
Received December 8, 2018, accepted December 25, 2018, date of publication January 24, 2019, date of current version February 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2892745

Integrating Model Checking With SysML in
Complex System Safety Analysis

HONGLI WANG, DEMING ZHONG, TINGDI ZHAO , AND FUCHUN REN
School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China

Corresponding author: Tingdi Zhao (ztd@buaa.edu.cn)

This work was supported in part by Grants from the Civil Aviation Joint Funds Established through the National Nature Science

Foundation of China and the Civil Aviation Administration of China under Grant U1533201, and in part by the Project of the

Ministry of Industry and Information Technology of China under Grant JSZL2015601C008.

ABSTRACT Modern complex systems are characterized by numerous complex interactions and high levels

of integration of functions, which present new challenges from the viewpoints of system safety analysis

and design. Model checking can be employed to perform safety analysis, identify potential hazards, and

prove the correctness of complex systems. However, many types of construction models are expressed in

different ways, and there exists no unified model. Thus, the integration of model checking with system

modeling language is proposed herein to analyze the safety of complex systems. System modeling language

(SysML) is introduced to establish a unified system model that can describe a hybrid system of hardware

and software but cannot be applied directly to safety analysis. Therefore, the semi-formal model SysML

is transformed into the formal model new symbolic model checker/verifier, and the transformation rules

are defined. The proposed unified model can not only help designers and safety and software engineers

to execute various tasks but also efficiently, completely, and accurately analyze and verify the safety of

complex systems. Finally, an integrated modular avionics case is presented to illustrate how to analyze the

safety of complex systems. The results of the case study show that the proposed method can help increase

the efficiency of safety analysis work and improve system safety.

INDEX TERMS Complex system, safety analysis, model checking, system modeling language (SysML),

integrated modular avionics (IMA), potential hazard.

I. INTRODUCTION

With increasing system scale and growing functional

requirements, modern complex systems tend to be highly

integrated, incorporating all types of complex embedded

components and functional structures of software and hard-

ware coupling [1]. Inevitably, this brings greater difficulties

and challenges to system safety analysis and design. The

most representative of such systems is the Integrated Mod-

ular Avionics (IMA) system. The IMA system executes high

levels of sharing and reuse of aircraft functions and resources

through resource integration, functional fusion, and task syn-

thesis, thus improving the efficiency of the avionics system.

In addition, IMA increases system complexity and coupling,

such as functional correlation and interaction of hardware

and software, owing to its own characteristics of resource

sharing. Meanwhile, it creates new types of hazards, such as

logical contradictions or defects. Classic safety analysis tech-

niques such as Failure Mode and Effect Analysis (FMEA),

Fault tree analysis (FTA), and Hazard and Operability Anal-

ysis (HAZOP) [2]–[4], have been used to analyze the safety

and reliability of complex systems for many years. However,

these methods are not completely applicable to the analysis

of modern integrated complex systems because they mainly

identify the hazards associated with critical equipment or a

limited set of components. Modern safety analysis methods

(such as Functional Resonance Analysis Method [5], [6],

System-theoretical Process Analysis [7]) can solve certain

hazards to some extent, but it is easy to miss potential hazards

in the system, thus reducing the accuracy and integrity of

safety analysis results.

Formal methods have been developed in recent years to

meet the challenges associated with analyzing and verifying

complex systems [1]. The Model-Based Safety Analysis

(MBSA) method has a more advanced model description

capability and an automated analysis process that is more

objective and efficient compared to traditional methods.

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

16561

https://orcid.org/0000-0002-8616-4983
https://orcid.org/0000-0002-4243-1963


H. Wang et al.: Integrating Model Checking With SysML in Complex System Safety Analysis

Scholars have introduced Model Checking [8], [9], a part

of formal methods, to the safety analysis of complex sys-

tems [10]. Model checking can not only research all system

states system mathematically by using the ergodic method

but also use computer tools to perform safety analysis

automatically. Moreover, model checking has been adopted

widely in diverse fields, such as aerospace, nuclear, and

train control. At present, a few powerful model checking

tools are available. The common model checkers include

Simple Promela Interpreter (SPIN) [11], Symbolic Model

Verifier (SMV) [12], New Symbolic Model Checker/Verifier

(NuSMV) [13], and UPPAAL [14], [15]. Although the for-

mal method plays a very important role in validating the

correctness of system design, modeling, and reasoning, its

limitations lie in its use of specific model checker input

languages for system model description in different model

checkers and the frequent need to transform system models

into specific automata languages. Moreover, the availability

and applicability of different modeling language and vali-

dation tools differ. In the process of model transformation,

it is difficult to guarantee model consistency, which makes

the application of this method extremely difficult. And how

model checking is much better for application in engineering

is a difficult and necessary problem.

