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Abstract. This paper describes a representation framework that offers a unifying platform for alternative systems,
which learn concepts in First Order Logics. The main aspects of this framework are discussed. First of all, the
separation between the hypothesis logical language (a version of theV L21 language) and the representation of
data by means of a relational database is motivated. Then, the functional layer between data and hypotheses, which
makes the data accessible by the logical level through a set of abstract properties is described. A novelty, in the
hypothesis representation language, is the introduction of the construct of internal disjunction; such a construct,
first used by the AQ and Induce systems, is here made operational via a set of algorithms, capable to learn it, for
both the discrete and the continuous-valued attributes case. These algorithms are embedded in learning systems
(SMART+, REGAL, SNAP, WHY, RTL) using different paradigms (symbolic, genetic or connectionist), thus
realizing an effective integration among them; in fact, categorical and numerical attributes can be handled in a
uniform way. In order to exemplify the effectiveness of the representation framework and of the multistrategy
integration, the results obtained by the above systems in some application domains are summarized.
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1. Introduction

Learning knowledge expressed in First Order Logic (FOL) has been an appealing task
since the beginning of Machine Learning. Early attempts (Plotkin, 1970, Winston, 1975,
Hayes-Roth & McDermott, 1978, Vere, 1978, Michalski, 1980, Dietterich & Michalski,
1983, Kodratoff & Ganascia, 1986) have proposed a number of conceptually interesting
ideas, which provided foundations and suggestions for later work. However, the need of
excessive computational resources made the proposed methods rather impractical. This
drawback even arose the question whether it was worthwhile at all to devote efforts to the
development of systems for learning in FOL; in fact, when dealing with a finite, function-
and recursion-free universe (which was the most frequent case for classification problems),
FOL and propositional calculus are equivalent. On the other hand, this very equivalence
allows knowledge to be represented in FOL in a much more compact and readable form,
which lets relations emerge, which could be difficult to discover when dispersed in a possibly
large number of ground propositions.

Moreover, on the application front, real domains are usually affected by noise, and ob-
jects are often described by continuous attributes, all of this adding to the basic com-
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plexity of handling FOL formulasper se. Notwithstanding the above difficulties, some
systems, such as ML-SMART (Bergadano et al., 1988, Bergadano et al., 1991) and FOCL
(Pazzani & Kibler, 1992) have shown that FOL concept learning is not only abstractly inter-
esting, but feasible. The system ML-SMART, in particular, has been applied to a number of
real world problems (Bergadano et al., 1991, Giordana et al., 1993b), and suggested effec-
tive solutions for many of the encountered problems. More precisely, the system had special
mechanisms to handle noise and continuous attributes, it learned a structured knowledge
base (not just a set of flat ”condition-action” rules), and it allowed for evidential reasoning.
An important aspect of ML-SMART was its interface to a database, from which the exam-
ples were extracted, and in which both the generated hypotheses and their extensions were
stored (Bergadano et al., 1988). This feature proved to be essential in learning an industrial
troubleshooter (Giordana et al., 1993b) used in field.

ML-SMART evolved later into two new systems, both including inductive and deductive
components: SMART+ (Botta & Giordana, 1993), which emphasizes handling noise and
continuous attributes by exploiting powerful heuristics for controlling the search in the
hypothesis space, and WHY (Baroglio et al., 1994, Saitta et al., 1993), which stresses the
importance of exploiting background knowledge, in the form of a causal model of the
application domain, and of learning comprehensible and justifiable knowledge. Moreover,
both systems have an embedded machinery, based on relational algebra, for interacting with
a relational database; this feature makes the systems particularly well suited to perform data
mining and knowledge discovery in databases. More recently, a number of new learning
applications in FOL have been reported (see, among others, (Bratko & D˘zeroski, 1995)).

The development of other systems (see, for instance, MOBAL (Morik, 1991) and RIGEL
(Gemello et al., 1991)), and the theoretical work on generalization and complexity
(Buntine, 1988, Haussler, 1988, Helft, 1989, Michalski, 1991, Flach, 1995) contributed to
a deeper understanding of this difficult and challenging task.

In the last years, learning in FOL has been re-proposed as ”Learning Relations”
(Quinlan, 1990) and Inductive Logic Programming (ILP) (Muggleton, 1991). Originally,
learning relations, as exemplified by the system FOIL (Quinlan, 1990), was an extension
to FOL of the top-down construction of a decision tree, similar to the method presented
in (Bergadano & Giordana, 1988). Novelties, with respect to previous FOL learning ap-
proaches, were, on one hand, the possibility for the learned concept to contain variables,
i.e., to be the name of a relation, an intentional definition of which was to be found from
its extensional representation, and, on the other hand, the possibility of learning recursive
concepts.

ILP stems from two sources: its goal recalls Shapiro’s work, aimed at synthesizing
logic programs (Shapiro, 1983), whereas its theoretical background focuses on logical the-
ories of induction. Actually, as acknowledged in (Ade et al., 1995), most ILP systems
have dealt with concept learning from examples, so that the differences between ILP and
previous research in learning in FOL loose sharpness. In addition, some non-ILP learn-
ing systems can easily be extended in order to learn recursive concepts, as the system RTL
(Giordana et al., 1993a, Baroglio & Botta, 1995); on the other hand, such an extension may
not be so easy for other systems, as shown in (Cameron-Jones & Quinlan, 1993).
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Whatever the name under which learning in FOL is performed, a major issue to be tamed
is computational complexity. Learning existentially quantified concepts has been proved to
be an NP-complete problem (Haussler, 1988) even in very simple cases. There are basically
two ways to deal with this problem: the first is to reduce the search by adding various kinds
of bias in the learning process (Gordon & desJardins, 1995), both declarative (syntactic and
semantic (Ade et al., 1995)) and procedural ones. The second one is to increase the search
power of the learning algorithm (Muggleton, 1995). Constraining the search by adding a
strong declarative bias, aimed at reducing the expressive power of the hypothesis language,
is the solution most frequently adopted in ILP (Ade et al., 1995). Systems like SMART+,
instead, have a much weaker declarative bias, but they widely exploit procedural biases in
the form of search heuristics (Botta & Giordana, 1993).

Increasing the search power has been tried for the first time (in FOL) in the system REGAL,
which learns relations via a genetic algorithm (Giordana & Sale, 1992, Giordana & Saitta,
1994, Giordana & Neri, 1996, Neri, 1997). Genetic search for learning concepts from exam-
ples has been used, previously, only in the context of propositional logic (Grefenstette et al.,
1990, McCallum & Spackman, 1990, Bala et al., 1991, De Jong et al., 1993, Greene &
Smith, 1993, Janikow, 1993, Vafaie & De Jong, 1991) . By its very nature, learning in
FOL has traditionally been cast inside the symbolic paradigm. However, the possibility of
learning or revising relational knowledge by means of other paradigms, such as the genetic
or the connectionist one, could greatly enlarge the class of solvable problems.

The aim of this paper is neither to re-describe the learning systems we developed, nor to
present an extensive experimentation: the interested reader may find detailed descriptions
in previous papers. Rather, the goal is to illustrate some of the key issues emerged in devel-
oping different systems inside alternative paradigms, and in trying to solve some real-world
problems (Botta et al., 1992, Giordana et al., 1993b, Faure et al., 1993, Saitta et al., 1995,
Baroglio et al., 1996, Neri & Saitta, 1996). In particular, we will concentrate on the multi-
strategy design aspects involving:

• integration between symbolic and numeric information

• integration among different paradigms (symbolic, genetic and connectionist)

• cooperation between tools and concepts from machine learning and database method-
ologies.

Other equally relevant issues, such as effective exploitation of a domain theory
(Bergadano & Giordana, 1988, Botta & Giordana, 1993), or cooperation among different
reasoning mechanisms (Saitta et al., 1993, Baroglio et al., 1994) will be left aside for the
sake of sharpening the paper’s focus.

The most fundamental issue for an effective achievement of the three mentioned types of
integration is knowledge representation. In particular, both discrete and continuous-valued
descriptors have to be handled in a homogeneous way (at least from the user’s point of
view). Moreover, any type of involved knowledge must be dealt with by systems based
on different paradigms without any need of translation. Finally, in view of the application
on large databases, a learning system must be able to transparently, quickly and effectively
interact with (commercial) database management systems.
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In this paper, we will describe a knowledge representation framework that shows the
above features. We would like to stress that this framework is only a subset of the one used
by the systems we developed: each of them, when working stand-alone, can make use of
wider representation languages, well-suited for its own specific approach. For instance,
SMART+ extends the hypothesis language with numerical quantification, and exploits a
domain theory expressed as a set of Horn clauses. The presented framework is, in some
sense, the intersection of the knowledge representation facilities of the various systems,
specifically tailored for a multistrategy approach. In fact, a number of systems, differing
with respect to the paradigm they are based on, and for the task they are oriented to, can
share this same framework, leaving the user free of selecting the learning system according
to its suitability to the problem and not to the type of representation it can handle.

