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Abstract

This paper focuses on the problem of providing efficient
run-time support to multimedia applications in a real-time
system, where two types of tasks can coexist simultaneously:
multimedia soft real-time tasks and hard real-time tasks.
Hard tasks are guaranteed based on worst case execution
times and minimum interarrival times, whereas multimedia
and soft tasks are served based on mean parameters. The
paper describes a server-based mechanism for scheduling
soft and multimedia tasks without jeopardizing the a pri-
ori guarantee of hard real-time activities. The performance
of the proposed method is compared with that of similar
service mechanisms through extensive simulation experi-
ments and several multimedia applications have been im-
plemented on the HARTIK kernel.

1. Introduction

Continuous Media (CM) activities, such as audio and
video streams, need real-time support because of their sen-
sitivity to delay and jitter. On the other hand, however, the
use of a hard real-time system for handling CM applications
can be inappropriate for the following reasons:

� If a multimedia task manages compressed frames, the
time for coding/decoding each frame can vary signif-
icantly, hence the worst case execution time (WCET)
of the task can be much bigger than its mean execu-
tion time. Since hard real-time tasks are guaranteed
based on their WCET (and not based on mean execu-
tion times), CM applications can cause a waste of the
CPU resource.

� Providing a precise estimation of WCETs is very diffi-
cult even for those applications always running on the
same hardware. This problem is even more critical for
multimedia applications, which in general can run on
a large number of different machines (think of a video
conferencing system running on several different PC
workstations).

� When data are received from an external device (for
instance, a communication network) the interarrival
time of the tasks that process such data may not be
deterministic, so it may be impossible to determine a
minimum interarrival time for such tasks. As a conse-
quence, no a priori guarantee can be performed.

� Advanced multimedia systems tend to be more dy-
namic than classical real-time systems, so all the
scheduling methodologies devised for static real-time
systems are not suited for CM applications.

For the reasons mentioned above, a large part of the multi-
media community continues to use classical operating sys-
tems, as Unix or Windows, to manage CM. Recently, some
scheduling algorithms have been proposed [16, 6] to mix
some form of real-time support with a notion of fairness,
but they do not make use of conventional real-time theory.
Since we are interested in systems based on a conventional
RT scheduler (such as EDF or RM), we do not consider this
kind of solutions.

In [8], Jeffay presents a hard real-time system based on
EDF scheduling to be used as a test bed for video confer-
ence applications; the system can guarantee each task at its
creation time based on its WCET and its minimum inter-
arrival time. While a bound for the WCET can be found,
the interarrival time may not have a lower bound, because
of the unpredictability of the network (which may even re-
verse the order of messages at the reception site). For this
reason, Jeffay in [7] introduces the Rate-Based Execution
(RBE) task model, which is independent from the minimum
interarrival time. Although this kind of task cannot be guar-
anteed to complete within a given deadline, it is possible
to guarantee that it will not jeopardize the schedulability of
other hard real-time tasks present in the system.

In [12], Mercer, Savage, and Tokuda propose a scheme
based on CPU capacity reserves, where a fraction of the
CPU bandwidth is reserved to each task. A reserve is a cou-
ple (Ci; Ti) indicating that a task�i can execute for at most
Ci units of time in each periodTi. This approach removes
the need of knowing the WCET of each task, because it
fixes the maximum time that each task can execute in its
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period. Since the periodic scheduler is based on the Rate
Monotonic algorithm, the classical schedulability analysis
can be applied to guarantee hard tasks, if they are present.
The only problem with this method is that overload situ-
ations on multimedia tasks are not handled efficiently. In
fact, if a task instance executes for more thanCi units of
time, the remaining portion of the instance is scheduled in
background, prolonging its completion of an unpredictable
time.

In [9], Kaneko et al. propose a scheme based on a pe-
riodic process (the multimedia server) dedicated to the ser-
vice of all multimedia requests. This allows to nicely inte-
grate multimedia tasks together with hard real-time tasks;
however, being the server only one, it is not easy to control
the QoS of each task.

In [3], Liu and Deng describe a scheduling hierarchy
which allows hard real-time, soft real-time, and non real-
time applications to coexist in the same system, and to be
created dynamically. According to this approach, which
uses the EDF scheduling algorithm as a low-level scheduler,
each application is handled by a dedicated server, which can
be a Constant Utilization Server [4] for tasks that do not use
nonpreemptable sections or global resources, and a Total
Bandwidth Server [13, 15] for the other tasks. This solu-
tion can be used to isolate the effects of overloads at the
application level, rather than at the task level. Moreover,
the method requires the knowledge of the WCET even for
soft and non real-time tasks.

