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Abstract

In outpatient chemotherapy, nurses administer the drugs in two steps. In the first few 

minutes of each appointment, a nurse prepares the patient for infusion (drug admin-

istration). During the remainder of the appointment, the patient is monitored by 

nurses and if needed taken care of. One nurse must be assigned to prepare the patient 

and set up the infusion device. However, a nurse who is not busy setting up may 

simultaneously monitor up to a certain number of patients who are already receiv-

ing infusion. The prescribed infusion durations are significantly different among the 

patients on a day at a clinic. We formulate this problem as a multi-criterion mixed 

integer program. The appointments should be scheduled with start times close to 

patients’ ready times, balanced workload among nurses, few nurse changes during 

appointments, and few nurse full-time equivalent (FTE) assigned to the schedule of 

the day. As the number of nurse FTEs is an output of the model rather than a fixed 

input, the clinic can use the nursing capacity more efficiently, i.e., with less labor 

cost. We develop a 3-stage heuristic for finding criterion points with the minimum 

weighted average deferring time of appointments for the minimum feasible num-

ber of nurse FTEs or a desired value above that. By not constraining the number of 

chairs or beds, we can find solutions with better (dominating) criterion points. Drug 

preparation, oncologist visit, and the laboratory test can be scheduled based on the 

drug administration appointment start time. Thus, the drug administration resources 

are efficiently used with desirable performance in taking the interests and require-

ments of various stakeholders into consideration: patients, nurses, oncologists, phar-

macy, and the clinic.
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1 Introduction

Cancer is the first cause of death in The Netherlands (CBS 2016) and the second 

cause of death in the European Union after circulatory system diseases. Over 1.29 

million people died from cancer in the 28 European Union countries in 2013: 26% 

of total deaths—30% of total deaths in The Netherlands. According to the World 

Health Organization fact sheets, 8.8 million people died from cancer worldwide in 

2015, and the annual economic cost of cancer in 2010 was estimated about US$1.6 

trillion (WHO 2015). The International Agency for Research on Cancer forecasts 

about 24 million patients to have cancer in 2035 (IARC 2017).

In modern medicine, chemotherapy is a common cancer treatment procedure next 

to surgery and radiotherapy. Chemotherapy drugs kill rapidly dividing cells, and 

cancerous cells divide rapidly. However, some healthy cells also divide rapidly, even 

in adults, such as bone marrow cells, the gastrointestinal tract, and hair follicles. 

Hence, chemotherapy is planned in multiple drug administration installments over 

several months.

For every installment, the patient goes through the 5-step process shown in 

Fig. 1. Based on the laboratory results, the oncologist authorizes drug administra-

tion. If the laboratory results are satisfactory, the pharmacy prepares the drugs, and 

nurses administer the drugs in two steps. In the first few minutes, e.g., 15 min of 

drug administration, a nurse prepares the patient, sets up the infusion pump, and 

connects it to the patient’s body. At every moment thereafter, a nurse monitors the 

flow of drugs and takes care of the patient whenever needed until completion of drug 

administration. For setup, a nurse is exclusively assigned to the patient and does not 

take care of other patients. However, one nurse can simultaneously monitor up to a 

certain number of patients, e.g., 4 patients. At every moment, a patient is monitored 

by exactly one nurse, but the nurse who monitors the patient may change during 

drug administration. Contrarily, the same drug administration station—a combina-

tion of a chair or bed and an infusion pump—is allocated for the patient throughout 

the drug administration session. In contrast to the first three steps in Fig. 1, the dura-

tion of drug administration depends on the prescribed regimen, and it varies signifi-

cantly from patient to patient, on a day at a clinic: from 15 min to 8 h (Turkcan et al. 

2012). If the laboratory results are not satisfactory with respect to side effects or 

effectiveness, the oncologist postpones drug administration for a few days or contin-

ues the treatment with another regimen (protocol).

Fig. 1  Operationally relevant steps in outpatient chemotherapy.  Adopted from Hesaraki et al. (2019)
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At oncology clinics, the staffing cost is the second largest cost, preceded by the 

cost of drugs (Liang and Turkcan 2016). A few studies have highlighted the impor-

tance of carefully utilizing the available nursing capacity in outpatient chemother-

apy (e.g., Griffin 2014; Woodall et  al. 2013). Tasks have to be carefully assigned 

to nurses in chemotherapy to efficiently use the available capacity while maintain-

ing treatment effectiveness and quality of service. To that end, we focus on the last 

two steps in Fig. 1 (setting up and monitoring) to optimize the drug administration 

schedule while taking the time requirements of patients, pharmacy, and oncologists 

into consideration. Thus, the three prior steps for each patient are scheduled based 

on the drug administration appointment (Hesaraki et al. 2019). With a multi-objec-

tive formulation, we reach a trade-off among the interests of patients, nurses, and the 

clinic. The model we propose can be incorporated in different settings in spite of the 

precedence among the five consecutive steps in Fig. 1. The order in which informa-

tion becomes available and scheduling decisions can be made is indicated in Fig. 2. 

It starts with time requirements and appointment requests. For further descriptions 

of the chemotherapy process and brief literature reviews of scheduling outpatient 

chemotherapy appointments, we refer the reader to Turkcan et al. (2012), Liang and 

Turkcan (2016), and Hesaraki et al. (2019).

In a prior study (Hesaraki et  al. 2019), we propose a bicriterion mixed integer 

programming (MIP) model to generate appointment templates that can be used for 

the online scheduling of outpatient chemotherapy. The two criteria are flowtime and 

makespan, which pertain to having appointments started and ended as early as possi-

ble for the sake of patients and nurses, respectively. In this paper, we develop a quad-

criterion MIP model for offline scheduling of outpatient chemotherapy. However, as 

Fig. 2  Order in which information becomes available and scheduling decisions can be made: starting 

with time requirements and appointment requests
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information about all patients to be treated on an intended day is available a priori 

in offline scheduling, nurse assignment is integrated with appointment scheduling 

in this model. If the nurse task is scheduled consecutively after the appointment 

is scheduled, it will in general be inferior with respect to the optimization criteria. 

This is due to the exclusion of many solutions from the search space. In this paper, 

we focus on appointment scheduling in contrast to capacity allocation (Schütz and 

Kolisch 2012), which is done in the online day planning stage of Fig. 3, where the 

appointment days are decided as requests arrive (e.g., Gocgun and Puterman 2014).

Liang and Turkcan (2016) give two separate and independent bicriterion models 

for functional and primary methods of delivering care in outpatient chemotherapy, 

which also focus on drug administration. A criterion common between their two 

models is the overtime. The other criteria that they consider are the direct waiting 

time and excess workload for the functional and primary models, respectively. How-

ever, they assume that the time that the patient is told to arrive at the clinic is already 

given. The waiting time is the time between that and the starting time of the drug 

administration appointment, which they schedule. They also assume that the start 

and end time of the working hours of each nurse on an intended day is already given. 

As a countermeasure for overtime and excess workload, their model determines the 

time and number of part-time nurses needed in the drug administration schedule. 

However, unlike primary nurses, part-time nurses are not explicitly assigned to indi-

vidual patients. The drug preparation step is assumed to be included in the given 

appointment time.

Our model explicitly assigns nurses to patients, for all staffing ranks, e.g., full 

time, part-time, and primary, who are affiliated with the clinic and available on an 

intended day. The task schedule specifies at each timeslot of every drug administra-

tion appointment at each station, the setting up or monitoring task and the nurse 

assigned that task. The full-time equivalent (FTE) of nurses in the schedule can be 

adjusted to a desired feasible level. When a nurse takes over the monitoring of a 

patient from another nurse, a nurse change has taken place. The model is formulated 

to minimize the workload imbalance among nurses and the number of nurse changes 

during appointments. Allowing very few during-appointment nurse changes, in gen-

eral, has higher utilization than assigning the same nurse for the entire appointment. 