In particular, the framework has several strong points. The first one is the ability to
deal with formulas containing the logical construct of internal disjunction. The importance
of such a construct, in order to obtain compact and readable knowledge, has been under-
lined by Michalski since his first works (Michalski, 1980, Michalski & Chilausky, 1980,
Michalski, 1983), in which he introduced theV L1 andV L21 languages. In this paper we
will present efficient algorithms for learning internal disjunctions.

Another aspect to be stressed is the decoupling between the logical level of hypothesis
representation and the relational database format in which the examples are stored. The link
between the two levels is supplied by a mapping, containing a set of semantic functions,
which acts as an interface between the database and the learner. In this way, the learner
gives to the interface a formula to verify and receives back the answer, ignoring how the
data are represented. This solution has the advantage that performing data mining on a
database does not require rewriting the examples in an ad-hoc format (e.g., ground clauses).
On the other hand, such a separation between hypotheses and data allows different data
representations to be used, by simply changing the semantic mapping.

Finally, the above two features, namely the availability of the internal disjunction and
the transparency of data representation achieved through the semantic mapping, allow
both discrete and continuous attributes to be dealt with in a uniform way by the learning
algorithms.

2. The Knowledge Representation Framework

Many learning algorithms in FOL describe the learning instances using a subset of the
hypothesis description language in ground form. This was the method adopted, for in-
stance, by Induce (Michalski, 1980, Michalski, 1983), and, more recently, by GOLEM
(Muggleton & Feng, 1990). This method has the advantage that the truth of a formula in
the hypothesis description language can be proved using logical resolution only. In the
framework we present, on the contrary, we keep separate the hypothesis description lan-
guage (HDL) and the instance description language (IDL). The HDL consists of a declarative
definition of the logical language syntax used for expressing hypotheses. The IDL, instead,
includes the capability of representing in a declarative way both the internalstructureof
the examples and theirproperties.
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In other words, the IDL allows an instance to be represented not only as a compound
object, but also in terms of a collection of properties that may be meaningfully used (with
respect to the application at hand) “to reason about” the instances. Then, a complete
representation of an instance consists of the specification of its elementary component
objects, plus a set ofpropertiessuch as “color of an object”, “area of an object”, or “relative
position (follows/precedes) between two objects”, which, together, describe thestructure
of the instance; this representation is close to the style adopted in object oriented databases.
The ability to handle property definitions in the IDL is one of the key notions to understand
where the peculiar advantages of the proposed representation come from. Also, this is
a major point where IDL differs from just a structural representation of the instances by
means of a list of ground predicates.

Hypotheses are expressed in a logical language, whose basic predicate semantics is defined
in terms of the instance properties specified in the IDL. This representation framework
allows different reasoning schemes to be used at the hypothesis and at the instance levels,
simplifying the integration of different learning algorithms; moreover, its modularity makes
it easy to interface a learning system (working at the hypothesis level) to a database, without
any preprocessing of the dataset.

2.1. The Instance Description Language

When learning propositional knowledge, it is common practice to describe the learning
instances as vectors of attributes. We will now extend this framework in order to deal with
structured learning instances (or examples) and their properties.

Before describing the structural representation of the examples, we need to define the
meaning ofconcept instanceand of learning instance(or scenario) in our framework.
Given aconcept, i.e. a name of a relation, aconcept instanceis a group of objects, that,
as a whole, can be labeled with that name. More formally, a concept is a n-ary predicate
c(x1, . . . , xn), and a concept instance is an n-tuple< a1, . . . , an > of objects such that
c(a1, . . . , an) is true. Ascenario, which is a novelty with respect to previous representation
schemes, is simply a collection of atomic objects. As an analogy, we may think of a scenario
as a segmented picture. A scenario may contain several instances of the same concept or
even of different concepts. The main characteristic of a scenario is that it constitutes a
separate universe, in the sense that the variables occurring in a formula can only be bound
to objects occurring in the same scenario. For the sake of illustrating the above notions, let
us consider Figure 1, where six scenarios from a block world domain are depicted. Let L
be a language containing the following set of literals:

P = {Height(x, j), Length(x, j), Color(x, k), Follows(x, y)}, (1)

wherex andy must be bound to an element of the set{1, 2, 3, 4, 5, 6}, j to an element of
{1, 2, 3}, andk to an element of{b, w, d}. Thus, predicateHeight(x, j) is true if the height
of blockx is j, predicateFollows(x, y) is true ifx follows y in the sequence, and so on.
Let us now consider a conceptω(x, y) defined as follows:
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Height(x, 3) ∧ Color(x, b) ∧Height(y, 1)∧
∧ Color(y, d) ∧ Follows(y, x)→ ω(x, y) (2)

1 2 3 4 5 1 2 3 4 5 6 1 2 3 4

A B C

1 2 3 4 5 1 2 3 4 5 6 1 2 3 4

D E F

Figure 1. A toy block world domain. Scenarios A, B, C contain positive instances of the allomorphic concept
ω(x, y), defined by (2), whereas scenarios D, E, F do not contain any.

Description (2) can be phrased as follows:
“In ω there is a high, black block, followed by a short dashed block”.

Three positive instances of conceptω(x, y), namely the pairs of blocks (2,3) in A, (2,4)
in B and (1,3) in C, exist. On the other hand, no instances ofω exist in scenarios D, E and
F. If we now consider the conceptBlack(x), such that:

Color(x, b)→ Black(x) (3)

then, all the scenarios in Figure 1 contain some instances of it; in particular, scenario A
contains two instances, blocks 2 and 5. Moreover, block 2 is (part of) an instance of both
ω(x, y) andBlack(x).

The logical architecture of the dataset has then three levels of abstraction: scenarios,
concept instances, and elementary objects. Each elementary object (simply called “object”
in the following) has a vector of attributes associated to it. The restriction bound variables
only inside a scenario strongly limits the combinatorial explosion of the size of relations
(extensions) associated to hypotheses. According to this view, the best would be to generate
one scenario for each concept instance. But, in this case, relations among different instances,
such as those involved in recursive definitions, could not be found. Another possibility is to
adopt the opposite solution, i.e., to consider a unique scenario, containing all the instances,
and to limit the search by imposing syntactic restrictions on the occurrence of variables (this
is one of the reasons for the introduction ofmodesassociated to the variables of a predicate
in some ILP systems). A scenario can be considered as a kind of semantic declarative bias
(Ade et al., 1995).

Let us now consider the concrete representation of a scenario. Let us keep in mind that
a scenario is a set of atomic objects possibly belonging to different concept instances. In
Figure 2, all of the objects of Figure 1 are represented in a relation with 6 fields, corre-
sponding to the four attributes (Length, Height, Color and Position), plus two additional
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Objects
S ObjId Length Height Color Pos
A 1 1 2 w 1
A 2 1 3 b 2
A 3 1 1 d 3
A 4 2 2 w 4
A 5 2 1 b 5
B 1 2 3 d 1
B 2 1 3 b 2
B 3 2 2 w 3
B 4 1 1 d 4
B 5 1 1 b 5
B 6 1 2 w 6
C 1 1 3 b 1
C 2 3 1 w 2
C 3 1 1 d 3
C 4 2 2 d 4
D 1 1 2 w 1
D 2 1 1 d 2
D 3 1 3 b 3
D 4 2 2 d 4
D 5 2 1 w 5
E 1 2 3 w 1
E 2 1 1 d 2
E 3 2 2 w 3
E 4 1 3 b 4
E 5 1 1 w 5
E 6 1 2 w 6
F 1 1 1 d 1
F 2 3 1 b 2
F 3 1 3 b 3
F 4 2 2 w 4

Black∗(x)
S x
A 2
B 2
B 5
C 1
D 3
E 4
F 2
F 3

ω∗(x, y)
S x y
A 2 3
B 2 4
C 1 3

Figure 2. Relation describing the atomic objects of the dataset in Figure 1.

attributes: S identifies the scenario an object belongs to, and ObjId identifies an object
inside a scenario. These two attributes are used as primary and secondary index keys to
fastly address the objects in the relation. In the relationObjects, objects are listed without
reference to the concept(s) they are instances of:Objects only describes the segmentation
of the scenarios. The information of what objects belong to which concept instance is kept
in separate relations, each one corresponding to a concept. As an example, let us consider
the conceptω, described by expression (2): this concept has arity 2 and a relationω∗(x, y)
can be associated to it, as in Figure 2. The first row in relationω∗ states that objects 2 and
3 of scenario A constitute a positive instance ofω. If we consider conceptBlack(x), the
corresponding relation (also reported in Figure 2) contains all the black blocks occurring
in the various scenarios. Negative examples are implicitly defined using the Closed World
Assumption (Clark, 1978): every tuple not occurring in a relation describing a target con-
cept is a negative example of it. Then, in our framework, we adopt the same non-monotonic
semantics as De Raedt and D˘zeroski (De Raedt & D˘zeroski, 1994).

The same scheme easily handles the problem of representing multiple target concepts. In
this case it is sufficient to define a relation for each one of them. Finally, heterogeneous
objects, with different types, can be stored in differentObjects relations.