System modeling language (SysML) [16]–[18] is a graph-

ical modeling language that is very intuitive and is widely

used to model complex systems. Compared with Unified

Modeling Language (UML) [19], SysML fully supports

both hard/software systems and specific process information,

is capable of modeling various problems of system engi-

neering, and easy for engineers to learn. Although SysML

is abundant in expression, it is not a high-level formal lan-

guage that can be used for automatic analysis. Its graphical

symbols often lack precise semantics and cannot be applied

directly to verification and safety analysis, which makes it

very difficult to formalize reasoning by using SysML. For

example, there is no way to verify that a SysML diagram

satisfies a given property. Moreover, model checking and ver-

ification based on SysML input is often difficult to master and

operate in practical applications. To ensure the correctness

of system design, modeling, and inference, it is necessary to

formalize and verify the SysMLmodel. Transformation of the

SysML model into the corresponding formal model through

model transformation guarantees system safety.

Most studies in the literature describe the transformation

of traditional models into non-formal models [20], [21].

In recent years, the transformation of semi-formal models

into formal models to perform analytical verification have

attracted considerable attention. Scholars [22] have used the

formalized description language Timed Automata (TA) to

model, simulate, and verify systems. In [23], researchers

added clock sterethpe to SysML and transformed SysML

models into formal models (timed automa) for verification

to improve software safety. More theoretical methods are

usually less attractive for engineers and software developers.

It has been suggested that SysML/UML be formatted as

process algebra [24], [25] and Petri Nets [26], [27]. In [28],

the development of a distributed reconfigurable control sys-

tem was researched by combining semi-formal and formal

methods. Model checking of hierarchical state machines

was proposed in [29], such as formalization of the Kripke

structure.

These more formal approaches are orthogonal works that

go beyond the scope of providing a recipe for translating

SysML/UML in terms of intuitive (intermediate) models, for

the practical-mind. For a more detailed survey on model

checking state charts, the authors of this study referred

to [30].

In the present paper, an integrated model checking scheme

based on SysML is proposed for application to complex

system safety analysis. In terms of modeling methods,

SysML is adopted to build system model and fully exploit

the graphical functions of SysML. In terms of model trans-

formation, amethod formodel transformation fromSysML to

NuSMV symbolic model checker input language is proposed,

and transformation rules are defined. In terms of verification

analysis, the formal analysis method is mainly adopted to

verify and find defects from different aspects based on the

NuSMV tool. Finally, by taking the IMA platform as an

example, modeling and safety analysis are executed to realize

automation from modeling, verification, to safety analysis.

The remainder of this paper is organized as follows.

Section II is dedicated to the analysis process proposed

in this study that integrates SysML and model checking.

Section III introduces the system model method based

on SysML. In section IV, the conditions and rules of trans-

lation from SysML to NuSMV model are proposed; then

analysis and verification of system safety are performed.

The applicability of the proposed technique is demonstrated

by means of a case study of the IMA flaps control system

in Section V. Finally, Section VI provides a few concluding

remarks.

II. INTEGRATED ANALYSIS PROCESS OF SysML AND

MODEL CHECKING

In the field of complex system safety, the model-based safety

analysis method has increasingly attracted greater attention.

System development activities such as simulation, verifica-

tion, testing, and code generation can be organized around a

formal system model. The integration between SysML and

model checking is based on the use of the SysML model

and model checking to achieve automatic and efficient safety

analysis, which aims to exploit the intuition and usability

of SysML, and the automatic analysis and verification capa-

bilities of model checking.

