
Integrating NLP Using Linked Data

Sebastian Hellmann, Jens Lehmann, Sören Auer, and Martin Brümmer

University of Leipzig, Institute of Computer Science, AKSW Group,
Augustusplatz 10, D-04009 Leipzig, Germany

lastname@informatik.uni-leipzig.de

http://aksw.org

Abstract. We are currently observing a plethora of Natural Language
Processing tools and services being made available. Each of the tools and
services has its particular strengths and weaknesses, but exploiting the
strengths and synergistically combining different tools is currently an ex-
tremely cumbersome and time consuming task. Also, once a particular set
of tools is integrated, this integration is not reusable by others. We argue
that simplifying the interoperability of different NLP tools performing
similar but also complementary tasks will facilitate the comparability of
results and the creation of sophisticated NLP applications. In this paper,
we present the NLP Interchange Format (NIF). NIF is based on a Linked
Data enabled URI scheme for identifying elements in (hyper-)texts and
an ontology for describing common NLP terms and concepts. In contrast
to more centralized solutions such as UIMA and GATE, NIF enables the
creation of heterogeneous, distributed and loosely coupled NLP applica-
tions, which use the Web as an integration platform. We present several
use cases of the second version of the NIF specification (NIF 2.0) and
the result of a developer study.

Keywords: Data Integration, Natural Language Processing, RDF.

1 Introduction

We are currently observing a plethora of Natural Language Processing (NLP)
tools and services being available and new ones appearing almost on a weekly
basis. Some examples of web services providing just Named Entity Recognition
(NER) services are Zemanta, OpenCalais, Ontos, Evri, Extractiv, and Alchemy.
Similarly, there are tools and services for language detection, Part-Of-Speech
(POS) tagging, text classification, morphological analysis, relationship extrac-
tion, sentiment analysis and many other NLP tasks. Each of the tools and ser-
vices has its particular strengths and weaknesses, but exploiting the strengths
and synergistically combining different tools is currently an extremely cumber-
some and time consuming task. The programming interfaces and result formats
of the tools have to be analyzed and often differ to a great extent. Also, once a
particular set of tools is integrated this integration is not reusable by others.

We argue that simplifying the interoperability of different NLP tools per-
forming similar but also complementary tasks will facilitate the comparability of

H. Alani et al. (Eds.): ISWC 2013, Part II, LNCS 8219, pp. 98–113, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Integrating NLP Using Linked Data 99

results, the building of sophisticated NLP applications as well as the synergistic
combination of tools and might ultimately yield a boost in precision and recall
for common NLP tasks. Some first evidence in that direction is provided by tools
such as RDFaCE (cf. Section 4.3, Spotlight [11] and Fox 1, which already combine
the output from several backend services and achieve superior results.

Another important factor for improving the quality of NLP tools is the avail-
ability of large quantities of qualitative background knowledge on the currently
emerging Web of Linked Data [1]. Many NLP tasks can greatly benefit from
making use of this wealth of knowledge being available on the Web in structured
form as Linked Open Data (LOD). The precision and recall of Named Entity
Recognition, for example, can be boosted when using background knowledge
from DBpedia, Geonames or other LOD sources as crowdsourced, community-
reviewed and timely-updated gazetteers. Of course, the use of gazetteers is a
common practice in NLP. However, before the arrival of large amounts of Linked
Open Data their creation and maintenance in particular for multi-domain NLP
applications was often impractical.

The use of LOD background knowledge in NLP applications poses some
particular challenges. These include: identification – uniquely identifying and
reusing identifiers for (parts of) text, entities, relationships, NLP concepts and
annotations etc.; provenance – tracking the lineage of text and annotations across
tools, domains and applications; semantic alignment – tackle the semantic het-
erogeneity of background knowledge as well as concepts used by different NLP
tools and tasks.

In order to simplify the combination of tools, improve their interoperability
and facilitate the use of Linked Data we developed the NLP Interchange Format
(NIF). NIF is an RDF/OWL-based format that aims to achieve interoperabil-
ity between Natural Language Processing (NLP) tools, language resources and
annotations. The NIF specification has been released in an initial version 1.0 in
November 20112 and known implementations for 30 different NLP tools and use
cases (e.g. UIMA, Gate’s ANNIE and DBpedia Spotlight) exist and a public web
demo3 is available. NIF addresses the interoperability problem on three layers:
the structural, conceptual and access layer. NIF is based on a Linked Data en-
abled URI scheme for identifying elements in (hyper-)texts that are described by
the NIF Core Ontology (structural layer) and a selection of ontologies for describ-
ing common NLP terms and concepts (conceptual layer). NIF-aware applications
will produce output adhering to the NIF Core Ontology as REST services (access
layer). Other than more centralized solutions such as UIMA [6] and GATE [5],
NIF enables the creation of heterogeneous, distributed and loosely coupled NLP
applications, which use the Web as an integration platform. Another benefit is
that a NIF wrapper has to be only created once for a particular tool, but enables
the tool to interoperate with a potentially large number of other tools without

1 http://aksw.org/Projects/FOX
2 http://nlp2rdf.org/nif-1-0/
3 http://nlp2rdf.lod2.eu/demo.php

http://aksw.org/Projects/FOX
http://nlp2rdf.org/nif-1-0/
http://nlp2rdf.lod2.eu/demo.php

100 S. Hellmann et al.

additional adaptations. Ultimately, we envision an ecosystem of NLP tools and
services to emerge using NIF for exchanging and integrating rich annotations.

This article is structured as follows: After describing requirements (Section 2),
which guided the development of NIF and the ontology, we present the core
concepts of NIF in Section 3, including URI schemes, ontological structures,
workflows and extensions. We then describe some of the currently implemented
use cases in Section 4. We evaluate NIF by applying it to a large-scale problem,
performing a developer study and comparing it to other frameworks in Section 5.
Finally, we present lessons learned, conclusions and future work in Section 6.

