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Problem description  
The oil and gas industry are responsible for about 25 % of the total greenhouse gas emissions from 

Norway. Most of these emissions are due to energy production. Today most of the offshore oil and gas 

platforms get there energy from gas fired turbines located on the platforms. These turbines have 

efficiency between 30 % - 40 % and are the major source of emissions from the Norwegian continental 

shelf. By replacing the energy from the gas turbines with renewable energy from offshore wind farms 

and hydro power from the onshore power grid the total greenhouse gas emissions from Norway can be 

greatly reduced.  

A system consisting of five oil and gas platforms and one offshore wind farm connected to the onshore 

power grid through a common High Voltage Direct Current (HVDC) transmission system based on 

Voltage Source Converters (VSC) are to be studied. The feasibility of the system should be evaluated 

based on simulations. The following tasks should be included in this master thesis: 

• Develop a dynamic simulation model of the system using SimPowerSystems in 

MATLAB®/Simulink®. 

• Develop a control strategy and a VSC control system. 

• Run simulations and study the dynamic behavior of the system during sudden variations in the 

load including: disconnection of the wind farm, load shedding, and large motor start up.  

• Interpret and discuss the simulation results based on the grid code regarding offshore power 

systems and the simplification done in the model. 
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Abstract 
This thesis investigates the possibilities of integrating oil and gas platforms and offshore wind power to 

the onshore power grid. The main motivation for this is to reduce the large greenhouse gas emissions 

associated with traditional oil and gas platforms. The oil and gas industry is responsible for 25 % of total 

greenhouse gas emissions from Norway. The major part of these emissions originates from the power 

generation on the platforms. By supplying the oil and gas platforms with renewable energy from the 

onshore power grid in combination with offshore wind power there will be little or no use for power 

generation on the platforms and greenhouse gas emissions can be greatly reduced.  

The feasibility of a hypothetical power system in the North Sea consisting of five oil and gas platforms 

and one offshore wind farm with a common connection to the onshore power grid is studied. The 

connection to the onshore grid is realized through a High Voltage Direct Current (HVDC) transmissions 

system based on Voltage Source Converter (VSC) technology The main goal of this thesis is to gain 

understanding of the system dynamics and the control of VSC-HVDC transmission system, offshore wind 

power, as well as offshore power systems. 

A dynamic simulation model of the system and a control system has been developed using 

SimPowerSystems in MATLAB®/Simulink. In order to save computation time aggregated models are 

used. The load on the platforms consists of a passive load, a fixed speed induction motor, and a constant 

power load representing variable speed drives on the platform. The wind farm consists of a wind turbine 

and a permanent magnet synchronous machine operating at variable speed using a back-to-back VSC. 

The converters in the VSC-HVSC transmission system and the wind farm are modeled using average 

models. Simulations are performed on system disturbances that are thought to be critical for the 

operation of the system. The simulation cases represent large and partly exaggerated disturbances in 

order to test the limitations of the system.  

The simulation results showed that the developed control system was able to keep the voltage and 

frequency variations within the grid code in IEC 61892 even during large disturbances. It was concluded 

that the system handles variations in the load very well and that the system configuration studied in this 

thesis is regarded as a feasible way of integrating oil and gas platforms and offshore wind power to the 

onshore grid. However more detailed studies are recommended including short circuit analysis.   
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Sammendrag 
Denne avhandlingen undersøker muligheten for å integrere olje- og gassplattformer og offshore 

vindkraft med kraftnettet på land. Hovedmotivasjonen bak dette er å redusere de store 

klimagassutslippene forbundet med tradisjonelle olje- og gassplattformer. Olje- og gassindustrien står for 

25 % av de totale klimagassutslippene i Norge. Hoveddelen av disse utslippene stammer fra 

kraftproduksjon på plattformene. Ved å forsyne olje- og gassplattformer med fornybar energi fra 

kraftnettet på land i kombinasjon med offshore vindkraft vil det være lite eller ingen bruk for 

kraftproduksjon på plattformene og klimagassutslippene vil kunne bli sterkt redusert.  

Denne oppgaven er en mulighetsstudie av et tenkt kraftsystem i Nordsjøen bestående av fem olje- og 

gassplattformer og en offshore vindpark med en felles tilkobling til kraftnettet på land. Tilkoblingen til 

land er realisert ved hjelp av et HVDC overføringssystem basert på Voltage Source Converter (VSC) 

teknologi. Hovedformålet med denne oppgaven er å gi økt forståelse for dynamikken i systemet, samt 

kontroll av VSC-HVDC overføringssystem og offshore vindparker.   

En dynamisk simuleringsmodell av systemet og et kontrollsystem er utviklet i SimPowerSystems i 

MATLAB®/Simulink. For å redusere beregningstiden er det benyttet aggregerte modeller. Lasten på 

plattformene er modellert som en passiv last, en induksjonsmotor og en konstant effekt last for å 

representere motordriftene på plattformen. Vindpark modellen består av en vindturbin og en 

permanentmagnet synkrongenerator som opererer med variabel hastighet ved hjelp an en back-to-back 

VSC. Omformerne i VSC-HVDC overføringssystemet og i vindparken er modellert ved hjelp av 

gjennomsnittsmodeller. Simuleringer av systemet har blitt utført for forstyrrelser som er antatt å være 

kritisk for driften av systemet. Forstyrrelsene er store og til dels overdrevne for å teste begrensningene 

til systemet.  

Resultatene av simuleringene viste at kontrollsystemet var i stand til å holde variasjonen i spenningen og 

frekvensen innenfor grensene gitt i IEC61892 selv under store forstyrrelser. Det ble konkludert med at 

systemet håndterer variasjoner i lasten bra og at systemkonfigurasjonen studert i denne rapporten er en 

mulig måte å integrere olje- og gassplattformer og offshore vindkart i kraftnettet på land. Mer detaljerte 

studier, inkludert kortslutningsberegninger, er anbefalt.  
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1 Introduction  

1.1 Background and motivation 

Norway has committed to reduce the global greenhouse gas emissions by 30 % compared to their own 

emissions in 1990, within 2020 [1]. About two-thirds of the cuts are to be made nationally. Numbers 

from 2012 show that Norway actually has increased total greenhouse gas emission by over 5 %, 

compared to 1990 [2]. The main reason for this is an increase in the emissions from the oil and gas 

industry with over 75 %. Today the oil and gas industry is responsible for more than 25 % of the 

emissions from Norway. If Norway is going to reach their ambitious climate goals, alternative power 

generation and supply solutions have to be considered. Today most oil and gas platforms are self 

supplied with electrical energy from gas fired turbines located on the platforms. These turbines typically 

have efficiency between 30 % - 40 % [3] and are the major source of emissions from the Norwegian 

continental shelf [4]. The Norwegian continental shelf is also facing some challenges in the oncoming 

years that will lead to an increased energy demand. This is mainly [5]: 

• Measures to increase reserves from mature fields, including water and gas injection.  