The key steps involved in this process are illustrated

in Fig. 1. The method starts with system modeling, as well

as the construction of a system model and a set of safety

specifications. This model can either be an early functional

model of the system or an architectural model of the system

depending on the stage of system development. SysML is

applied to all stages of system development, including early

16562 VOLUME 7, 2019



H. Wang et al.: Integrating Model Checking With SysML in Complex System Safety Analysis

FIGURE 1. Integrated analysis process of SysML and model checking.

functional design, where design details are not mature. In the

next step, this SysML model is formalized. The rules for

transformation of the SysML model into the model checking

model are determined, and the model checking model of

the system is established. Model checking is then used to

verify whether this dynamic systemmodel conforms to safety

requirements. If the conformity is verified, the process pro-

ceeds to either further refinement of the model and iteration

of the above process or its implementation. Else, counter

examples are produced to show how the model fails to fulfill

certain requirements, and track, locate, modify, and re-verify

the errors by using the counter examples.

III. SYSTEM MODEL BASED ON SysML

The OMG SysML is a general standard modeling language

for systems that may include anything from hardware and

software to staff and facilities. SysML can support the mod-

eling of a variety of complex systems, including detailed

description, analysis, design, validation, and verification.

SysML adopts the graphical method to describe the system

to improve the accuracy of description and reduce ambigu-

ity and inconsistency in the description, as well as simul-

taneously enhance readability. SysML defines three types

and nine subtypes of diagrams: 1) Requirement Diagram;

2) Structure Diagram: it comprises Package Diagram, Block

Definition Diagram, Internal Block Definition Diagram, and

Parametric Diagram; and 3) Behavior Diagram: it comprises

Activity Diagram, Sequence Diagram, State MachiIle Dia-

gram, and Use case Diagram.

On the one hand, SysML can be used for intuitivemodeling

of systems. On the other hand, SysML can be employed sim-

ilarly to a meta-modeling language that defines the syntactic

composition of the SysML modeling concepts considered by

the proposed approach.

Take a traffic light control system as an example, as shown

in Fig. 2. In this figure, the east-west and south-north lanes are

one-way streets. Traffic lights are set in both lanes to ensure

FIGURE 2. Traffic light control system.

orderly driving of vehicles in both directions. There are two

cars, namely car A from east to west and car B from south to

north. They have two states: stop and move. Each signal light

has two states: on and off. The SysML model of the traffic

light control system is established as follows.

A. BDD

Block Definition Diagram (BDD) is a structure diagram that

mainly describes the structural composition of the system and

the relationships among constituent elements. A block can

include properties of certain types and references to other

blocks. The BDD of the traffic light control system is shown

in Fig. 3.

It can be seen from Fig. 3 that the traffic light control

system is composed of traffic lights, car A, and car B.

VOLUME 7, 2019 16563



H. Wang et al.: Integrating Model Checking With SysML in Complex System Safety Analysis

FIGURE 3. Block definition diagram of traffic light control system.

Each of the lights has a property value ‘‘state’’ to describe

its own state. For instance, the light being on/off corresponds

to the Boolean property in Fig. 3 being set to True/false in

the BDD. The signal changes at intervals of 30 s, and a

clock variable c is defined. In addition, the BDD can capture

the relationships between blocks, such as correlations and

dependencies.

The behaviors can be associated with the BDD through the

properties of type StateChart. In Fig. 3, for instance, car A

and car B are associated with a behavior via the ‘‘operation’’

property. At this point, it is important to mention that in

the proposed approach, concurrent behavior is modelled by

synchronizing multiple BDDs via events. Events occur in the

context of triggers that specify points in the definition of a

behavior at which some effect can be observed.

B. STM

State Machine Diagram (STM) is a state diagram used to

model system behavior. The STM of the traffic light control

system considered herein is shown in Figs. 4, 5, and 6.

STMs or statecharts, are a form of finite state automata

used to model system behavior. States in an STM can express

different statuses associated with the behavior of a system.

For instance, a car being either stopped or moved is captured

by two simple states ‘‘Car_A_stop’’ and ‘‘Car_A_move,’’

respectively, in Figs. 4 and 5.

The invoking activities in a state are called ‘‘do’’ activities,

and they are either continuous or discrete. The states are

FIGURE 4. Car A behavior.

FIGURE 5. Car B behavior.

represented as an enclosed area of many behavioral frag-

ments that can be executed simultaneously. Each region con-

tains nested separated states and corresponding transitions.