Since the prior steps are scheduled based on the time of drug administration, our 

model eliminates unnecessary waiting time. Appointments are scheduled as early 

as possible during the day, which is desirable for chemotherapy patients (Lau et al. 

Fig. 3  Online versus offline appointment scheduling
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2014). We develop a 3-stage heuristic to find trade-off solutions between workload 

imbalance among nurses and number of nurse changes for minimum deferring time 

of appointments with a chosen number of nurse FTEs in the schedule. These crite-

rion points can serve as feasible solutions for warm starting the search to find other 

criterion points that are on efficient frontiers.

2  Problem and model formulation

In the problem that we consider, drug administration appointments have to be sched-

uled offline for a specific day and for a known group of P patients with the required 

appointment durations lp , p = 1,… , P on that day. This problem is associated with 

the single batch arrival process outlined by Gupta and Denton (2008): appointment 

scheduling decisions are not made until after observing all demand for a day; inter-

arrival times are irrelevant. We make a few assumptions in developing our model. 

We assume that the uncertainty in appointment durations is taken into account by 

time buffers. Extra time is included at the end of each appointment to avoid delays 

for subsequent appointments while not resulting in a significant amount of idle time. 

Moreover, we assume that patients are available to have their drug administration 

at the start of the scheduled appointments, i.e., there are no late arrivals and delays. 

Preemption is not allowed, and we consider all stations identical. We also assume 

that there is no precedence among drug administration appointments.

Time is divided into timeslots of a fixed number of time units, e.g., 15 min. Thus, 

the opening hours of the clinic consist of T timeslots ( t = 1,… , T  ). Timeslot t is the 

time interval (t − 1, t] . All appointment durations are integer numbers of timeslots. 

The first timeslot of the appointment duration of every patient is always scheduled 

for setup, and the subsequent timeslots are scheduled for monitoring the infusion 

progress. A patient with an appointment duration of one timeslot only has a setup 

timeslot in the schedule and no monitoring period. We assume that removing a 

patient from a station at the end of the appointment takes a small fraction of a times-

lot duration, and it can be done as a monitoring task.

In solving the offline scheduling problem, we have to consider conflicting objec-

tives. On the one hand, we have to take into account the patients’ time requirements 

or preferences, and on the other hand, we need high resource utilization given the 

scarcity of trained nurses. In our model, we refer the earliest time that patient p can 

and is willing to have the appointment on the day of the schedule, as the patient’s 

ready time. The ready time is the end of timeslot r
p
 in Fig. 4, and it is by default 

zero. However, if for whatever reason such as having another appointment, drug 

preparation requirements, oncologist unavailability, or commuting arrangements, 

the drug administration appointment cannot be scheduled before some time, then 

the ready time has a positive value ( 0 < rp ⩽ T − lp ). Let s
p
 be the setup timeslot 

scheduled for patient p. Then, the appointment start time is s
p
− 1 . During the time 

between the ready time and the start time, the appointment had the opportunity 

to start but was deferred. We therefore refer to this period as the deferring time: 

�
p
∶=s

p
− r

p
− 1 . We consider this quantity because of chemotherapy patients’ gen-

eral preference to have their infusions as early during the day as possible (Lau et al. 
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2014). The time that the patient is in the clinic but involuntarily does not receive any 

service is the direct waiting time. When the patient is already in the clinic because 

of a prior appointment, the deferring time is a direct waiting time as well. For exam-

ple, if the oncologist visit has to be scheduled no later than 11:00 h and the drug 

administration appointment is scheduled at 15:00  h, there will be a long waiting 

time for the patient. In contrast, some appointments may have a limiting finite due 

time dp ⩽ T − 1 because of follow-up procedures or patients’ preferences. Unless 

otherwise stated, each appointment has a zero ready time and an infinite due time: 

rp = 0, dp = ∞.

It may also be desirable to have the appointments of certain patients scheduled 

with higher priority than others, closer to their ready times. For their appointments, 

the pharmacy or treating oncologist has less flexibility in scheduling their respec-

tive steps (Fig.  2). Hence, they indicate a ready time for the drug administration 

appointment, and by scheduling the appointment as close as possible to the ready 

time, there will be little direct waiting time for the patient. These priorities are for-

mulated as weighted deferring times in the objective function. We consider two pri-

ority levels for the appointments: high and normal. These priorities are imposed by 

weights w
p
 . The priority indicates the level of requirement for the appointment to 

start as close as possible to its ready time. The appointment start time ( s
p
− 1 ) rather 

than its completion time ( Cp ) is therefore more indicative of respecting the appoint-

ment priorities.

In our model, the number of stations is a decision variable, and we assume that the 

clinic has a sufficient number of stations to accommodate the appointments subject to 

constraints imposed on other decision variables. Nevertheless, as we will demonstrate 

in Sect. 4, the model can be used by fixing the number of stations to a constant value. 

This will compromise the objective criteria, if not rendering the model infeasible for the 

given set of patients. We further assume that the cost of stations is insignificant; there-

fore, we do not include it among the objective criteria. The patient stays at the same 

station during the entire drug administration appointment (setup and monitoring). In 

the first timeslot of the appointment, one nurse prepares the patient and sets the station 

up. Thereafter, a nurse monitors the patient; that nurse may simultaneously monitor 

up to M patients who are receiving treatment. During both setting up and monitoring 

of each patient, only one nurse is assigned for the task. Thus, at every moment a nurse 

who is not taking a coffee or lunch break can set up only one station or monitor only up 

Fig. 4  Deferring time.  Adopted from Hesaraki et al. (2019)
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to M patients—but not both at the same time. This requirement is a hard constraint, in 

contrast to soft constraints, which are preferences that could be violated to some extent.

For the intended drug administration schedule, the clinic can choose any number of 

nurses from a set of N nurses who are affiliated with the clinic. We assume that on the 

intended day the remaining nurses of the set can be assigned to other departments of 

the hospital or other oncology clinics under a pooling contract. Hence, there is flexibil-

ity in adjusting the nursing FTE based on the set of patients planned for the day.

2.1  Nurse assignment

In our model, strictly speaking, an assignment A
a
 is a subset of the opening hour times-

lots of the clinic, A
a
⊆ {1,… , T} , where the assigned nurse is available for the setup 

and monitoring tasks. For simplicity, we refer to the assignment by its index a. Dur-

ing the timeslots that are not in an assignment, the assigned nurse is either on a coffee 

or lunch break or not administering drugs in the clinic. Thus, numerous assignments 

can be defined over the opening hours. An assignment can be specified by a T-element 

binary vector. The ones specify the timeslots that the nurse can set up or monitor. We 

assume that A different assignments are defined for the day. Each assignment is speci-

fied in a row of the binary matrix �
A×T

= [h
a,t
]
A×T

 that is an input to the model and its 

elements h
a,t

 are defined as follows:

Each row in �
A×T

 is unique and has to be effectively different from the other assign-

ment vectors. On the one hand, having variety among assignments gives more flexibil-

ity in managing the problem with respect to time criteria, e.g., deferring time. On the 

other hand, with more assignments the problem becomes computationally intractable. 

Any of the A assignments may be chosen for any of the N nurses. However, no nurse 

can get more than one assignment. If T
FTE

 timeslots of work, i.e., excluding breaks, is 

one FTE, then a 1.0 FTE assignment has T
FTE

 ones in its corresponding row in �
A×T

 . 

Thus, for the FTE amount of assignment a, we can write the following:

Hence, the total number of FTEs assigned on the intended day can be written as 

follows:

where n
a
 is the number of nurses who get assignment a, and 

∑A

a=1
n

a
⩽ N.

In general, the assignment matrix �
A×T

 can be an arbitrary A × T  binary matrix. 