Let us now consider the definition of object properties. Available domain knowledge
could be exploited for this task. As previously said, properties are defined using a functional
declaration, as in object oriented programming.

Let x be a complete object description (i.e., a row of theObjects relation). A valid
property is essentially a (boolean, discrete, or continuous) function having as domain the
cartesian productxn(n ≥ 1). Let us denote withBOOL, DISC, CONTa boolean, discrete,
or continuous property, respectively. From the implementation point of view, each property
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definition is a computational expression on a set of pre-defined functions providing access
to the object attributes. Examples of property definitions for the objects in Figure 2, are the
following 1:

high(x) :: x.Height > 2 (BOOL)
color(x) :: x.Color (DISC)
height(x) :: x.Height (CONT )
area(x) :: x.Height ∗ x.Length (CONT )
distance(x0, x1) :: |x1.Pos− x0.Pos| (CONT )

(4)

wherex.Heightdenotes the value of the attribute Height of the object bound to variablex.
It may happen that a propertyp(x1, . . . , xn) cannot be expressed in analytical form

in terms of existing object attributes; in this case, the property is directly represented in
extensional form in the database by means of a corresponding relationp∗(x1, . . . , xn, v).
To handle this case, we introduce a property whose valuev is directly extracted from
relationp∗. For instance, the property “percentage of overlapping between x and y” may
be expressed as:

overlap perc(x, y) ::
{
v if(x, y) ∈ overlap∗(x, y, v)
0 otherwise

(5)

2.2. The Hypothesis Description Language

As for IDL, we will first describe the Hypothesis Description Language from an abstract
point of view, and, then, we will show, step by step, how a formula of HDL can be eval-
uated, in an efficient way, on the adopted learning instance representation by applying
a sequence ofrelational algebraoperators (Ullman, 1982). The HDL is a clausal lan-
guage in annotated predicate calculus, equivalent to theV L21 language (Michalski, 1983)
without numerical quantifiers but with negation on atoms. Moreover, the HDL we used
allows predicates to contain one internal disjunction. Even though a more complex ver-
sion of this language, including numerical quantifiers and unrestricted negation has been
used in SMART+ (Botta & Giordana, 1993) and Enigma (Giordana et al., 1993b), we will
consider here this simpler form that allows a direct comparison with the languages used in
other systems such as FOIL, FOCL and most ILP programs.

The reasons for choosing an annotated predicate calculus as HDL, instead of classical
Horn clauses, are the compact and readable hypothesis representation (thanks to the internal
disjunction construct), the uniform representation of predicates dealing with discrete or
continuous attributes, and the easiness in evaluating the predicates on the learning instances
(represented in IDL). In the following, after introducing the annotated predicate calculus,
each of the above reasons is discussed in detail.

According to the definition given by Michalski (Michalski, 1980, Michalski, 1983), in
annotated predicate calculus a term occurring in a predicate can be a constant, a variable,
or a disjunction of constants. The atomic formula

Color(x,White ∨Black ∨ Y ellow) (6)
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is well formed in annotated predicate calculus. As it is intuitive, the meaning of (6) is “the
color of objectx is either white, or black, or yellow”. It is also immediate to verify that
formula (6) is equivalent to the disjunction:

Color(x,White) ∨ Color(x,Black) ∨ Color(x, Y ellow). (7)

In general, every clause in annotated predicate calculus can be syntactically rewritten into an
equivalent set of classical clauses, preserving its semantics. Notice how some constructive
induction mechanism (Wnek & Michalski, 1994), such as that of Fringe (Pagallo, 1989),
builds new predicates on disjunctive atomic expressions, so reproducing something similar
to what is immediately available in annotated predicate calculus.

Predicates in HDL are of two kinds:constraint predicates, which do not contain the
internal disjunction term, andlearnable predicates, containing an internal disjunction. The
latter derive their name from the fact that their internal disjunction term can be modified
during the learning process. Internal disjunctions are essentially sets of constants of the
same type: symbolic (discrete) or real (continuous). For the sake of notation compact-
ness, we denote finite sets of discrete or symbolic values by[v1, . . . , vn], and infinite sets,
corresponding to intervals along unidimensional real space, by〈v1, v2〉.

The predicate semantics is defined in terms of object properties expressed as described
in the previous section. Specifically, the semantics ofconstraint predicatesis defined as

CP (x1, . . . , xn) :: BOOLCP (x1, . . . , xn) (8)

whereBOOLCP denotes any boolean property of the objects. The semantics oflearnable
predicates, based on a discrete internal disjunction, is defined as

LP (x1, . . . , xn, [v1, . . . , vn]) :: member(DISCLP (x1, . . . , xn), [v1, . . . , vn]) (9)

In (9)DISCLP denotes a discrete property, and the functionmember is a boolean function
which returns “true” if the property value belongs to the set[v1, . . . , vn]. In an analogous
way, for continuous intervals, the predicate semantics is defined using a definition of the
type:

LQ(x1, . . . , xn, 〈v1, v2〉) :: inside(CONTLQ(x1, . . . , xn), 〈v1, v2〉) (10)

where the functioninside checks whether the property value belongs or not to the specified
interval. Notice that the specification of the semantics of a predicate on an extensionally
defined property is covered by one of cases (8), (9) or (10).

As said above, the considered HDL allows single atom negation. However, the negation
of an atomic formula of type (9) or (10) semantically means that the property value is
not member of the set defining the internal disjunction. In other words, we can state the
following equivalences:

¬LP (x1, . . . , xn, [v1, . . . , vn])↔ ¬member(DISCLP (x1, . . . , xn), [v1, . . . , vn])
¬LQ(x1, . . . , xn, 〈v1, v2〉)↔ ¬inside(CONTLQ(x1, . . . , xn), 〈v1, v2〉)

(11)
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Predicates may have any arity, but in many applications it turned out that binary ones are
sufficiently expressive.

Finally, aninductive hypothesisis a formula of the typeϕ(x1, . . . , xm)→ R(y1, . . . , yr)
whereϕ(x1, . . . , xm) is a conjunction of predicates on variablesx1, . . . , xm, possibly
containing internal disjunctions, andR(y1, . . . , yr) denotes a target concept of arityr,
wherey1, . . . , yr is a subset ofx1, . . . , xm. In the HDL, the range-restriction bias is
assumed (De Raedt & D˘zeroski, 1994), i.e., variables occurring in the head of a clause
must also occur in the body. By referring to the examples of Figure 1, some well formed
hypotheses in HDL may be:

Height(x0, 〈2.5, 4〉)→ HighRect(x0)
Color(x0, [b]) ∧ Color(x1, [d]) ∧ Follows(x1, x0)→ P (x0, x1) (12)

The complete description of a concept usually consists of a disjunction of a set of inductive
hypotheses.

Let us now consider the operational mechanism supporting the evaluation of a hypothesis
in HDL. As described in Section 2.1, the learning instances are stored in database relations.
Then, considering the inductive hypothesisϕ(x1, . . . , xm)→ R(y1, . . . , yr), to check for
its consistency (completeness) means to verify that the extension ofϕ(x1, . . . , xm), pro-
jected on the variablesy1, . . . , yr, is included into (includes) the extension ofR(y1, . . . , yr).
The extension ofϕ(x1, . . . , xm) can be computed by applying a sequence of selection and
natural join operators, as usual in relational databases.

Referring to the examples in Figure 1, suppose we want to evaluate the extension on
Objects of the formulaColor(x0, [b]) ∧ Color(x1, [d]) ∧ Follows(x1, x0). From the
relationObjects the extensionsψ1

∗ of formulaψ1(x) = Color(x, [b]) andψ2
∗ of for-

mula ψ2(x) = Color(x, [d]) can be obtained by selecting (selection operator) from
the relationObjects all the objects having colorblack, i.e., satisfying the condition
member(x.Color, [b]), anddashed, respectively. The two corresponding relations are
the first two tables in Figure 3. Afterwards, the extensionϕ∗ of formula ϕ(x0, x1) =
Color(x0, [b])∧Color(x1, [d])∧Follows(x1, x0) can be generated, starting from the two
relationsψ1

∗ andψ2
∗, by first applying anatural joinoperator, which generates the interme-

diate relationψ3
∗, corresponding to formulaψ3(x0, x1) = Color(x0, [b])∧Color(x1, [d]),

and then aselection operatoronψ3
∗ in order to eliminate the tuples that do not satisfy the

conditionFollows (i.e.,x1.Pos > x0.Pos). The process is illustrated in the second two
tables in Figure 3. Every conjunctive formula in the considered HDL can be evaluated with
a similar procedure2.