Therefore, the following types of composite states exist:

1) simple composite state-whenever the state contains exactly

one region; and 2) orthogonal state-whenever the state

16564 VOLUME 7, 2019



H. Wang et al.: Integrating Model Checking With SysML in Complex System Safety Analysis

FIGURE 6. Traffic control light behavior.

TABLE 1. The elements and paths of STM and extended STM.

contains multiple regions. In this paper, only simple com-

posite states are considered. A submachine state refers to an

entire STM nested within the state.

The key elements and paths in STM and extended STM are

summarized in Table 1.

Notably, only the BDD and the STM in SysML are

employed in this study.

IV. TRANSLATION OF SysML TO MODEL CHECKING

Many technical tools are available for model checking. In the

present study, the NuSMV model checker is employed as a

good example of this technology to promote comprehensive

automatic analysis of SysML. NuSMV is fundamentally a

symbolic model checker, and are recommended for larger

real-life complex systems. NuSMV can support the descrip-

tion of temporal logic computation tree logic (CTL), also

descripts linear temporal logic (LTL). The NuSMV tool is

an opensource program, which allows it to be tailored more

effectively into a future integrated support tool [1].

The New Symbolic Model Verifier (NuSMV) [13] is a

symbolic model checking tool that which checks a finite

state system against specifications in CTL and LTL, by using

BDD-based and SAT-based model checking techniques.

In this section, the we focus is on the parts of the NuSMV

input language relevant to the present for our work. For a thor-

ough description of NuSMV inputs, we refer the interested

readers may refer to to the user manual in the distribution

package of the NUSMV model checker.

Intuitively, a NuSMV program consists of a list of mod-

ules that are further instantiated into so-called processes

that model interleaving. A ‘‘process’’ has a special Boolean

variable associated with it called ‘‘running,’’ the value of

which is true if and only if the corresponding process

instance is currently selected for execution. Each module

is associated an identifier and a series of parameters. The

body of a module consists of elements that can denote

variable declarations, variable initializations/assignments,

VOLUME 7, 2019 16565



H. Wang et al.: Integrating Model Checking With SysML in Complex System Safety Analysis

FIGURE 7. Corresponding NuSMV module and variable declaration.

LTL specifications or, for instance, behaviors defined based

on transitions. Transitions are introduced by the ‘‘TRANS’’

keyword, followed by a Boolean expression expressing

whether two states belong to the transition relation. There-

fore, the aforementioned Boolean expression can include

the ‘‘next’’ operator to relate the current and the next state

variables and express transitions in the state-machine corre-

sponding to the behavior of the module.

A. TRANSLATION PROCESS OF BDD

The NuSMVmodel is composed of MODULEmain and sev-

eral submodulesMODULE n. TheMODULEmain describes

the constitution of the system, as well as introduces all the

submodules and the properties to be verified.MODULEmain

in NuSMV contains a list of module declarations given by the

BDD component in the SysML model. Each submodule in

NuSMVcorresponds to an element in the BDDof SysML.All

variables (properties) are then declared in MODULE main.

These attributes are further initialized by the initial values

of the associated elements in BDD. If they are not, they are

denoted by as the default values. The configuration is exe-

cuted in the corresponding module of each variable. Taking

the traffic light control system as an example, the correspond-

ing NuSMV module and variable declaration are shown in as

follows in Fig. 7.

B. TRANSLATION PROCESS OF STM

The translation process of STM is less straightforward.

In the NuSMV code, the state itself is integrated into the

translation system. In the present study, sState behaviors in

our study areis converted to variable changes duringwhen

processing.

1) STATUS

S1: Add a status variable in the Module corresponding to the

event in STM; In NuSMV, there will be:

MODULE Car_A

VAR

status: {move, stop};

FIGURE 8. A simple example of STM.

FIGURE 9. STM with numbered states and distributed transitions.

S2: Initial state in STM, that is, the initial state of status.

Use as the initial value of status. Thus,

there are:

ASSIGN

init(status):= state0;

S3: Generate enumerated type status in NuSMV, and the

status set will be translated to:

status: {state0, state1, state2, . . ., staten};

substatus: {sub1, sub2, sub3, . . ., subn};

Moreover, the states in STM have a hierarchical structure.

