. This fundamental switching speed gates
the expected performance we expect to see in the remainder of our
evaluation.

We first connect 23 emulated ToRs (which we refer to as hosts)
to the OCS prototype (with host i connected to port i). Host 1

0 123.0 246.1 369.1 492.2 615.2 738.2 861.3 984.3 1107 1230

100

200

300

400

500

600

700

800

900

1000

0

Port 4

Port 2

Port 3

Port 4

Port 2

Port 3

Time (μs)

Pa
ck

et
 S

eq
ue

nc
e

N
um

be
r (

R
X)

Figure 7: An example of packets sent across a set of variable-

length days. Each point represents a single packet, and recon-

figuration periods are shown as gray vertical bars.

16.8013.4410.086.723.36

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

(N, µ, σ) =(705, 11.55, 2.36)

Time (μs)

Fr
e
q
u
e
n
cy

Figure 8: Histogram of the end-to-end OCS reconfiguration

time, as seen by connected devices, using 705 samples. A nor-

mal curve is fitted to the data.

transmits fixed-size Ethernet frames at line rate, ignoring synchro-
nization packets. Host 1 transmits continuously, even during gaps.
Hosts 2 through 23 capture the first 22 octets of each frame using
tcpdump. Each frame contains an incrementing sequence number
so we can detect loss. After each experiment, we merge the pcap
files from each host.

Figure 7 shows an experiment with regular-sized Ethernet frames
(1500 bytes) and variable-length slots (80 µs, 160 µs, and 240 µs).
The x-axis is time and the y-axis is packet sequence number. We
programmed the OCS with a round-robin schedule. The slot dura-
tions vary in size, which means that bandwidth is allocated propor-
tionally to different hosts based on the slot length. We highlight
gaps as gray vertical strips, and frames transmitted during gaps
are lost. The remaining frames are successfully received. The last
packet transmitted during a slot often gets dropped by the receiving
NIC because it is cut off in the middle by the OCS.

From a merged pcap trace of approximately one million packets,
we extracted 705 gaps in packet transmission. The length of each
gap is a measurement of tsetup. Figure 8 shows the resulting his-
togram. The data fits a normal distribution with a mean of 11.55 µs
and a standard deviation of 2.36 µs. Note that this packet capture
is collected across several machines, and so some of the variance
shown in Figure 8 is due to clock skew across nodes.

With T = 106 µs and tsetup = 11.5 µs, the duty cycle is equal

0 100 200 300 400 500 6000

20

40

60

80

100 Night

NIC
Delay

μs

Host 12 Host 13 Host 14 Host 15 Host 16
R

e
ce

iv
e
d
 D

a
ta

 (
K

B
)

0

Figure 9: Host 1’s Qdisc receiving UDP packets from Hosts 12–

16 as it cycles through circuits connecting it to 22 other hosts.

Each point represents a 9000-byte packet.

to 89.15%. Therefore we expect to have captured 89.15% of the
transmitted Ethernet frames. From 997,917 transmitted packets,
we captured 871,731 packets, yielding a measured duty cycle of
87.35%. In other words, there are approximately 18,000 additional
missing packets. We attribute these additional missing packets pri-
marily to periods where the sender or receiver was interrupted by
the non-real-time Linux kernel.

Summary: These experiments show that the end-to-end recon-
figuration latency of the Mordia OCS, including the time to re-
establish the link at the optical component level, is on average
11.5 µs. Further, the FPGA-based scheduler can establish variable-
length days and control the OCS with high precision.

6.2 Emulated ToR software
The previous section demonstrates that a single host can utilize

87.35% of a circuit with an 89.15% duty cycle. However, this mea-
surement does not account for host synchronization at the OCS
ports. Figure 9 shows Host 1 receiving 8,966 octet UDP packets
from Hosts 12–16 via the Qdisc described in Section 5.2.1 for a
day and night of 123.5 µs and 11.5 µs, respectively. The transmis-
sion time and sequence number of each packet is determined from
a tcpdump trace that runs on only Host 1.

