
Integrating Multiple Learning Components Through Markov Logic

Thomas G. Dietterich and Xinlong Bao
1148 Kelley Engineering Center

Oregon State University
Corvallis, OR 97331, U.S.A

{tgd, bao}@eecs.oregonstate.edu

Abstract

This paper addresses the question of how statistical
learning algorithms can be integrated into a larger
AI system both from a practical engineering perspec-
tive and from the perspective of correct representation,
learning, and reasoning. Our goal is to create an in-
tegrated intelligent system that can combine observed
facts, hand-written rules, learned rules, and learned
classifiers to perform joint learning and reasoning. Our
solution, which has been implemented in the CALO
system, integrates multiple learning components with
a Markov Logic inference engine, so that the compo-
nents can benefit from each other’s predictions. We
introduce two designs of the learning and reasoning
layer in CALO: the MPE Architecture and the Marginal
Probability Architecture. The architectures, interfaces,
and algorithms employed in our two designs are de-
scribed, followed by experimental evaluations of the
performance of the two designs. We show that by inte-
grating multiple learning components through Markov
Logic, the performance of the system can be improved
and that the Marginal Probability Architecture performs
better than the MPE Architecture.

Introduction
Statistical machine learning methods have been developed
and applied primarily in stand-alone contexts. In most cases,
statistical learning is employed at “system build time” to
construct a function from a set of training examples. This
function is then incorporated into the system as a static com-
ponent. For example, in the NCR check reading system
(LeCun et al. 1998), the neural network system for read-
ing check amounts is a sophisticated but static component
of the system.

Our aims are more ambitious. We want to address the
question of how statistical learning algorithms can be inte-
grated into a larger AI system through a reasoning layer. We
seek AI systems that exhibit end-to-end learning across all
(or at least most) components of the system after deploy-
ment. We also anticipate that these systems will be built out
of many separately-constructed components which may or
may not have learning capabilities. Hence, we cannot in-
sist on a uniform learning and reasoning algorithm for all of

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the components of the system. Instead, we seek to provide
a learning and reasoning layer that can interconnect these
components in such a way that if the components implement
specified interfaces, the system will exhibit the desired end-
to-end learning behavior.

In this paper, we present and evaluate two designs for the
learning and reasoning layer, both based on Markov Logic
(Domingos & Richardson 2006) as the reasoning engine.
The rest of the paper is organized as follows. First, we de-
scribe the CALO system, which provides the framework and
constraints within which this work was carried out. Second,
we describe the architecture, interfaces, and algorithms em-
ployed in our two designs. This is followed by some exper-
imental evaluations of the performance of the two designs.
The paper concludes with an agenda for future research in
this area.

Learning in CALO

The work described here arose as part of the CALO project.
CALO (Cognitive Agent that Learns and Organizes) is an
integrated AI system to support knowledge workers at the
computer desktop. One of the primary functions of CALO
is to help the user keep files, folders, email messages, email
contacts, and appointments organized. CALO models the
user’s computer work life as consisting of a set of projects,
where each project involves a set of people, meetings, files,
email messages, and so on.

Figure 1 shows a portion of CALO’s relational model of
this information with objects as nodes and relations as arcs.
All of the objects and many of the relations are observed
with certainty (e.g., which files are stored in which folders),
but the associations between projects and all of the other ob-
jects are inferred by applying a mix of hand-written rules
and learned classifiers. CALO also provides interfaces for
the user to associate objects with projects, so that when an
incorrect association is made, the user can correct it and es-
tablish new associations.

Rules are employed to capture domain knowledge. Some
of the rules used in CALO are shown in Table 1. For exam-
ple, the Attachment Rule says that if a document is attached
to an email message, both the document and the message
tend to be associated with the same project. End-users can
write their own rules as well.