In this paper, we propose a scheduling methodology
based on reserving a fraction of the processor bandwidth to
each task (in a way similar to processor capacity reserves of
Mercer et al.[12]). However, to efficiently handle the prob-
lem of task overloads, each task is scheduled by a dedicated
server, which does not require the knowledge of the WCET
and assigns a suitable deadline to the served task whenever
the reserved time is consumed.

The rest of the paper is organized as follows: Section
2 specifies our notation, definitions and basic assumptions;
Section 3 describes our scheduling scheme in detail and
its formal properties; Section 4 compares the proposed al-
gorithm with other server mechanisms, and presents some
simulation results; Section 5 describes an implementation
of the proposed algorithm on the HARTIK kernel and shows
some experimental results; and, finally, Section 6 presents
our conclusions and future work.

2. Terminology and assumptions

We consider a system consisting of three types of tasks:
hard, soft, and non real-time tasks. Any task�i consists of
a sequence of jobsJi;j , whereri;j denotes the arrival time
(or request time) of thejth job of task�i.

A hard real-time task is characterized by two additional

parameters,(Ci; Ti), whereCi is the WCET of each job
andTi is the minimum interarrival time between successive
jobs, so thatri;j+1 � ri;j+Ti. The system must provide an
a priori guarantee that all jobs of a hard task must complete
before a given deadlinedi;j . In our model, the absolute
deadline of each hard jobJi;j is implicitly set at the value
di;j = ri;j + Ti.

A soft real-time task is also characterized by the param-
eters(Ci; Ti), however the timing constraints are more re-
laxed. In particular, for a soft task,Ci represents themean
execution time of each job, whereasTi represents thede-
sired activation period between successive jobs. For each
soft jobJi;j , a soft deadline is set at timedi;j = ri;j + Ti.
Since mean values are used for the computation time and
minimum interarrival times are not known, soft tasks can-
not be guaranteed a priori. In multimedia applications, soft
deadline misses may decrease the QoS, but do not cause
critical system faults.

The objective of the system is to minimize the mean tar-
diness of soft tasks, without jeopardizing the schedulability
of the hard tasks. The tardinessEi;j of a jobJi;j is defined
as

Ei;j = maxf0; fi;j � di;jg (1)

wherefi;j is the finishing time of jobJi;j .
Finally, a periodic task is a task (hard or soft) in which

the interarrival time between successive jobs is exactly
equal toTi for all jobs (ri;j+1 = ri;j + Ti). Periodic tasks
do not have special treatment in this model.

Tasks that manage CM can be modeled as soft real-time
tasks, because missing deadlines may decrease the QoS
without causing catastrophic consequences. Moreover, CM
activities are typically characterized by highly variable ex-
ecution times, causing the WCET to be much greater than
the mean execution time.

For the reasons mentioned above, treating CM tasks as
hard real-time tasks is not appropriate, firstly because an un-
derestimation of the WCET would compromise the guaran-
tee done on the other tasks, and secondly because it would
be very inefficient, since trying to guarantee a task with a
WCET much greater than its mean execution time would
cause a waste of the CPU resource.

This problem can be solved by a bandwidth reservation
strategy, which assigns each soft task a maximum band-
width, calculated using the mean execution time and the
desired activation period, in order to increase CPU utiliza-
tion. If a task needs more than its reserved bandwidth, it
may slow down, but it will not jeopardize the schedulabil-
ity of the hard real-time tasks. By isolating the effects of
task overloads, hard tasks can be guaranteed using classical
schedulability analysis [11].

To integrate hard and soft tasks in the same system, hard
tasks are scheduled by the EDF algorithm based on their ab-
solute deadlines, whereas each soft task is handled by a ded-



icated server, theConstant Bandwidth Server(CBS), whose
behavior and properties are described in the next section.

3. The Constant Bandwidth Server

The service mechanisms that have inspired this work are
the Dynamic Sporadic Server (DSS) [13, 5] and the Total
Bandwidth Server (TBS) [13, 15]. As the DSS, the CBS
guarantees that, ifUs is the fraction of processor time as-
signed to a server (i.e., its bandwidth), its contribution to
the total utilization factor is no greater thanUs, even in the
presence of overloads. Notice that this property is not valid
for a TBS, nor for a Constant Utilization Server (CUS) [4],
whose actual contributions are limited byUs only under the
assumption that all the served jobs execute no more than
the declared WCET. With respect to the DSS, however, the
CBS shows a much better performance, comparable with
the one achievable by a TBS.