2 Requirements for NLP Integration

In this section, we will give a list of requirements, we elicited within the LOD2
EU project4, which influenced the design of NIF. The LOD2 project develops the
LOD2 stack5, which integrates a wide range of RDF tools, including a Virtuoso
triple store as well as Linked Data interlinking and OWL enrichment tools.

Compatibility with RDF. One of the main requirements driving the devel-
opment of NIF, was the need to convert any NLP tool output to RDF as
virtually all software developed within the LOD2 project is based on RDF
and the underlying triple store.

Coverage. The wide range of potential NLP tools requires that the produced
format and ontology is sufficiently general to cover all or most annotations.

Structural Interoperability. NLP tools with a NIF wrapper should pro-
duce unanimous output, which allows to merge annotations from different
tools consistently. Here structural interoperability refers to the way how
annotations are represented.

Conceptual Interoperability. In addition to structural interoperability,
tools should use the same vocabularies for the same kind of annotations.
This refers to what annotations are used.

Granularity. The ontology is supposed to handle different granularity not
limited to the document level, which can be considered to be very coarse-
grained. As basic units we identified a document collection, the document,
the paragraph and the sentence. A keyword search, for example, might rank
a document higher, where the keywords appear in the same paragraph.

Provenance and Confidence. For all annotations we would like to track,
where they come from and how confident the annotating tool was about
correctness of the annotation.

Simplicity. We intend to encourage third parties to contribute their NLP tools
to the LOD2 Stack and the NLP2RDF platform. Therefore, the format
should be as simple as possible to ease integration and adoption.

Scalability. An especially important requirement is imposed on the format
with regard to scalability in two dimensions: Firstly, the triple count is re-
quired to be as low as possible to reduce the overall memory and index

4 http://lod2.eu
5 http://stack.linkeddata.org

http://lod2.eu
http://stack.linkeddata.org

Integrating NLP Using Linked Data 101

footprint (URI to id look-up tables). Secondly, the complexity of OWL ax-
ioms should be low or modularised to allow fast reasoning.

3 NLP Interchange Format (NIF)6

3.1 URI Schemes

The idea behind NIF is to allow NLP tools to exchange annotations about text
in RDF. Hence, the main prerequisite is that text becomes referenceable by
URIs, so that they can be used as resources in RDF statements. In NIF, we
distinguish between the document d, the text t contained in the document and
possible substrings st of this text. Such a substring st can also consist of sev-
eral non-adjacent characters within t, but for the sake of simplicity, we will
assume that they are adjacent for this introduction. We call an algorithm to
systematically create identifiers for t and st a URI Scheme. To create URIs,
the URI scheme requires a document URI du, a separator sep and the char-
acter indices (begin and end index) of st in t to uniquely identify the po-
sition of the substring. The canonical URI scheme of NIF is based on RFC
5147 7, which standardizes fragment ids for the text/plain media type. Ac-
cording to RFC 5147, the following URI can address the first occurrence of
the substring “Semantic Web” in the text (26610 characters) of the document
http://www.w3.org/DesignIssues/LinkedData.html with the separator #:
http://www.w3.org/DesignIssues/LinkedData.html#char=717,729

The whole text contained in the document is addressed by “#char=0,26610”
or just “#char=0,”. NIF offers several such URI schemes which can be selected
according to the requirements of the use case. Their advantages and disadvan-
tages have been investigated in [7] and we will limit ourselves to RFC 5147
in this paper. For practical reasons, the document URI and the separator are
henceforth called the prefix part of the URI scheme and the remainder (i.e.
“char=717,729”) will be called the identifier part. NIF recommends the pre-
fix to end on slash (/), hash (#) or on a query component (e.g. ?nif-id=).
Depending on the scenario, we can choose the prefix in the following manner:
Web annotation. If we want to annotate a (web) resource, it is straightfor-

ward to use the existing document URL as the basis for the prefix and add a
hash (#). The recommended prefix for the 26610 characters of
http://www.w3.org/DesignIssues/LinkedData.html is: http://www.w3.
org/DesignIssues/LinkedData.html#

This works best for plain text files either on the web or on the local file system
(file://).For demonstrationpurposes,weminted aURI that contains a plain
text extraction (19764 characters) createdwith ’lynx–dump’,whichwewill use
as the prefix for most of our examples: http://persistence.uni-leipzig.org/
nlp2rdf/examples/doc/LinkedData.txt# and http://persistence.uni-leipzig.
org/nlp2rdf/examples/doc/LinkedData.txt#char=333,345 NIF can be used as
a true stand-off format linking to external text.

6 We refer the reader to http://prefix.cc for all prefixes used.
7 http://tools.ietf.org/html/rfc5147

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html#char=717,729
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://persistence.uni-leipzig.org/nlp2rdf/examples/doc/LinkedData.txt
http://persistence.uni-leipzig.org/nlp2rdf/examples/doc/LinkedData.txt
http://persistence.uni-leipzig.org/nlp2rdf/examples/doc/LinkedData.txt#char=333,345
http://persistence.uni-leipzig.org/nlp2rdf/examples/doc/LinkedData.txt#char=333,345
http://prefix.cc
http://tools.ietf.org/html/rfc5147

102 S. Hellmann et al.

Web service. If the text is, however, sent around between web services or
stored in a triple store, the prefix can be an arbitrarily generated URN8.
Communication between the NLP tools in NIF is done via RDF and therefore
mandates the inclusion of the text in the RDF during the POST or GET
request. The main purpose here is to exchange annotations between client
and server and the used URIs do not require to resolve to an information
resource. NIF requires each web service to have a parameter “prefix“ that
empowers any client to modify the prefix of the created NIF output. The
prefix parameter can be tested at http://nlp2rdf.lod2.eu/demo.php.