• Reduction of reservoir pressure, which requires additional compression force.  

• Increased water production from aging fields.  

• Transition from primarily oil production to a larger share of gas production and transport of gas.     

The installed power per produced petroleum unit is therefore expected to grow in the oncoming years. 

This will lead to further increase in greenhouse gas emissions if not measures are taken. By replacing the 

energy from the gas turbines with energy from renewable sources Norway’s greenhouse gas emissions 

can be greatly reduced.  

Supplying the platforms with hydro power from the onshore power grid has long been discussed as a 

possible solution to the large emissions from the oil and gas industry. Economical aspects and potential 

reduction in greenhouse gases due to electrification from shore is investigated in [3]. Norwegian 

authorities have since 2007 required that power from shore must be considered for all new installations 

and major modifications on the continental shelf. Today the Troll A platform, and the fields Ormen 

Lange, Snøhvit, Gjøa, Valhall, and Goliat uses power from shore [6]. 

The potential for offshore wind power along the Norwegian cost is huge. In [7] it was estimated to 

14 000 TWh, and it is claimed that the marked forces were the deciding factor on how much of this 

potential that were to be utilized. The main challenge with offshore wind power today is the large 

investments costs. The grid connection is considered a large cost and comprises roughly to 1/3 of the 

total costs. One way to reduce the costs is to operate the offshore wind farm together with one or more 

offshore oil and gas platforms in an isolated system. No systems like this are in operation today but 

several studies have been carried out investigating both economical aspects, possible fuel savings and 

emission reduction, as well as power system stability in such systems [8] [9]. The problem with this 
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configuration is that that since platforms need to operate also if there is no wind they still need a full 

scale power supply on board.  

In a system containing offshore wind power and oil and gas platforms with a common connection to the 

onshore grid there will be little or no use for power generation on the platforms, and it also allows 

transfer of surplus power from the wind farm to the onshore power grid. Compared to building two 

separate grid connections this solution will not only lead to reduced investment cost, but also reduced 

transmission losses since the power from the wind farm can be utilized offshore. Due to the large 

consequences associated with black outs on oil and gas platforms it is essential that the wind farm don’t 

obstruct the operations on the platforms. Offshore wind power is still a relatively new and immature 

technology and more research needs to be done to address the possibilities and challenges in systems 

containing offshore wind power.  

This thesis will address stability issues in a system consisting of an offshore wind farm and several oil and 

gas platforms with a common High Voltage Direct Current (HVDC) connection to the onshore power grid 

based on Voltage Source Converter (VSC) technology. Similar systems with slightly different system 

configuration have been studied in [10] and [11]. It is important to review different system configuration 

regarding both technical and economical aspects.   
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1.2 Methodology and objective 

The main goal of this project is to gain understanding of the system dynamics and the control of VSC-

HVDC transmission system, offshore wind power, as well as offshore power systems. A hypothetical 

power system in the North Sea will be examined. The system is illustrated in Fig. 1.1 and consists of five 

oil and gas platforms and one offshore wind farm connected to the onshore power grid through a VSC-

HVDC transmissions system. A dominant part of the work will be to create a dynamic simulation model 

of the system, a control strategy and a VSC-HVDC control system. Simulations of different system 

disturbances which are thought to be critical for the system operation will be made, to study the 

dynamics of the system and herby evaluate the feasibility of this system configuration. The simulation 

cases will represent large and partly exaggerated disturbances compared to what might be realistic, in 

order to test the limitations of the system. The system will be evaluated on whether it is able to stabilize 

after the disturbances and whether the voltage and frequency variations keep within the limits of the 

offshore grid code [12].  

 
Fig. 1.1  Overview of the system. 
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2 VSC-HVDC 
For long distance submarine power transmission VSC-HVDC are proving to be a very promising 

technology for several reasons [13]. Voltage source converters normally use Insulated Gate Bipolar 

Transistor (IGBT) unlike the more conventional Line Commutated Converters (LCC) [14] which uses 

thyristors. Because the IGBTs do not rely on the outer circuit for their commutation, VSCs, also known as 

self-commutated converters, are able to perform black starts. In contrast to the CSC the DC voltage of 

the VSC converter remains constant and the power flow is determined by the direction of the DC 

current. This enables the use of Cross-linked polyethylene (XLPE) cables, which are unable to deal with 

the polarity change in a CSC system. XLPE cables are less costly, lighter, and smaller in diameter than 

mass impregnated cables.  

A schematic drawing of a two level, three-phase VSC is illustrated in Fig. 2.1. The voltages at the AC 

connections are a square wave switching between VDC and –VDC depending on which switch is on. By 

using a switching frequency significantly higher than the fundamental frequency of the ac system a good 

approximation to a sine wave can be constructed. The amplitude, phase angle, and frequency of the AC 

side voltage are usually controlled based on pulse width modulation (PWM).  

 
Fig. 2.1  Schematic drawing of a two level, three-phase Voltage Source Converter. 

The phase-to-phase AC voltage will not be a perfect sinusoidal voltage but contains harmonics. These 

harmonics will be centered around multiples of the switching frequency. By using a high switching 

frequency the harmonics will occur at higher frequencies. This makes it easier to keep the total harmonic 

distortion at the connection point at a low level, compared to for a CSC. 

In 2010 Siemens introduced a multilevel VSC technology called HVDC Plus and at the same time ABB 

upgraded their HVDC Light system to utilize a similar technology. In resent years several other companies 

also have introduced multilevel converters. The principle of the multilevel approach is illustrated in Fig. 

2.2. A multilevel VSC builds up the AC voltage in small steps by using several sub modules consisting of 
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IGBTs and a DC link capacitor holding a part of the DC link voltage. In this way the switching frequency of 

each semiconductor can be reduced, hence reducing the switching losses in the converter. By using more 

steps the total harmonic distortion is also reduced, allowing the filters to be reduced or eliminated 

altogether [15].  

 
Fig. 2.2  Multilevel approach [15]. 