First, we note that it takes on average 33.2 µs for the first packet
of each circuit to reach Host 1. The tcpdump trace indicates that
it takes less than 3 µs to process the synchronization frame and
transmit the first packet. When sending a 9000-octet frame (7.2 µs),
the packet spends at least 23 µs in the NIC before being transmitted.
To prevent this “NIC delay” from causing packet loss, the OS Qdisc
must stop queuing packets for transmission 23 µs early. The result
is that the Qdisc cannot use 23 µs of the slot due to the behavior
of the underlying NIC hardware. Vattikonda et al. [22] have shown
how the use of hardware NIC priority flow control (PFC) pause
frames can be used to enable fine-grained scheduling of circuits on
(all-electrical) data center networks, and this technique could be
applied to Mordia.

Summary: The Linux hosts used as emulated ToRs are able to
drain packets into the network during the appropriate “day,” which
can be as small as 61 µs. However, jitter in receiving synchro-
nization packets results in a 0.5% overall loss rate, and there is a
23 µs delay after each switch reconfiguration before the NIC be-
gins sending packets to the OCS. These overheads and packet loss
are specific to our use of commodity hosts as ToRs.

0!

1!

2!

3!

4!

5!

6!

7!

8!

9!

10!

50! 100! 150! 200! 250! 300!

 A
v
g

.
R

x
 R

a
te

 P
e

r
H

o
s
t
(G

b
/s

)!

Circuit Day Duration (μs)!

EPS-UDP (8.8 Gb/s)!

EPS-­‐TCP	
 (6.3	
 Gb/s)	

OCS-­‐IDEAL	
 (9.5	
 Gb/s)	

OCS-­‐UDP	
 (8.4	
 Gb/s)	

OCS-­‐TCP	
 (5.5	
 Gb/s)	

Figure 10: Throughput delivered over the OCS. The funda-

mental difference between ideal and observed is due to the OCS

duty cycle. Further deviations are due to our system artifacts,

namely the lack of segmentation offloading in the NIC, NIC-

induced delay, and synchronization packet jitter. The mini-

mum slot length is 61 µs. The legend shows the maximum av-

erage receive rate for each switch and protocol combination.

6.3 Throughput
In the above experiments, we have attempted to characterize in-

dividual components of the Mordia OCS. In this section, we turn
our attention to analyzing the resulting end-to-end throughput de-
livered by the entire system.

To begin, we generated all-to-all TCP and UDP traffic between
23 hosts and measured the throughput both over a traditional elec-
trical packet switch (EPS, used as a baseline) as well as our Mordia
OCS prototype including emulated ToR switches, shown in Fig-
ure 10. The throughput over the EPS serves as an upper bound on
the potential performance over the OCS. In addition, throughput
over the OCS is fundamentally limited by the OCS duty cycle.

To establish a baseline, we measured the goodput of a single
UDP flow transiting the EPS switch (EPS-UDP) to be 9.81 Gbps.
We then found that as the number of hosts increases from 2 to 23,
the average rate degrades to 8.83 Gbps, which we attribute to the
kernel and NIC. The EPS supports a single TCP flow’s goodput of
8.69 Gbps, which is within 1.6% of UDP traffic. However, this
throughout relies on TCP segmentation offloading (TSO) support
in the NIC, which is incompatible with our Mordia kernel module.
2 On an all-electrical packet network, all-to-all TCP bandwidth
across 23 hosts without TSO support was found to be 6.26 Gbps
(EPS-TCP), which we use as an upper bound on the performance
we expect to see over the OCS. With NIC firmware access, we
could eliminate this reduction in bandwidth by having the TCP of-
fload engine not send packets during the circuit night time.

Figure 10 shows the raw bandwidth available to each host (cal-
culated as the duty cycle) from the OCS as OCS-IDEAL. It is im-
portant to remember that this line does not account for the 23.5 µs
NIC delay which reduces measured duty cycle further. For the ex-
periments, we varied the OCS slot duration between 61–300 µs
to observe the effect of different duty cycles (due to the program-
ming time of our WSSes, the smallest slot duration we support
is 61 µs). The OCS’s UDP throughput (OCS-UDP) ranges from

2The happens because, when circuits are reconfigured, any packets
in flight are ‘runted’ by the link going down, and we lose con-
trol over the transmission of packets when relying on TSO. Conse-
quently, Mordia requires disabling TSO support.