3.1. Definition of CBS

The CBS can be defined as follows:

� A CBS is characterized by a budgetcs and by a ordered
pair (Qs; Ts), whereQs is the maximum budget and
Ts is the period of the server. The ratioUs = Qs=Ts
is denoted as the server bandwidth. At each instant, a
fixed deadlineds;k is associated with the server. At the
beginningds;0 = 0.

� Each served jobJi;j is assigned a dynamic deadline
di;j equal to the current server deadlineds;k.

� Whenever a served job executes, the budgetcs is de-
creased by the same amount.

� When cs = 0, the server budget is recharged to the
maximum valueQs and a new server deadline is gen-
erated asds;k+1 = ds;k + Ts. Notice that there are no
finite intervals of time in which the budget is equal to
zero.

� A CBS is said to be active at timet if there are pending
jobs (remember the budgetcs is always greater than
0); that is, if there exists a served jobJi;j such that
ri;j � t < fi;j . A CBS is said to be idle at timet if it
is not active.

� When a jobJi;j arrives and the server is active the re-
quest is enqueued in a queue of pending jobs according
to a given (arbitrary) non-preemptive discipline (e.g.,
FIFO).

� When a jobJi;j arrives and the server is idle, ifcs �
(ds;k � ri;j)Us the server generates a new deadline

ds;k+1 = ri;j + Ts andcs is recharged to the max-
imum valueQs, otherwise the job is served with the
last server deadlineds;k using the current budget.

� When a job finishes, the next pending job, if any, is
served using the current budget and deadline. If there
are no pending jobs, the server becomes idle.

� At any instant, a job is assigned the last deadline gen-
erated by the server.

Figure 1 illustrates an example in which a hard periodic
task,�1, is scheduled together with a soft task,�2, served by
a CBS having a budgetQs = 2 and a periodTs = 7. The
first job of�2 arrives at timer1 = 2, when the server is idle.
Beingcs � (ds;0 � r1)Us, the job is assigned the deadline
ds;1 = r1 + Ts = 9 andcs is recharged atQs = 2. At time
t1 = 6, the budget is exhausted, so a new deadlineds;2 =
ds;1 + Ts = 16 is generated andcs is replenished. At time
r2, the second job arrives when the server is active, so the
request is enqueued. When the first job finishes, the second
job is served with the actual server deadline (ds;2 = 16).
At time t2 = 12, the server budget is exhausted so a new
server deadlineds;3 = ds;2 + ts = 23 is generated andcs
is replenished toQs. The third job arrives at timer3 = 17,
when the server is idle andcs = 1 < (ds;3 � r3)Us =
(23� 17) 27 = 1:71, so it is scheduled with the actual server
deadlineds;3 without changing the budget.

It is worth to notice that under a CBS a jobJj is assigned
an absolute time-varying deadlinedj which can be post-
poned if the task requires more than the reserved bandwidth.
Thus, each jobJj can be thought as consisting of a number
of chunksHj;k, each characterized by a release timeaj;k
and a fixed deadlinedj;k. An example of chunks produced
by a CBS is shown in Figure 2. To simplify the notation, we
will indicate all the chunks generated by a server with an in-
creasing indexk (in the example of Figure 2,H1;1 = H1;
H1;2 = H2,H2;1 = H3 and so on).

In order to provide a formal definition of the CBS, letak
anddk be the release time and the deadline of thekth chunk
generated by the server, and letc andn be the actual server
budget and the number of pending requests in the server
queue (including the request currently being served). These
variables are initialized as follows:

d0 = 0 c = 0 n = 0 k = 0

Using this notation, the server behavior can be described
by the algorithm shown in Figure 3.

3.2. CBS properties

The proposed CBS service mechanism presents some in-
teresting properties that make it suitable for supporting CM
applications. The most important one, theisolation prop-
erty, is formally expressed by the following theorem.
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Figure 2. Example of jobs divided to chunks.