2.1 Operation of VSC 

In both a pulse width modulated VSC and a multilevel VSC the converter voltage magnitude, frequency, 

and phase angle can be controller individually by the VSC controller. The operation of the VSC can be 

explained considering the schematic drawing in Fig. 2.1. The resistance of the phase reactance is 

normally so small compared to the reactance so it can be neglected. The active and reactive power into 

the ac side of the converter can then be described as in (2.1) referred to Vg. 

 sing cV V
P

X

δ
=  

( cos )
g g c

V V V
Q

X

δ−
=  

 

 

(2.1) 

 

It can be seen that δ, the angle between Vg and Vc, have a large effect on the active power while the 

converter voltage magnitude has a large effect on the reactive power. By controlling the phase angle and 

the amplitude of the converter voltage the converter can be operated in all four quadrants.  
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3 Modeling 
An overview of the system can be seen in Fig. 3.1. If a system like this is to be realized it can not be built 

at the expense of the stability of the onshore power grid. The onshore connection is therefore thought 

to be at a strong point in the Norwegian main power grid. The grid connection is modeled as a Thevenin 

equivalent with phase-to-phase rms voltage equal to 300 kV, the frequency is 50 Hz, and the short-circuit 

level is set to 2500MVA. The transformers are modeled using a model referred to as the exact equivalent 

circuit in [16] and typical values are used. From the onshore converter the energy is transmitted through 

a 220 km HVDC bipolar transmission link. The offshore converter station and the AC busbar are thought 

placed on an offshore platform. Five oil and gas platforms with different load and one offshore wind 

farm are connected to the AC busbar. The distance from the converter platform to the oil and gas 

platforms and the wind park vary between 50 km – 80 km.  

 
Fig. 3.1  Overview of the system. 

3.1 Power transmission cables 

All cables are modeled as a PI equivalent as illustrated in Fig. 3.2. Due to the long distance of the HVDC 

cable two PI sections are used in cascade. The voltage on the DC cable is +/- 120 kV and typical values are 

used. The offshore AC cables are modeled using one PI section, the voltage is set to 90 kV, and the 

parameters are taken from [17]. 
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Fig. 3.2  Equivalent pi model for submarine cables. 

The reactive power generated by the submarine cable can be expressed as the reactive power generated 

by the capacitances minus the reactive power consumed by the inductance as is (3.1). 

 
2 2 22 2

Cable LQ Vs Vr I L
Y Y

ω= + −  
 

(3.1) 

 

It can be seen that the reactive power generated by the cable is highly dependent of the voltage. In 

submarine power cables the capacitive elements normally dominate, causing the cable to generate 

reactive power under normal conditions.  

3.2 Voltage source converter 

This rapport aims to examine how the HVDC transmission system, the wind farm, and the oil and gas 

platforms interact, and how the control of the HVDC transmission influences the system dynamics. 

Converter losses and harmonic filters are not a focus point in this study. By utilizing a PWM modulated 

VSC with sufficiently high switching frequency or a multilevel VSC with a high number of steps the output 

approaches a pure sinusoid and harmonics can be neglected. This means that the converter can be 

modeled like a controlled voltage source generating the average AC voltage over one cycle of the 

switching frequency. This type of model is often referred to as an average model. It does not represent 

harmonics, but the dynamics cased by the controllers and the power system interaction is preserved. 

The average model can be used with larger time steps compared to a model including switches; hence 

the simulation time is reduced. Fig. 3.3 shows the VSC model used in this study. It is an ideal model so 

the active power on the AC side is always equal to the active power on the DC side as described in (3.2). 

 
, , ,conv a a conv b b conv c c DC convV i V i V i V I⋅ + ⋅ + ⋅ =  (3.2) 
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Fig. 3.3  Bipolar average model. 

3.3 Wind farm 

The wind farm model consists of a wind turbine, a Permanent Magnet Synchronous Generator, and a 

back to back VSC. A model of one wind turbine is made as illustrated in Fig. 3.4.  

 
Fig. 3.4  Wind turbine model. 

To reduce the simulation time an aggregated model, shown in Fig. 3.5, is used. The voltage at the wind 

farms connection to the grid is measured and used as input in a controlled voltage source supplying the 

wind turbine model. The current from the turbine model is measured and multiplied with the desired 

number of turbines in the wind farm before it is used as input in a controlled current source injecting 

current in to the grid. This model will behave as a wind farm consisting of “n” similar wind turbines all 

operating under the same wind conditions. The aggregation model also works as an ideal transformer 

with voltage ratio “k”, to represent the step-up transformer in the wind farm. In reality the wind speed 

will not be equal on all turbines in the wind farm at the same time but the total output power of the 

wind farm can be considered constant over a short period of time. Since this project only will consider 

the effect the wind farm has on the offshore system and not the interaction between each wind turbine, 
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or potential events that might occur in the collection grid of the wind farm, this is considered a valid 

simplification.  

 

Fig. 3.5  Aggregated wind farm model 

The parameters used in the wind farm model can be seen in Table 1. 

Table 1  Wind farm data 

Wind farm   
Number of turbines 25 
Turbine  
Nominal output power 2 MW 
Nominal wind speed 12 m/s 
PMSG  
Nominal Vl-l 1 kV 
Nominal power 2 MW 
Number of poles 40 
Inertia (rotor plus turbine) 8000 kg*m^2 
DC link  
Nominal voltage +/- 2 kV 

 

3.3.1 Wind turbine 

The wind turbine converts the kinetic energy from the wind into mechanical energy.  To represent the 

wind turbine a model found in the SimPowerSystems library in MATLAB®/Simulink® is used. The output 

power of the turbine, Pm, is given in (3.3). 

 
3

( , )
2

m p wind

A
P C v

ρλ β=  
 

(3.3) 
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Cp is the performance coefficient of the turbine, ρ is the air density, A is the rotor area, and vwind is the 

wind speed. Cp is given in (3.4) [18], 

 21

116
( , ) 0.5175 ( 0.4 5) 0.0068i

p

i

C e
λλ β β λ

λ

−

= ⋅ − − ⋅ + ⋅  

3

1 1 0.035

0.08 1
iλ λ β β
= −

+ +
 

 

 

 

 

(3.4) 

 

where β is the pitch angle of the rotor blades in degrease and λ is the ratio of the rotor tip speed to  wind 

speed.  

From (3.3) it can be shown that the power from the wind turbine is proportional to Cp. Fig. 3.6 illustrates 

Cp as a function of the tip speed ratio λ for different values of pitch angle β. Cpmax=0.4667 is found for 

β=0° and λ=8.1. This value for λ is called λnom and is used in the control of the wind turbine as this is the 

tip speed ratio that gives the highest output power for any wind speed as long as β=0°. The pitch angle is 

used to limit the output power when the wind speed exceeds nominal speed.   

 
Fig. 3.6  Cp – λ characteristics for different values of pitch angle β. 

The mechanical output power as a function of turbine speed for different wind speeds and pitch angle 

β=0 is illustrated in Fig. 3.7. It can be noticed that for every wind speed there is an optimal turbine speed 
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that produces the maximum amount of power. By setting λ=λopt the optimal turbine speed is 

proportional to the wind speed as shown in (3.5). 

 
opt wind

ref

blades

v

r

λ
ω =  

 

(3.5) 

 

 

 
Fig. 3.7  Output power of the wind turbine as a function of turbines speed for different wind speeds [19]. 