Annotations as Linked Data. For static hosting of annotations as linked
data (e.g. for a corpus), the / and query component separator is advanta-
geous. Often the basic unit of a corpus are the individual sentences and it
makes sense to create individual prefixes on a per sentence basis.

In the following, we will explain how the relation of document, text and sub-
string can be formalized in RDF and OWL.

3.2 NIF Core Ontology

The NIF Core Ontology9 provides classes and properties to describe the rela-
tions between substrings, text, documents and their URI schemes. The main
class in the ontology is nif:String, which is the class of all words over the
alphabet of Unicode characters (sometimes called Σ∗). We built NIF upon
the Unicode Normalization Form C, as this follows the recommendation of the
RDF standard10 for rdf:Literal. Indices are to be counted in code units. Each
URI scheme is a subclass of nif:String and puts further restrictions over the
syntax of the URIs. For example, instances of type nif:RFC5147String have to
adhere to the NIF URI scheme based on RFC 5147. Users of NIF can create their
own URI schemes by subclassing nif:String and providing documentation on
the Web in the rdfs:comment field.

Another important subclass of nif:String is the nif:Context OWL class.
This class is assigned to the whole string of the text (i.e. all characters). The pur-
pose of an individual of this class is special, because the string of this individual
is used to calculate the indices for all substrings. Therefore, all substrings have to
have a relation nif:referenceContext pointing to an instance of nif:Context.
Furthermore, the datatype property nif:isString can be used to include the
reference text as a literal within the RDF as is required for the web service
scenario. An example of NIF Core can be seen on the top left of Figure 1.

3.3 Workflows, Modularity and Extensibility of NIF

Workflows. NIF web services are loosely coupled and can receive either text
or RDF. To allow seamless NLP integration, clients should create work flows

8 http://tools.ietf.org/html/rfc1737
9 http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#

10 http://www.w3.org/TR/rdf-concepts/#section-Literals

http://nlp2rdf.lod2.eu/demo.php
http://tools.ietf.org/html/rfc1737
http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#
http://www.w3.org/TR/rdf-concepts/#section-Literals

Integrating NLP Using Linked Data 103

Fig. 1. An example of NIF integration. Tool output from four tools is merged via
URLs. Reproducible at the NIF demo site: http://nlp2rdf.lod2.eu/demo.php

Fig. 2. Workflow implemented by the NIF Combinator [8]

where the text is normalized (Unicode) at the beginning and tokenization is
provided. Figure 2 shows one of the possible workflows that uses an NLP tok-
enizer in a preprocessing step [8]. Based on the normalization and tokenization,
the combined RDF of several tools merges naturally based on the subject URIs
as shown in Figure 1. Tokenization conflicts are a recognized problem in NLP;
other algorithms are applicable (cf. [3]), if no a priori resolution is applied.

Logical Modules: The NIF ontology11 is split in three parts: The terminolog-
ical model is lightweight in terms of expressivity and contains the core classes
and properties. Overall, it has 125 axioms, 28 classes, 16 data properties and
28 object properties. The inference model contains further axioms, which are
typically used to infer additional knowledge, such as transitive property axioms.
The validation model contains axioms, which are usually relevant for consistency
checking or constraint validation12, for instance class disjointness and functional
properties. Depending on the use case, the inference and validation model can

11 Available at http://persistence.uni-leipzig.org/
nlp2rdf/ontologies/nif-core/version-1.0/ .

12 See e.g. http://clarkparsia.com/pellet/icv/

http://nlp2rdf.lod2.eu/demo.php
http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/version-1.0/
http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/version-1.0/
http://clarkparsia.com/pellet/icv/

104 S. Hellmann et al.

optionally be loaded. Overall, all three NIF models consist of 177 axioms and
can be expressed in the description logic SHIF(D) with exponential reasoning
time complexity [17].

Vocabulary Modules: NIF incorporates existing domain ontologies via vo-
cabulary modules to provide best practices for NLP annotations for the whole
breadth of the NLP domain, e.g. FISE (see below), ITS (Sect. 4.1), OLiA (Sect.
4.2), NERD [13].

Granularity Profiles: We will give a brief technical introduction into the four
different granularities, which are shown in Figure 3.
NIF Simple. Basic properties describe the strings and the reference text un-

ambiguously. NIF simple allows to express the best estimate of an NLP tool
in a flat data model. The profile is sufficient for most use cases including
simple NLP tasks, such as POS tagging or NER. The client is responsible
to resolve any inconsistencies and merge the data retrieved in a web service
context. Most properties such as itsrdf:taIdentRef and nif:oliaLink

are functional and enforce (if validated) at most one annotation of a certain
type per string. Confidence can be encoded for each annotation, though no
alternatives can be included. Provenance can only be encoded for one tool,
which is sufficient in the context of a single web service request.

NIF Simple Underspecified. A variant of the above this profile may only be
applied, iff the prefix equals the annotated information resource. Other in-
formation (especially the reference context) may be omitted and later recre-
ated from the identifier part of the URI scheme. In our running example,
the file LinkedData.txt can be retrieved from the Web and the identifier
<char=333,345> would be enough to explicate the remaining triples on the
client side. The profile has the lowest triple count (one triple per annota-
tion), but can not be queried effectively with SPARQL and has the risk of
running out of sync with the primary data.

NIF Stanbol. Alternative annotations with different confidence as well as
provenance information (i.e. which NLP engine produced which annotation)
can be attached to the additionally created URN for each annotation. The
NIF Stanbol profile is complementary to NIF simple, transformation is loss-
less, except, of course, for the alternatives and the provenance information.
The model is interesting for creating algorithms that try to optimize output
from different engines and require the detailed NLP graph.

NIF OA (Open Annotation). Open Annotation provides the most expres-
sive model, but requires more triples and creates up to four new URNs per
annotation.