One issue that arises when integrating learned classifiers

Name Rule

Attachment Rule ∀ E,P,D attached(D,E) ⊃ [projectOf(E,P) ≡ projectOf(D,P)][2.20]
Sender Rule ∀ E,P,H sender(E,H) ⊃ [projectOf(E,P) ≡ projectOf(H,P)][2.20]
Recipient Rule ∀ E,P,H recipient(E,H) ⊃ [projectOf(E,P) ≡ projectOf(H,P)][2.20]
User Input Rule ∀ E,P userFeedback(E,P) ⊃ projectOf(E,P)[2.94]
Single Project Rule ∀ E ∃! P projectOf(E,P)[1.73]

Table 1: Some rules used in CALO. Markov Logic weights are given in square brackets.

e m a i l f o l d e r s d o c u m e n t s
f i l ed In

f o l d e r s

e m a i l s

f i l ed In

a t t a c h e d T o

e m a i l a d d r

 r ec ip i en t s e n d e r

p e r s o n n a m e

p a i r e d

p r o j e c t s

p e o p l e

w e b s i t e s

w e b p a g e s

 m e e t i n g s

i n v i t e d T o

a t t e n d e d

p a r t O f

l i n k e d T o

*

*

*

*

Figure 1: A portion of CALO’s relational model. Dashed
lines indicate uncertain relations; asterisks indicate relations
learned by classifiers.

with rules is the problem of distal credit assignment. A
learned classifier can make a prediction that then triggers
a sequence of rule firings that then results in a project asso-
ciation for another object. If user marks this association as
incorrect, it could be because the final rule in the sequence
was wrong, but it is more likely that the fault lies with the
learned classifier. Distal credit assignment is the process of
propagating the user correction back along the chain of in-
ference to the component that is most likely responsible for
the error. The learning and reasoning layer described in the
next section can solve the distal credit assignment problem;
however, we do not have space to discuss it in this paper.
Instead, we will focus on how multiple learning components
can be integrated via this layer to improve the performance
of the whole system.

A key observation of our work is that when rules and
classifiers are intermixed, the rules can establish connec-
tions between learning tasks. This creates the opportunity
to perform relational co-training. Co-training is a method
for semi-supervised learning in which there is a single,
standard supervised learning problem, but each object has
two “views” or representations (Blum & Mitchell 1998).
Two classifiers are learned from labeled training examples,
one from each view, but with the added constraint that the
two classifiers should agree on the available unlabeled data.
There are many algorithms for co-training, e.g., (Blum &
Mitchell 1998; Nigam & Ghani 2000).

In the case of CALO, instead of multiple views of ob-

D

LD

M

LM

A

2

3

1
D: Documents

M: Email messages

A: Documents attached

to messages

LD: Labeled documents

LM: Labeled messages

Figure 2: Venn diagram showing document-email relations.

jects, we have multiple objects with relations among them.
Figure 2 is a Venn diagram showing documents, email mes-
sages, and the subset of documents attached to email mes-
sages. The combination of the document classifier fD, the
email classifier fM , and the Attachment Rule creates an op-
portunity for relational co-training. The two classifiers can
be trained on their respective labeled data but with the added
constraint that for the documents and email messages in re-
gion A, the predictions should be consistent. Because this
co-training happens through the relations between objects or
the chains of relations/rules, we call this learning behavior
relational co-training.

Through relational co-training, multiple learning compo-
nents can be integrated into the CALO system. We now de-
scribe two designs for an architecture that can support this
behavior in a general, unified way.

Integrating Learning and Reasoning

The starting point for our design is to divide the knowl-
edge of the system into indefeasible knowledge and defea-
sible (probabilistic) knowledge. Indefeasible knowledge in-
cludes events that are observed with certainty. The defea-
sible knowledge includes all things that are uncertain. For
example, in Figure 2, document objects, email objects and
the attached(D,E) relations are indefeasible knowledge.
The Attachment Rule and predictions from the email and
document classifiers are defeasible knowledge.