Let g be the greatest common divisor among the number of ones in each row, i.e., 

among the total working timeslots available in each assignment:

h
a,t =

{

1, there can be a task (setup or monitor) on assignment a at timeslot t

0, otherwise

FTE
a
∶=

1

TFTE

T
∑

t=1

h
a,t; a = 1,… , A

�FTE∶=

A
∑

a=1

FTE
a
n

a
=

1

TFTE

A
∑

a=1

T
∑

t=1

h
a,tna
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Then, each FTE
a
 can be expressed as an integer multiple of ΔFTE∶=g∕T

FTE
 . More-

over, for every given instance of a patient set, there are a minimum number of FTEs 

needed on the day for a feasible solution: �FTE,min . Hence, in terms of number of 

FTEs, the search space can be partitioned into 1 + (N − �FTE,min)∕ΔFTE discrete 

values ranging from �FTE,min to N for the number of FTEs assigned on the day:

With more assignments, i.e., more rows in �
A×T

 , the optimization prob-

lem becomes larger and possibly intractable when there are several other crite-

ria besides the nurse full-time equivalent assigned to the schedule. Hence, the 

assignments should be carefully defined to have enough variety for flexible and 

efficient use of the nursing capacity with fewer rows in �
A×T

 . To this end, it is 

important to have a large quantized FTE difference, ΔFTE , among assignments so 

that there are few discrete values for �
FTE

 in its partitioning. This can be achieved 

by having the FTE of each assignment equal to a multiple of a value significantly 

greater than 1∕T
FTE

 , e.g., ΔFTE = 0.2 FTE or 0.5 FTE.

For example, let us assume that N = 10 nurses are affiliated with a clinic that 

is open 9 h per day (36 timeslots, 15 min each), and the coffee and lunch breaks 

during the day are 1  h in total. Thus, one full-time equivalent of work is 8  h, 

i.e., T
FTE

= 32 timeslots. We further assume that for a certain batch of patients, 

�FTE,min = 6.5 FTE and each assignment has one of the three durations: 32 times-

lots (1 FTE), 24 timeslots (0.75 FTE), or 16 timeslots (0.5 FTE). In this case, 

we have g = gcd(32, 24, 16) = 8 timeslots, ΔFTE = g∕T
FTE

= 8∕32 = 0.25 FTE. 

Thus, the search space is partitioned into 1 + (10 − 6.5)∕0.25 = 15 distinct values 

in terms of FTE to be assigned on the day.

2.2  Decision variables and the station assignment rule

The overall search space of the problem has six dimensions: patient, nurse, sta-

tion, time, assignment, and task (setting up or monitoring). However, in order 

to reduce the complexity of problem formulation, we eliminate two dimensions 

(indexes). First, we note that setting up and monitoring are the only two tasks, and 

when a setup takes place, the remaining timeslots of the corresponding appoint-

ment are used for monitoring. Thus, rather than which task, it suffices to know 

when setups occur, i.e., the timeslots at which appointments start. Second, since 

all stations are identical, without loss of generality, we define a station assign-

ment rule (SAR): among appointments starting at the same time, a lower indexed 

patient is placed at a lower indexed vacant station. This rule lets us discard the 

station index from the decision variables. We thus define the decision variables 

with indexes for patients, nurses, timeslots, and assignments:

g∶=gcd(TFTEFTE1,… , TFTEFTEA)

�FTE ∈

{

�
i

|
|||
�

i
= �FTE,min + i ⋅ ΔFTE; i = 0, 1,… , (N − �FTE,min)∕ΔFTE

}
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where taking care implies either setting up or monitoring, and p = 1,… , P ; 

n = 1,… , N ; t = 1,… , T  ; a = 1,… , A ; k ∈ ℤ
+ ; �

n
∈ ℝ

+ , and 

vn,a, xp,n,t, yp,n,t, �p,n,t ∈ {0, 1} . There are P appointments on the day with P set-

ups. Each setup requires the nursing capacity of monitoring M patients. Hence, 

the total workload on the day in terms of the equivalent number of monitors is 

M ⋅ P +
∑P

p=1
(lp − 1).

Since preemption is not allowed, using the solution to yp,n,t , the SAR, and the 

appointment durations, we can determine the stations at which appointments take 

place. The tasks are known from the solution to xp,n,t and yp,n,t . Thus, the appoint-

ment schedule and the task schedule are uniquely and simultaneously determined 

with solutions to xp,n,t and yp,n,t in the same integer programming formulation in 

contrast to two separate formulations where the appointment schedule is deter-

mined before the task schedule. Two sets of variables are auxiliary; �
n
 and �p,n,t 

will be used for controlling their corresponding objective criteria, and they are 

not needed for extracting the appointment and task schedules after solving the 

model.

2.3  Scheduling constraints

We impose thirteen sets of constraints to meet the appointment and task schedul-

ing requirements for outpatient chemotherapy drug administration appointments. 

In the constraints, we use the following set of indexes for patient, nurse, and 

timeslot:

To every nurse of the set of N nurses, at most one of the A assignments can be 

given:

An assignment must be given to a nurse who is taking care of a patient:

xp,n,t =

{

1, nurse n takes care of patient p at timeslot t

0, otherwise

yp,n,t =

{

1, nurse n sets-up a station for patient p at timeslot t

0, otherwise

�p,n,t =

{

1, nurse n starts taking care of patient p at timeslot t

0, otherwise

vn,a =

{

1, nurse n works on assignment a

0, otherwise

�n =workload of nurse n in excess of the average workload per FTE

k =number of stations needed for the schedule

P = {1,… , P}, N = {1,… , N}, T = {1,… , T}.

(1)

A
∑

a=1

vn,a ⩽ 1; ∀n ∈ N (assignment constraints)
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There must be one and only one station setup timeslot for each patient:

No appointment can start before the patient’s ready time:

Each appointment must be completed before its due time and the closing time of 

the clinic (T):

The number of appointments running at every moment cannot be more than the 

number of stations allocated for the day:

Setting up a station takes as much nursing capacity as monitoring M patients, and 

the number of appointments running at every moment cannot exceed the total capac-

ity of the assigned nurses:

For every nurse and at every moment, the patients being taken care of cannot 

exceed the individual nursing capacity:

Although the nurses constraints in Eq. (7) can be deduced from the nursing capac-

ity constraints in Eq. (8) by summation over n, we keep both of them for later use in 

developing a 3-stage heuristic, where the criterion space is partitioned for the total 

number of nurse FTEs, �
FTE

 , assigned on the day.

(2)

xp,n,t ⩽

A
∑

a=1

ha,tvn,a; ∀p ∈ P, ∀n ∈ N, ∀t ∈ T (care providing constraints)

(3)

N
∑

n=1

T
∑

t=1

yp,n,t = 1; ∀p ∈ P (setup constraints)

(4)if rp > 0 then

N
∑

n=1

rp
∑

t=1

yp,n,t = 0 ∀p ∈ P (ready time constraints)

(5)

N
∑

n=1

T
∑

t=1

(t + lp − 1)yp,n,t ⩽ min{dp, T}; ∀p ∈ P (completion time constraints)

(6)

P
∑

p=1

N
∑

n=1

xp,n,t ⩽ k; ∀t ∈ T (station constraints)

(7)

P
∑

p=1

N
∑

n=1

[

xp,n,t + (M − 1)yp,n,t

]

⩽ M

N
∑

n=1

A
∑

a=1

ha,tvn,a; ∀t ∈ T (nurses constraints)

(8)

P
∑

p=1

[

xp,n,t + (M − 1)yp,n,t

]

⩽ M ⋅

A
∑

a=1

ha,tvn,a; ∀n ∈ N, ∀t ∈ T

(nursing capacity constraints)
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For every patient, appointment timeslots must be fixed based on the setup times-

lot. In other words, when a setup takes place for patient p at timeslot t′ , i.e., yp,∙,t� = 1 

where ∙ signifies indifference, that timeslot and the next lp − 1 timeslots must be 

assigned for care providing, i.e., xp,∙,t�⩽t⩽t�+lp−1 = 1 . Therefore, if an appointment is 

running at t, i.e., xp,∙,t = 1 , its setup must have happened between max{1, t − (lp − 1)} 

and t. On the other hand, we can write the following:

Hence, the following set of constraints must hold at every moment for every patient:

For every patient and at every moment of the appointment, more than one nurse 

cannot be assigned:

Constraint (10) limits the number of nurses assigned to a patient at every moment 

only for the care providing variable xp,n,t . Hence, every setup variable must be tied to 

its corresponding care variable to prevent two nurses being assigned during setups:

One nursing FTE has the capacity for handling a maximum workload of T
FTE

M 

monitors. A setup has an equivalent workload of M monitors. We would like to 

divide the total workload of the day among the nurses in proportion to their assign-

ments’ FTEs. Let �  denote the average workload per FTE on the day:

For a nurse n who is assigned to the clinic on the intended day, i.e., 
∑A

a=1
v

n,a > 0 , 

the amount of workload that she should get in an optimally balanced division of 

workload is FTE
a(n)�  , where FTE

a(n) is the amount of FTE of her assignment. We 

would like to minimize the extra workload that nurses get above this balanced share. 

Toward that end, we use the auxiliary variable �
n
∈ ℝ

+ to indicate the workload of 

nurse n in excess of her balanced share:

max{1, t − (lp − 1)} = max{t − (t − 1), t − (lp − 1)} = t − min{t − 1, lp − 1}

(9)

N
∑

n=1

xp,n,t =

N
∑

n=1

min{t−1,lp−1}
∑

i=0

yp,n,t−i; ∀p ∈ P, ∀t ∈ T

(appointment period constraints)

(10)

N
∑

n=1

xp,n,t ⩽ 1; ∀p ∈ P, ∀t ∈ T (one-nurse constraints )

(11)

yp,n,t ⩽ xp,n,t; ∀p ∈ P,∀n ∈ N, ∀t ∈ T (tying setup to care constraints)

�∶=
(M − 1)P +

∑P

p=1
lp

�FTE

=
(M − 1)P +

∑P

p=1
lp

1

TFTE

∑A

a=1

∑T

t=1
ha,tna

=
(M − 1)P +

∑P

p=1
lp

1

TFTE

∑A

a=1

∑T

t=1

∑N

n=1
ha,tvn,a
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In the objective function, we attempt to minimize the overall extra amount of work-

load among nurses, and we obviate the nonlinearity (in v
n,a

 ) of the above constraint, 

using a 3-stage heuristic in Sect. 2.5.

Having the same nurse continuously take care of the patient, as much as possi-

ble, during drug administration is a safety and quality consideration (Condotta and 

Shakhlevich 2014). Using the following constraint, we can count the number of dur-

ing-appointment nurse changes:

where �p,n,t is a binary variable that is one when a nurse starts taking care of a 

patient, except for the setups at the first timeslot of the schedule. In order to count 

the number of during-appointment nurse changes, we exclude setups in the corre-

sponding objective function.

In the following (sub)sections, C
13

 denotes the feasible solutions of the above thir-

teen sets of constraints—Eqs. (1)–(13).

2.4  Scheduling objective criteria

In specialty-care services—in contrast to surgeries and primary care services—the 

preferences of both patients and care providers must be taken into account (Gupta 

and Denton 2008). In the integrated appointment and task scheduling model, we 

incorporate the following objectives:

• reducing the nursing FTE
• reducing the average deferring time of appointments for meeting the patients’ 

time preference and having little direct waiting time
• reducing the workload imbalance among nurses, and
• reducing the number of during-appointment nurse changes to keep the process 

safer and less confusing for both patients and nurses.

Toward that end, we consider the following multi-criterion objective vector:

(12)

extra workload of nurse n ∶= (workload of nurse n)

− (balanced share of workload for nurse n)

ΔWLn ∶= WLn − FTEa(n)� ⩽ �n

P
�

p=1

T
�

t=1

�

xp,n,t + (M − 1)yp,n,t

�

−

�

∑A

a=1
FTEavn,a

��

(M − 1)P +
∑P

p=1
lp

�

1

TFTE

∑A

a=1

∑T

t=1

∑N

n=1
ha,tvn,a

⩽ �n; ∀n ∈ N (workload constraints )

(13)
xp,n,t+1 − xp,n,t ⩽ �p,n,t+1; ∀p ∈ P, ∀n ∈ N;

t = 1,… , T − 1 (nurse change constraints)

(14)“ min ”(� ) = “ min ”
(

fFTE, fDT, fWL, fNC

)
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where the four objective criteria are defined as follows:

We impose two priority levels by weighting deferring times in the objective 

function:

where w
h
∈ ℤ

+⧵{0, 1}.

2.5  Multi‑criterion mixed integer programming

Equations (1)–(14) constitute the multi-criterion mixed integer programming 

(MCMIP) formulation that we consider for scheduling drug administration 

appointments:

This problem does not have any ideal solution in the decision space that opti-

mizes all four criteria. The minimum number of FTEs needed ( �FTE,min ) for sched-

uling the drug administration appointments of a given set of patients can be found 

by relaxing several constraints in C
13

 . Toward that end, we only have to keep the 

constraints pertaining to ready time, completion time, stations, nurse assignment, 

setup, and the monitoring capacity. The reason we can discard the nursing capacity 

constraint is that the nurses constraint imposes the setup and monitoring hard con-

straints, though in an aggregated way. Moreover, since for finding �FTE,min the indi-

vidual nurse assignment is not needed, we can discard the nurse index n from the 

setup variables: yp,t∶=yp,∙,t instead of yp,n,t . Thus, C
13

 can be relaxed to the following 

six sets of constraints, the intersection of which we denote by C
6A

 (Hesaraki et al. 

(2019) use a set of constraints similar to C
6A

 with a fixed clinic capacity to generate 

appointment templates for online scheduling.):

fFTE∶=

N�
n=1

A�
a=1

FTEavn,a (FTE)

fDT∶=
1∑P

p=1
wp

�P

p=1

�N

n=1

�T

t=1
wp ⋅

�
t − 1 − rp

�
yp,n,t (weighted average deferring time)

fWL∶=

N�
n=1

�n (workload imbalance)

fNC∶=

�
P�

p=1

N�
n=1

T�
t=1

�p,n,t

�
−

⎛⎜⎜⎜⎜⎜⎝

P −

N�
n=1

A�
a=1

ha,1vn,a

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
setups at t=1

⎞
⎟⎟⎟⎟⎟⎠

(nurse change)

wp =

{

wh, patient p has high priority

1, otherwise

(15)MCMIP: “ min ”

{(
fFTE, fDT, fWL, fNC

)|||
C13

}
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where in the last two sets of constraints 
∑t

t�=max{1,t−lp+1}
yp,t� indicates whether patient 

p is taken care of at t. The following two variable conversions were used to reach C
6A

 

from C
13

:

Hence, the least number of FTEs needed for the given set of patients can be found 

by solving the following single objective integer program:

Although finding all nondominated points in the criterion space would be interest-

ing from a combinatorial optimization point of view, many of them are not accept-

able from an operations management perspective. For efficient use of resources, 

it does not make sense to use a substantial extra number of FTEs above the bare 

minimum needed for a feasible solution. We therefore consider up to 1.0 extra FTE 

above �FTE,min (though it can be a higher value, e.g., 2.5 FTE, at a higher computa-

tional cost with lower nurse utilization). Thus, the search space is partitioned into 

I = 1 + 1∕ΔFTE discrete values for the total number of FTEs to be considered for 

the intended day:

A�
a=1

vn,a ⩽ 1; ∀n ∈ N (assignment, C6A)