Apache Stanbol13 is a Java framework, that provides a set of reusable components
for semantic content management. One component is the content enhancer that
serves as an abstraction for entity linking engines. For Stanbol’s use case, the
NLP graph is required, including provenance, confidence of annotations as well
as full information about alternative annotations (often ranked by confidence)

13 http://stanbol.apache.org

http://stanbol.apache.org

Integrating NLP Using Linked Data 105

Fig. 3. Three of the four granularity profiles of NIF. Open annotation is able to use
NIF identifiers as oa:Selector.

and not only the best estimate. The FISE ontology14 is integrated into NIF as
a vocabulary module and a NIF implementation is provided by the project(cf.
Section 5.2).

Open Annotation Data Model (OA15, formerly the annotation ontology[4])
was originally devised as an ‘open ontology in OWL-DL for annotating scientific
documents on the web’ and is now advanced by the Open Annotation W3C
Community Group. OA provides structural mechanisms to annotate arbitrary
electronic artifacts and resources (including images, websites, audio and video).
OA is a generic approach that succeeds in creating an annotation framework for
a plethora of use cases and distinguishes between the body, the target and the
annotation itself by creating URNs for each of the parts. As NLP has special
requirements regarding scalability, NIF offers two more granularities targeting
reduced overhead and three different levels of reasoning. Furthermore, OA is
domain-agnostic, while NIF defines best practices for annotations as well as a
community infrastructure to agree on common domain annotations and reference
ontologies to create interoperability in the NLP domain.

Especially noticeable is the fact that all three main granularities are com-
plementary and can be kept together. A client could keep token and POS tags
in NIF simple to reduce triple count, encode entity linking in NIF Stanbol to
keep the alternatives and then have user tags and comments in NIF OA, be-
cause OA allows to reply to previous comments (annotations on annotations).
An implementation is for example provided in the OpenPHACTS system.16

14 http://fise.iks-project.eu/ontology/
15 http://www.openannotation.org
16 http://ubo.openphacts.org/index.php?id=4684

http://fise.iks-project.eu/ontology/
http://www.openannotation.org
http://ubo.openphacts.org/index.php?id=4684

106 S. Hellmann et al.

4 Use Cases for NIF

4.1 Internationalization Tag Set 2.0

The Internationalization Tag Set (ITS) Version 2.0 is a W3C working draft,
which is in the final phase of becoming a W3C recommendation. Among other
things, ITS standardizes HTML and XML attributes which can be leveraged
by the localization industry (especially language service providers) to annotate
HTML and XML nodes with processing information for their data value chain.
In the standard, ITS defines 19 data categories17, which provide a shared con-
ceptualization by the W3C working group and its community of stakeholders.
An example of three attributes in an HTML document is given here:

1 <html ><body ><h2 translate ="yes ">Welcome to <span

2 its -ta-ident -ref="http :// dbpedia.org/resource /Dublin" its -within -text ="yes"

3 translate ="no">Dublin in

4 <b translate ="no" its -within -text ="yes">Ireland !</h2 ></body ></ html >

As an outreach activity, the working group evaluated RDFa18 to create a bridge
to the RDF world, but concluded that the format was not suitable to serve as
a best practice for RDF conversion. The main problem was that the defined
ITS attributes annotate the text within the HTML nodes, but RDFa only has
the capability to annotate resources with the text in the node as an object.
RDFa lacks subject URIs, which refer to the text within the tags. Although it is
theoretically possible to extract provenance information (i.e. offsets and position
in the text), the RDFa standard does not include this use case and current RDFa
parsers (with the exception of viejs.org) do not implement such an extraction.

In a joint effort, the ITS 2.0 RDF ontology19 was developed using NIF, which
was included within the proposed standard alongside an algorithm for a round-
trip conversion of ITS attributes to NIF20 (simple granularity). Provenance can
be kept with an XPointer/XPath fragment identifier.

1 @base <http ://example .com/exampledoc.html#> .
2 <char=0,> a nif:Context , nif:RFC5147String ;
3 <char=11,17>
4 nif:anchorOf "Dublin " ;
5 itsrdf:translate "no";
6 itsrdf:taIdentRef dbpedia :Dublin ;
7 # needed provenance for round -tripping
8 prov:wasDerivedFrom <xpath (/html/body[1]/h2[1]/span [1]/text()[1]) > ;
9 nif:referenceContext <char=0,> .

NIF successfully creates a bridge between ITS and RDF and a round-trip con-
version was recently implemented as a proof-of-concept. Therefore, NIF can be
expected to receive a wide adoption by machine translation and industrial lan-
guage service providers. Additionally, the ITS Ontology provides well modeled
and accepted properties, which can in turn be used to provide best practices for
NLP annotations.

17 http://www.w3.org/TR/its20/#datacategory-description
18 http://www.w3.org/TR/rdfa-syntax/
19 http://www.w3.org/2005/11/its/rdf#
20 ttp://www.w3.org/TR/its20/#conversion-to-nif

http://www.w3.org/TR/its20/#datacategory-description
http://www.w3.org/TR/rdfa-syntax/
http://www.w3.org/2005/11/its/rdf#
ttp://www.w3.org/TR/its20/#conversion-to-nif

Integrating NLP Using Linked Data 107

4.2 OLiA

The Ontologies of Linguistic Annotation (OLiA) [2]21 provide stable identifiers
for morpho-syntactical annotation tag sets, so that NLP applications can use
these identifiers as an interface for interoperability. OLiA provides Annotation
Models (AMs) for fine-grained identifiers of NLP tag sets, such as Penn22. The
individuals of these annotation models are then linked via rdf:type to coarse-
grained classes from a Reference Model (RM), which provides the interface for
applications. The coverage is immense: OLiA comprises over 110 OWL ontologies
for over 34 tag sets in 69 different languages, the latest addition being the Korean
Sejong tagset. The benefit for application developers is three-fold:

1. Documentation. OLiA allows tagging with URIs (e.g. http://purl.org/
olia/penn.owl#DT) instead of just short cryptic strings such as ”DT”.
Developers who are unfamiliar can open the URL in an ontology browser
and read the included documentation collected from the literature.