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1

0 25 50 75 10
0

52
5

55
0

57
5

60
0

62
5

6±1 µs
(49.69%)

0 µs
(0.47%)

522 to 624 µs
(0.06%)

100±1 µs
(49.62%)

Timestamp Delta (μs)
N=1,922,507

Fr
e
q
u
e
n
cy

(l
o
g
 s

ca
le

)

Figure 11: Synchronization jitter as seen by the OS in our

Linux-based emulated ToR switches.

5.73–8.43 Gbps, or within 4.6% of EPS-UDP. The major reasons
for the discrepancy are duty cycle, NIC delay, the OS’s delay in
handling a softirq, and synchronization jitter (see discussion be-
low).

TCP throughput on the OCS (OCS-TCP) ranges from 2.23 to
5.50 Gbps, or within 12.1% of EPS-TCP for circuit day durations.
TCP throughput suffers from all of the issues of UDP throughput,
as well as two additional ones. First, TCP traffic cannot use TSO
to offload, and so the TCP/IP stack becomes CPU-bound handling
the required 506 connections. Second, the observed 0.5% loss rate
invokes congestion control, which decreases throughput. However,
TCP does show an upward trend in bandwidth with increasing duty
cycle.

We suspect that a reason for the reduction in throughput seen in
Mordia is due to the “long tailed” behavior of the synchronization
aspect of its control plane. To test this, we next examine synchro-
nization jitter. Synchronization packets are generated by the FPGA
to minimize latency and jitter, but the OS can add jitter when re-
ceiving packets and scheduling softirqs. To measure this jitter, we
set the day and night to 106 µs and 6 µs, respectively, and cap-
ture 1,922,507 synchronization packets across 3 random hosts. We
compute the difference in timestamps between each packet and ex-
pect to see packets arriving with timestamp deltas of either 6±1 µs
or 100±1 µs. We found that 99.31% of synchronization packets ar-
rive at their expected times, 0.47% of packets arrive with timestamp
deltas of zero, and 0.06% packets arrive with timestamp deltas be-
tween 522 µs and 624 µs (see Figure 11). The remaining 0.16% of
packets arrive between 7–99 µs. We also point out that the 0.53%
of synchronization packets that arrive at unexpected times is very
close to our measured loss rate. Our attempts to detect bad synchro-
nization events in the Qdisc did not change the loss rate measurably.
Firmware changes in the NIC could be used to entirely avoid the
need for these synchronization packets by directly measuring the
link up/down events.

Summary: Despite the non-realtime behavior inherent in emu-
lating ToRs with commodity PCs, we are able to achieve 95.4% of
the bandwidth of a comparable EPS with UDP traffic, and 87.9%
of an EPS, sending non-TSO TCP traffic. We are encouraged by
these results, which we consider to be lower bounds of what would
be possible with more precise control over the ToR.

7. SCALABILITY
Supporting large-scale data centers requires an OCS that can

scale to many ports. We briefly consider these scalability impli-
cations.

WDM: The Mordia prototype we built uses a single ring with 24
wavelength channels in the C-band to create a 24×24-port OCS.
Since the C-band contains 44 DWDM channels, it is straightfor-
ward to scale the prototype to 44 ports. Increasing the number of
wavelengths on a single ring beyond 44 is more difficult. Mor-
dia happens to rely on 100 GHz spacing, but we could have used
50 GHz, 25 GHz, or even 12.5 GHz spacing. Each smaller incre-
ment doubles the number of channels. SFP+ modules with lasers
on the 50 GHz grid are commercially available, meaning that it
is straightforward to scale to 88 ports. However, the technology
to support 10G, 40G, and 100G Ethernet over narrower DWDM
channels might not yet be commercially available or might be cost
prohibitive in a data center environment. An alternative could be
to keep the 100 GHz spacing but to extend into the L-band. This
extension would allow a doubling of the number of channels, but
would make amplification more difficult. Thus the use of WDM
provides a small level of scalability up to a couple of hundred ports.