T�
t=1

yp,t = 1; ∀p ∈ P (setup, C6A)

if rp > 0 then

rp�
t=1

yp,t = 0; ∀p ∈ P (ready time, C6A)

T�
t=1

(t + lp − 1)yp,t ⩽ min{dp, T}; ∀p ∈ P (completion time, C6A)

P�
p=1

t�
t�=max{1,t−lp+1}

yp,t� ⩽ k; ∀t ∈ T (station, C6A)

P�
p=1

⎡⎢⎢⎣
(M − 1)yp,t +

t�
t�=max{1,t−lp+1}

yp,t�

⎤⎥⎥⎦
⩽ M

N�
n=1

A�
a=1

ha,tvn,a; ∀t ∈ T (nurses, C6A)

(16)

N
∑

n=1

yp,n,t =yp,t

(17)

N
∑

n=1

xp,n,t =

N
∑

n=1

t
∑

t�=max{1,t−lp+1}

yp,n,t� =

t
∑

t�=max{1,t−lp+1}

yp,t�

IP1: �FTE,min∶=min
(
fFTE

|
|C6A

)

�FTE ∈

{

�
i

|
|
|
|
�

i
= �FTE,min + i ⋅ ΔFTE; i = 0, 1,… , 1∕ΔFTE

}
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where 1∕ΔFTE ∈ ℤ
+⧵{0} is a constant that is determined from the assignment 

matrix �
A×T

 as explained in Sect. 2.1. The FTE partitions can be explored by adding 

the following constraint to the formulation for only one value of i at a time:

When searching within partition F
i
 , the MCMIP in Eq. (15) is reduced to the 

following:

Knowing the �
i
 number of FTEs being assigned to the schedule, we can now 

calculate the average workload per FTE :

Unlike f
FTE

 that can be equal to only I values ranging from �FTE,min to N, f
DT

 can 

have one of many discrete values. The increment between consecutive values can 

be as small as 1/P, which corresponds to one timeslot reduction in the total defer-

ring time of P patients. For example, for P = 50 patients all with normal priority 

( w
p
= 1 ) in a 15-min timeslot setting, the difference between two f

DT
 values can 

be as small as 1∕50 × 15 × 60 = 18 s, which is quite insignificant in the context of 

deferring time. Therefore, searching over partitions of fixed f
DT

 is not computation-

ally efficient. However, within an F
i
 partition it would be interesting to consider 

the criterion points with the minimum weighted average deferring time, denoted by 

�̄min,i
 . We can find these points by solving the following single objective integer 

program:

Then, we add the following constraint to the reduced MCMIP of Eq. (18):

Hence, the MCMIP is further reduced to the following bicriterion mixed integer 

program:

For solving the MCMIP in Eq. (21), we can use the weighted sum method (Ehrgott 

2005) with various convex combinations of the two objective criteria as a single 

objective mixed integer program:

fFTE =

�i

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

�FTE,min + i ⋅ ΔFTE where i ∈ {0, 1,… , I − 1} (Fi constraint)

(18)“ min ”{
(
fDT, fWL, fNC

)|
|C13 ∩ Fi} where i ∈ {0, 1,… , I − 1}

�i =

(M − 1) ⋅ P +
P
∑

p=1

lp

�i

(19)

IP2: �̄min,i∶=min

[(

1

/ P∑

p=1

wp

)
P∑

p=1

T∑

t=1

wp ⋅ (t − 1 − rp) ⋅ yp,t

|
|
|
|
|
C6A ∩ Fi

]

(20)fDT = �̄min,i
where i ∈ {0, 1,… , I − 1} (Ti constraint)

(21)“ min ”{
(
fWL, fNC

)|
|C13 ∩ Fi ∩ Ti} where i ∈ {0, 1,… , I − 1}
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We denote the convex combination by f�∶=�f
WL

+ (1 − �)f
NC

.

3  Three-stage heuristic

The single objective MIP formulated in Eq. (22) finds nondominated points with the 

least weighted average deferring time for the chosen number of FTEs. However, even 

with commercial solver software, it takes a prohibitively long time to solve for realis-

tic size problems, e.g., fifty patients or more. As a heuristic approach, we can use the 

solution to IP2 as an input to the MIP in Eq. (22). Thus, the setup moments ( ̂yp,t ) and 

the nurse assignments ( ̂v
n,a

 ) are used as input constants instead of decision variables. 

Therefore, only the constraints that were not included in C
6A

 have to be considered. 

Those are formulated as the following set of constraints denoted by intersection C
6B

:

Thus, the following single objective MIP is the last stage of the 3-stage heuristic for 

solving the single objective MIP in Eq. (22):

where f
NC

 and consequently f� are in terms of v̂
n,a

 instead of v
n,a

.

The setup decision variables yp,t—and the constant values ŷp,t for that matter—do 

not include the nurse information. Thus, in C
6B

 it is implicitly assumed that when 

the setup for patient p takes place at t, i.e., ŷp,t = 1 , nurse n who is taking care of the 

patient, i.e., xp,n,t = 1 , is also doing the setup. Hence, the tying setup to care con-

straints in Eq. (11) are not needed in C
6B

.

The Venn diagram of feasible solution sets (intersections) subject to various sets 

of constraints is demonstrated in Fig. 5. The area between the dashed lines indicates 

the FTE partition, and the squares correspond to feasible solutions in C
13
∩ F

i
∩ T

i
 . 

(22)
min

{[
�fWL + (1 − �)fNC

]|
|
|
C13 ∩ Fi ∩ Ti and 0 < � < 1

}

where i ∈ {0, 1,… , I − 1}

xp,n,t ⩽

A
∑

a=1

ha,t v̂n,a; ∀p ∈ P,∀n ∈ N,∀t ∈ T (care providing, C6B)

P
∑

p=1

[

1 + (M − 1)ŷp,t

]

xp,n,t ⩽ M

A
∑

a=1

ha,t v̂n,a; ∀n ∈ N,∀t ∈ T (nursing capacity, C6B)

N
∑

n=1

xp,n,t =

min{t−1,lp−1}
∑

i=0

ŷp,t−i; ∀p ∈ P,∀t ∈ T (appointment period, C6B)

N
∑

n=1

xp,n,t ⩽ 1; ∀p ∈ P,∀t ∈ T (one-nurse, C6B)

{

P
∑

p=1

T
∑

t=1

[

1 + (M − 1)ŷp,t

]

xp,n,t

}

−

(

A
∑

a=1

FTEav̂n,a

)

�i ⩽ �n; ∀n ∈ N (workload, C6B)

xp,n,t+1 − xp,n,t ⩽ �p,n,t+1; ∀p ∈ P,∀n ∈ N; t = 1,… , T − 1 (nurse change, C6B)

(23)MIP3: min

{
f�
|||
C

6B and 0 < � < 1

}
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The intersection C
13
∩ F

i
∩ T

i
 is denoted by ∩T

i
 in Fig. 5. Commercial solvers only 

give one optimal solution to IP2 in Eq. (19). In the Venn diagram, this corresponds 

to C
6B

 being limited to the small area shown within the ∩T
i
 square. If all alternative 

optima of IP2 could be explored, then MIP3 could find nondominated points on the 

Pareto frontier of f
WL

 and f
NC

 , which have min(f�).

The 3-stage heuristic for finding criterion points with minimum weighted average 

deferring time for a chosen number of FTEs is shown in Fig. 6. The value of �FTE,min 

is found in IP1 and used in the F
i
-constraint of IP2. In IP2, the solution to the setup 

variables yp,t and the assignment variables v
n,a

 is found. Those are used as constants 

ŷp,t and v̂
n,a

 in MIP3, and they correspond to �̄
min,i

 . The heuristic solutions can be 

used as initial solutions for warm starting the solver when solving the single objec-

tive MIP in Eq. (22).