3. A Framework for Integrating Multiple Learning Strategies

In this section we will show how the HDL language, defined in the previous section, lends
itself to the integration of induction algorithms with complementary abilities, hence offer-
ing a powerful multistrategy framework. First of all, we will briefly recall how inductive
inference, specified via a high level strategy, can be realized on a database by means ofrela-
tional algebra(Ullman, 1982). The main advantage of this approach, already discussed in
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Color(x, [b]) Color(x, [d])

ψ∗1

S x
A 2
A 5
B 2
B 5
C 1
D 3
E 4
F 2
F 3

ψ∗2

S x
A 3
B 1
B 4
C 3
C 4
D 2
D 4
E 2
F 1

Color(x0, [b]) ∧ Color(x1, [d]) Color(x0, [b]) ∧ Color(x1, [d]) ∧ Follows(x1, x0)

ψ∗3

S x0 x1
A 2 3
A 5 3
B 2 1
B 2 4
B 5 1
B 5 4
C 1 3
C 1 4
D 3 2
D 3 4
E 4 2
F 2 1
F 3 1

ψ∗4

S x0 x1
A 2 3
B 2 4
C 1 3
C 1 4

Figure 3. Extensional evaluation of a hypothesisϕ by using a sequence of selection and natural join operations.

(Giordana et al., 1993b) and applied in various systems, is the possibility of directly embed-
ding learning abilities into a database manager. This possibility, which is important for data
mining applications, is a common platform for all the learning approaches exploiting the
described HDL, and allows a natural cooperation among them. The considered approaches
are the symbolic one, exploited in the systems SMART+, SNAP, WHY and RTL, the genetic
one, in REGAL (Giordana & Saitta, 1994) and SMART+ (Botta & Giordana, 1993), and
the connectionist one, in SNAP (Botta & Giordana, 1996).

The multistrategy cooperation framework is hierarchically structured. At the higher level,
we pose a symbolic relational learner like SMART+, which is responsible for constructing
a first order classification theory. The genetic and connectionist strategies work at the lower
level by refining the internal disjunctions occurring in the hypotheses constructed by the
symbolic learner.

In the following, we will describe how the above mentioned learning systems, even
though requiring different internal representations, can effectively share the same HDL,
and, in particular, how they can all deal with internal disjunction, whose advantages have
been underlined in the previous sections. Moreover, we will describe methods for easily
specifying, for each approach, declarative biases, both syntactic and semantic, when they
are needed.

Finally, we will show how the introduced representation framework offers the means of
handling in a uniform way both discrete and continuous attribute values occurring in the
description of the examples.
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3.1. The Relational Learning Component

The basic learning strategy considered in this paper is a top-down construction of a hy-
pothesis tree: the nodes of the tree are hypotheses (i.e., formulas that represent intentional
descriptions of relations), whereas the edges are labeled by inductive operators, based on
the extended relational algebra described in Section 2. The growth of the tree along a branch
stops when either a consistent hypothesis is found or when the formula associated to the
leaf satisfies some heuristic halt criterion.

Every time a new formula is created and added to the tree, the corresponding extensional
relation is created as well, and it is stored on a mass storage device. In this way the search
algorithm keeps checkpoints of the states it went through, thus allowing more sophisticated
search strategies, requiring a degree of backtracking, to be used. As a side-effect, the
induction algorithm is robust, as it can easily run for long periods, if necessary, surviving
possible operating system crashes. On the contrary, systems such as FOIL and many ILP
systems use a simpler hill climbing strategy, because they can only keep one growing
hypothesis at a time during search.

The search tree is generated step by step, and the following actions are repeated at each
step:

1. Select from the frontier of the tree a setΦ of formulasϕ that are good candidates for
specialization by addition of new literals.

2. Determine the set of literalsP which can be added to eachϕ ∈ Φ according to domain
knowledge and heuristic criteria.

3. Generate a setΨ of new formulasψ by AND-ing eachϕ ∈ Φ with a literalP ∈ P,
selected according to some heuristic evaluation.

4. For everyψ ∈ Ψ that is consistent on the learning set, declare covered the instances
verifyingψ, update the frontier and restart.

The process stops when either all positive instances are covered or no more promising
formulas are in the frontier. Detailed examples of hypothesis tree generations can be found
in (Bergadano et al., 1991).

As it appears from the algorithm, many heuristics and biases are involved, which have
been widely investigated in other papers. In principle, any heuristics suggested in the
literature can be used within this framework without any special restriction. Moreover,
since the software structure is very robust and capable of dealing with large datasets, also
other search strategies, such as best-first or hill-climbing, can be implemented, instead of
the beam search strategy discussed in the algorithm.

The use of relational algebra parallels, at the extensional level, the intentional search algo-
rithm, and generates a tree, whose nodes contain the extensions of the relations associated
to the corresponding intentional nodes. This approach requires large storage resources,
whereas it may reduce the time to evaluate the generated hypotheses. On the contrary, by
avoiding keeping the extensional relations, no large space resources are needed, but the
time to evaluate new hypotheses, made on demand, may be much larger. On the other hand,
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with the current low-cost, large-capability storage devices, even large trees can be built
up. For instance, with a tree of 1000 nodes, each associated to a relation with 5 variables
and 20000 tuples, the amount of required memory is of the order of 200 Mbytes, which is
entirely acceptable.

A kind of semantic bias similar todeterminacy(Cameron-Jones & Quinlan, 1993,
Ade et al., 1995) is used by ML-SMART and the other systems of its family, in order
to avoid the generation of hypotheses having too large extensions. More precisely, letm
be the number of instances covered by a hypothesisϕ → ω. Let,m∗ be the number of
tuples (models) in relationϕ∗. The hypothesisϕ → ω will be generated iffm∗/m < τ ,
beingτ ≥ 1 a user definable parameter. By settingτ = 1 we require that a hypothesis be
determinate, whereas by settingτ > 1, a weaker condition is required. Usually, value from
5 to 10 is used forτ .

Another aspect, characterizing the present framework, that needs to be explained is the
way in which internal disjunction is dealt with. In particular, we have to face the problem of
evaluating a literal as a candidate to be added to a formulaϕ. This can be seen as a specific
learning subtask. In the following subsection, implemented solutions to this subtask will
be described. All of them use the notion ofpredicate template, which plays a role similar to
that ofschemata(Morik, 1991) orrelational clich́e (Silverstein & Pazzani, 1991). Given
a predicateP , containing an internal disjunction, thetemplateTP associated toP is the
maximum internal disjunction allowed forP : any internal disjunction occurring in an
instance ofP can only be a subset ofTP . As an example, the template for the predicate
Color shall enumerate all considered color values. If the attribute has a continuous range
of values, as, for instance, the predicateHeight, the templateshall denote the maximum
range allowed for the values (Giordana & Saitta, 1994).

3.2. Learning Internal Disjunctions Locally

In the general-to-specific learning strategy described in Section 3.1 it has been assumed that
an algorithm for determining the best predicate to add to a formulaϕ is available. When
a candidate predicate contains an internal disjunction as one of its arguments, the “best”
disjunction among all the possible ones is to be determined. For instance, in the predicate
Color(x, [yellow, red, blue]) one of the possibilities isColor(x, [yellow, blue]).

We will briefly overview the algorithms used to this purpose by SMART+ and by SNAP.
Algorithm 1learns discrete disjunctions, whereasAlgorithm 2learns continuous intervals.
In both cases, the problem is to evaluate a formulaψ = ϕ∧P (.., V ), obtained by AND-ing
ϕ with a literal containing an internal disjunctionV . The evaluationµ(ψ) of ψ is the
weighted sum of two terms (Botta & Giordana, 1993):

µ(ψ) = αµ1(ϕ,ψ) + (1− α)µ2(ψ), (13)

whereµ1(ϕ,ψ) is the information gain (Quinlan, 1990) ofψ with respect toϕ, andµ2(ψ)
an evaluation of the absolute completeness and consistency of formulaψ. In SMART+,
µ2(ψ) = v(ψ) ∗ w(ψ), beingv(ψ) the proportion of positive instances covered byψ, and
w(ψ) the fraction of correct classifications made byψ. The parameterα is user definable.
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On the basis of this evaluation criterion, the induction algorithm, for determining the best
discrete disjunction in a literalP to be added to a formulaϕ, works as in the following:

Algorithm 1

1. LetV be the internal disjunction to be computed, initially empty.

2. For every itemvi belonging to the templateTP , create the relationψi
∗ containing the

extension of formulaψi = ϕ ∧ P (..., [vi]) and rank it according to (13).

3. Initialize a relationψ∗ with the content of the relationψk
∗ having the highest rank, and

initialize V = [vk].

4. LetΨ∗ be the set of all the relations{ψi∗|i 6= k}

5. WhileΨ∗ is not empty, repeat:

(A) Select the relationψj
∗ ∈ Ψ∗ having the highest rank.

(B) If the evaluationµ(ψ ∨ ψj) ≥ µ(ψ), mergeψj
∗ intoψ∗ and addvj to the setV .

(C) Removeψj
∗ from the setΨ∗.

6. Return〈V, µ(ψ)〉.

Even thoughAlgorithm 1is not optimal, it is relatively fast, because it is linear with the
number ofvi’s, and in practice it gives good results.

In order to deal with continuous intervals a different algorithm has been designed
(Botta & Giordana, 1993):

Algorithm 2

Let V = 〈vm, vM 〉 be the template of the interval to be determined; let moreoverk be
an assigned integer, and∆ = (vM − vm)/k.