2. Flexible Granularity. For a wide range of NLP tools who built upon POS
tags, very coarse-grained tags are sufficient. For example for keyword ex-
traction, entity recognition and lemmatization, it is often not necessary to
distinguish between singular/plural or common/proper noun. OLiA maps all
four tags to a common class olia:Noun. Such a mapping exists for almost
all tags and can be easily reused by developers for a wide range of tag sets.

3. Language Independence. AMs for different languages are mapped to the
common RM providing an abstraction across languages.

NIF provides two properties: nif:oliaLink links a nif:String to an OLiA-
AM. Although a reasoner could automatically deduce the abstract type of each
OLiA individual from the RM, it was a requirement that the coarse-grained types
should be linked redundantly to the strings as well in case reasoning services
are not available or would cause high overhead. Therefore, an OWL annotation
property nif:oliaCategorywas created as illustrated in the following example.

1 <char=342,345> a nif:String, nif:RFC5147String ;
2 nif:oliaLink penn:NNP ;
3 nif:oliaCategory olia:Noun , olia:ProperNoun .
4 # deducable by a reasoner :
5 penn:NNP a olia:Noun , olia:ProperNoun .

The NLP2RDF project provides conversions of the OLiA OWL files to CSV
and Java HashMaps for easier consumption.23 Consequently, queries such as
‘Return all strings that are annotated (i.e. typed) as olia:PersonalPronoun

are possible, regardless of the underlying language or tag set.
All the ontologies are available under an open license.24

21 http://purl.org/olia
22 http://purl.org/olia/penn.owl
23 http://olia.nlp2rdf.org/owl/{Penn.java|penn.owl.csv|penn-link.rdf.csv}
24 http://sourceforge.net/projects/olia/

http://purl.org/olia/penn.owl#DT
http://purl.org/olia/penn.owl#DT
http://purl.org/olia
http://purl.org/olia/penn.owl
http://sourceforge.net/projects/olia/

108 S. Hellmann et al.

4.3 RDFaCE

RDFaCE (RDFa Content Editor)25 [10] is a rich text editor that supports WYSI-
WYM (What-You-See-Is-What-You-Mean) authoring including various views of
the semantically enriched textual content. One of the main features of RDFaCE
is combining the results of different NLP APIs for automatic content annota-
tion. The main challenge here is the heterogeneity of the existing NLP APIs
in terms of API access, URI generation and output data structure. Different
NLP APIs use different URL parameter identifiers such as content, text, lookup-
Text etc. to indicate the input for the REST API. Furthermore, for identifying
the discovered entities they use either their own URI schemes such as: http://
d.opencalais.com/genericHasher-1/e7385008-0856-3afc-a40f-0000dcd27ded

http://api.evri.com/v1/organization/university-of-leipzig-0xbdb4d

or external URIs such as:
http://dbpedia.org/resource/University of Leipzig

http://mpii.de/yago/resource/University of Leipzig

Another important issue is that each API returns different properties with dif-
ferent identifiers and in a different structure.

To cope with these heterogeneity issues, RDFaCE uses a server-side proxy. At
first, the proxy handled the access heterogeneity by hard coding the input pa-
rameters and connection requirements of each individual API. After implement-
ing NIF, the integration process was simplified to a great extent by abstracting
the diversity of different NLP APIs and introducing an interoperability layer.
Adding new NLP APIs to RDFaCE became straightforward and additional ef-
forts to handle heterogeneity between different data formats were removed.

5 Evaluation

5.1 Quantitative Analysis with Google Wikilinks Corpus

To evaluate NIF against other formats for modeling NLP annotations as RDF,
we converted the Wikilinks Corpus [16] to linked data using NIF.

The Wikilinks Corpus. The Google Wikilinks Corpus26 is a large scale corpus,
which collects found hyperlinks to Wikipedia from text fragments gathered from
over 3 million web sites. Every item consist of the website URI of the crawled sites
and a number of mentions, including the English Wikipedia link, the hyperlink
anchor text, its byte offset and in most cases a context string, i.e. suffix and prefix
around the anchor of variable length. With over 3 million items and 40 million
mentions it surpasses most free corpora by far and serves as a very good testbed
for measuring scalability of RDF as well as performance of NER Disambiguation
tools in a noisy and multi-domain environment.

Conversion to NIF and Hosting as Linked Data. 15% of the items did
not contain any mention with context strings and where therefore omitted. Ev-
ery mention was then converted into two resources, a nif:Context resource

25 http://aksw.org/Projects/RDFaCE
26 We used the https://code.google.com/p/wiki-link/wiki/ExpandedDataset

http://d.opencalais.com/genericHasher-1/e7385008-0856-3afc-a40f-0000dcd27ded
http://d.opencalais.com/genericHasher-1/e7385008-0856-3afc-a40f-0000dcd27ded
http://aksw.org/Projects/RDFaCE
https://code.google.com/p/wiki-link/wiki/ExpandedDataset

Integrating NLP Using Linked Data 109

Table 1. Comparison of triple count and minted URIs. Percentage relative to NS.
(NS=NIF Simple, NSI=NIF Simple Ideal, NSTAN=NIF Stanbol, NSTANI=NIF Stan-
bol Ideal, OA = Open Annotation, UC = UIMA Clerezza).