Fig. 5  Venn diagram of various 

feasible solution sets and their 

FTE partitions ( F
i
 ), where ∩T

i
 

denotes C
13
∩ F

i
∩ T

i

Fig. 6  Three-stage heuristic to find criterion points with shortest weighted average deferring time for a 

fixed number of FTEs
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4  Numerical illustration

The computations of our numerical experiments were carried out on a 64-bit com-

puter with Windows 10, Intel processor i7-6700HQ (2.6-3.5 GHz, 6 MB cache, 4 

cores), and 16 GB of RAM. For solving the MIP models, we used Gurobi 7.0.2 

in the Julia programming language using its mathematical programming package 

JuMP (Dunning et al. 2017).

Our numerical experiments are designed for an example clinic that is open 9 h 

per day from 8:00 AM to 5:00 PM. Each nurse takes a 15-min coffee break in the 

morning around 10:00 AM, a 30-min lunch break around 12:30, and a 15-min coffee 

break in the afternoon around 3:00 PM. The timeslots are 15 min long. Through-

out our numerical experiments, duration of the opening hours is T = 36 timeslots, 

and timeslots 8, 9, 17, 18, 19, 20, 28, and 29 are designated for coffee and lunch 

breaks. These are demarcated by six vertical lines in the plotted appointment and 

task schedules.

To limit the number of assignments while including enough variety among them, 

we consider a morning half FTE assignment, an afternoon half FTE assignment, 

and a one FTE assignment as shown in Fig. 7. Since every nurse takes a break in 

one half-period of each break, there are A = 2 × 3 = 6 assignments defined with 

the FTEs and breaks listed in Table 1. The total working period of each assignment 

defined in Fig. 7 and Table 1 is a multiple of ΔFTE = 0.5 FTE, where T
FTE

= 32 . 

Hence, we only have to consider I = 3 partitions of �
FTE

 to cover a 1.0 FTE range 

above �FTE,min:

We also report criterion points for �
max

= N , besides these three values.

The F
i
∩ T

i
 points are demonstrated with filled circles in Fig.  8. These points 

are nondominated for the Pareto frontier of (fWL, fNC) . Since there are many feasible 

f
DT

 points, they are represented by continuous lines in the figure. The thick portions 

of the lines correspond to weakly nondominated points for the Pareto frontier of 

(fWL, fNC).

�0 = �FTE,min

�1 = �FTE,min + 0.5

�2 = �FTE,min + 1.0

Fig. 7  Time periods of 0.5 FTE and 1.0 FTE assignments. The gray timeslots are coffee and lunch breaks
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In our numerical experiments, the patient set of the input instance corresponds 

to the relative frequency histogram of drug administration appointment durations at 

Amphia Hospital in Breda, The Netherlands, as illustrated in Fig. 9 (Menting 2014). 

In this section, we assume that for each patient the appointment duration has a cat-

egorical distribution illustrated in Fig. 9.

The patients are numbered in ascending order of their appointment durations. 

The number of nurses affiliated with the clinic is N = 15 nurses (A, B, ..., O) for an 

instance with P = 60 patients. Patients p = 1, 4, 5, 11, 35, 37, 45, 49 are given high 

priority with w
h
= 10 . All patients have zero ready times and infinite due times, 

except for the following four patients:

Table 1  FTE and break period 

of assignments
Assignment FTE Break period

a = 1 (full day-I) FTE
1
= 1.0 t = 8, 17, 18, 28

a = 2 (full day-II) FTE
2
= 1.0 t = 9, 19, 20, 29

a = 3 (morning-I) FTE
3
= 0.5 t = 8

a = 4 (morning-II) FTE
4
= 0.5 t = 9

a = 5 (afternoon-I) FTE
5
= 0.5 t = 28

a = 6 (afternoon-II) FTE
6
= 0.5 t = 29

Fig. 8  FTE and weighted aver-

age deferring time plane

Fig. 9  Multinomial distribution of patients’ appointment durations with probabilities equal to the relative 

frequencies, e.g., ℙ(l = 8) = 0.21
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In the weighted sum of the objective functions for workload and nurse change, we 

use five values for � : 0.01, 0.10, 0.50, 0.90, and 0.99.

The criterion points found using the 3-stage heuristic outlined in Sect. 3 are listed 

in Table 2. The first two stages of the heuristic are solved to optimality. IP1 is solved 

in a fraction of a second, and IP2 is solved within 5  min for each of the twenty 

cases in Table 2. MIP3 was given a relative MIP optimality gap tolerance of 5%, and 

the corresponding solve time is reported in the last column of Table 2. k, �
i
 , f

FTE
 , 

and f
DT

 are independent of � . Increasing the number of FTEs (greater i) reduces the 

weighted average deferring time of appointments and the average workload per FTE 

while requiring more stations in the schedule. With greater � , the task schedule has 

less workload imbalance as it is given a greater weight in the bicriterion objective 

function f�.

Figure 10 shows appointment and task schedules for a set of P = 60 patients with 

the histogram of appointment durations shown in Fig.  11. The total workload of 

the patient set is equivalent to 850 monitors. However, the number of stations is 

(r4, d4) = (16, 30) for p = 4 with l4 = 1

(r11, d11) = (21,∞) for p = 11 with l11 = 4

(r35, d35) = (9, 33) for p = 35 with l35 = 12

(r37, d37) = (4, 32) for p = 37 with l37 = 12

Table 2  Criterion points found using the 3-stage heuristic for the set of sixty patients

Case # i � k �
i

f
FTE

f
DT

f
WL

f
NC

MIP3 gap tCPU,MIP3

1 0 0.01 34 100.0 8.5 2.8 18.0 95 4.9676 4006

2 0 0.10 34 100.0 8.5 2.8 16.0 95 4.7691 2590

3 0 0.50 34 100.0 8.5 2.8 11.0 99 4.3750 607

4 0 0.90 34 100.0 8.5 2.8 7.0 107 4.5455 964

5 0 0.99 34 100.0 8.5 2.8 7.0 124 4.8443 40

6 1 0.01 36 94.4 9.0 1.9 12.3 93 4.7331 3195

7 1 0.10 36 94.4 9.0 1.9 10.3 93 4.9842 2085

8 1 0.50 36 94.4 9.0 1.9 3.4 94 4.9855 5776

9 1 0.90 36 94.4 9.0 1.9 2.2 97 4.9981 11,479

10 1 0.99 36 94.4 9.0 1.9 2.2 99 4.9287 162

11 2 0.01 38 89.5 9.5 1.6 36.3 98 3.6179 417

12 2 0.10 38 89.5 9.5 1.6 37.3 98 4.5507 402

13 2 0.50 38 89.5 9.5 1.6 9.6 110 4.6136 1953

14 2 0.90 38 89.5 9.5 1.6 6.8 116 4.7185 796

15 2 0.99 38 89.5 9.5 1.6 6.8 118 3.5461 144

16 13 0.01 43 56.7 15.0 1.2 4.0 100 4.9052 3766

17 13 0.10 43 56.7 15.0 1.2 3.3 100 4.9427 14,777

18 13 0.50 43 56.7 15.0 1.2 3.3 101 4.9107 1760

19 13 0.90 43 56.7 15.0 1.2 3.3 102 4.5198 1763

20 13 0.99 43 56.7 15.0 1.2 3.3 105 4.5833 227
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fixed to K�
= 19 , which is the minimum number that is feasible for the given set 

of patients. This is to illustrate the impact it has on the criteria when it is an input 

rather than an output of the model. The solution is found for minimum weighted 

average deferring time with the least number of FTEs ( �FTE,min = 10.0 FTEs if 

k = K
�
= 19 ) using the 3-stage heuristic outlined in Sect. 3 with i = 0 and � = 0.50 . 