Bandwidth: As data center network link speeds increase over
time, e.g., to 40, 100, and 400 Gbps, the Mordia data plane need
not change, as it is agnostic to the transmission rate. However, the
control plane must increase in speed. Most relevant for Mordia’s
scalability is not the aggregate per-host bandwidth, but the underly-
ing line rate. We believe that on a five-year time horizon, the fastest
line rates will be 25-28 Gbps. All higher rates will be achieved by
aggregating multiple such lanes. For instance, 40 Gbps Ethernet is
in fact four lanes of 10 Gbps and the two 100 Gbps standards are
either 10 × 10 Gbps or 4 × 25 Gbps. The emerging 400 Gbps will
likely be 16 × 25 Gbps. This aggregation means that the worst-case
scaling performance of Mordia is 2.5× up to 400 Gbps. Further-
more, the duty cycle overhead is only a function of the underlying
line rate, not the aggregate link rate (e.g., 100 or 400 Gbps).

Multiple-ring scaling: Another way to scale beyond 88 ports
is to use multiple stacked rings, with each ring reusing the same
wavelength channels, as shown in Figure 12. For example, an 8×8
ring-selection OCS would allow the construction of a 8 × 88 =
704-port OCS. It is important that all inputs assigned to the same
wavelength channel be connected to the same ring-selection OCS,
or else there could be a collision within a particular ring. The ring-
selection OCS is only used for the input ports; the output ports
directly connect to the individual rings. One downside of a stacked
ring architecture is the longer “week” lengths. Thus for low-latency
applications, a packet-switched network is still required.

While the single-ring architecture is fully non-blocking, the stacked-
ring architecture is blocking, meaning that not all input-output port
mappings are possible. Fundamentally the challenge comes from
reusing a finite number of wavelength channels across a larger num-
ber of switch ports. One possible solution to this problem is to in-
troduce another degree of freedom by using tunable lasers that can
transmit on any wavelength channel rather than on a specific chan-
nel. This freedom restores the fully non-blocking property of the
OCS at the cost of additional optical and algorithmic complexity.
In terms of scaling to higher port counts, we acknowledge that our
proposed approach will not directly apply to networks with clus-
ters larger than 704 ToRs. However, assuming 40 servers/ToR, this
constant still scales to 25 thousand servers in a single cluster.

Integrated OCS switching: Finally, it is possible to build an
integrated scale-out OCS by interconnecting smaller OCS switches
in a multi-stage topology on a single board, using waveguides in-
stead of discrete fibers. This approach greatly reduces loss, since
the couplers used to connect the switch to the fibers can be a sig-
nificant source of loss. Multi-stage, integrated OCSes have been
built [3], but rely on slower 3D-MEMS technology.

k × k

OCS

Input Ports Output Ports

2N + i

i

N + i

(k-1)N + i

i

N + i

2N + i

(k-1)N + i

Ring 1

Ring 2

Ring 3

Ring k

Figure 12: Multiple independent rings can be stacked to in-

crease the total port count. Each of the k rings has N ports.

Every input port jN + i, where j ∈ {0..k− 1} and i ∈ {1..N},

is bundled together into a k×k ring-selection OCS before being

sent to its default ring. This approach allows an input normally

destined for one ring to arrive at a different ring.

8. RELATED WORK
Optical switching technologies: Realistic optical switches that

can be used in practice require a limited overall insertion loss and
crosstalk, and must also be compatible with commercial fiber op-
tic transceivers. Subject to these constraints, the performance of
a switch is characterized by the switch speed and port count. Op-
tical switches based on electro-optic modulation or semiconduc-
tor amplification can provide nanosecond switching speeds, but in-
trinsic crosstalk and insertion loss limit their port count. Analog
(3D) MEMs beam steering switches can have high port counts (e.g.,
1000 [4]), but are limited in switching speed on the order of mil-
liseconds. Digital MEMs tilt mirror devices are a “middle-ground”.
They have a lower port count than analog MEMs switches, but have
a switching speed on the order of a microsecond [9] and a suffi-
ciently low insertion loss to permit constructing larger port-count
OCSes by composition.