Theorem 1 Given a set ofn periodic hard tasks with pro-
cessor utilizationUp and a CBS with processor utilization
Us, the whole set is schedulable by EDFif andonly if

Up + Us � 1:

Proof.
See [1].2

The isolation property allows us to use a bandwidth
reservation strategy to allocate a fraction of the CPU time
to soft tasks whose computation time cannot be easily
bounded. The most important consequence of this result
is that such tasks can be scheduled together with hard tasks
without affecting the a priori guarantee, even in the case in
which soft requests exceed the expected load.

In addition to the isolation property, the CBS has the fol-
lowing characteristics.

� The CBS behaves as a plain EDF if the served task�i
has parameters (Ci; Ti) such thatCi � Qs andTi =
Ts. This is formally stated by the following lemma.

Lemma 1 A hard task�i with parameters (Ci; Ti) is
schedulable by a CBS with parametersQs � Ci and
Ts = Ti if and only if�i is schedulable with EDF.

Proof.
For any job of a hard task we have thatri;j+1 � ri;j =
Ti andci;j � Qs. Hence, by definition of the CBS,
each hard job is assigned a deadlinedi;j = ri;j + Ti

and it is scheduled with a budgetQs � Ci. Moreover,
sinceci;j � Qs, each job finishes no later than the
budget is exhausted, hence the deadline assigned to a
job does not change and is exactly the same as the one
used by EDF.2

� The CBS automatically reclaims any spare time caused
by early completions. This is due to the fact that when-
ever the budget is exhausted, it is always immediately
replenished at its full value and the server deadline is
postponed. In this way, the server remains eligible and
the budget can be exploited by the pending requests
with the current deadline.This is the main difference
with respect to the processor capacity reservespro-
posed by Mercer et al. [12].

� Knowing the statistical distribution of the computation
time of a task served by a CBS, it is possible to perform
a statistical guarantee, expressed in terms of probabil-
ity for each served job to meet its deadline.

3.3. Statistical guarantee

To perform a statistical guarantee on soft tasks served by
CBS, we can model a CBS as a queue, where each arriving
jobJi;j can be viewed as a request ofci;j time units. At any
time, the request at the head of the queue is served using the
current server deadline, so that it is guaranteed thatQs units
of time can be consumed within this deadline.

We analyze the following cases: a) variable computation
time and constant inter-arrival time; and b) constant com-
putation time and variable inter-arrival time.



When job Jj arrives at time rj
enqueue the request in the server queue;
n = n + 1;
if (n == 1) /* (the server is idle) */

if ( rj + (c / Qs) * Ts >= dk)
/*---------------Rule 1---------------*/
k = k + 1;
ak = rj ;
dk = ak + Ts;
c = Qs;

else
/*---------------Rule 2---------------*/
k = k + 1;
ak = rj ;
dk = dk�1;
/* c remains unchanged */

When job Jj terminates
dequeue Jj from the server queue;
n = n - 1;
if (n != 0) serve the next job in the queue with deadline dk;

When job Jj served by Ss executes for a time unit
c = c - 1;

When (c == 0)
/*---------------Rule 3---------------*/
k = k + 1;
ak = actual time();
dk = dk�1 + Ts;

c = Qs;

Figure 3. The CBS algorithm.

Case a.

If job interarrival times are constant and equal toTs, and
job execution times are randomly distributed with a given
probability distribution function, the CBS can be modeled
with aDG=D=1 queue: everyTs units of time, a request of
cj units arrives and at mostQs units can be served. We can
define a random processvj as follows:

�
v1 = c1
vj = maxf0; vj�1 �Qsg+ ci;j

wherevj indicates the length of the queue (in time units) at
time (j � 1)Ts, that is the unit of times that are still to be
served when jobJi;j arrives. Hence, sinceQs units of time
are served every periodTs, the job will finish no later than

djmax
= ri;j +

�
vj
Qs

�
Ts

which is also the latest deadline assigned by the server to
job Ji;j .