IP1, IP2, and MIP3 were solved in 0.27, 1.03, and 4940  s and with MIP gaps of 

0%, 0%, and 4.52%, respectively. The eight high-priority appointments are shown 

in dark gray in the appointment schedule. The criterion point for this solution is 

Fig. 10  Appointment schedule and task schedule for the set of sixty patients that matches the relative 

frequency histogram of chemotherapy drug administration appointment durations at a Dutch hospital. 

Patient-13 is scheduled at station-7 with the setup at t = 1 by nurse-L and monitored by nurse-K for the 

remainder of the appointment (until t = 6)
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(fFTE, fDT, fWL, fNC) = (10.0, 5.3, 0.0, 105) . With �
0
= 10.0 FTEs, the average work-

load per nurse on the day is �
0
= 850∕10.0 = 85.0 monitors. In the task sched-

ule, the workload of each of the ten nurses is 85 monitors. Five nurses (C, F, H, 

I, and O) are not assigned drug administration at the clinic on that day. More than 

half of the nurse changes in this schedule (57 out of 105) are because of the cof-

fee and lunch breaks and cannot be avoided. With an average appointment dura-

tion of 11.17 timeslots or 167.5 min, a nurse change takes place on average after 

167.5∕(105∕60) ≈ 96 min of continuous care by the same nurse. For example, the 

7-h appointment of patient-60 at station-19 has only six nurse changes while three of 

them are because of the breaks of nurses N and M.

Compared with the third case in Table 2, which has the same i = 0 and � = 0.5 

setting but solved with a variable number of stations (k not fixed to a K′ ), the solu-

tion in Fig. 10 with 15 fewer stations uses 1.5 more nurse FTE and has 2.5 times-

lots (38 min) longer weighted average deferring time. Alternatively, we can look at 

the difference between relaxing and constraining the number of stations from the 

perspective of the weighted average deferring time: while even using 0.5 FTE less 

nursing capacity, the weighted average deferring time can be 3.7 timeslots (56 min) 

shorter in the 13th case of Table 2.

For the next experiment, we drew 30 random sets of P = 40 appointment dura-

tions from the multinomial distribution in Fig. 9. We set the number of nurses affili-

ated with the clinic at N = 9 . Besides MIP3, we gave a relative MIP optimality gap 

tolerance of 5% to IP2 as well. IP1 was solved to optimality within one second, and 

the MIP gap of IP2 dropped below 5% within 5 s in all cases. In Table 3, we report 

the average result of applying the 3-stage heuristic to these 30 random sets. The 

same trend pattern as shown in Table 2 is found in Table 3. Increasing i reduces f
DT

 

and �
i
 while requiring more stations. With greater � , f

WL
 becomes less as it is given 

a greater weight in f�.

In order to evaluate the performance of our heuristic, we attempted to solve 

the MIP in Eq. (22) with i = 0 and � = 0.5 (case-3 in Table  2) for the 60-patient 

set of Fig.  11. After 12  h, the solver could not find a feasible solution for 

min
{

f�|C13
∩ F

0
∩ T

0
and � = 0.5

}
 . Next, we repeated the same experiment, but 

with a warm start. We loaded the solver with an initial feasible solution generated by 

our heuristic. However, we set the time limit for MIP3 at only 60 s, which resulted in 

f� = 62 with a MIP3 gap of 21.8%. After 1398 s of solve time, the MIP gap for Eq. 

Fig. 11  Histograms of the 

instance of P = 60 patients used 

in Table 2 and Fig. 10
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(22) was 65.1% with an incumbent of 92 and best lower bound 32.1 (the version of 

JuMP that we used does not pass the constant part of the objective, −(1 − �)P , to the 

solver; hence, the difference of 92 − 62 = 30 between the solver’s reported incum-

bent and f� ). After 12 h, it could only reach a MIP gap of 63.5% with an incumbent 

of 92 and best lower bound 33.6. The results are summarized in Table 4.

5  Generalizability of the model

In this section, we give a few examples of how the model can be adjusted to meet 

specific requirements of a clinic. We have assumed that drug administration can 

begin with only one timeslot of setup for each patient. However, if an appointment 

is expected to need longer than the default setup, the model can be simply adjusted 

by adding a constraint to schedule a double duration setup. For this, an imaginary 

patient with an appointment duration of only one setup (no monitoring) can be 

Table 3  Criterion points averaged over 30 random sets of P = 40 after applying the 3-stage heuristic 

with N = 9

Case # i � k �
i

f
FTE

f
DT

f
WL

f
NC

MIP3 gap tCPU,MIP3

1 0 0.01 21.9 98.1 5.6 5.9 19.9 63.2 4.7590 341

2 0 0.10 21.9 98.1 5.6 5.9 19.0 63.2 4.8569 347

3 0 0.50 21.9 98.1 5.6 5.9 7.5 67.4 4.7761 590

4 0 0.90 21.9 98.1 5.6 5.9 6.1 70.2 4.6373 296

5 0 0.99 21.9 98.1 5.6 5.9 6.1 82.7 4.3813 26

6 1 0.01 24.7 90.0 6.1 4.5 25.9 62.9 4.6817 349

7 1 0.10 24.7 90.0 6.1 4.5 22.5 63.2 4.7199 465

8 1 0.50 24.7 90.0 6.1 4.5 7.8 68.0 4.6756 1007

9 1 0.90 24.7 90.0 6.1 4.5 7.2 70.2 4.5841 285

10 1 0.99 24.7 90.0 6.1 4.5 7.2 82.0 4.0026 27

11 2 0.01 25.6 83.1 6.6 3.8 28.8 63.2 4.5562 510

12 2 0.10 25.6 83.1 6.6 3.8 25.5 63.2 4.4877 461

13 2 0.50 25.6 83.1 6.6 3.8 6.1 69.1 4.6633 1777

14 2 0.90 25.6 83.1 6.6 3.8 5.2 70.8 4.3688 739

15 2 0.99 25.6 83.1 6.6 3.8 5.2 80.2 4.2896 51

Table 4  Criterion points found by solving the MIP in Eq. (22) for i = 0 and � = 0.5 and the set of sixty 

patients

Method k �
i

f
FTE

f
DT

f
WL

f
NC

f� gap t
CPU

Complete MIP with cold start – – – – – – MIP: – 43,200

Complete MIP with warm start 34 100.0 8.5 2.8 11.0 113 62.0 MIP: 62.5% 43,200

3-Stage heuristic 34 100.0 8.5 2.8 11.0 99 55.0 MIP3: 4.4% 611
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scheduled right before the intended patient and with the same nurse. For example, 

imaginary patient-1017 with l
1017

= 1 would be scheduled right before patient-17 

who needs a double setup duration by imposing the following set of constraints:

Primary nurse assignment can be done by simply removing decision variables 

with unacceptable nurse–patient pairs (n,  p), or setting them equal to zero in the 

constraints:

When the skill level of a nurse is not enough to treat a patient, that combination can 

be excluded in a similar way. However, if these constraints render the model infeasi-

ble, similar to the part-time nurse addition used by Liang and Turkcan (2016), N can 

be increased to the smallest value for which the model is feasible.