“Hotspot Schedulers”: Mordia is complementary to work such
as Helios [8], c-Through [25], Flyways [13], and OSA [6], which
explored the potential of deploying optical circuit switch technol-
ogy in a data center environment. Such systems to date have all
been examples of hotspot schedulers. A hotspot scheduler observes
network traffic over time, detects hotspots, and then changes the
network topology (e.g., optically [6, 8, 25] or wirelessly [13]) such
that more network capacity is allocated to traffic matrix hotspots
and overall throughput is maximized. Rather than pursing such a
reactive policy, Mordia instead chooses a proactive scheduling ap-
proach in which multiple scheduling decisions are amortized over
a single pass through the control plane.

Optical Burst Switching: Optical Burst Switching [17, 21] is a
research area exploring alternate ways of scheduling optical links
through the Internet. Previous and current techniques require the
optical circuits to be setup manually on human timescales. The re-
sult is low link utilization. OBS introduces statistical multiplexing
where a queue of packets with the same source and destination are
assembled into a burst (a much larger packet) and sent through the
network together. Like OBS, the Mordia architecture has a separate
control plane and data plane.

TDMA: Time division multiple access is often used in wireless
networks to share the channel capacity among multiple senders and
receivers. It is also used by a few wired networks such SONET,
ITU-T G.hn “HomeGrid” LANs and “FlexRay” automotive net-
works. Its applicability to data center packet-switched Ethernet
networks was studied in [22], which found that much of the OS-
based synchronization jitter can be eliminated by relying on in-
NIC functionality such as 802.1Qbb Priority-based pause frames.

By using these pause frames, the NIC can be much more precisely
controlled. The approach taken by [22] is not directly applicable to
Mordia, since there is no way for a central controller to send pause
frames to connected devices when a circuit is not established to that
endpoint.

9. CONCLUSIONS
In this paper, we have presented the design and implementation

of the Mordia OCS architecture, and have evaluated it on a 24-port
prototype. A key contribution of this work is a control plane that
supports an end-to-end reconfiguration time 2–3 orders of mag-
nitude smaller than previous approaches based on a novel circuit
scheduling approach called Traffic Matrix Scheduling. While Mor-
dia is only one piece in a larger effort, we are encouraged by this
initial experience building an operational hardware/software net-
work that supports microsecond switching.

10. ACKNOWLEDGMENTS
This work is primarily supported by the National Science Foun-

dation CIAN ERC (EEC-0812072) and a Google Focused Research
Award. Additional funding was provided by Ericsson, Microsoft,
and the Multiscale Systems Center, one of six research centers
funded under the Focus Center Research Program (FCRP), a Semi-
conductor Research Corporation program. We would like to thank
our shepherd Arvind Krishnamurthy, and Alex Snoeren and Geoff
Voelker for providing invaluable feedback to this work.

11. REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,

Commodity, Data Center Network Architecture. In
Proceedings of ACM SIGCOMM, Aug. 2008.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic Flow Scheduling for Data
Center Networks. In Proceedings of 7th USENIX NSDI, Apr.
2010.

[3] W. Anderson, J. Jackel, G.-K. Chang, H. Dai, W. Xin,
M. Goodman, C. Allyn, M. Alvarez, O. Clarke, A. Gottlieb,
F. Kleytman, J. Morreale, V. Nichols, A. Tzathas, R. Vora,
L. Mercer, H. Dardy, E. Renaud, L. Williard, J. Perreault,
R. McFarland, and T. Gibbons. The MONET Project—A
Final Report. IEEE Journal of Lightwave Technology,
18(12):1988–2009, Dec. 2000.