NS NSI NSTAN NSTANI OA UC
triples 477 250 589 316 311 355 511 220 514 350 281 280 577 488 725 607 563 176
generated URIs 76 850 241 42 880 316 110 820 166 76 850 241 169 849 625 189 342 046
percentage 100% 66.28% 107.12% 73.40% 121.00% 127.30%
percentage URIs 100% 55.79% 144.2% 100% 221.01% 246.38%

for each context string and the mention resource itself with nif:beginIndex,
nif:endIndex, itsrdf:taIdentRef and nif:referenceContext. The created
context resource was then linked via nif:broaderContext to a URI of the
form:27 http://wiki-link.nlp2rdf.org/api.php?uri=$websiteURI#char=0,
The corpus resulted in 10,526,423 files hosted in an Apache2 file system28 and
a 5.6 GB turtle dump (37.8 GB uncompressed, original size 5.3 GB / 18 GB).
Table 1 gives a comparison of created triples and URIs by different profiles as
well as OA and UIMA Clerezza29 . Because we only have text snippets for each
mention, we were forced to create one context resource per mention. If the whole
plain text of the website were available (as according to the creators is planned
in the near future), NIF could further reduce the number of triples to 66.28%
(NSI), by using the whole document text as context. This is not the underspec-
ified variant, which would even cause another large reduction of triples.

5.2 Questionnaire and Developers Study for NIF 1.0

With NLP2RDF30, we provide reference implementations and demo showcases
to create a community around NIF and support its adoption.

NLP tools can be integrated using NIF, if an adapter is created, that is able
to parse a NIF Model into the internal data structure and also to output the
NIF as a serialization. The effort for this integration is usually very low; just a
parser and a serializer have to be written. An NLP pipeline can then be formed
by either passing the NIF RDF Model from tool to tool (sequential execution)
or passing the text to each tool and then merge the NIF output to a large model
(parallel execution). After the release of NIF version 1.0 in November 201131 a
total of 30 implementations for different NLP tools and converters were created
(8 by the authors, including Wiki-link corpus, 13 by people participating in our
survey and 9 more, we have heard of). In 2011, we performed a first round of
the NIF developer study by assigning the task of developing NIF 1.0 wrappers
for 6 popular NLP tools to 6 postgraduate students at our institute. Wrappers
were developed for UIMA, GATE-ANNIE, Mallet, MontyLingua, OpenNLP and

27 E.g. http://wiki-link.nlp2rdf.org/api.php?uri=http://phish.net/song/
on-green-dolphin-street/history#char=0,

28 http://wiki-link.nlp2rdf.org/
29 NS was generated, all others calculated based on

http://persistence.uni-leipzig.org/nlp2rdf/doc/wikilink-stats.txt
30 https://github.com/NLP2RDF
31 http://nlp2rdf.org/nif-1-0/

http://wiki-link.nlp2rdf.org/api.php?uri=http://phish.net/song/on-green-dolphin-street/history#char=0,
http://wiki-link.nlp2rdf.org/api.php?uri=http://phish.net/song/on-green-dolphin-street/history#char=0,
http://wiki-link.nlp2rdf.org/
http://persistence.uni-leipzig.org/nlp2rdf/doc/wikilink-stats.txt
https://github.com/NLP2RDF
http://nlp2rdf.org/nif-1-0/

110 S. Hellmann et al.

DBpedia Spotlight (first six lines of Table 2). The remaining entries were created
in 2012 and 2013 by adopters of NIF 1.0, some even already implementing a draft
version of 2.0. Table 2 summarizes the results of our NIF developer study.

The first columns contain the self-assessment of the developers regarding their
experience in Semantic Web, NLP, Web Services and application development
frameworks on a scale from 1 (no experience) to 5 (very experienced). The middle
columns summarize the required development effort in hours including learning
the NLP tool, learning NIF and performing the complete wrapper implemen-
tation. The development effort in hours (ranging between 3 and 40 hours) as
well as the number of code lines (ranging between 110 and 445) suggest, that
the implementation of NIF wrappers is easy and fast for an average developer.
The next section displays the NIF assessment by the developers regarding their
experience during the development with respect to the adequacy of the general
NIF framework, the coverage of the provided ontologies and the required ex-
tensibility. All developers were able to map the internal data structure to the
NIF URIs to serialize RDF output (Adequacy). Although NIF did not provide a
NLP Domain Ontology for Mallet the developer was able to create a compatible
OWL Ontology to represent Topic Models. Both UIMA, GATE and Stanbol are
extensible frameworks and NIF was currently not able to provide NLP domain
ontologies for all possible domains, but only for the used plugins in this study.
After inspecting the software the developers agreed however that NIF is general
enough and adequate to provide a generic RDF output based on NIF using lit-
eral objects for annotations. In case of the UIMA Clerezza consumer an RDF
serializer already exists and we have compared potential output in Section 5.1.

Finally, the last section contains an assessment of the NIF approach by the de-
velopers regarding the perceived scalability, interoperability, quality of the doc-
umentation, the usefulness of the reference implementation, the learning curve
/ entrance barrier and the performance overhead on a scale from 1 (low) to 5
(very high). The results32 suggest, that NIF lives up to its promise of ease-of-use
and increased interoperability and is generally perceived positive by developers.

5.3 Qualitative Comparison with Other Frameworks and Formats

In [9], the Graph Annotation Framework (GrAF) was used to bridge the models
of UIMA and GATE. GrAF is the XML serialization of the Linguistic Anno-
tation Framework (LAF) and has recently been standardized by ISO. GrAF
is meant to serve as a pivot format for conversion of different annotation for-
mats and is able to allow a structural mapping between annotation structures.
GrAF is similar to the Open Annotation effort. Extremely Annotational RDF
Markup (EARMARK, [12]) is a stand-off format to annotate text with markup
(XML, XHTML) and represent the markup in RDF including overlapping an-
notations. The main method to address content is via ranges that are similar to
the NIF URI scheme. TELIX [14] extends SKOS-XL33 and suggests RDFa as

32 More data at http://svn.aksw.org/papers/2013/ISWC_NIF/public/devstudy.pdf
33 http://www.w3.org/TR/skos-reference/skos-xl.html

http://svn.aksw.org/papers/2013/ISWC_NIF/public/devstudy.pdf
http://www.w3.org/TR/skos-reference/skos-xl.html

Integrating NLP Using Linked Data 111

Table 2. Results of the NIF developer case study

Tool D
e
v
e
lo

p
e
r

T
y
p
e

S
W

N
L
P

W
e
b

S
e
r
v
ic
e
s

F
r
a
m

e
w
o
r
k
s

E
ff
o
r
t
(h

)

T
o
o
l

N
IF

Im
p
le
m

e
n
ta

ti
o
n

L
o
C

L
a
n
g

A
d
e
q
u
a
c
y

C
o
v
e
r
a
g
e

N
IF

E
x
te

n
s
io

n

S
c
a
la
b
il
it
y

In
te

r
o
p
e
r
a
b
il
it
y

D
o
c
u
m

e
n
ta

ti
o
n

R
e
fe
r
e
n
c
e

Im
p
l.