The probabilistic knowledge base is represented in
Markov Logic. A Markov Logic knowledge base consists
of a set of weighted first-order clauses and a set of con-
stant symbols. (Conceptually, the formulas that appear in
the indefeasible knowledge base are treated as having infi-
nite weights in Markov Logic.) The knowledge base defines
a probability distribution over the set of possible worlds that
can be constructed by grounding the clauses using the con-
stant symbols and then assigning truth values to all of the
ground formulas. A possible world is a truth assignment
that does not entail a contradiction. Given such a truth as-
signment α, let SAT (α) be the set of ground formulas that
are satisfied. For each formula F , let w(F) be the weight

assigned to that formula in the Markov Logic. The score of
the truth assignment is defined as the sum of the weights of
the satisfied formulas:

score(α) =
∑

F∈SAT (α)

w(F).

The probability of truth assignment is then defined as

P (α) =
exp score(α)∑
ω

exp score(ω)
, (1)

where ω indexes all possible (contradiction-free) truth as-
signments. The normalized exponentiated sum on the right-
hand side defines a Gibbs distribution that assigns non-zero
probability to every possible world. The score of a possible
world α is proportional to the log odds of that world accord-
ing to α.

If we consider the weight w(F) on a particular formula
F , we can interpret it as the amount by which the log odds
of a possible world will change if F is satisfied compared to
a world in which F is not satisfied (but all other formulas do
not change truth value).

In Table 1, the numbers in the square brackets after the
formulas are the weights assigned to them. These weights
can be adjusted through a weight learning process, but that
is beyond the scope of this paper. In this paper, we assume
that the weights of the rules are all fixed. Weights for the
classifiers’ predictions are assigned by taking the predicted
probabilities and converting them to log odds according to:

w = log
P (Class|Object)

1 − P (Class|Object)
, (2)

The MPE Architecture

Figure 3 shows our first architecture, called the MPE Ar-
chitecture. The box labeled PCE denotes the Probabilistic
Consistency Engine. This is the inference engine for the
Markov Logic system. In this first architecture, its task is to
compute the possible world with the highest score. This is
known in probabilistic reasoning as the Most Probable Ex-
planation (MPE). The grounded Markov Logic knowledge
base defines a Weighted Maximum Satisfiability (Weighted
MaxSAT) problem, for which many reasonably efficient
solvers are available. Our implementation employs a mix
of the MaxWalkSat (Kautz, Selman, & Jiang 1997) algo-
rithm for fast, approximate solution and the Yices linear
logic solver (Dutertre & de Moura 2006) for exact solu-
tion. The implementation employs the Lazy-SAT algorithm
(Singla & Domingos 2006) which seeks to compute only
those groundings of formulas that are needed for computing
the weighted MaxSAT solution.

Under this architecture, the learning components draw
their training examples from the MPE and post their
predictions into the Probabilistic Knowledge Base. We
need to take care, however, that a learning component
does not treat its own predictions (which may be very
weak) as labels for subsequent training. That is, a pre-
diction such as projectOf(report1.doc, CALO) might
be asserted with a probability of 0.51 (log odds of
0.04). But this might then cause the MPE to contain

Learning Components

Learned

Classifier

Learning

Algorithm

Training

Examples

predictions

labels

Learned

Classifier

Learning

Algorithm

Training

Examples

predictions

labels

Learned

Classifier

Learning

Algorithm

Training

Examples labels

Probabilistic
Knowledge

Base

PCE

Most Probable
Beliefs

Knowledge
Base

user

feedback

observed

events

Learned

Classifier

Learning

Algorithm

Training

Examples

predictions

labels

Figure 3: The MPE Architecture.

projectOf(report1.doc, CALO). If the document classi-
fier treated this as an ordinary training example, it would
rapidly lead to “dogmatic” behavior where the classifier
would become absolutely certain of all of its predictions.

To address this problem, the PCE computes a separate
MPE for each learning component. When computing the
MPE for learning component i, the PCE ignores all asser-
tions that were made by component i. Hence, we call this
the “Not Me MPE” for component i.