1. Definek + 1 equally spaced points{vi|0 ≤ i ≤ k} on the intervalV with v0 = vm
andvk = vM .

2. Generate the set ofk(k+ 1)/2 different subintervals{〈vi, vj〉|0 ≤ i ≤ k− 1, 1 ≤ j ≤
k, i < j}.

3. Evaluate, according to rule (13), every segment〈vi, vj〉 by instantiating formulaψij =
ϕ ∧ P (.., 〈vi, vj〉).

4. Return the interval〈vA, vB〉 which obtained the best evaluation.

The interval〈vA, vB〉 can be further refined by adjusting limitvA (vB) in an interval
〈vA −∆, vA + ∆〉 (〈vB −∆, vB + ∆〉) using the same algorithm, as sketched in Figure 4.
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Βv Βv

Αv’ Βv’

Figure 4. Iterative learning procedure for inducing an internal disjunction consisting of a continuous interval

3.3. Learning Internal Disjunctions Globally

The algorithms described in the previous subsection determine an internal disjunction by
performing a local optimization, which accounts only for the literals already present in the
current hypothesis. On the other hand, a global optimization of all internal disjunctions
occurring in the predicates of a formula requires excessive computational resources, if dealt
with classical optimization algorithms. However, the problem can be approached by using
a Genetic Algorithm (GA) as a search engine. In the following we will describe how a
formula with predicates containing an internal disjunction can be mapped to a bitstring,
processable by a GA.

Let us suppose that some algorithm (or a human expert) has generated a hypothesis
ϕ. In general,ϕ can be written as the conjunctionϕ = ϕCP ∧ ϕLP of two formulas:
ϕCP , containing constraint predicates (without internal disjunction), andϕLP , containing
learnable predicates (with internal disjunction).

FormulaϕCP states a set of necessary constraints, which need to be verified in order to
correctly describe the target concept; on the contrary, formulaϕLP needs to be optimized
with respect to the values occurring in its internal disjunctions. In order to achieve this
goal, the following steps are performed:

1. FromϕLP aLanguage Templateis generated, i.e. a formula having the same predicates
asϕLP but with the actual internal disjunctions replaced by the correspondingtemplates.

2. The language template defines thechromosomeof individuals processed by the GA.

3. An initial population of individuals is generated fromϕLP by applying random muta-
tions to its internal disjunctions.

4. The genetic algorithm is run until the best individual in the population remains stable
for an assigned number of generations (or some other halt criterion is met).

The way internal disjunctions are encoded in a chromosome needs some explanation. In
the case of a language template containing only discrete sets, it is immediate to map the
elements of the different sets to a bit string. As shown in Figure 5(a), every item in a template



224 A. GIORDANA, F. NERI, L. SAITTA, M. BOTTA

corresponds to a boolean gene on the chromosome. When the gene assumes the value 1,
the corresponding attribute value will be considered present in the corresponding internal
disjunction, otherwise not. When an individual needs to be evaluated, the actual values for
the internal disjunctions are loaded from the bit string into the template so creating a new
formula which is matched on the learning instances.

This simple encoding method is currently used by the REGAL system, and a detailed
description of it can be found in (Giordana & Saitta, 1994, Giordana & Neri, 1996).

Color(x,[Red, Yellow, White, Blue, *])/\Distance(x,y, [1,2,3,4,5,6,7,8])/\follow(x,y)

ϕ ϕ
LP AP

  .......

(a)

Length(x, <2,12>)/\ Weight(y, <10.2, 14.5> /\ Follow(x,y)

ϕ ϕ
LP AP

(b)

Figure 5. Method for encoding in a bit string alanguage template: (a) internal disjunctions of discrete values; (b)
continuous intervals. The star denotes the possible completion of a set of values.

For a continuous interval, defined by a pair of reals, a different approach has been adopted.
A first solution, in agreement with the most classical GA approach (Goldberg, 1989), is to
transform the real numbers into discrete integers that can be encoded as binary numbers; in
this way, the chromosome becomes a bit string. This kind of transformation is described in
(Goldberg, 1989) and has been used in a version of SMART+ (Botta & Giordana, 1993). A
different approach can be taken, following the tendency of the Evolutionary Computation
approach, using a chromosome composed of “real” genes (see Figure 5(b)). In this way,
special crossover and mutation operators, capable of combining real numbers, must be used.
For instance, in the(µ, λ)-model (Bäck, 1995), the crossover works as in the following:

1. Randomly select a pair of chromosomes.

2. Randomly select a gene position, sayn.

3. A new chromosome is created by taking the genes in position different fromn in part
from one parent and in part from the other. Then, a new gene in positionn is generated
as average of the corresponding values in the two parents.
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The mutation operator perturbates the value of a randomly selected gene according to a
Gaussian distribution. This method is actually used in the most recent version of SMART+.

To deal with templates containing both discrete sets and continuous intervals is more
complex. The solution of approximating real numbers with binary numbers can be eas-
ily integrated with the solution proposed for dealing with discrete sets, because the final
chromosome structure is still a bit string. As an alternative, it is not difficult to conceive
a GA capable of dealing with a hybrid chromosome, but this solution has not yet been
experimented. Global optimization is used in two ways. Discrete optimization of internal
disjunctions is actually the learning strategy of REGAL: learning is nothing else that a
search for the “best” internal disjunctions in a language template. Continuous optimiza-
tion of intervals is performed by SMART+ as a postprocessing of the formulas learned by
the symbolic learner and containing numerical parameters. A few comments are in order
regarding the template. The fixed length of the template is not a limitation on the type of
hypotheses that can be learned. In fact, the formulaϕ, encoded in the template, may be
generated by a symbolic learner, such as SMART+, which uses the full language defined in
Section 2. As a special case, the template can be supplied directly by the user, when he/she
has sufficient knowledge to establish the maximum reasonable complexity of the sought
descriptions.

3.4. Dealing with Uncertainty and Refining a Theory by Performing the Quadratic
Error Gradient Descent

A frequent problem in real world applications is the presence of uncertainty in the data.
Boolean features, as they are learned by symbolic systems, have little reliability, because
of the intrinsic variability of the phenomena they try to capture. In this sense, the neural
network approach is considered much more effective, even if the networks look like black
boxes, difficult to understand to the end user.

An attempt to combine the properties of neural networks with the ones of symbolic systems
is represented by continuous valued logics, such as Fuzzy Logic and Probabilistic Logic,
which have been successful in some applications. Nevertheless, the real power of neural net-
works, not yet available for continuous valued logics, derives from effective learning algo-
rithms, such as back-propagation (Rumelhart & McClelland, 1986, Rumelhart et al., 1985).
For this reason several methods have been proposed, trying to extend learning algorithms
in such a way that the quadratic error gradient descent can be applied, as it has been done
for propositional logic with neural networks (Towell et al., 1990, Opitz & Shavlik, 1993,
Opitz & Shavlik, 1995, Berenji, 1992, Baroglio et al., 1996, Botta & Giordana, 1996).

Here we will follow a similar approach, but starting from the First Order Logic language
we have used so far, instead of propositional logic. The aim is to exploit the abstrac-
tion properties offered by this framework in order to learn better and more compact de-
scriptions for a “fuzzy concept”. In (Baroglio et al., 1996, Blanzieri & Katenkamp, 1996,
Tresp et al., 1993) it has been widely discussed how a propositional logic theory can be
translated into a Radial Basis Function Network (RBFN) (Poggio & Girosi, 1990) that can
be tuned following the quadratic error gradient descent. The underlying idea is very simple.
A set ofn continuous attributes defines ann dimensional spaceXn, where theith attribute
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corresponds to an axisxi in Xn. In such a space, a classification theory can always be
stated as a set of rules in theV L1 language having, the general structure:

ϕj = x1 ∈ Aj1 ∧ x2 ∈ Aj2 ∧ . . . ∧ xn ∈ Ajn → ω (14)

In (14) everyAji is a segment parallel to the corresponding axisxi, so that the intervals set
{Aji|1 ≤ i ≤ n} define a hypercubeAj inside the spaceXn. Rule (14) states the condition
of membership inAj for an attribute vector~x ≡ {x1, ..., xn}, in order to assert class (or
concept)ω.

It is easy to give a continuous valued “fuzzy” semantics to this kind of rule, by replacing
the boolean membership function inAj with a continuous valued membership function, as
it is done, for instance, in fuzzy logic (Zadeh, 1965, Zadeh, 1992). A standard solution is to
replace every segmentAji with a Gaussian function with width equal toAji. Interpreting
the logical conjunction as an arithmetic product, the hypercubeAj is transformed into a
Hypergaussian having the general format:

Gj(~x) =
n∏
i=1

gji(xi) =
n∏
i=1

e
−(

xi−cji
Aji

)2

= e
−
∑n

i=1
(
xi−cji
Aji

)2

(15)

According to (Poggio & Girosi, 1990), expression (15) is a Factorizable Radial Basis Func-
tion. Then, interpreting the logical (inclusive) disjunction as an arithmetic sum (Blanzieri
& Katenkamp, 1996), a continuous valued semantics for a classification theory composed
of rules like (14) can be defined through a network of radial basis functions of the type:

f(~x) =
∑
j

wjGj(~x) =
∑
j

wj

n∏
i=1

gji(xi), (16)

where the weightswj play the role of certainty factors. Expression (16) has a straightforward
interpretation in terms of a four layer network, as described in Figure 6. The first layer
(from left to right) represents the input features. The second layer units compute the
unidimensional Gaussian functionsgji. The third layer corresponds to rules, and combines
the activation functions. Finally, the last layer computes the output value according to
expression (16).