If it is strictly required to have the same nurse assigned to the patient for the entire 

appointment, the model can be adjusted by constraints similar to the following while 

removing the nurse change constraints and criterion from the model:

To incorporate patient acuity levels c
p
 in the model, we can modify the nursing 

capacity and workload constraints (nurses, C6A), (nursing capacity, C6B), and 

(workload, C6B) as follows:

where C
n
 is a given factor indicating the maximum amount of acuity that nurse n can 

handle at a timeslot, and �
i
 is the number of FTEs assigned to the schedule.

y1017,n,t = y17,n,t+1, for t = 1,… , T − 1; n = 1,… , N

xp�,n�,t = 0, for (p�, n
�) ∉ {(p, n)|n is the primary nurse of patient p}

T
∑

t=1

xp,n,t = lpup,n, ∀p ∈ P,∀n ∈ N ∶ up,n ∈ {0, 1}

(1 if n takes care of p;0 otherwise)

N
∑

n=1

up,n = 1, ∀p ∈ P

P�
p=1

cp

⎡
⎢⎢⎣
(M − 1)yp,t +

t�
t�=max{1,t−lp+1}

yp,t�

⎤
⎥⎥⎦
⩽ M

N�
n=1

A�
a=1

Cnha,tvn,a; ∀t ∈ T

P�
p=1

�
1 + (M − 1)ŷp,t

�
cpxp,n,t ⩽ CnM

A�
a=1

ha,tv̂n,a; ∀n ∈ N, ∀t ∈ T

�
P�

p=1

T�
t=1

�
1 + (M − 1)ŷp,t

�
cpxp,n,t

�
−

�
A�

a=1

FTEav̂n,a

�
� �

i
⩽ �n; ∀n ∈ N

� �
i
=

∑P

p=1
cp ⋅ (M + lp − 1)

�i
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Similar to Liang and Turkcan (2016), the start and end work time of a nurse n′ 

can be set to given values by fixing her assignment to a′ that has those start and 

end times: v
n
�,a� = 1.

6  Concluding remarks

In this paper, we have developed a multi-criterion mixed integer programming 

(MCMIP) model for the problem of scheduling drug administration appoint-

ments in outpatient chemotherapy where nurses are simultaneously shared among 

patients. In offline scheduling, we can integrate task scheduling with appointment 

scheduling. Hence, we can adjust the number of nurse FTEs of the intended day 

based on the set of appointment requests and the desired performance criteria. 

This helps to maintain high nurse utilization and control workload levels, despite 

variations in the number and workload of requests.

In the multi-step process shown in Fig. 2, we focus on appointment and task 

scheduling for drug administration while incorporating the strict time require-

ments of the prior steps into the model. The objective criteria pertain to vari-

ous stakeholders: patients, nurses, and the clinic. Chemotherapy patients prefer 

to have their drug administration as early during the day as possible (Lau et al. 

2014). Our model determines the nursing capacity and the number of stations 

required for scheduling drug administration appointments as early during the 

day as possible. It also reaches a trade-off between the least amount of workload 

imbalance among nurses and the least number of nurse changes during appoint-

ments. For realistic size sets of patients and nurses, the problem is too large to 

solve for nondominated points of the formulated MCMIP. We have therefore 

developed a 3-stage heuristic for finding criterion points that have a minimum 

weighted average deferring time of appointments for a chosen number of nurse 

FTEs.

6.1  Managerial implications

The time requirements of pharmacy and oncologists can be incorporated into the 

model via the ready times, due times, and priorities. We can consider a baseline 

in which all appointments have zero ready times and normal priorities. This base-

line setting corresponds to an average start time for the appointments. By adjust-

ing the ready times and weights, some start times can be shifted according to 

the oncologists’ and the pharmacy’s requirements. Otherwise, the patients’ direct 

waiting time may be long. For example, if the deferring time of a high priority 

appointment—for which the oncologist or the pharmacy has less flexibility—is 

six timeslots, either the oncologist and the pharmacy should start six timeslots 

later than their required time, or the patient must wait for 90  min in between. 

Besides helping to impose the time requirements of prior steps, the due time is 

an option to facilitate follow-up activities on the same day. In general, we assume 
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that for the majority of appointments on the intended day, there is flexibility for 

scheduling the three prior steps based on the start times of drug administration 

appointments, i.e., without time requirements. If the options (ready time, prior-

ity weight, and due time) are used for too many appointments, a feasible solution 

cannot be found. In such cases, the model may be formulated as a weighted con-

straint satisfaction or fuzzy constraint problem (e.g., Kaymak and Sousa 2003; 

Cooper 2003).

In order to efficiently use the chemotherapy nursing capacity, the pharmacy has 

to prepare the drugs of as many appointments as possible before the patient arrives 

and allocate a sufficient number of servers (technicians or robots) based on the 

setup moments of the remaining appointments. Otherwise, the pharmacy’s service 

rate should be incorporated into the constraints of the MCMIP. This will in general 

result in less efficient use of the nursing resources. Moreover, for the laboratory and 

oncologist steps, the clinic may adopt a mixed policy using both same day and day 

before visits among patients. This is plausible, because on the one hand, according 

to prior studies in the literature (Dobish 2003; Griffin 2014; Cook and Towler 2009; 

Holmes et al. 2010), scheduling those two steps on the day before drug administra-

tion improves patient flow and patient satisfaction. On the other hand, some patients 

would prefer to have all steps on the same day as drug administration, e.g., because of 

transport limitations (Lau et al. 2014). Thus, a mixed policy has more flexibility for 

controlling the patients’ waiting times with better utilization of the nursing resources.

Although we assume that the clinic has the flexibility of choosing from a pool 

of resources (nurses and stations), both nurse FTE and the number of stations can 

be fixed as input parameters instead of variables; however, that may compromise 

the objective criteria if not rendering the model infeasible for the given set of 

patients. Also, the heuristic can be run once with the number of chairs fixed to the 

clinics capacity and once relaxed. The schedule with the fixed number of chairs 

(K) is used for the current batch of patients. The number of chairs (k) and KPIs 

resulting from the relaxed model are kept as a benchmark to review the clinic’s 

performance at a tactical level for planning and capacity adjustments. Thus, the 

model provides information for adjusting the capacity level in the next mid-term 

plan of the clinic, i.e., if there is recurrent discrepancy between the clinic’s capac-

ity and the number of FTEs or stations determined by the model.

Further constraints can be added for imposing nurse and patient preferences. 

For example, some assignments can be excluded for some nurses, some assign-

ments can be fixed for some nurses, and the appointment start time can be fixed 

for some patients. Of course, these extra constraints compromise the optimal 

solution if not rendering the problem instance infeasible.

For reliable schedules, the appointment durations should be based on data of 

actual infusion durations in the past, rather than those indicated in the protocols 

or data of scheduled appointments in the past. Accordingly, some buffer time can 

be calculated and added to the end of each appointment. To further mitigate the 

impact of uncertainties, patients who are likely to have allergic reactions that may 

prolong the infusion duration can be scheduled for the last appointments at sta-

tions. The parameter T can be set to one or two timeslots before the normal end 
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of working hours, to avert overtime. Such reliability measures can be gradually 

taken by experience and data collection while adjusting the clinic’s capacity at a 

tactical level based on the information acquired using the integrated model.

6.2  Limitations and future research

Since minimizing the weighted average deferring time does not depend on the 

nurses assigned to the tasks, we could eliminate the nurse index from the setup 

binary variables ( yp,n,t → yp,t ) in IP2. However, in order to minimize the work-

load imbalance or the number of nurse changes, we need to keep the nurse index 

of the decision variables, which makes the problem prohibitively large to solve 

within a comparable time limit. Hence, devising efficient heuristic methods to 

find criterion points that have fewer nurse changes or less workload imbalance 

for a desired number of FTEs than our 3-stage heuristic, are interesting follow-up 

research problems. Besides heuristic approaches, it would be interesting to devise 

large-scale exact methods for finding nondominated points that have a chosen 

number of FTEs.

We consider a proactive operational model (Hulshof et al. 2012; Hesaraki 2019). 

In follow-up research, reactive operational countermeasures, such as rescheduling 

policies, can be devised to handle uncertainties, e.g., delays.

Some infusion centers offer services for treatments other than chemotherapy as 

well, e.g., immunotherapy, rheumatherapy, ferrotherapy, and blood transfusion 

(Hesaraki 2019). Moreover, there are other types of services and processes where 

human resources can be simultaneously shared among multiple jobs, and they can 

be modeled with a similar station–setup–monitor setting. Examples include kidney 

dialysis, blood donation, computer-based standardized tests, and manufacturing. The 

results of this paper have the potential to improve the scheduling of those types of 

jobs as well.
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