[4] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel.
Finding a needle in Haystack: Facebook’s photo storage. In
Proceedings of 9th USENIX OSDI, Oct. 2010.

[5] G. Birkhoff. Tres Observaciones Sobre el Algebra Lineal.
Univ. Nac. Tucumán Rev. Ser. A, 5:147–151, 1946.

[6] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu,
Y. Zhang, and X. Wen. OSA: An Optical Switching
Architecture for Data Center Networks and Unprecedented
Flexibility. In Proceedings of 9th USENIX NSDI, Apr. 2012.

[7] N. Farrington, G. Porter, Y. Fainman, G. Papen, and
A. Vahdat. Hunting Mice with Microsecond Circuit
Switches. In Proceedings of 11th ACM HotNets, 2012.

[8] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz,
V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat.
Helios: A Hybrid Electrical/Optical Switch Architecture for
Modular Data Centers. In Proceedings of ACM SIGCOMM,
Aug. 2010.

[9] J. E. Ford, V. A. Aksyuk, D. J. Bishop, and J. A. Walker.
Wavelength Add-Drop Switching Using Tilting

Micromirrors. IEEE Journal of Lightwave Technology,
17:904–911, 1999.

[10] Glimmerglass 80x80 MEMS Switch. http://www.
glimmerglass.com/products/technology/.

[11] A. Goel, M. Kapralov, and S. Khanna. Perfect Matchings in
O(nlogn) Time in Regular Bipartite Graphs. In Proceedings

of 42nd ACM STOC, June 2010.

[12] Hadoop: Open source implementation of Map Reduce.
http://hadoop.apache.org/.

[13] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and
D. Wetherall. Augmenting Data Center Networks with
Multi-Gigabit Wireless Links. In Proceedings of ACM

SIGCOMM, Aug. 2011.

[14] U. Hoelzle and L. A. Barroso. The Datacenter as a

Computer: An Introduction to the Design of

Warehouse-Scale Machines. Morgan and Claypool
Publishers, 2009.

[15] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner.
OpenFlow: Enabling Innovation in Campus Networks. ACM

Computer Communication Review, 38(2), Apr. 2008.

[16] R. N. Mysore, A. Pamporis, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat.
PortLand: A Scalable, Fault-Tolerant Layer 2 Data Center
Network Fabric. In Proceedings of ACM SIGCOMM, Aug.
2009.

[17] C. Qiao and M. Yoo. Optical Burst Switching (OBS) – A
New Paradigm for an Optical Internet. Journal of High

Speed Networks, 8(1):69–84, 1999.

[18] R. Sinkhorn. A Relationship Between Arbitrary Positive
Matrices and Doubly Stochastic Matrices. The Annals of

Mathematical Statistics, 35(2):876–879, 1964.

[19] T. A. Strasser and J. L. Wagener. Wavelength-Selective
Switches for ROADM Applications. IEEE Journal of

Selected Topics in Quantum Electronics, 16:1150–1157,
2010.

[20] Y. Tamir and G. L. Frazier. High-Performance Multi-Queue
Buffers for VLSI Communication Switches. In Proceedings

of 15th ACM ISCA, May 1988.

[21] J. S. Turner. Terabit Burst Switching. Journal of High Speed

Networks, 8(1):3–16, 1999.

[22] B. C. Vattikonda, G. Porter, A. Vahdat, and A. C. Snoeren.
Practical TDMA for Datacenter Ethernet. In Proceedings of

ACM EuroSys, Apr. 2012.

[23] J. von Neumann. A certain zero-sum two-person game
equivalent to the optimal assignment problem. Contributions

to the Theory of Games, 2:5–12, 1953.

[24] M. Walraed-Sullivan, K. Marzullo, and A. Vahdat.
Scalability vs. Fault Tolerance in Aspen Trees. Technical
Report MSR-TR-2013-21, Microsoft Research, Feb 2013.

[25] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki,
T. S. E. Ng, M. Kozuch, and M. Ryan. c-Through: Part-time
Optics in Data Centers. In Proceedings of ACM SIGCOMM,
Aug. 2010.