In order to be integrated into the architecture, each learn-
ing component must be able to accept (unweighted) training
examples of the form TargetPredicate(Object, Class)
and produce probabilistic predictions of the form
“TargetPredicate(Object, Class) with probability
p”. The architecture ensures that the following three
invariants are always true:

• For each learning component, the set of training exam-
ples for that component consists exactly of all instances
of TargetPredicate(Object, Class) that appear in the
Not Me MPE for that component.

• For each learning component, the learned classifier is al-
ways the classifier that results from applying the learning
algorithm to the current set of training examples.

• For each learning component, each Object, and each
Class, the Probabilistic Knowledge Base has an as-
sertion of the form TargetPredicate(Object, Class)
with weight w computed according to Equation 2 where
P (Class|Object) is the probability assigned to Class by
the current learned classifier.

These invariants are maintained by the following infinite
loop:

1. Accept new constants and new assertions.

2. Compute the global MPE and the Not Me MPEs for each
learning component.

3. Update the training examples for each learning compo-
nent (if necessary).

4. Recompute the learned classifier for each learning com-
ponent (if necessary).

5. Update the probabilistic predictions of each learning com-
ponent (if necessary).

6. Repeat

In practice, these steps are performed concurrently and
asynchronously. We employ anytime algorithms for the
MPE calculations.

The MPE Architecture supports relational co-training
over multiple learning components. Consider the Attach-
ment example shown in Figure 2. The Not Me MPE for the
document classifier includes: (1) labeled examples from LD;
(2) documents in region 2 with class labels propagated from
email labels via the Attachment Rule; and (3) documents
in region 3 with class labels propagated from the predicted
email labels by the email classifier. The Not Me MPE for
the email classifier is similar.

Then both classifiers will be retrained based on their own
Not Me MPEs. Each classifier will be influenced by the
predictions from the other classifier, as transmitted by the
Attachment Rule. This may cause the classifiers to change
some of their predictions. This will result in changes in the
Not Me MPEs and, therefore, additional changes in the clas-
sifiers, which will cause the process to repeat.

Experiments have revealed that this process can loop. The
predicted class labels of some of the “unsupervised” docu-
ments and email messages and flip back and forth forever.
To prevent this, we relax slightly the enforcement of the third
invariant. After a classifier has been retrained, if its pre-
dicted probability for an example does not change by more
than ǫ (e.g., 0.05), then the change is ignored. Obviously,
setting ǫ large enough will cause the iterations to terminate.

The Marginal Probability Architecture

The MPE Architecture was initially adopted because the
MPE computation is relatively efficient. However, there
are several problems with this design. First, there are often
“ties” in the computation of the MPE, because there can be
many literals that can be either true or false without chang-
ing the score of the possible worlds. We attempt to identify
and ignore such literals, but this is difficult in general. Con-
sequently, some of the training examples can receive random
labels, which can hurt performance. Second, each new clas-
sifier that is added to CALO requires an additional Not Me
MPE computation. Since our long-term goal is to have 10-
20 classifiers, this will slow down the reasoning by a factor
of 10-20. Finally, from a learning perspective, this approach
to joint training is known to produce biased results. The
MPE approach is directly analogous to the use of the Viterbi
approximation in training hidden Markov models and to the
k-Means clustering algorithm for training Gaussian mixture
models. In all of these cases, it is well-established that the
resulting model fit is biased and does not maximize the like-
lihood of the training data.

These considerations led us to develop the Marginal Prob-
ability Architecture, which is shown in Figure 4. The ba-
sic structure is the same. The key change is that instead
of computing the MPE, the PCE computes the marginal
probability of each ground instance of the target predi-
cates for the various classifiers. This is the probability
P (TargetPredicate(Object, Class)) given the contents
of both the Knowledge Base and the Probabilistic Knowl-
edge Base.

Learning Components

Learned

Classifier

Learning

Algorithm

Training

Examples

predictions

labels

Learned

Classifier

Learning

Algorithm

Training

Examples

predictions

labels

Learned

Classifier

Learning

Algorithm

Training

Examples labels

Probabilistic
Knowledge

Base

PCE

Marginal
Probabilities

P(ProjectOf(obj, proj))

Knowledge
Base

user

feedback

observed

events

Learned

Classifier

Learning

Algorithm

Weighted

Training

Examples

predictions

class probabilities

Figure 4: The Marginal Probability Architecture.