3.3.2 Permanent Magnet Synchronous Generator 

To represent the PMSG a three phase sinusoidal model from the SimPowerSystems library in 

MATLAB®/Simulink® is used. This model is based on the equations (3.6) and (3.7) [19].  The equations are 

based on a dq reference frame where the d-axis is aligned with the rotor flux. All quantities are referred 

to the stator.  

 1 q

d d d r q

d d d

Ld R
i v i p i

dt L L L
ω= − +  

1 d r
q q q r d

q q q q

L pd R
i v i p i

dt L L L L

λ ωω= − − −  

 

1.5 [ ( ) ]e q d q d qT p i L L i iλ= + −  

 

 

 

(3.6) 

 

 

 

 

(3.7) 
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vd,q and id,q are the d- and q-axis voltage and currents. Ld,q is the d- and q-axis inductance, R is the 

resistance in the stator windings, ωr is the angular rotation of the rotor, λ is the amplitude of the flux 

induced by the permanent magnets in the rotor in the stator phases, p is the number of poles, and Tm is 

the electromagnetic torque. In this study a round rotor machine is used. That means that the d- and q-

axis inductances are equal, so: 

 

2

ab
d q

L
L L= =  

 

(3.8) 

 
Inserting (3.8) into (3.7) gives: 

 1.5e qT p iλ=  (3.9) 

 

The mechanical system of the model is based on (3.10). 

 1
( )

r e r m

d
T F T

dt J
ω ω= − −  

r

d

dt

θ ω=  

 

 

(3.10) 

 

J is the combined inertia of the rotor and the load, F is the combined viscous friction of the rotor and the 

load, θ is the rotor angular position, and Tm is the mechanical torque on the shaft.  

3.4 Oil and gas platform 

The load on an oil and gas platform can roughly be divided in to three types of load: direct online AC 

motors, variable speed drives, and passive loads [20]. The total electric power demand, and distribution 

between the different types of load, can vary greatly depending on the design of the platform and the 

operations running on the platform. 

The load on the platform models used in this project is determined in cooperation with representatives 

from Statoil and given in Table 2. 

Table 2  Load distribution on oil and gas platforms. 

Passive load 50 % 
VSD 40 % 
Direct online AC motors 10 % 

  To study the influence on the platform load, alternative load distributions will also be simulated. 

3.4.1 Asynchronous motor 

Direct on line AC motors operating at constant speed are used for water injection pumps, pumps for 

cooling water or other cooling medium, air and gas compressors and ventilation fans. To model these 

motors an asynchronous motor model is taken from the SimPowerSystems library in 
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MATLAB®/Simulink®. The electrical part of the model is represented by a fourth-order state-space model 

based on a dq reference frame. The induced electromagnetic torque of the motor is given in (3.11), 

 1.5 ( )
e ds qs qs ds

T p i iλ λ= −  (3.11) 

where p are the number of pole pairs, λd,q s is the d- and q-axis stator flux, and id,q s is the d- and q-axis 

stator current. In [21] it is shown that the torque of an induction motor is proportional to the square of 

the stator voltage. The voltage on the platform will therefore be of great importance to the torque 

induced in the motor. 

The speed of the induction motor is given in (3.12) where J is the combined inertia of the rotor and the 

load.  

 1
( )

2
m e m m

d
T F T

dt J
ω ω= − −  

 

(3.12) 

 

The mechanical load, Tm, of the motor is set to vary with the rotational speed, ωm, as stated in (3.13). 

This is typical for pumps and fans.  

 2
0.2 0.8

m m
T ω= +  (3.13) 

The torque-speed characteristic during acceleration for the motor and the load curve are plotted in Fig. 

3.8. Immediately after applying the stator voltage the instantaneous torque varies at line frequency 

around an average positive value. This decaying 60 Hz oscillation is due to the interaction between the 

rotating flux and the dampened DC flux that appear when current starts to flow in the machine [22]. It 

can also be noticed that the speed overshoots the rated speed and the instantaneous torque and the 

speed oscillates before the speed stabilizes. This is typical for large horsepower machines [21].  
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Fig. 3.8  Induced torque in the motor and the load torque versus rotational speed during acceleration of the motor. 

To reduce simulation time and complexity of the model an aggregated model is used. In reality the 

motors will be of different size and hereby have different inertia. They will also carry different 

mechanical loads. To create a model of all different motors on the platforms would be a very challenging 

and time consuming task. The motor parameters and the motor load will influence the dynamics of the 

system and has to be taken into account when analyzing the simulation results.  

3.4.2 Variable speed drives 

Variable speed drive AC motors is used for big motors that cannot be started direct online and for 

equipment that require variable speed like main drilling motors, pumps, and fans. 

In order to control the speed of an ac motor a switch-mode dc-to-ac inverter are used. The objective of 

this inverter is to control the magnitude and the frequency of the motor voltage to achieve the desired 

speed and torque on the motor.  The dc voltage is obtained by ether a diode rectifier, or for applications 

where regenerative breaking is required, a switch-mode rectifier. If a diode rectifier is used, the dc link 

voltage will vary with the grid voltage. The inverter should then react quick enough to these changes is 

the dc voltage and keep the motor voltage and frequency at the defined level. The motor will then be 

unaffected by small changes in the grid voltage and the power consumed by the motor, thus the active 

power drawn from the grid will remain constant.  

If a switch-mode rectifier is used it will try to keep the voltage on the dc link constant. The inverter and 

the motor will therefore be unaffected by changes in the grid voltage and the power consumed by the 

drive remains constant.  
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To model variable speed drives on the oil and gas platforms a constant power load is used. The main 

reason for this is to reduce the simulation time. Fig. 3.9 shows one phase of the model. The model 

measures the voltage over a controlled current source and then calculates the current needed to achieve 

the wanted active power. This signal is then used as input in the controlled current source.  

This model will set up the current needed to achieve the desired power regardless of the system voltage. 

In the converter current limits will restrict the maximum power if the voltage gets to low. But since this 

thesis only study load variations causing relatively small variations in the grid voltage this, is considered a 

valid simplification.  

 
Fig. 3.9  Constant power load. 

3.4.3 Passive loads 

Oil and gas platforms also have a vast demand for electric power for gas drying equipment, boilers, 

lights, and heating of multiphase pipelines to avoid hydrations. The larges part of the passive loads is 

believed to be heaters so the passive load is modeled purely resistive.   
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4 Control system  
The main goal of the control system is to let the wind farm produce maximum amount of active power at 

all times and let the VSC-HVDC transmission system assure that the oil and gas platforms have stable 

operating conditions with as little voltage and frequency fluctuations as possible. This is realized by the 

following control objectives: 

• The wind turbine generator side converter controlling the speed of the turbine. 

• The wind farm grid side converter controlling the DC link voltage. 

• The offshore VSC-HVDC converter controlling the frequency and the voltage on the offshore 

busbar. 