If �(j)k = Pfvj = kg is the state probability of process
vj andCh = Pfcj = hg is the probability that an arriving
job requiresh units of time (sincecj is time invariant,Ch

does not depend onj), the value of�(j)k can be calculated
as follows:

�
(j)
k = Pfvj = kg = Pfmaxfvj�1 �Q; 0g+ cj = kg

�
(j)
k =

1X
h=�1

Pfmaxfvj�1�Q; 0g+cj = k^vj�1 = hg:

Beingvj greater than 0 by definition, the sum can be calcu-
lated forh going from 0 to infinity:

�
(j)
k =

1X
h=0

Pfmaxfh�Q; 0g+ cj = kgPfvj�1 = hg

=

QX
h=0

Ck�
(j�1)
h +

1X
h=Q+1

Pfcj = k � h+Qg�
(j�1)
h

=

QX
h=0

Ck�
(j�1)
h +

1X
h=Q+1

Ck�h+Q�
(j�1)
h :

Hence

�
(j)
k =

QX
h=0

Ck�
(j�1)
h +

1X
h=Q+1

Ck�h+Q�
(j�1)
h : (2)

Using a matrix notation, equation (2) can be written as

�(j) =M�(j�1) (3)

whereM and� are described in Figure 4



M =

0
BBBB@

Q+1z }| {
C0 C0 : : : C0

C1 C1 : : : C1

C2 C2 : : : C2

: : :

0 0 : : :
C0 0 : : :
C1 C0 0 : :
: : :

1
CCCCA and�(j) =

0
BBB@

�
(j)
0

�
(j)
1

�
(j)
2

:

1
CCCA

Figure 4. Matrix describing the Markov chain for case a)

Case b.

In the case in which jobs’ execution times are constant
and equal toQs (8j; ci;j = Qs) and jobs’ interarrival times
are distributed according to a given distribution function,
each job is assigned a deadlinedi;j = maxfri;j ; di;j�1g+
Ts, identical to that assigned by a TBS. In this situation,
the CBS can be modeled by aG=D=1 queue: jobs arrive
in the queue with a randomly distributed arrival time and
the server can process a request eachTs time units. If we
define a random processwj aswj = di;j � ri;j � Ts, the
distribution of the relative deadlinesdi;j � ri;j of job Ji;j
can be computed from the distribution ofwj , because

di;j � ri;j = wi;j + Ts:

Sincedi;j = maxfri;j ; di;j�1g+ Ts, we have

wj+1 = di;j+1 � Ts � ri;j+1 =

= maxfri;j+1; di;jg+ Ts � Ts � ri;j+1 =

= maxf0; di;j � ri;j+1g =

= maxf0; ri;j + wj + Ts � ri;j+1g =

= maxf0; wj � aj+1 + Tg

having definedaj+1 = ri;j+1 � ri;j . Beingaj a stochas-
tic stationary and time invariant process andwj a Markov
process, the matrixM describing thewj Markov chain

can be found. By defining�(j)k = Pfwj = kg and
Ah = Pfaj = hg, we have

�
(j)
k = Pfwj = kg =

= Pfmaxf0; wj�1 � aj + Tsg = kg

=

1X
h=�1

Pfmaxf0; wj�1 � aj + Tg = k ^ wj�1 = hg

=

1X
h=�1

Pfmaxf0; h� aj + Tg = kgPfwj�1 = hg

In order to simplify the calculus, we distinguish two cases:
k = 0 andk > 0:

�
(j)
0 =

1X
h=�1

Pfh� aj + T � 0gPfwj�1 = hg =

=

1X
h=�1

Pfaj � h+ TgPfwj�1 = hg =

=

1X
h=0

1X
r=h+T

Pfaj = rg�
(j�1)
h =

=

1X
h=0

1X
r=h+T

Ar�
(j�1)
h

8k > 0;

�
(j)
k =

1X
h=�1

Pfh� aj + T = kgPfwj�1 = hg =

=

1X
h=�1

Pfaj = h� k + Tg�
(j�1)
h =

=

1X
h=0

Ah�k+T�
(j�1)
h

Thus, matrixM describing the Markov chain is shown in
Figure 5. For a generic queue, it is known that the queue
is stable (i.e., the number of elements in the queue do not
diverge to infinity) if

� =
mean interarrival rate

mean service rate
< 1:

Hence, the stability can be achieved under the following
conditions:8<

:
ci;j < Qs in case a)

ri;j+1 � ri;j > Ts in case b)

In general,
ci;j

ri;j+1 � ri;j
<
Qs

Ts
:

If this condition is not satisfied the difference between the
deadlinedi;j assigned by the server to a jobJi;j and the job
release timeri;j will increase indefinitely. This means that,
for preserving the schedulability of the other tasks,�i will
slow down in an unpredictable manner.