E
n
tr

a
n
c
e

b
a
r
r
.

P
e
r
f.

o
v
e
r
h
e
a
d

UIMA MB w 3 2 3 4 35 20 5 10 271 Java � no (�for POS) n.a. 2 4 4 5 3 2
GATE DC w 4 1 4 4 20 3 5 14 445 Java � no (�for POS) n.a. 4 5 4 5 3 2
Mallet MA w 1 4 2 3 40 4 8 28 400 Java � no (NIF 1.0) � 3 4 3 5 4 3
MontyLingua MN w 4 1 4 2 25 4 3 18 252 Python � � n.a. 4 4 5 - 3 3
Spotlight RS w 3 3 5 1 20 4 4 12 110 Node-JS � no (NIF 1.0) � 4 5 4 5 4 3
OpenNLP MB w 3 2 3 4 3/8 1 0* 2 267 Java � no (NIF 1.0) � 2 4 4 5 3 2
OpenCalais AL w 4 4 3 4 32 6 6 20 201 PHP � no (NIF 1.0) � 3 3 4 5 4 3
Zemanta MV w 3 4 4 4 24 1 3 20 235 Python � � n.a. 3 4 3 5 4 3
SemanticQuran MS w 4 3 2 2 25 1 6 18 500 Java � � n.a. 5 5 4 5 4 2
ITS2NIF FS w 3 3 3 3 20 7 7 6 72 XSLT � � n.a. 3 3 3 3 1 3
THD MD w 4 2 5 3 20 7 8 5 300 Java � no � 3 4 2 2 3 3
STANBOL RW w/i 5 4 4 4 28 ? 8 20 400 Java � no ∼ ? ? 3 ? 2 2
Spotlight MN i 4 2 4 3 24 8 1 15 212 Scala � � n.a. 4 4 3 4 3 2
Coat SL i 2 1 2 4 165 10 5 150 - Java � � n.a. 3 - 3 - 3 -
DrugExractor AK w 4 5 4 4 16 1 5 10 30 Java ∼ no � 3 3 4 - 1 -

annotation format. We were unable to investigate TELIX in detail, because nei-
ther an implementation nor proper documentation was provided. In Section 4.1,
we have argued already that RDFa is not a suitable format for NLP annotations
in general. The usage of SKOS-XL by TELIX only covers a very small part
of NLP annotations, i.e. lexical entities. With the early Tipster and the more
modern UIMA [6], GATE [5], Ellogon, Heart-of-Gold and OpenNLP34 a num-
ber of comprehensive NLP frameworks already exist. NIF, however, focuses on
interchange, interoperability as well as decentralization and is complementary to
existing frameworks. Ultimately, NIF rather aims at establishing an ecosystem
of interoperable NLP tools and services (including the ones mentioned above)
instead of creating yet another monolithic (Java-)framework. By being directly
based on RDF, Linked Data and ontologies, NIF also comprises crucial features
such as annotation type inheritance and alternative annotations, which are cum-
bersome to implement or not available in other NLP frameworks [15]. With
its focus on conceptual and access interoperability NIF also facilitates language
resource and access structure interchangeability, which is hard to realize with
existing frameworks. NIF does not aim at replacing NLP frameworks, which are
tailored for high-performance throughput of terabytes of text; it rather aims to
ease access to the growing availability of heterogeneous NLP web services as, for
example, already provided by Zemanta and Open Calais.

6 Lessons Learned, Conclusions and Future Work

Lessons Learned. Our evaluation of NIF since the publication of NIF 1.0
in the developers study has been accompanied by extensive feedback from the
individual developers and it was possible to increase ontological coverage of

34 http://opennlp.apache.org

http://opennlp.apache.org

112 S. Hellmann et al.

NLP annotations in version 2.0, especially with the ITS 2.0 / RDF Ontology,
NERD [13], FISE and many more ontologies that were available. Topics that
dominated discussions were scalability, reusability, open licenses and persistence
of identifiers. Consensus among developers was that RDF can hardly be used
efficiently for NLP in the internal structure of a framework, but is valuable
for exchange and integration. The implementation by Apache Stanbol offered a
promising perspective on this issue as they increased scalability by transforming
the identifiers used in OLiA into efficient Java code structures (enums). Hard-
compiling ontological identifiers into the type systems of Gate and UIMA seems
like a promising endeavour to unite the Semantic Web benefits with the scala-
bility requirements of NLP. A major problem in the area remains the URI per-
sistence. Since 2011 almost all of the mentioned ontologies either changed their
namespace and hosting (OLiA and NIF itself) or might still need to change
(Lemon, FISE), which renders most of the hard-coded implementations useless.

Conclusions. In this article, we presented the NIF 2.0 specification and how
it was derived from NLP tool chain integration use cases. NIF is already used
in a variety of scenarios, which we described in the article. We conducted an
evaluation by applying NIF to a large NLP corpus, which we provide as Linked
Data for further re-use. Furthermore, a developer use case study shows that NIF
wrappers can be implemented in one week and the specification has sufficient
coverage to wrap the output of existing NLP tools. Overall our study has also
shown that ontologies are a good way to achieve interoperability across different
programs and programming languages.