• The onshore VSC-HVDC converter assuring stable operating conditions for the offshore converter 

by controlling the estimated voltage offshore DC-terminals.  

4.1 Control principle 

The control of the VSCs is achieved using vector control based on a synchronous rotating dq- reference 

frame. All three-phase voltages and currents are represented as vectors in a stationary α-β coordinate 
system, where the α-axis is oriented along the a-axis in the three-phase system and the β-axis is 90° 

ahead of the α-axis. A rotating d-q reference frame, synchronized with the AC grid, is then introduced. 

See Fig. 4.1. Since the d-q frame is synchronized with the grid it rotates at a speed of ω with respect to 
the α-β reference frame. All voltage and current vectors will therefor occur as constant vectors in the d-q 

frame. Any static errors can therefor be avoided using PI controllers.  

 
Fig. 4.1  Transformation of α-β and d-q axis. 

The angle between the α-β and the d-q reference frame is given by θ=ωt. This is computed using a phase 
lock loop (PLL). 

Using the d-q transformation the voltages of the converter can be described as: 
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(4.1) 

 

where vg,dq, vconv,dq, and idq are the d and q part of the AC grid voltage, the converter terminal voltage, and 

the line current respectively [23]. R and L are the resistance and the inductance between the converter 

and the AC grid connection point.  

The control circuits in this project are built up using per unit quantities. Calculations of base values are 

found in appendix A. A cascaded control system is used consisting of a fast inner current controller and a 

slower outer controller, controlling the active power or DC voltage, and reactive power, or AC voltage. 

4.2 Inner current controller  

The inner current controller is similar for the wind farm control system and the VSC-HVDC onshore 

control system and is illustrated in Fig. 4.3, Fig. 4.7 and Fig. 4.9. It uses a PI regulator to track the d- and 

q-axis AC current references. As seen in (4.1) there is a relation between the two axes. This is 

compensated for using feed-forward de-coupling terms. The resulting signal is carried through a dq to 

abc transformation and used as voltage references in the VSC average model.  

The controller is tuned based on simulations in order to achieve a fast response. The response of the 

inner current controller is tested by connecting the VSC model to a fixed DC voltage source and applying 

a step change in id at t=0.3 s and iq at t=0.32 s. From Fig. 4.2 it can be seen that the settling time is 

around 2 ms. Id has a small impact on iq and vice versa. This impact would be greater without the feed-

forward terms.   

 
Fig. 4.2  Response of inner current controller. 

4.3 Onshore converter 

In the control system of the onshore converter the d-axis of the rotating reference frame is aligned to 

the AC grid voltage vector. The instantaneous active- and reactive power injected or absorbed from the 

AC system is therefore given by (4.2) [24].  
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(4.2) 

 

It is possible to control active- and reactive power independently by controlling the d- and q- axis 

current. By controlling the active power injected in to the HVDC link, the DC voltage can be controlled, 

and by controlling reactive power the AC voltage can be controlled.  

The onshore converter control system is shown in Fig. 4.3. The objective of the outer controller is to 

keep the DC voltage on terminals of the offshore converter at a fixed level. This is done by calculating the 

voltage drop in the DC cable and adding it to the voltage reference. The difference between this value 

and the measured DC voltage on the onshore terminals are then minimized by a PI controller. To 

minimize the slower response associated with a cascaded control system the reference value of the inner 

controller is fed-forward. In this way variations in the outer control loop are reduced hence the gain in 

the controller can be reduced, which is important for the stability [24]. From (3.2) and (4.2) it can be 

shown that under balanced conditions, icap= 0, the reference value for id should be VDC,comp stated in (4.3). 

 
,

, ,

,

DC pu

DC comp DC pu

d pu

V
V I

v
= ⋅  

 

(4.3) 

 

VDC,pu is the voltage on the DC cable, IDC,pu is the current in the DC cable and vd,pu is the d component of 

the AC voltage 

The onshore controller can in in addition control the AC voltage or reactive power to the onshore grid 

and in this way help stabilizing the onshore power system. This is not a focus point if this study and since 

the onshore grid connection is considered a strong point in the main power grid this is not thought to be 

necessary and not treated further. Iq,ref is set to zero. 
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Fig. 4.3  Onshore converter control system. 

The DC voltage controller is tuned based on simulations and the objective is to achieve a stable system 

with minimal voltage oscillations. The response of the converter was tested by disconnecting the 

offshore converter and letting the onshore converter control the voltage on the offshore termination of 

the DC cable. Fig. 4.4 shows the response of the DC voltage when a step change in the voltage reference 

is applied at t=0.4 s.  

 
Fig. 4.4  Response of onshore converters DC controller. 

4.4 Offshore converter 

The offshore converter is responsible to keep the voltage on the AC busbar constant. The control system 

for the offshore converter is illustrated in Fig. 4.5. Unlike the other control circuits this controller does 

not use vector control. The difference between the measured voltage on the busbar and the voltage 

reference is minimized by a PI controller. The output is then multiplied with a fixed three phase, 60 Hz 

sinusoidal signal before it is used as a reference signal in the VSC model. In this way the frequency on the 

offshore AC system will remain constant at 60 Hz.  
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Fig. 4.5  Control system for the offshore converter. 

The offshore voltage controller is tuned based on simulations to achieve a stable system with minimal 

voltage oscillations. The response of the controller is tested by applying a step in the voltage reference at 

t=1.5 s. The response is shown in Fig. 4.6. 

 
Fig. 4.6  Response of voltage controller on offshore converter. 

4.5 Wind farm 

The goal of the wind farm controller is to produce the maximum amount of active power for any given 

wind speed. This is realized by letting the generator side controller control the speed of the permanent 

magnet synchronous generator. The grid side controller will control the DC link voltage and the reactive 

power to the offshore AC grid.  

4.5.1 Generator side controller 

To extract the maximum amount of power from the wind the tip speed ratio λ should be as close to λnom 

as possible. The d-axis is aligned with the rotor flux. From (3.9) it can be seen that by controlling iq the 

electromagnetic torque can be controlled and hereby the speed of the generator according to (3.10). The 

outer controller takes the wind speed as input and calculates the speed reference for the PMSG using 

the correlation between wind speed and rotational speed of the turbine given in (3.5). 
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The difference between the speed reference and the measured speed is used as input in a PI controller 

where the output is used as reference for the q-axis current. The control system for the generator side 

converter in the wind farm is illustrated in Fig. 4.7. 

 
Fig. 4.7  Control system for the generator side converter in the wind farm. 

A negative id current will cause flux weakening in the machine [25]. This can be utilized to keep the 

induced voltage in the generator from exceeding the rated voltage for generator speeds beyond rated 

speed. In this study the generator speed will be kept within the ratings so the d-axis current is kept to 

zero.   