In addition, instead of standard training examples, each
learning algorithm that is integrated into the architecture
must be able to accept weighted training examples of the
form “TargetPredicate(Object, Class) with probability
p” and produce probabilistic predictions of the same form.
The architecture ensures that the following three invariants
are always true:

• For each learning component, the set of train-
ing examples for that component consists ex-
actly of the set of all groundings of the form
TargetPredicate(Object, Class) weighted by the
marginal probability of those ground instances as
computed by the PCE.

• For each learning component, the learned classifier is al-
ways the classifier that results from applying the learning
algorithm to the current set of weighted training exam-
ples.

• For each learning component, each Object, and each
Class, the Probabilistic Knowledge Base has an as-
sertion of the form TargetPredicate(Object, Class)
with weight w computed according to Equation 2 where
P (Class|Object) is the probability assigned to Class by
the current learned classifier.

The PCE computes the marginal probabilities by apply-
ing the Lazy MC-SAT algorithm (Poon & Domingos 2006).
MC-SAT is a Markov Chain Monte Carlo algorithm based
on slice sampling. It generates a sequence of possible worlds
that (after convergence) is drawn from the distribution de-
fined by Equation 1. Lazy MC-SAT extends the MC-SAT
algorithm to instantiate ground clauses only as needed. In
our implementation, the Lazy MC-SAT sampling process
is constantly running in the background. Because new ev-
idence and new or updated predictions are continually being
added to the indefeasible knowledge base and the probabilis-
tic knowledge base, the MC-SAT process probably never
converges. Consequently, we base our probability estimates
on the 200 most recent samples from this process.

Note that in this design, the predictions of each learning
algorithm influence its own weighted training examples. If
the learning algorithm maximizes the weighted log likeli-
hood of the training examples, then this architecture can be
viewed as an implementation of the EM algorithm (McLach-
lan & Krishnan 1997) applied to semi-supervised learning,

and it will converge to a local maximum in the data likeli-
hood.

The Marginal Probability Architecture also supports the
relational co-training over multiple learning components. In
the Attachment example, the document classifier will be
trained with (1) labeled examples from LD; (2) its own prob-
abilistic predictions on unlabeled documents that are not at-
tached to any email messages; (3) documents in region 2
with class probabilities propagated from email labels via
the Attachment Rule; and (4) documents in region 3 with
class probabilities combining the predictions from both the
document classifier and the email classifier. In this exam-
ple, the marginal probabilities of any document in region 3
computed by the PCE are equivalent to the probabilities ob-
tained by multiplying the predicted probabilities from the
two classifiers for each class and renormalizing so that they
sum to 1. The email classifier is trained similarly. Then the
trained classifiers will predict the projects of all unlabeled
objects and assert the weighted predictions into the PCE.
Again, new marginal probabilities will be computed and fed
to the learning components. This process will iterate until
the changes in the marginal probabilities are smaller than ǫ.

In practice, in the CALO system, new observations are
arriving continually and both the MPE and the marginal
probability computations are only approximate, so the whole
learning and reasoning process never terminates.

Experimental Evaluations

In this section, we present the results of experiments on the
two architectures.

Experiment Settings and Data Collection

We performed our experiments on a set of data collected
from 14 CALO users (all knowledge workers). These users
manually labeled their own files into 4 projects. Each of
them labeled about 100 files. The results presented here
are averaged across all 14 users. Unfortunately, these files
do not include email messages, nor are any of the files at-
tached to email messages. Instead, we randomly split the
files for each user into sets D and M of equal size to sim-
ulate documents and emails. Then we generated a set A of
attachments by randomly pairing files from D and M under
two constraints: (1) each pair contains one file from D and
one file from M; (2) two files in a pair must be labeled with
the same project. By doing this, we enforce the Attachment
Rule to be perfectly true in our experiments. In the exper-
iments, we vary the size of A to contain 20%, 30%, 40%,
50% and 60% of the files.