If a queue is stable, a stationary solution of the Markov
chain describing the queue can be found; that is, there exists
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AT+3 AT+2 AT+1 AT : A2 C1 A0 0 0 :
: : : : : : : : : :

1
CCCCA with �i =

1X
r=i+T

Ar:

Figure 5. Matrix describing the Markov chain for case b)

a solution� such that� = limj!1 �(j), and� = M�.
This solution can be approximated by truncating matrixM
(having infinite dimension) to anN � N matrix M 0 and
solving the eigenvector problem�0 =M 0�0 with some nu-
merical calculus technique.

The knowledge of the probability distribution function of
the relative deadlines before which a multimedia task job is
guaranteed to finish is useful for guaranteeing a QoS to each
task and for choosing the right server parameters(Qs; Ts)
for each soft task.

4. Simulation results

In this section we compare the CBS with other similar
service mechanisms, namely the Total Bandwidth Server
(TBS) and the Dynamic Sporadic Server (DSS). The Con-
stant Utilization Server (CUS) is not considered in the
graphs because it is very similar to the TBS (indeed, slightly
worse in performance).

The main difference between DSS and CBS is visible
when the budget is exhausted. In fact, while the DSS be-
comes idle until the next replenishing time (that occurs at
the server’s deadline), the CBS remains eligible by increas-
ing its deadline and replenishing the budget immediately.
This difference in the replenishing time, causes a big differ-
ence in the performance offered by the two servers to soft
real-time tasks. The TBS does not suffer from this problem,
howeverits correct behavior relies on the exact knowledge
of job’s WCETs, so it cannot be used for supporting CM ap-
plications. Moreover, since the CBS automatically reclaims
any available idle time coming from early completions, a re-
claiming mechanism has also been added in the simulation
of the TBS, as described in [14].

All the simulations presented in this section have been
conducted on a hybrid task set consisting of 5 periodic hard
tasks with fixed parameters and 5 soft tasks with variable
execution times and interarrival times. The periods and
the execution times of the periodic hard tasks are randomly
generated in order to achieve a desired processor utilization
factorUhard, while their relative deadlines are equal to the
periods. The execution and interarrival times of the soft
tasks are uniformly distributed in order to obtain a mean
soft loadUsoft =

P
i

ci;j

ri;j+1�ri;j
with Usoft going from 0

to 1�Uhard. All the soft tasks have the same relative dead-
line.

The metric used to measure the performance of the ser-
vice algorithms is the mean tardinessEi computed over all
instances of each soft task. The reason for choosing such
a metric is motivated by the fact that, as already mentioned
above, in multimedia applications meeting all soft deadlines
could be impossible or very inefficient. Thus, a more realis-
tic objective is to guarantee all the hard tasks and minimize
the mean time that soft tasks execute after their deadlines.
Notice that, since all the soft tasks have the same relative
deadline, the tardiness is not dependent on task’s deadline.

In the first experiment, we compare the mean tardiness
experienced by soft tasks when they are served by a CBS,
a TBS and a DSS. In this test, the utilization factor of peri-
odic hard tasks isUhard = 0:5. The simulation results are
illustrated in Figure 6, which shows that the performance
of the DSS is dramatically worse than the one achieved by
the CBS and TBS. This result was expected for the reasons
explained above.

Figure 7 shows the same results, but without the DSS: the
only difference is in the scale of the y-axis. In this figure,
the TBS and CBS curves can be better distinguished, so we
can see that the tardiness experienced by soft tasks under a
CBS is slightly higher than that experienced using a TBS.
However, the difference is so small that can be neglected for
any practical purposes.

Figures 8 and 9 illustrate the results of similar experi-
ments repeated withUhard = 0:7 andUhard = 0:9 respec-
tively. As we can see, the major difference in the perfor-
mance between CBS and TBS appears only for heavy hard
loads. Fortunately, this situation is of little interest for most
practical multimedia applications.

WhenWCETi >> ci;j the TBS can cause an under-
utilization of the processor. This fact can be observed in
Figure 10, which shows the results of a fourth experiment,
in whichUhard = 0:6, Usoft = 0:4, the interarrival times
are fixed, and the execution times of the soft tasks are uni-
formly distributed with an increasing variance.

As can be seen from the graph, CBS performs better than
TBS whenci varies a lot among the jobs.
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Figure 6. First experiment (TBS, CBS and
DSS).
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Figure 7. First experiment (TBS and CBS).

5. Implementation and experimental results

The proposed CBS mechanism has been implemented on
the HARTIK kernel [2, 10], to support some sample multi-
media applications (see [1] for implementation details).