In the case of a multiclass classification theory, it is immediate to extend this neural
architecture in order to have multiple output units, i.e., one for every class, as it is done in
other neural networks (Rumelhart & McClelland, 1986).

Even though transforming a propositional theory into a RBFN does not preserve the
original logical rigor, we obtain the important advantage that a RBFN can be finely tuned by
means of the∆-rule (Rumelhart & McClelland, 1986). In fact, expression (16) represents
a continuous function, derivable with respect to the weightswj , the centerscji and the
widthsAji, so that the quadratic error gradient can be computed everywhere, allowing the
∆-rule to be applied (Baroglio et al., 1996, Blanzieri & Katenkamp, 1996).

Here we will extend this method to the case of First Order Logics, so that a classification
theory learned by a relational learner can be refined by performing the quadratic error
gradient descent. In principle, also in this case the continuous intervals can be replaced
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Figure 6. Network corresponding to a Factorizable RBFN architecture. The Gaussian units have a unidimensional
activation function. The Product units compose the input values using arithmetic product. An average sum unit
performs the weighted sum of the values received from the Product units, normalized with respect to the global
activation of the network.

with bell-shaped functions, the logical conjunction with arithmetic product and the inclusive
OR with arithmetic sum, obtaining thus a continuous valued semantics which is derivable
in order to perform the error gradient descent. The substantial difference with respect to the
propositional calculus is in the dynamic binding between variables occurring in the logical
formulas and components of an instance.

A simple way of reformulating the classification problem in FOL, in such a way that it
can be handled in the framework of a RBFN, is to consider every alternative binding as a
different pattern, which feeds the network and undergoes classification independently. In
this way, every single binding can be processed as in the case of the propositional calculus.
In order to reach a correct classification, we must require that for each positive instance
there exists at least one binding that activates the network above the classification threshold
(Th = 0.5), and that no such binding exists for any negative instance. The classifier
architecture obtained in this way is represented in Figure 7.

The drawback of this method lies in the possibly great number of alternative bindings.
A solution we developed for predicting temporal series consists in restricting the bindings
to only those corresponding to correct models3 of the classification theory in the positive
examples in the learning set. In this way, if the learning set contains at least one example
for each one of the possible allomorphisms of the phenomenon described by the learning
theory, we are guaranteed to generate all and only the bindings useful for the classification
task. In several applications we performed, the number of useful different bindings turned
out to be few tens.
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Figure 7. Three stage architecture for FOL predictor based on a RBFN. The first stage generates all the possible
bindings; the second stage computes the object properties for each selected binding; the third stage accomplishes
the classification.

A different mapping between FOL formulas and propositional calculus is presented in
the system LINUS (Lavra˘c et al., 1991), where the atomic predicates are transformed into
sets of positive and negative literals, which then play the role of attributes.

4. Summary of Experiments

In the previous section we have shown how different learning paradigms, i.e., the symbolic,
the genetic and the connectionist ones, can be integrated in the same framework, exploiting
the characteristics of a First Order representation language based on internal disjunction.

The aim of this section is neither to compare the results obtained by the learning systems
we developed with those of other systems, nor to re-describe the extensive experimentation
that is reported in previous papers. The goal is, instead, that of discussing the relative merits
of the various paradigms and the easiness with which they can be integrated in a unique
learning framework. The reported application examples are only a sample of those that
have actually been performed. The results summarized in this section have been obtained
with three systems, each one exploiting one or more of the algorithms described in Section
3:

• REGAL (Giordana & Sale, 1992, Giordana & Saitta, 1994, Giordana & Neri, 1996),
which is based on a genetic algorithm and makes use of predicates containing only
discrete internal disjunctions.

• SMART+ (Botta & Giordana, 1993), a multistrategy systemper se, which combines
symbolic learning strategies (both inductive and deductive) with the algorithms for
learning internal disjunctions also in continuous domains. Moreover, SMART+ is
provided with a postprocessor, based on a genetic algorithm, which accomplishes the
refinement of the continuous intervals previously learned.

• SNAP (Botta & Giordana, 1996), a variant of SMART+, which has been designed for
learning to predict temporal series, and combines the symbolic learning paradigm with
the connectionist one, according to the method described in Section 3.4.
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4.1. Office Document Classification

This first application shows the same problem solved independently by REGAL and
SMART+. Even though the performances are similar in terms of recognition rate, the
structure of the knowledge base generated by the two systems is very different. The prob-
lem consists in recognizing a company from the typical pattern appearing in a document.
The dataset contains 230 examples, subdivided at the source into a learning set of 120 and
a test set of 110 instances, corresponding to the front page of official documents from six
different companies. Each example in the dataset is described as a sequence of 9 to 15
items, each corresponding to a specific rectangular area on the page layout. Moreover,
each item is characterized by a type attribute, and by 8 numeric attributes individuating the
coordinates of the four corners of the corresponding rectangle. Both SMART+ and REGAL
have been supplied with a concept description language containing 5 unary predicates, one
identifying the type and the other ones the position and the size of an item, and two binary
predicates defining the relative position of two items. Each (absolute or relative) predicate
was provided with an internal disjunction corresponding to the meaningful variability range
of the corresponding numeric feature. However, REGAL does not have the capability of
dealing with continuous intervals and copes with this problem by transforming a continuous
interval into a set of discrete ones. In the specific case, the intervals have been split with
a granularity of 35 pixels. Moreover, SMART+ did not receive as input any knowledge
other than the set of predicates, whereas REGAL was supplied with a handcrafted language
template to start with; this template is a very complex one, much more than that sufficient
to represent the formulas usually found by SMART+.

REGAL discovered a classification theory consisting of 7 rules, correctly classifying all
the learning examples. On the test set, the same rules exhibited a 5% misclassification error
(1 omission error and 5 commission errors). SMART+ discovered a classification theory
consisting of 52 rules. On the test set, the rules exhibited a 4% misclassification error (1
commission error less than REGAL). An attempt to further refine the internal disjunctions
in the rules, using SMART+’s genetic postprocessor, did not lead, in this case, to any
improvement. An evaluation of INDUBI (Esposito et al., 1992), an Induce-like learner, on
a subset of this dataset shows an 8.5% prediction error. However, a direct comparison is
not possible because these results have been obtained using a smaller learning set.

From the error rate point of view, REGAL and SMART+ look substantially equiva-
lent; nevertheless, their generalization capabilities appear quite different. Even if they
started from the same language, the knowledge base generated by SMART+ is much
more detailed and complex than the one generated by REGAL. In fact, as discussed in
(Giordana & Neri, 1996), REGAL has a large generalization capacity, which usually al-
lows it to find classification theories very much compact and simple. On the contrary,
SMART+ has other advantages, such as the possibility of guiding induction with large
bodies of a priori knowledge. Nevertheless, SMART+’s local optimization strategy cannot
compete, with respect to the ability of finding simple knowledge bases, with REGAL’s
global strategy. REGAL’s generalization capacity can be a drawback with small learning
sets, because, in this case, it may tend to over generalize, whereas SMART+ is easier to
control.
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4.2. Artificial Character Recognition

A second case study concerns SMART+ only, and is focused on the algorithms for learning
continuous intervals. More specifically, it shows how the different algorithms described in
Sections 3.2 and 3.3 cooperate, producing a very accurate knowledge base.

This domain, even though artificial, is quite complex and bears many features of a real
world one. It has been described in (Botta & Giordana, 1993), in order to illustrate the
learning strategies of SMART+.

Ten capital letters of the English alphabet have been chosen, and have been described as
they could appear after segmenting the patterns produced by an electric pen. Each letter is
composed of a set of segments that are described by the initial and final (x, y) coordinates
in a Cartesian plane. From these attributes, other properties can be extracted, such as
the length of a segment, its orientation, its preceding and following segments, and so on.
Some of these features are numeric in nature, and then the capacity of learning and refining
continuous intervals can be tested.

A dataset of 6000 examples (600 for each letter) has been generated using a program
that introduces random noise, simulating segmentation errors (insertion and deletion) and
variability in the segment size with respect to a basic prototype. The dataset has been
divided into a balanced learning set of 1000 examples (100 for each letter) and a test set of
5000 examples. Then SMART+ has been run several times under different conditions:

1. Using only its inductive and deductive strategies, without making use of its capability
of learning internal disjunctions. In order to cope with numeric features, predicates
containing an internal disjunction, handcrafted by a human expert, have been used.
Moreover, SMART+ was guided by a domain theory describing some typical structural
features of each letter.

2. Using the symbolic inductive and deductive strategies guided by a domain theory and
making use ofAlgorithm 2of Section 3.1 for learning continuous intervals.