In this study, they are simple composite states. A simple state

diagram is shown in Fig. 8. In Fig. 9, for example, values 1, 2,

and 6 are assigned to the states of the STM by using recursive

numbering.

2) EVENT

S4: The ‘‘event’’ is translated into Boolean variables.

See, for instance, the variable declaration VAR EW_

RedLightstate: Boolean; in MODULE main. Its value is set

to true when a state or transition includes a trigger for the

event in its behavior, or to false after execution of a transition

that requires the event to be enabled.

3) TRANSITION

The transition structure in NuSMV is introduced via the

TRANS keyword, followed by a Boolean statement.

S5: Each transition of STM is the value assignment of

each status, which is a transition to next of status. Ignore the

‘‘event’’ name for each transition.

S6: The status before transition and the critical conditions

‘‘Guard’’ are the condition of next(status). The status set

before transition is the result of next(status).

16566 VOLUME 7, 2019



H. Wang et al.: Integrating Model Checking With SysML in Complex System Safety Analysis

FIGURE 10. The analysis results of traffic control system.

S7: If the transition in STM has parameter change

‘‘action’’, each parameter change is transitioned as a variable

transition next.

According to the above rules, Transition

is translated to:

TRANS

next(status) :=

case

status = state1 &g uard0&guard1: {state2};

1: status;// Means if the condition is unconformity, the sta-

tus unchanged;

esac;

C. SAFETY ANALYSIS OF TRAFFIC CONTROL SYSTEM

By using the above transformation rules, the SysML model

is converted into a NuSMV model. As a demonstration, this

example of traffic control system takes ‘‘the traffic control

system has no hazard’’ status as the safety requirement, and

converts it into the following CTL expression: AG !(traf-

fic.status = hazard). Figure 10 is obtained after automatic

analysis and verification.

The counter examples are obtained, the system does

not hold its specifications. The number of reachable states

is 142, and one of them is picked for analysis, namely,

‘‘EW_Redlightstate=false & EW_Greenlightstate=true &

SN_Redlightstate=false & SN_Greenlightstate=true &

CarA_state=move & Cae_B_state=move,’’ in which the

likelihood of an accident occurring is high. To avoid this prob-

lem, the control design logic is modified, for instance, two

green lights do not light up simultaneously, which improves

system safety.

Notably, translations of unnecessary information and non-

formal content are ignored in this section.

V. CASE STUDY: INTEGRATED MODULAR AVIONICS

This case study illustrates application of the proposed inte-

grated method to the IMA [31], [32] system. Now, con-

sidering the novelty of avionics architecture, the efficiency

of IMA, universally considered a safety-critical and software-

intensive system, can be effectively improved via weight and

power consumption reduction by means of comprehensive

resource integration or high-level resource sharing compared

with traditional avionics [33], [34]. However, a new series of

problems or potential hazards emerges with the high com-

plexity, for example, the number of faults increases, and

FIGURE 11. IMA flaps control structure.

the system becomes prone to fault propagation. For analysis

purpose, in this section, an IMA application system called the

flap control system is considered.

The flap control system is composed of the

IMA platform (including operating system) and an applica-

tion. Figure 11 shows a functional control structure diagram

of an IMA flap system.

A. FLAP CONTROL SYSTEM MODEL BASED ON SysML

For the flap control system, the objects involved in the system

are described and modeled in combination with BDD and

STM of the SysML. Figure 12 shows a BDD of the system

in which the structures of the objects in the entire system

are constructed, and the relationships among the objects are

defined.

As shown in Fig. 12, the IMA platform application sys-

tem is composed of the IMA platform and the flap system

applications, where the main functions of the IMA platform

are partition management, health monitoring, and hardware

resource management. The main task of IMA platform is to

provide the required resources for applications running on

the IMA platform. The real-time operating systems (RTOS)

controls partitions and hardware resources. The health mon-

itor controls hardware modules, and the partitions manage

hardware resources. The flap system consists of a flap con-

troller, physical flap, mechanical system, hydraulic system,

and sensor.

VOLUME 7, 2019 16567



H. Wang et al.: Integrating Model Checking With SysML in Complex System Safety Analysis

FIGURE 12. Block definition diagram of flaps control system.

FIGURE 13. State machine diagram of IMA platform.