The converter is tuned based on simulations in order to get stable system with minimal oscillations. The 

response is tested by applying a step change in the speed reference at t=0.8 s. The response is shown in 

Fig. 4.8. 

 
Fig. 4.8  Response of the speed controller on the wind side converter in the wind farm. 

The inertia of the turbine is set relatively low to speed up the acceleration of the turbine.  
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4.5.2 Grid side controller 

The control system for the grid side converter in the wind farm is shown in Fig. 4.9. The grid side 

converter is responsible for controlling the voltage on the DC link. This is done in the same way as for the 

onshore converter. See 4.3. The grid side controller also controls the reactive power into the busbar. In 

this project Qref is set to zero.  

 
Fig. 4.9  Control system for the grid side converter in the wind farm. 

Tuning of the controller has been performed based on simulations to achieve a stable system. The 

response of the controller was tested by applying a step change in the reference values. The response 

can be shown in Fig. 4.10. 

 
a) 

 
b) 

Fig. 4.10  a) Response of the DC voltage controller on the grid side converter in the wind farm. b) Response of the reactive 

power controller in the grid side converter in the wind farm. 

4.5.3 Pitch angle controller  

When the wind speed exceeds the rated speed of the turbine the torque on the rotor blades and hence 

the output power will exceed the ratings of the turbine and the PMSG. To limit the torque on the rotor 

blades the pitching of the blades are then changed with an angle β. The pitch controller is illustrated in 

Fig. 4.11. The error between the rated power and the measured power of the generator are minimized 
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by a PI controller. There is a limitation on how fast the rotor blades can turn, hence how fast the pitch 

angle can change. This is taken in to account with the rate limiter. The error between the measured wind 

speed and the wind speed reference is run through a P controller and used as feed forward for a faster 

response.  

 

 

Fig. 4.11  Pitch controller. 

In the simulations the wind speed is kept under nominal wind speed so the pitch controller is not active.  
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5 Simulation results 
To investigate the sturdiness of the system, simulations are performed using the toolbox 

SimPowerSystems in MATLAB®/Simulink®. Different disturbances will be introduced and the power 

system will be evaluated on whether it is able to stabilize after these disturbances. The voltage and 

frequency variations will also be compared with the limits given in IEC 61892 which is the norm regarding 

offshore electric installations [12]. The allowed transient and static, voltage and frequency variations on 

oil and gas platforms are stated in Table 3. 

Table 3  Important parameters given in IEC 61892. 

Platform parameter Limits in per unit 

Transient voltage limits 0.8 – 1.2 
Stationary voltage limits 0.9 – 1.06 
Transient frequency limits 0.9 – 1.1 
Stationary frequency limits 0.95 – 1.05 

5.1 Lose wind power. 

Short circuits, faults in cables, protection system, or other occurrences may lead to tripping of the wind 

farm. It is then important that the VSC-HVDC control system is able to handle this disturbance so that the 

effects on the platform are marginal. In the first simulation case the wind farm is set to deliver 50 MW 

before it is disconnected. The HVDC-VSC transmission system then has to react quickly to compensate 

for the lost power generation. The wind farm is disconnected at t=2 s and the results of the simulation 

are shown in Fig. 5.1 - Fig. 5.10.  

The RMS voltage on the busbar, platform 1, and the DC voltage on the offshore terminals during 

disconnection of the wind farm are shown in Fig. 5.1. When the wind farm is disconnected the voltage on 

the busbar drops but the controller on the offshore converter reacts quickly to reestablish the voltage. 

The voltage on platform 1 is similar to the voltage on the busbar except the voltage drop in the AC cable. 

There is a negative peak in the platform voltage on approximately 0.6 pu and there are some minor 

oscillations before the voltage stabilizes after 0.01 s. The platforms voltage is well within the limits in 

Table 3 and since platform 1 has the largest load and the longest transmission cable the voltages on the 

other platforms can also be assumed to be within the limits.  

 
Fig. 5.1  Voltages in the system during disconnection of the wind farm. 
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The active power flow in the system is illustrated in Fig. 5.2. The power from the offshore converter is 

quickly increased to meet the demand of the platforms. It can also be seen that the power drawn from 

the onshore grid have larger oscillations than the power from the offshore converter due to the losses in 

the DC cable. The power on the offshore terminals on the DC cable is similar to the power from the 

offshore converter except the losses in filter and the transformer.  

 
Fig. 5.2  Active power in the system during disconnection of the wind farm. 

Fig. 5.3 shows the frequency on the offshore busbar during disconnection of the wind farm. The nature 

of the offshore controller should imply a fixed frequency on the busbar. The minor oscillations and 

deviation from the fundamental frequency are most likely an error in the measurement block. See 

chapter 6 for further discussion. The frequency is however well within the limits in Table 3. 

 
Fig. 5.3  Frequency on the busbar during disconnection of the wind farm. 

Fig. 5.4 shows the distribution between the different loads on platform 1. As mentioned in 3.4.1 the 

torque in an induction motor is proportional to the motor terminal voltage squared. The small dip in the 

platform voltage will therefore cause a minor oscillation in the speed and thus in the power to the 

induction motor. This power oscillation can also be seen in the power drawn from the onshore power 

grid in Fig. 5.2.  
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Fig. 5.4  Load distribution on platform 1. 

Fig. 5.5 shows the voltage at the connection point to the onshore power grid. Due to the increased load 

the voltage drops. This could be prevented with the use of dynamic reactive power control on the 

onshore converter but this is not examined in this project.  

 
Fig. 5.5  Voltage on onshore grid connection during disconnection of the wind farm. 

5.1.1 Influence of platform loads 

Simulations are performed with different loads on the platforms to study the influence the platform load 

have on the system stability.  Simulations on three load cases described in Table 4 are performed.  

Table 4  Different platform load cases. 

Load case 1: 

(Reference 

case) 

50 % passive load, cos ϕ=1 
40 % constant power load 
10 % induction motor load 

Load case 2: 40 % passive load, cos ϕ=1 
40 % constant power load 
20 % induction motor load 

Load case 3: 50 % passive load, cos ϕ=0.9 
40 % constant power load 
10 % induction motor load 

Fig. 5.6 shows that the platform loads have very little influence on the voltage on the busbar. 
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Fig. 5.6  Voltage on busbar during disconnection of the wind farm for different platform loads. 

The voltage on platform 1 during disconnection of the wind farm for different platform loads is shown in 

Fig. 5.7. It can be noticed that the shape of the voltage are very similar but the amplitude is lower in load 

case 1 and 2 due to larger inductive load on the platform and hence larger voltage drop in the cable. 

 

Fig. 5.7  Voltage on platform 1 during disconnection of the wind farm for different platform loads. 

The active power from the offshore converter to the busbar is illustrated in Fig. 5.8. The increased share 

of induction motor load in load case 2 causes slightly larger oscillations in the power due to the speed 

oscillations in the motor. In load case 3 power oscillations between the increased inductive load on the 

platforms and the capacitances in the offshore cables introduce small fluctuations in the active power.   