3. Using the Genetic Algorithm-based postprocessor for refining a learned knowledge
base, using the algorithm described in Section 3.3.

The results are summarized in Table 1. The relevance of the possibility of learning numeric
features is evident. In fact, results obtained using only the symbolic learning component
are poor, whereas the local learning strategy is sufficient to raise the recognition rate above
98%. Finally, the effect of the global GA optimization is remarkable, not only because the
classification rate goes close to 100%, but also because the number of formulas necessary
for the classification is almost halved. This is again due to the generalization power of
the genetic component, which, as already noticed for REGAL, was able to contextually
optimize the internal disjunctions, so that the number of instances covered by each rule
doubled, on average. In this way many rules became redundant and could be dropped.
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Table 1.Results obtained by SMART+ on the test set of the artificial character
recognition case study

Strategy N. of Formulas Classification Rate
Pure Symbolic 81 83.44

Symbolic + Algorithm 2 47 98.68
Symbolic + Algorithm 2 + GA 28 99.7

4.3. Gradient Descent Optimization Method

This third case study concerns SNAP, and demonstrates the method for combining the
symbolic learning in FOL with the quadratic error gradient descent. The task is prediction
of the Mackey-Glass chaotic series, a standard benchmark. Numerical series prediction is
a regression task, but it can be reduced to a classification task by discretizing the domain of
the target function and considering each discrete value as a class. This approach has been
adopted in (Sammut et al., 1992) to learn a flight controller for a simulator. More recently, a
similar method has been proposed in (Baroglio et al., 1996) to synthesize fuzzy controllers.
Here we adopted the same approach in combination with the methodology described in
Section 3.4 for tuning numeric intervals.

The Mackey-Glass domain has been divided into 12 equal intervals. Then, a set of clas-
sification rules has been learned for each one of the 12 classes. The resulting classification
theory has been transformed into a RBFN according to the procedure described in Section
3.4. The only variant, which is task specific, is the way the output value is constructed; in
fact, the twelve outputs must be merged in order to construct a single output corresponding
to the value of the function to predict. For this reason, all the Radial Basis Function units
have been connected to the same output, which acts as a multiplexer. The weight on every
connection has been set equal to the value of the class the corresponding RBF is predicting.
Afterwards the RBFN has been refined for 5000 epochs using the∆-rule, in order to follow
the quadratic error gradient descent.

The Mackey-Glass chaotic series is generated by the following differential equation:

ẋ =
0.2x(t− τ)

1 + x10(t− τ)
− 0.1x(t) (17)

with x(t < 0) = 0, x(0) = 1.2 andτ = 17. The classical learning problem is defined as
follows: given the series values at instants t, t-6, t-12, t-18, forecast the series value at t+84.
Table 2 shows the results of two experiments, in terms of the Non-Dimensional Error Index
(NDEI), i.e., the ratio between the average square root error and the standard deviation.

The first two lines reports the result obtained with CART, reported in (Baroglio et al.,
1996), and the result obtained by (Moody & Darken, 1988) using a RBFN constructed
with an enhanced version of thek-means algorithm. In the first experiment, SNAP was
provided with predicates containing a single variable only, and the same features used in the
literature were used for learning a RBFN, so that the induction task was actually reduced
to a propositional case. The result was a network performing as well as classical RBFNs,
but obtained with a learning set 10 times smaller.
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Table 2.Results on the Mackey-Glass series learning problem
on a test set of 500 instances.

Method N. of Learning Instances NDEI
CART 1000 0.36
RBFNk−means 10000 0.055
RBFNSNAPprop 1000 0.056
RBFNSNAPfo 1000 0.024

In the second experiment, we used a First Order representation of the instances: each
example consists of 19 objects described by two attributes, the relative position inside a time
window and the corresponding series value at that point. In this second case, we defined
only two predicate templates, which refer to the series value and the difference between the
values at instants t-x and t-y, (x6=y∈[0,18]), respectively.

As it can be seen, the First Order Logic representation leads to substantially better per-
formances than the propositional counterpart. It should be noted that the used First Order
representation language allowed SNAP to analyze a large number of possible features (190)
and to select the most relevant ones (45 on average), resulting in very good network layouts.

The last consideration is about the computational effort for learning the network layout:
Table 3 reports the number of formulas searched by SNAP per class in the propositional
and First Order settings. It should be pointed out that only for the First Order setting all
these values were largely smaller than the computational resources allocated for such tasks
(500 formulas per class).

Table 3.Computational effort on the Mackey-Glass case study.

Class 1 2 3 4 5 6 7 8 9 10 11 12
SNAPprop 18 339 500 313 256 500 459 500 487 500 420 250
SNAPfo 26 77 120 80 118 130 233 127 176 139 136 144

4.4. Other Examples

Other examples of applications are reported in this section, to provide the reader with a
feeling of the application range available to the proposed framework. In the chess domain,
the chess-endgame KR-KR problem was one of the first handled by an early REGAL
prototype (Giordana & Sale, 1992). Using a learning set of 1000 examples, REGAL learned
the concept ofsafe black kingwith an accuracy of 99.75%, evaluated on a test set of 2000
instances.

The King-Rook-King end-game problem (Quinlan, 1983) has been discussed in (Botta,
1994). Using 160 learning examples (scenarios) and 1000 test examples, a simplified
version of SMART+ was able to reach 99.4% accuracy without any a-priori knowledge.
As a comparison, FOIL required 1000 examples to reach the same accuracy. By adding a
domain theory, it was able to reach 100% accuracy.
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Another case study, designed explicitly for challenging REGAL, is theThousand Trains
dataset, extending the well known train set used by Michalski (Michalski, 1983). There are
two concepts to discriminate: “Trains going East” and “Trains going West”. Thousands of
trains have been generated by a program which selects at random the values of the attributes.
Then, each train has been classified using a set of disjunctive rules. The challenge for
REGAL was to discover the original rules or a set of equivalent ones. The formulation
of this problem dates to (Giordana & Saitta, 1993) and the current best results obtained
by REGAL have been published in (Giordana & Saitta, 1994). The concept description
language used by REGAL is very similar to the one described in (Michalski, 1983). REGAL
found 5 disjuncts covering completely and consistently both the learning set and the test
set. This application, being available to the ML community, could be a good test bed for
other relational systems, because it offers much greater challenges, given the number of
instances to cover, than the now popular 20-trains dataset.

Other test-beds for REGAL have been theMushroomsand theSplice Junctionsdatasets
from Irvine repository. The obtained results are reported in (Neri & Saitta, 1996). A
successful application of Enigma, the direct ancestor of SMART+ that was already provided
with an earlier version of the algorithm for learning continuous intervals, was the automated
generation of a troubleshooter (Giordana et al., 1993b). This represented a real application,
in industry, of a learning system based on FOL. In fact, the troubleshooter was used for
several years in field for maintenance and training purposes. The success of Enigma was in
part due to the possibility of easily integrating it with a commercial relational database used
to record troubleshooting sessions performed by a human expert; also this dataset could be
a hard test-bed for other FOL learning algorithms.

5. Discussion

In the previous sections we have presented a framework for integrating multiple learning
strategies, which is characterized by two basic choices:
(a) a separation between the (logical) hypothesis description language, and the (object
oriented) instance description language,
(b) the adoption of the annotated predicate calculus, as hypothesis description language,
with internal disjunction as basic construct.

It is worth noting that the two choices are independent, even though they nicely combine
together. On the other hand, the first choice is, to a large extent, motivated by the need of
accessing data in large databases. The representation framework, as it has been described in
this paper, is not comprehensive of all the facilities that it can supply; in fact, the description
only presents those features that can be used at the same time by a multistrategy approach
including the symbolic, genetic and connectionist paradigms. More specifically, the biases
of the core framework, and the possible extensions, can be summarized in the following.
A brief comparison with alternative approaches is also sketched.

Instance Description Language(IDL) - Instances are represented as tuples (objects with
attributes) in a database. Properties can be defined on the objects either by means of semantic
functions or directly by providing the corresponding relations in extensional form.
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In many ILP systems, instances as represented as ground clauses (facts), and this is true
also for Induce-like learners. FOIL represents instances as tuples in a table (Quinlan, 1990).
A comment is in order about the semantic setting. In the normal ILP setting, hypotheses
are only required to be consistent with the negative instances, so that what is not explicitly
stated as true is unknown, and hypotheses covering unknown facts can be accepted. In the
non-monotonic semantic setting (De Raedt & D˘zeroski, 1994), instead, the Closed World
Assumption (Clark, 1978) is done, and, hence, what is not declared true, is false. As a
consequence, in the non-monotonic setting the space of acceptable hypotheses is more
constrained. In our framework we also accept the same assumption and, then, we work in
the same setting as (De Raedt & D˘zeroski, 1994). Also, in their approach, each example is
a separatemini-database(a finite interpretation of a clausal theory), similar to ourscenario.