For example, an MPEG player has been executed using
EDF, with and without CBS. The application consists of
two periodic tasks: task�1 with a periodT1 = 125ms,
corresponding to 8 frames per second (Fps), and task�2
with a periodT2 = 30ms (33 Fps). Figure 11 reports
the number of decoded frames as a function of time, when
the two periodic tasks are scheduled by EDF, activating
�2 at t = 2000. SinceC1 = 49ms, C2 = 53ms and
49=125 + 53=30 = 2:158 > 1, when�2 is activated the
system becomes overloaded. In fact, when�1 is the only
task in the system, it runs at the required frame rate (8
Fps), but when at timet = 2000 �2 is activated,�1 slows
down to4:4Fps, while �2 begins to execute at17:96Fps.
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Figure 8. Second experiment.

0

50

100

150

200

250

300

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
ve

ra
ge

 s
of

t t
ar

di
ne

ss

Average soft load

Hard task load = 0.9

CBS
TBS

Figure 9. Third experiment.

When�2 terminates,�1 increases its frame rate to its maxi-
mum value (23; 8Fps, that corresponds to a period of about
42ms, which is the mean execution time for�1). After this
transient interval,�1 returns to execute at8Fps.

Figure 12 shows the number of decoded frames as a
function of time, when the same periodic tasks are sched-
uled by two CBSs with parameters(Q1; T1) = (42; 125)
and (Q2; T2) = (19; 30). Being 42=125 + 19=30 =
0:969 < 1, the two servers are schedulable, and being
Q1 = 42 ' c1, �1 will execute at a frame rate near to the
required one.

From the figure we can see that the frame rate of�1 is
about constant except for two little variations corresponding
to the activation and the termination of�2 (remember that
Q = c is a limit condition). This is obtained by slowing
down the frame rate of�2 to 14:2 Fps: this task is clearly
overloaded (T2 < c2), so it is penalized by the CBS.

Notice that the proposed mechanism automatically ar-
range the task periods without using a-priori knowledge
about the tasks’ execution times. The only information used
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Figure 11. Two MPEG players scheduled by
EDF.

by the CBS is the couple(Qi; Ti) and the estimation of task
execution time given by the budget.

Figure 11 shows another undesirable effect: when�2 ter-
minates, the frame rate of�1 increases to its maximum value
(more than the required rate), in order to terminate in the
same time instant in which it would terminate if�2 was not
activated. This phenomenon causes an acceleration of the
movie that appears unnatural and unpleasant. This prob-
lem can be solved using a skip strategy to serve soft tasks:
when a job finishes after its absolute deadline, the next job
is skipped.

As shown in Figure 13, a skip strategy eliminates ac-
celerations in the movie, but it introduces another problem,
which is presented in the next experiment, where the same
movie is decoded by two identical tasks, withUsoft = 1.

From Figure 14 it is easy to see that, although the two
tasks have the same period, they proceed with different
speed. This is due to the fact that the system is overloaded.
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In fact, if

Usoft =
c1;j

r1;j+1 � r1;j
+

c2;j
r2;j+1 � r2;j

= 1

thenUsoft =
C1
T1

+ C2
T2

> 1.
Serving the two tasks by two identical CBSs with param-

etersQs = c1;j = c2;j andTs = 2Qs, they proceed at the
same rate (tasks’ parameters are equal because the two tasks
play the same video).

6. Conclusions

In this paper, we presented a novel service mechanism,
the Constant Bandwidth Server, for integrating hard real-
time and soft multimedia computing in a single system, un-
der the EDF scheduling algorithm. The server has been
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formally analyzed and compared with other known servers,
obtaining very interesting results. The proposed model has
also been implemented on the HARTIK kernel and used to
support typical multimedia applications.

As a future work, in order to extend the proposed model
to more general situations, the following issues need to be
investigated. A concurrency control protocol needs to be
integrated with the method to avoid priority inversion when
accessing shared resources. The difference between the first
and the current CBS deadline can be used as a kind of feed-
back for evaluating the request in excess and react accord-
ingly adjusting the QoS in overload conditions. The CBS
mechanism can be used to safely partition the CPU band-
width among different applications that could coexist in the
same system, as shown in [4]. A task can be used as a QoS
manager to dynamically change the bandwidth reserved to
each multimedia task. The strategies for changing the pa-
rameters of each CBS still have to be investigated.
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