Figures 13 and 14 show the STM of the flap control sys-

tem. Figure 13 shows the STM of the IMA platform. When

the RTOS starts the application partition, the partition goes

into the normal operation mode. Partition management is

performed by the operating system. The partition has four

operation modes: idle, normal, cold boot, and warm boot.

16568 VOLUME 7, 2019



H. Wang et al.: Integrating Model Checking With SysML in Complex System Safety Analysis

FIGURE 14. State machine diagram of flaps control system. (a) Flap
controller behavior. (b) Flap actuators behavior. (c) Physical flaps
behavior. (d) One of flap sensors behavior.

Under the IMA architecture, the flap system controller is

an application running on the IMA platform, and it controls

retraction and extension of the flaps. Figure 14(a) shows

changes in the flap controller state. The flap controller con-

trols coordination of the electrical control system and the

mechanical drive system, lowering the flap to the desired

angle, and providing lift or drag to the aircraft. The flap con-

troller receives data from the flap sensors and other system

components.

Figure 14(b) shows changes in the states of the flap actua-

tors. The hydraulic and electrical systems receive and execute

commands from the flap controller to change the positions

of the physical flaps. Both hydraulic and electrical systems

adopt a double redundancy design to avoid malfunction in

FIGURE 15. The example of physical flap state transformation.

the event of a fault. Figure 14(c) shows changes in the states

of the physical flaps.

Figure 14(d) shows changes in the states of the flap

sensors. The flap sensors transmit flap status data to the

controller, and the flap controller receives data from other

system components.

B. FLAP CONTROL SYSTEM MODEL BASED ON SysML

MODEL TRANSFORMATION

The established SysML model is transformed into the formal

description of NuSMV according to the conversion rules

in Section IV. Taking the physical flap as an example

to illustrate model transformation, the corresponding

NuSMV model is shown in Fig. 15.

To realize normal operation of the IMA flap control sys-

tem, the corresponding system safety requirements in this

case are expressed using a temporal logic formula as follows:

CTLSPEC AG FCS.status != fail.

Verification of these properties will help highlight the abil-

ity to verify safety properties.

C. SAFETY ANALYSIS

NuSMV was used for automatic model checking, and the

safety analysis results are shown in Fig. 16.

The results show that the system does not meet the

safety requirements, which may lead to accidents. In this

case, NuSMV successfully identified counter examples of

the systems violating safety requirements. Even though

the number of attainable states that caused hazard was

approximately 50,000, screening was performed to eliminate

events that that did not cause hazard. Through analysis of the

counter-example path, it was found that the problem lay in the

logic design of the controller, which resulted in inconsistent

variable parameter values. The verification results obtained

after automatic modification of the control logic of flap

retraction are shown in Fig. 17.

Based on the above findings, integrating model checking

with SysML in the context of complex system safety analysis

can help find defects in system design and notify the designer

VOLUME 7, 2019 16569



H. Wang et al.: Integrating Model Checking With SysML in Complex System Safety Analysis

FIGURE 16. The verification results of NuSMV.

FIGURE 17. The verification results of NuSMV after modifing.

to make corresponding modifications to improve model cor-

rectness. Notably, the example and modification considered

herein are hypothetical and simplified. The example was used

to illustrate application of the proposed integration applica-

tion, and its detailed design is not included. The example

shows how the proposed method can help design, develop,

and execute safety assessment processes to achieve more

robust and fault-tolerant designs.

VI. CONCLUSIONS

In this paper, integration of model checking with SysML for

complex system safety analysis was proposed. This method

extends model checking with system modeling language to

ensure model consistency and improve usability in engineer-

ing. The use of SysML, which has been employed widely

for modeling complex systems to perform system modeling,

makes it conducive for designers, analysts, and suppliers

to use the unified model. Then, the semi-formal model

SysML is transformed into the formal model NuSMV, which

is used to perform safety analysis and verification.

The results of this study demonstrate the procedure of

transforming SysML into model checking by using a simple

IMA flap control system. The unified model was established

through SysML, and safety analysis and verification were

performed using model checking. Defects in product devel-

opment and verification, especially in system design, can

be found using the proposed method, and the designer can

be notified to make corresponding modifications to improve

system safety.