Hypothesis Description Language(HDL) - A set of operational predicates (Mitchell et al.,
1986) are supplied. They can be constraint predicates, with no internal disjunction, or learn-
able predicates, with one term in disjunctive form. The semantic of the predicates is defined
in terms of properties, and negation of atoms is allowed. A well-formed HDL formula is
any range-restricted, non recursive, normal clause. Starting from this core, both stronger
and weaker biases can be used, depending on the specific learning task. For instance, in the
system RTL (Giordana et al., 1993a, Baroglio & Botta, 1995) stratified recursive theories
(Apt et al., 1988) can be learned, and in SMART+ existential and numerical quantifica-
tion (Michalski, 1983) is allowed. On the other hand, a form of determinacy (extension-
ally controlled) can be imposed for limiting the growth of too large relations. Finally,
new predicates and terms can be built up through an abstraction mechanisms in SMART+
(Giordana & Saitta, 1990, Giordana et al., 1991).

Most FOL concept learners use a form of logical language for representing hypotheses.
In (Ade et al., 1995) a language used to describe biases in general, and in ILP systems in
particular, is proposed. Language biases of ILP systems are rather variables, including
normality, ij-determinacy, range-restriction, limitation on the number of variable, and so
on. Most of them allow for recursion and for term construction, such as the one emerging
in anappendof an atom to a list.

Background Knowledge(BK) - In the presented core framework there is no background
knowledge, at least formally. Actually, object properties, represented as semantic mappings,
are a kind of background knowledge; they could be represented as Horn clauses and used
deductively. On the other hand, complex mechanisms to handle possibly large bodies of
domain theories have been implemented and used, integrating induction and deduction,
both in (Bergadano & Giordana, 1988) and in SMART+. Moreover, in the system WHY,
also a causal model of the domain can be used in an abuctive way (Baroglio et al., 1994,
Saitta et al., 1993). Finally, a domain theory can be used to deduce the language template
for REGAL (Giordana & Saitta, 1994, Giordana & Neri, 1996).

Following the proposal of using an Explanation-Based approach to learning
(Mitchell et al., 1986, DeJong & Mooney, 1986), the ability to handle background knowl-
edge has been incorporated in several systems (only as an example, we can mention FOCL
(Pazzani & Kibler, 1992)). In some ILP systems the background knowledge is nothing else
than a list of known facts, i.e., ground literals; in others, a background knowledge, expressed
in clausal form, can also be exploited.
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Search Methods- In the basic framework, several search methods and strategies can
be applied. In particular, inductive hill-climbing, best-first, depth-first and beam search,
controlled by a variety of heuristic evaluations (Botta & Giordana, 1993), can be used
in SMART+. Genetic search is used in REGAL, and backpropagation or∆-rule are
used in SNAP (Botta & Giordana, 1996). All the above search strategies have been used
in other learning systems. Most ILP systems use hill-climbing, but also beam search
(Pompe & Kononenko, 1995) and bi-directional search (Muggleton, 1995) have been used.

As a first conclusion, we would like to stress that the core framework, beyond offering
time and space efficiency and lending itself to be exploited by different paradigms, proved
to be sufficiently powerful to be applied to significant learning tasks (Neri & Saitta, 1996,
Baroglio et al., 1996).

By analyzing the above outlined commonalties and differences between alternative ap-
proaches, we believe that there are two fundamental differences: one is in the representation
of instances as objects in a database, and the other is the extensive use of internal disjunc-
tion. Keeping separate by a functional abstraction layer the extension (database) from the
intension (learned knowledge) offers the advantage that efficient mechanisms for managing
extensional relations can be designed by exploiting the database technology. The method
becomes particularly effective when object properties have a closed-form definition: in this
case most of the intermediate relations, necessary to compute the extension of a hypothesis,
do not need to be created; they can be obtained, instead, on demand by evaluating the
properties of objects bound to the variables.

Another benefit is the flexibility at the application level. When the user wants to in-
troduce or delete a feature, it is not necessary to do any pre-processing on the dataset,
but it is sufficient to define/delete the properties necessary to compute the new feature.
New properties can also be defined on-line by the learning system itself, if a construc-
tive learning strategy is used. In this way, more robust learners can be designed. On the
other hand, this approach has the drawback that the constants defined in the dataset cannot
directly occur in the logical formulas, but they have to be manipulated through suitable ob-
jects. Moreover, single instances cannot be accessed directly, but only through the general
operators which are applicable to the relations. These problems already emerged in the de-
ductive database field (Minker, 1988, Vieille, 1986, Ullman, 1982, Gardin & Simon, 1987,
Henschen & Naqvi, 1984), where solutions have been proposed. However, even taking
advantage of such solutions, it is true that the presented framework may be quite ineffi-
cient when one must work not on whole relations but on single items, such as constants or
instances.

On the contrary, the Logic Programming framework, adopted in ILP, takes the opposite
point of view, and the basic operation (unification) works on single bindings and does not
make distinction between ground and non ground assertions. The advantage is flexibility in
handling every kind of terms, including constants. The price paid is a greater inefficiency
in handling very large extensions. Therefore, going towards very large datasets, as required
by KDD challenge, we have to expect that the basic ILP framework would be inadequate.
In fact, recent papers describe solutions for interfacing ILP systems to relational databases
by mapping logical formulas onto SQL programs (Brockhausen & Morik, 1996).
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The second basic difference, namely the extensive use of internal disjunction, is not
at the level of language bias, because any formula containing internal disjunctions can
always be translated into a set of standard clauses. The difference emerges at the level
of the very learning methodology, because this construct requires specific algorithms and
generalization/specialization operators to be dealt with. The internal disjunction allows both
more compact hypotheses to be found and also more reliable ones, because each hypothesis
is supported by a larger coverage of the instances, not subdivided into smaller sets.

Some additional differences can be pointed out. However, these differences do not concern
facilities which are or are not possible in one or the other framework, but, rather, which may
be realized in each of them with greater or less effort. One is the easiness of implementing
various search strategies even inside the syntactic paradigm. As in our framework the search
tree is stored in a database, the search focus can be moved from one node to another in
the frontier without the need of saving the current state of the search. This feature is not
immediately available in the standard ILP framework, so that developing search strategies
different from hill climbing may be more costly. The second is that continuous-valued
attributes can be handled, in our framework, in a very natural way, and numerical intervals
and discrete value sets can be made transparent to the user; again, this effect derives from
the use of internal disjunction.

6. Conclusions

The first contribution of this paper has been to show that, in order to achieve effectiveness
in demanding learning tasks, the abstract specification of algorithms is not sufficient, and
that a good underlying engineering work is essential to obtain success. In particular,
we have shown that choosing an implementation platform based on database technology
offers an excellent support to learn in structured domains. Several among the described
methodological aspects are not new; for example, internal disjunction has been introduced
by Michalski (Michalski, 1983, Michalski & Chilausky, 1980). The idea of introducing
a semantic gap between the concept description language and the instance representation
derives from EBL (Mitchell et al., 1986); in fact, the functional layer, which abstracts the
object properties from the basic descriptions, can be seen as a domain theory that makes
operational the predicates defined in the concept description language. However, the way
in which these ideas are realized, inside the described unifying framework, makes the
difference, and transforms an interesting algorithm into a system capable of accepting
the challenge of KDD applications. The proposed framework offers several benefits, not
immediately available in other approaches:

• The database technology allows very large datasets, as they are usually found in the
archives, to be handled without any need of format conversion.

• The possibility of using SQL or other languages for “real programmers” makes it easier
to bring a machine learning tool inside a company (Giordana et al., 1993b).

• The functional layer, filling the semantic gap between logics and data, offers an abstrac-
tion mechanism, which can be exploited by multistrategy learners integrating hetero-
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geneous algorithms, possibly implemented in different languages. The algorithms for
learning internal disjunctions and dealing with uncertainty have been implemented in
this layer, and they can cooperate due to the common interface towards the data level.

• The definition of object properties by means of functions allows one to define a great
number of virtual properties, computed on demand without the need of creating their
extension since the beginning. This feature is widely exploited, for instance, by the
algorithms learning continuous intervals.

• A last benefit, not described here, is the possibility of defining new features, or construct-
ing new objects, as it is done in a constructive learning approach (Wnek & Michalski,
1994).

A more technical contribution of the paper resides in the algorithms for learning internal
disjunctions. Besides their value per se, such algorithms show how, in practice, it is possible
to combine into a unique multistrategy framework three different paradigms, namely the
symbolic, the genetic and the connectionist one, exploiting the best from each of them.
This result widens the perspectives of developing multistrategy approaches for learning in
FOL. Finally, the validity of a multistrategy approach has been confirmed by the results
presented in Section 4, which have been obtained only by virtue of the cooperation among
several algorithms, whose peculiarities have been synergistically exploited.

Notes

1. Here a notation in the style of standard object oriented programming languages has been used. Commercially
available relational and object-oriented databases offer the support for implementing the dataset representation
described so far, so that instance structure and object properties can be described in a SQL-like language.

2. Notice that, in this way, the object properties necessary to the selection operator are computed on demand,
exiting so from the scheme of pure relational algebra (Ullman, 1982).

3. We remember that a model of a theory is a binding which verifies the theory.
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