A subset of D was randomly chosen to be Labeled Docu-
ments (LD), and similarly a subset of M was randomly cho-
sen to be Labeled Emails (LM). All other files in D and M
are treated as unlabeled. We varied the sizes of LD and LM
to contain 4, 8, 12, and 16 files.

Two widely-used learning algorithms, Naive Bayes and
Logistic Regression, were examined in our experiments. Be-
cause our aim is to create a general architecture in which
any learning algorithm can be used, we did not tune the
two algorithms. They are used as black boxes that support

the standard learning interfaces: telling examples, training
classifier, and predicting examples. The files and emails are
represented using Bag-Of-Words features. The accuracy of
the final classifiers over all unlabeled documents/emails was
measured at convergence. In each single experiment, the two
classifiers are trained using the same learning algorithm.

Results - Single Classifier

Before we can evaluate the effects of relational co-training
among multiple classifiers, we want to make sure that if
there is only one classifier in the system, the application of
the reasoning layer will not result in any weird behavior.

In fact, it is quite interesting to examine the behavior of
a single classifier under our two architectures. Assume we
only have one classifier, the document classifier. Under the
MPE Architecture, the Not Me MPE contains only the la-
beled documents in LD, and it will not change. That means
the classifier works exactly as if there is no reasoning layer.
Therefore, the performance of the single classifier under the
MPE Architecture can be treated as the baseline measure.
Under the Marginal Probability Architecture, the classifier
will be trained with the labeled documents in LD and its
own probabilistic predictions on the unlabeled documents in
D. The training-and-predicting iterations will continue until
convergence.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

4 8 12 16
#. of labeled examples

P
re

c
is

io
n

MPE

Marginal Probability

(a) Naive Bayes

0.6

0.65

0.7

0.75

0.8

0.85

0.9

4 8 12 16
#. of labeled examples

P
re

c
is

io
n

MPE

Marginal Probability

(b) Logistic Regression

Figure 5: Learning Curves - Single classifier.

Figure 5 shows the learning curves of the single classi-
fier under the two architectures. We can see that both learn-
ing algorithms show expected learning behaviors under ei-
ther architecture. Under the Marginal Probability Archi-
tecture, Logistic Regression performs better than baseline,
while Naive Bayes performs worse. However, the differ-
ences are small enough that we can claim it is safe to inte-
grate single classifiers into the reasoning layer.

Results - Two Classifiers

Now we integrate two classifiers, the document classifier
and the email classifier, to test their performance under the
simulated Attachment scenario.

Figure 6 shows the learning curves of the classifiers un-
der the two architectures when 40% of the documents and
emails are attached to each other. Note that the classi-
fiers’ performance under the MPE Architecture is almost
identical to the baseline performance (dashed lines in Fig-
ure 5). Under the Marginal Probability Architecture, how-
ever, we observe an improvement over the baseline perfor-
mance, and Logistic Regression benefits from relational co-
training more than Naive Bayes.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

4 8 12 16
#. of labeled examples

P
re

c
is

io
n

MPE

Marginal Probability

(a) Naive Bayes

0.6

0.65

0.7

0.75

0.8

0.85

0.9

4 8 12 16
#. of labeled examples

P
re

c
is

io
n

MPE

Marginal Probability

(b) Logistic Regression

Figure 6: Learning Curves - Two classifiers.

0.65

0.7

0.75

0.8

0.85

20% 30% 40% 50% 60%
% of paired documents and emails

P
re

c
is

io
n

MPE
Marginal Probability
Baseline

(a) Naive Bayes

0.65

0.7

0.75

0.8

0.85

20% 30% 40% 50% 60%
% of paired documents and emails

P
re

c
is

io
n

MPE
Marginal Probability
Baseline

(b) Logistic Regression

Figure 7: Co-training performance with different size of the
attachment set A.