 
Fig. 5.8  Active power from offshore converter to busbar during disconnection of the wind farm for different platform loads. 
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5.1.2 Influence of offshore voltage controller 

The control parameters on the offshore voltage controller are changed to make the response time of the 

controller twice as long. The simulation is then repeated to study the influence the offshore voltage 

controller have on the results. The voltage on the offshore terminals of the DC cable and the voltage on 

the busbar is shown in Fig. 5.9. The active power from the offshore converter to the busbar is shown in 

Fig. 5.10. It is seen that the slower offshore voltage controller have little influence on the dynamics of 

the system.  

 
a) 

 
b) 

Fig. 5.9  a) Voltage on DC cable, and b) voltage on the offshore busbar during disconnection of the wind farm with different 

control parameters on the offshore voltage controller. 

 
Fig. 5.10  Active power from offshore converter to the busbar during disconnection of the wind farm for different control 

parameters on the offshore voltage controller. 

5.2 Start up of induction motor. 

In this simulation an induction motor on 5 MW is started on platform 1. To reduce the start up time of 

the motor and hence the simulation time the inertia of the motor is set relatively low. This will not affect 

the transients except for making the motor accelerate faster. Similar transients may also be caused by 

starting several small induction motors at the same time. Large motors are usually equipped with a 

frequency converter to limit starting current and start up of this many small induction motors at the 

same time is not realistic in real life. The point of this simulation is to create a large disturbance in the 

system to see how the control system is able to respond and to determine the limitations associated 

with start up of large motors on the platforms. The motor are started at t=2 s. and the results of the 

simulations are shown in Fig. 5.11 - Fig. 5.14. 
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Fig. 5.11 shows the electromagnetic torque induced in the motor and the rotor speed during start up. 

The oscillations in the speed and torque just after the motor is connected and before the speed is 

stabilized at rated speed are the same as illustrated in Fig. 3.8.  

 
a) b) 

Fig. 5.11  a) Induced electromagnetic torque and b) rotor speed of motor during start up. 

The active power flow in the system is shown in Fig. 5.12. The oscillations in the motor torque and speed 

cause the power from the onshore power grind, through the DC cable and the offshore converter to 

oscillate during acceleration of the motor. It is seen that the control strategy is working as intended and 

the HVDC transmission system handles the disturbance while the active power from the wind farm 

remains virtually unaffected by the motor start up.  

 
Fig. 5.12  Active power flow during motor start up on platform 1. 

The voltages in the system are shown in Fig. 5.13. There is a negative peak on 0.03 pu in the busbar 

voltage caused by the large inrush current in the motor but the voltage is quickly reestablished. There 

are also some small oscillations when the motor reaches its operational speed and the motor current is 

reduced. These fluctuations can also be seen in the DC cable voltage. Because of the large starting 

current in the motor the voltage on platform 1 drops during acceleration of the motor. The voltage on 

the platform is however within the limitations stated in Table 3. The DC link voltage in the wind turbine 

converter is practically unaffected by the motor start up.  
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Fig. 5.13  Voltages in the system during motor start up on platform 1. 

Fig. 5.14 shows the apparent-, active-, and reactive power from the offshore converter into the busbar. 

The reactive power generated by the cables exceeds the reactive power consumed by the platforms 

during normal operations, so when the motor is started the reactive power flow in the offshore 

converter is reduced. The increase in active power is small compared to the reduction in reactive power 

so the apparent power from the offshore converter is reduced during start up of the motor.  

 
Fig. 5.14  Power from the offshore converter into the busbar during motor start up on platform 1. 

5.2.1 Direct on line motor start up limitations. 

In this section four motors with rating up to 30 MW are started on platform 1 to examine the limitations 

regarding direct on line start up of induction motors in this system.  

Fig. 5.15 shows the apparent power from the offshore converter into the busbar. It can bee seen that the 

apparent power is below the rated value of the converter for all the motors tested in this simulation. 

This is because of the large reactive power generation of the offshore AC cables. 
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Fig. 5.15  Apparent power on offshore converter into the busbar during motor start up of different size induction machines. 

To assure that the voltage drop on platform is minimized during start up of the motor, it is essential that 

the offshore voltage controller reacts quickly and brings the voltage on the offshore busbar back to its 

reference. Fig. 5.16 shows that the voltage on the busbar is reestablished after 0.04 s after connecting 

the 30 MW motor.  

 
Fig. 5.16  Busbar voltage during start up of a 30 MW motor on platform 1. 

The voltage on platform 1 is shown in Fig. 5.17. During start up of the 10 MW motor the voltage keeps 

within the limits given in Table 3, but for the larger motors the transient voltage variations exceeds the 

limitations given in the grid code. It is worth mentioning that the voltage on the platform is able to 

recover in all cases. It was not possible to start a larger motor because the platform voltage became to 

low and the motor did not have sufficient starting torque.  

 
Fig. 5.17  Voltage on platform 1 during motor start up of different size induction machines on platform 1. 
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5.3 Dip in onshore power grid voltage 

A sag in the onshore voltage can be caused by a short-circuit, start up of a large motor, energizing of a 

transformer, or sudden load variation in the onshore power grid. It is important that the control system 

is able to handle these types of disturbance so that a dip in the onshore voltage not affects the operation 

on the platforms. A voltage sag in the onshore power grid is simulated to study the effect this have on 

the offshore voltage. The onshore voltage is reduced from 1 pu to 0.8 pu at t=2, and increased back to 1 

pu at t=2.1. 

Fig. 5.18 shows the voltages in the system during a voltage sag in the onshore power grid. The sag in the 

onshore voltage causes a disturbance in the voltage on the offshore terminals of the DC cable but the 

voltage controller is quick to bring the voltage back to its reference. On the busbar the voltage 

disturbance is further damped due to the offshore voltage controller and the busbar voltage only change 

with +/- 0.004 pu. Consequently the voltage remains fairly constant on the platforms and the wind farm 

during the voltage sag. The voltage on platform 1 and the wind farm drops with less than 0.3 % and 0.1 % 

respectively. The two voltage spikes with a few milliseconds duration occurring at t=2.0 s. and t=2.1 s. 

are most likely due the power balance in the ideal VSC model and is not realistic. 

 
Fig. 5.18  Voltages in the system during voltage sag in onshore grid. 

Fig. 5.19 shows the current from the onshore power grid to the onshore converter during the voltage sag 

on the onshore grid. It can be seen that the current exceeds 1 pu during the voltage drop. This is 

important to consider when dimensioning the onshore transformer and converter.  

 
Fig. 5.19  RMS current from the onshore power grid to the onshore converter during a sag in the onshore voltage. 
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5.4 Load shedding. 