The findings of this paper open up a new paradigm in

complex system safety analysis and the discovery of poten-

tial hazards; this improves the efficiency of safety analysis

work. The proposed method must be researched further, for

example, transformation of other types of category diagrams

in SysML and exploration of transformation tool of the pro-

posed method. In addition, replace NuSMVwith other model

checkers such as SPIN or UPPAL is considered, this to check

out whether the results would vary.

REFERENCES

[1] S. Sharvia and Y. Papadopoulos, ‘‘Integrating model checking with

HiP-HOPS in model-based safety analysis,’’ Rel. Eng. Syst. Saf., vol. 135,

pp. 64–80, Mar. 2015.

[2] C. A. Ericson, Hazard Analysis Techniques for System Safety. Hoboken,

NJ, USA: Wiley, 2005, pp. 11–34.

[3] Guidelines for Development of Civil Aircraft and Systems, Standard

ARP4754A, 2010.

[4] Guidelines and Methods for Conducting the Safety Assessment Process on

Civil Airborne Systems and Equipment, Standard ARP4761, 1996.

[5] E. Hollnagel andO. Goteman, ‘‘The functional resonance accidentmodel,’’

Cognit. Syst. Eng. Process Plant, pp. 155–161, Nov. 2004.

[6] P. V. R. de Carvalho, ‘‘The use of functional resonance analysis method

(FRAM) in a mid-air collision to understand some characteristics of the air

traffic management system resilience,’’ Rel. Eng. Syst. Saf., vol. 96, no. 11,

pp. 1482–1498, 2011.

[7] N. G. Leveson, Engineering a Safer World: Systems Thinking Applied to

Safety. Cambridge, MA, USA: MIT Press, 2011, pp. 1–33.

[8] E. M. Clarke and J. M. Wing, ‘‘Formal methods: State of the art and future

directions,’’ ACM Comput. Surv., vol. 28, no. 4, pp. 626–643, 1996.

[9] E. M. Clarke, Jr., O. Grumberg, and D. Peled, ‘‘Model checking,’’ Founda-

tions of Software Technology and Theoretical Computer Science. Berlin,

Germny: Springer, 1997.

[10] M. Bozzano et al., ‘‘ESACS: An integrated methodology for design and

safety analysis of complex systems,’’ in Proc. 14th Eur. Saf. Rel. Conf.,

2003, pp. 237–245.

[11] G. Holzmann, The SPIN Model Checker: Primer and Reference Manual.

Reading, MA, USA: Addison-Wesley, 2004.

[12] K. Y. Koh and P. H. Seong, ‘‘SMVmodel-based safety analysis of software

requirements,’’ Rel. Eng. Syst. Saf., vol. 94, no. 2, pp. 320–331, 2009.

[13] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, ‘‘NuSMV: A new

symbolic model verifier,’’ Computer Aided Verification. Berlin, Germany:

Springer, 1999.

[14] K. G. Larsen, P. Pettersson, and W. Yi, ‘‘UPPAAL in a nutshell,’’ Int. J.

Softw. Tools Technol. Transfer, vol. 1, no. 1, pp. 134–152, 1997.

[15] G. Behrmann, A. David, and K. G. Larsen, ‘‘A tutorial on UPPAAL,’’ in

Proc. Int. School Formal Methods Design Comput. Commun. Softw. Syst.,

vol. 4, no. 12, 2004, pp. 200–236.

[16] System Modelling Language (SYSML) Specification, OMG, document

ad/2006.3.1.

[17] S. Friedenthal, ‘‘Systems modeling language (SysML),’’ Insight, vol. 7,

no. 3, p. 20, 2004.

[18] L. Balmelli, ‘‘An overview of the systems modeling language for products

and systems development,’’ J. Object Technol., vol. 6, no. 6, pp. 149–177,

2007.

[19] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language

Reference Manual. 2006.

[20] T. Zhang, F. Jouault, J. Bézivin, and X. Li, ‘‘An MDE-based method for

bridging different design notations,’’ Innov. Syst. Softw. Eng., vol. 4, no. 3,

pp. 203–213, 2008.

[21] Y. Zhu, Z. Q. Huang, Z. Cao, H. Zhou, and M. Yuan, ‘‘A method for

generating software architecture model based on formal specifications,’’

Tech. Rep., 2010, pp. 2738–2751, vol. 21, no. 11.