Future Work. The NIF/NLP2RDF project can be seen as an umbrella project
creating bridges between different communities to achieve interoperability in the
NLP domain via ontologies. The currently active and fruitful collaborations such
as Stanbol, Spotlight, Open Annotation, ITS, OLiA, NERD are yet mostly cen-
tered on stakeholders from the Semantic Web. With the soon-to-start LIDER
EU project, NLP2RDF will outreach to core NLP projects such as CLARIN,
ELRA and LanguageGrid.35 Identifying incentives relevant for stakeholders out-
side the Semantic Web community remains an open challenge as in this initial
phase NIF focused primarily on middleware interfaces and not directly on end
user problems. We will investigate existing (and hopefully directly reusable) ap-
proaches on Semantic Web workflows such as SADI, Taverna and WSMO-Lite.36

A NIF workflow, however, can obviously not provide any better performance (F-
measure, efficiency) than a properly configured UIMA or GATE pipeline with
the same components. NIF targets and benefits developers in terms of entry
barrier, data integration, reusability of tools, conceptualisation and off-the-shelf
solutions. Early adoption of open-source as well as industry projects is manifest-
ing, but an exhaustive overview and a machine-readable collection of available
implementations and deployments is yet missing.

35 http://www.clarin.eu/node/3637 , http://elra.info, http://langrid.org
36 http://sadiframework.org, http://www.taverna.org.uk,

http://www.w3.org/Submission/WSMO-Lite

http://www.clarin.eu/node/3637
http://elra.info
http://langrid.org
http://sadiframework.org
http://www.taverna.org.uk
http://www.w3.org/Submission/WSMO-Lite

Integrating NLP Using Linked Data 113

Acknowledgments. We especially thank all contributors to NIF. The list is
really large and will be maintained at http://persistence.uni-leipzig.org/
nlp2rdf/ This work was supported by grants from the European Union’s 7th
Framework Programme provided for the projects LOD2 (GA no. 257943) and
GeoKnow (GA no. 318159).

References

1. Auer, S., Hellmann, S.: The web of data: Decentralized, collaborative, interlinked
and interoperable. In: LREC (2012)

2. Chiarcos, C.: Ontologies of linguistic annotation: Survey and perspectives. In:
LREC. European Language Resources Association (2012)

3. Chiarcos, C., Ritz, J., Stede, M.: By all these lovely tokens... merging conflicting
tokenizations. Language Resources and Evaluation 46(1), 53–74 (2012)

4. Ciccarese, P., Ocana, M., Garcia Castro, L., Das, S., Clark, T.: An open annotation
ontology for science on web 3.0. Biomedical Semantics 2, S4+ (2011)

5. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A framework
and graphical development environment for robust NLP tools and applications. In:
ACL (2002)

6. Ferrucci, D., Lally, A.: UIMA: An architectural approach to unstructured infor-
mation processing in the corporate research environment. Natural Language Engi-
neering 10(3/4), 327–348 (2004)

7. Hellmann, S., Lehmann, J., Auer, S.: Linked-data aware uri schemes for referencing
text fragments. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H.,
d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012.
LNCS, vol. 7603, pp. 175–184. Springer, Heidelberg (2012)

8. Hellmann, S., Lehmann, J., Auer, S., Nitzschke, M.: Nif combinator: Combining
NLP tool output. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H.,
d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012.
LNCS, vol. 7603, pp. 446–449. Springer, Heidelberg (2012)

9. Ide, N., Suderman, K.: Bridging the Gaps: Interoperability for Language Engineer-
ing Architectures using GrAF. LRE Journal 46(1), 75–89 (2012)

10. Khalili, A., Auer, S., Hladky, D.: The rdfa content editor - from wysiwyg to wysi-
wym. In: COMPSAC (2012)

11. Mendes, P., Jakob, M., Garćıa-Silva, A., Bizer, C.: Dbpedia spotlight: Shedding
light on the web of documents. In: I-Semantics (2011)

12. Peroni, S., Vitali, F.: Annotations with earmark for arbitrary, overlapping and out-
of order markup. In: Borghoff, U.M., Chidlovskii, B. (eds.) ACM Symposium on
Document Engineering, pp. 171–180. ACM (2009)

13. Rizzo, G., Troncy, R., Hellmann, S., Bruemmer, M.: NERD meets NIF: Lifting
NLP extraction results to the linked data cloud. In: LDOW (2012)

14. Rubiera, E., Polo, L., Berrueta, D., El Ghali, A.: TELIX: An RDF-based model for
linguistic annotation. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti,
V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 195–209. Springer, Heidelberg (2012)

15. Schierle, M.: Language Engineering for Information Extraction. Phd thesis, Uni-
versität Leipzig (2011)

16. Singh, S., Subramanya, A., Pereira, F., McCallum, A.: Wikilinks: A large-scale
cross-document coreference corpus labeled via links to Wikipedia. Technical Report
UM-CS-2012-015 (2012)

17. Tobies, S.: Complexity results and practical algorithms for logics in knowledge
representation. PhD thesis, TU Dresden (2001)

http://persistence.uni-leipzig.org/nlp2rdf/
http://persistence.uni-leipzig.org/nlp2rdf/

	Integrating NLP Using Linked Data
	1Introduction
	2Requirements for NLP Integration
	3 NIF Format
	3.1URI Schemes
	3.2NIF Core Ontology
	3.3Workflows, Modularity and Extensibility of NIF

	4Use Cases for NIF
	4.1 Internationalization Tag Set 2.0
	4.2OLiA
	4.3RDFaCE

	5Evaluation
	5.1Quantitative Analysis with Google Wikilinks Corpus
	5.2Questionnaire and Developers Study for NIF 1.0
	5.3Qualitative Comparison with Other Frameworks and Formats

	6Lessons Learned, Conclusions and Future Work
	References