Figure 7 shows how the performance of the “integrated”
classifiers changes with the size of the attachment set A. The
number of labeled examples is fixed at 8 in this experiment.
As expected, the performance improvement becomes larger
when the number of attached pairs increases, because more
attached pairs lead to more co-training opportunities. Un-
der the MPE Architecture, this trend is not so obvious, and
the performance is close to the baseline even when there
are more attachment pairs. Under the Marginal Probabil-
ity Architecture, on the other hand, for both Naive Bayes
and Logistic Regression, performance goes up with more
co-training opportunities and it is significantly better than
the baseline performance.

Conclusion and Future Work

In this paper, we applied a Markov Logic approach to inte-
grate multiple learning components into the CALO system.
A probabilistic inference engine, PCE, is implemented for
this purpose. Two designs of the interfaces between PCE
and the learning components, the MPE Architecture and the
Marginal Probability Architecture, were described and eval-
uated. Experimental results showed that both designs can
work, but that the Marginal Probability Architecture works
better on improving the performance of the learning compo-
nents when there are co-training opportunities.

There are many more forms of reasoning and problem
solving that remain beyond the scope of our current designs.
Some that we hope to incorporate in the near future include
entity resolution, ranking, and information extraction. The
long term goal is to support all kinds of reasoning and prob-
lem solving found in AI systems.

Another direction we want to pursue is to have the PCE
automatically adjust the weights of the rules in the Prob-
abilistic Knowledge Base. Humans are good at writing
rules but not so good at assigning weights to the rules

they write. We also are studying methods for allowing
CALO to learn its own rules. We plan to develop on-
line, incremental algorithms based on the weight learning
and rule learning algorithms currently implemented in the
Alchemy Markov Logic System (Kok & Domingos 2005;
Lowd & Domingos 2007).

Acknowledgments

This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA), through the
Department of the Interior, NBC, Acquisition Services Di-
vision, under Contract No. NBCHD030010. Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the Defense Advanced Research Projects
Agency (DARPA), or the Department of the Interior. The au-
thors thank Pedro Domingos, Tomas Uribe, and the CALO
Year 3 test participants for helping with this research.

References

Blum, A., and Mitchell, T. 1998. Combining labeled and
unlabeled data with co-training. In COLT-1998, 92–100.
Morgan Kaufmann.

Domingos, P., and Richardson, M. 2006. Markov logic
networks. Machine Learning 62:107–136.

Dutertre, B., and de Moura, L. 2006. A fast linear-
arithmetic solver for DPLL(T). In Ball, T., and Jones,
R. B., eds., International Conference on Computer Aided
Verification (CAV-06), volume 4144 of Lecture Notes in
Computer Science. Berlin / Heidelberg: Springer. 81–94.

Kautz, H.; Selman, B.; and Jiang, Y. 1997. A general
stochastic approach to solving problems with hard and soft
constraints. In The Satisfiability Problem: Theory and Ap-
plications. New York, NY: American Mathematical Soci-
ety. 573–586.

Kok, S., and Domingos, P. 2005. Learning the structure
of markov logic networks. In ICML-2005, 441–448. ACM
Press.

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278–2324.

Lowd, D., and Domingos, P. 2007. Efficient weight learn-
ing for markov logic networks. In CIKM-2007, 86–93.

McLachlan, G., and Krishnan, T. 1997. The EM algorithm
and extensions. New York: Wiley.

Nigam, K., and Ghani, R. 2000. Analyzing the effective-
ness and applicability of co-training. In CIKM-2000, 86–
93.

Poon, H., and Domingos, P. 2006. Sound and efficient
inference with probabilistic and deterministic dependen-
cies. In AAAI-2006, 458–463. Menlo Park, CA: AAAI
Press/MIT Press.

Singla, P., and Domingos, P. 2006. Memory-efficient infer-
ence in relational domains. In AAAI-2006, 488–493. Menlo
Park, CA: AAAI Press/MIT Press.