[22] K. Larsen et al., ‘‘As cheap as possible: Effcient cost-optimal reachability

for priced timed automata,’’ inComputer Aided Verification (Lecture Notes

in Computer Science), vol. 2102. 2001, pp. 493–505.

[23] Y. Y. Song, ‘‘Research on formal transformation of SysML model

for verification,’’ Nanjing Univ. Aeronaut. Astronaut., Nanjing, China,

Tech. Rep., 2012.

16570 VOLUME 7, 2019



H. Wang et al.: Integrating Model Checking With SysML in Complex System Safety Analysis

[24] H. H. Hansen, J. Ketema, B. Luttik, M. R. Mousavi, and J. van de Pol,

‘‘Towards model checking executable UML specifications in mCRL2,’’

Innov. Syst. Softw. Eng., vol. 6, nos. 1–2, pp. 83–90, 2010.

[25] T. Ando, H. Yatsu, W. Kong, K. Hisazumi, and A. Fukuda, ‘‘Translation

rules of SysML state machine diagrams into CSP# toward formal model

checking,’’ Int. J. Web Inf. Syst., vol. 10, no. 2, pp. 151–169, 2014.

[26] E. Andrade, P. Maciel, G. Callou, and B. Nogueira, ‘‘A methodology

for mapping SysML activity diagram to time Petri Net for requirement

validation of embedded real-time systems with energy constraints,’’ in

Proc. 3rd Int. Conf. Digit. Soc., Feb. 2009, pp. 266–271.

[27] C. Ermel, ‘‘Visual modelling and analysis of model transformations based

on graph transformation,’’ Math. Struct. Comput. Sci., vol. 24, no. 99,

pp. 135–152, 2012.

[28] R. Oueslati, O. Mosbahi, M. Khalgui, Z. Li, and T. Qu, ‘‘Combining semi-

formal and formal methods for the development of distributed reconfig-

urable control systems,’’ IEEE Access, vol. 6, pp. 70426–70443, 2018.

[29] R. Alur and M. Yannakakis, ‘‘Model checking of hierarchical

state machines,’’ ACM Trans. Program. Lang. Syst., vol. 23, no. 3,

pp. 175–188, 2001.

[30] P. Bhaduri and S. Ramesh. (2004). ‘‘Model checking of state-

chart models: Survey and research directions.’’ [Online]. Available:

https://arxiv.org/abs/cs/0407038

[31] P. J. Prisaznuk, ‘‘Integrated modular avionics,’’ in Proc. Nat. Aerosp.

Electron. Conf., May 1992, pp. 39–45.

[32] C. B. Watkins and R. Walter, ‘‘Transitioning from federated avionics

architectures to integrated modular avionics,’’ in Proc. IEEE/AIAA 26th

Digit. Avionics Syst. Conf., Oct. 2007, pp. 2.A.1-1–2.A.1-10.

[33] C. B. Watkins, ‘‘Integrated modular avionics: Managing the allocation of

shared intersystem resources,’’ in Proc. IEEE/AIAA 25th Digit. Avionics

Syst. Conf., Oct. 2006, pp. 1–12.

[34] T. Zhou, H. Xionq, and Z. Zhang, ‘‘Hierarchical resource allocation for

integratedmodular avionics systems,’’ J. Syst. Eng. Electron., vol. 22, no. 5,

pp. 780–787, Oct. 2011.

Authors’ photographs and biographies not available at the time of

publication.

VOLUME 7, 2019 16571


	INTRODUCTION
	INTEGRATED ANALYSIS PROCESS OF SysML AND MODEL CHECKING
	SYSTEM MODEL BASED ON SysML
	BDD
	STM

	TRANSLATION OF SysML TO MODEL CHECKING
	TRANSLATION PROCESS OF BDD
	TRANSLATION PROCESS OF STM
	STATUS
	EVENT
	TRANSITION

	SAFETY ANALYSIS OF TRAFFIC CONTROL SYSTEM

	CASE STUDY: INTEGRATED MODULAR AVIONICS
	FLAP CONTROL SYSTEM MODEL BASED ON SysML
	FLAP CONTROL SYSTEM MODEL BASED ON SysML MODEL TRANSFORMATION
	SAFETY ANALYSIS

	CONCLUSIONS
	REFERENCES
	Biographies
	Authors'