During operation of an oil and gas platform situations may occur were parts of the load have to be 

disconnected. Components may fail causing large loads, or in worst case the whole platform, to trip. It is 

then important that a fault on one platform don’t affect the operation on the other platforms in the 

power system. In this simulation case platform 2 is suddenly disconnected at t=2 s. to study the effect 

this has on the rest of the system.  

Fig. 5.20 shows the voltages in the system during disconnection of platform 2. When the platform is 

disconnected the voltage on the busbar is increased. The offshore voltage controller reacts quickly to 

bring the voltage back to its reference. The voltage on the DC cable also rises before the onshore DC 

voltage controller reduces the active power into the cable. The voltage on the DC link in the wind farm is 

practically unaffected by the disturbance. It can be noticed that the voltage transients are almost exactly 

opposite to the voltages in Fig. 5.1 when the wind farm was disconnected.  

 
Fig. 5.20  Voltage in the system during disconnection of platform 2. 

The active power flow in the system during disconnection of platform 2 is illustrated in Fig. 5.21. The 

power from the offshore converter is decreased to meet the new demand. As in Fig. 5.2 the oscillations 

in power from the onshore power grid is slightly higher than in the offshore converter due to the losses 

in the DC cable. 

 
Fig. 5.21  Active power flow in the system during disconnection of platform 2. 
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5.4.1 Influence of cable model 

Fig. 5.1 and Fig. 5.20 reveal spikes and rapid oscillations in the busbar voltage during sudden changes in 

the load. The number of PI-sections in the offshore cables is changed form 1 to 5 and the simulation of 

the case, disconnection of platform 2 is repeated in order to study the influence of the offshore cable 

model.  

Fig. 5.22 shows that the peak in the voltage on the busbar is reduced in the case with 5 PI-sections.  

 
Fig. 5.22  Voltage on busbar during disconnection of platform 2 with different number of PI-sections on offshore cables. 

5.4.2 Disconnect all platforms 

Disconnection of all platforms at the same time is a highly unlikely event. However this is the largest load 

variation the control system can be exposed to and therefore a good way to test the model. The power 

transfer on the HVDC transmission system will then have to turn and power must start to flow into the 

onshore power grid since the wind farm is still producing power. 

Fig. 5.23 shows the voltage on the busbar during disconnection of all platforms. There are some 

oscillations but the controller brings the voltage back to the reference after 0.05 s.  

 
Fig. 5.23  Busbar voltage during disconnection of all platforms. 
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The active power from the offshore converter into the busbar is shown in Fig. 5.24. When the platforms 

are disconnected the direction of the power is changed and the power from the wind farm is transferred 

to shore.  

 
Fig. 5.24  Active power from the offshore converter to the busbar during disconnection of all platforms.  
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6 Discussion  
The simulations show that the control system developed is working according to the control strategy. 

The onshore- and offshore- converter reacts quickly on changes in the voltage on the DC cable and the 

offshore busbar respectively. Consequently the VSC-HVSC transmission system is able to react quickly 

and adjust the delivered power according to changes in the demand on the offshore power grid. The 

wind farm controller is also able to keep the DC link voltage in the turbine back-to-back converter, and 

the rotational speed of the wind turbine practically constant during the disturbances. As a result the 

power production on the wind farm is virtually unaffected by the disturbances while the VSC-HVDC 

transmission assures stability in the system. The power oscillations from the wind farm are insignificant 

so the wind farm does not seem to have any negative effect on the operation on the platforms. The 

simulation results states that the control system was able to keep the voltage and frequency fluctuation 

on the platforms within the limits of the grid code [12] for all disturbances. Only during direct online 

start up of induction motors larger than 15 MW was the transient voltage drop in the platform to large. 

This was however due to the voltage drop in the cable and not the control system.  

During start up of the induction motor on platform 1, the large starting current of the motor caused the 

voltage on the platform and the offshore busbar to drop. Fig. 5.16 shows that the VSC-HVDC control 

system was quickly able to restore the offshore busbar voltage to its reference even during start up of a 

30 MW machine. The limitations regarding motor start up is therefore restricted to the voltage drop and 

the current rating of the AC cable. A slower controller would lead to a larger voltage drop on the 

platform during start up and herby limiting the rating of the motor possible to start direct online. The 

quick response of the offshore voltage controller is therefore considered very favorable regarding direct 

on line start up of induction motors on the platform.  

The simulation results revealed some rapid oscillations in the voltage on the offshore busbar and hence 

the platforms at the moment of load shedding and tripping of the wind farm. See Fig. 5.1 and Fig. 5.20. 

Fig. 5.22 revealed that these voltage transients were affected by the cable model. The capacitance of the 

PI cable model will be directly connected to the offshore busbar. As a result a rapid change in the busbar 

voltage might cases a large current in the capacitances. The PI equivalent cable model is generally not 

well suited for fast transients and spurious oscillations generated by lumped parameter elements must 

be accepted [26]. Distributed parameter models or other model how take into account the frequency 

dependent parameters of the cable are usually more accurate. However they require shorter time steps 

and hence longer calculation time. To add a small inductor between the busbar and the PI model might 

also be enough the limit the oscillations.  

Another possible explanation to the voltage oscillations might be errors in the calculation of the rms 

voltage. The breaker model used to disconnect the wind farm and the platform in the simulations are 

designed to open at current zero crossing. Thus the breaker uses approximately ½ voltage period to 

completely break the current. This is about the same duration as the voltage transients. The imbalance in 

the current before all three phases are interrupted, might cause fluctuations in the calculated rms 

voltage. 
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The simulations showed that a voltage sag in the onshore voltage only had a minor effect on the voltages 

in the offshore system due to the fast control on the VSC-HVDC transmission system. For a full AC 

transmission system the effect of a voltage sag as described in chapter 5.3 is believed to be far more 

dramatic. Due to difficulties concerning voltage regulation in an AC system the voltage on the offshore 

busbar would drop forcing the platform to reject much of its load, in order to restore the voltage, or 

even causing the power transmission system to trip due to over current.  

The simulations are performed using an average VSC model witch has no time delay. A real converter will 

have a time delay given by the switching frequency of the converter. This time delay combined with 

other delays associated with a real life system will decrease the systems stability margins. The time delay 

of a VSC is however considered to be small. A detailed VSC model will also introduce harmonics in the AC 

voltage and ripple in the DC voltage but this will to a large extent be removed by filters. Overall it is not 

expected that the use of a detailed VSC model would have much effect on the results presented in this 

rapport. 

In 5.1.2 it was showed that a slower response on the offshore voltage controller has very little effect on 

the simulation results. However the response of the slower offshore voltage controller in 5.1.2 was still 

relatively fast and any attempt to make the response time even slower caused the simulations to fail. It 

can therefore be assumed that the control parameters have some effect on the simulation results, but a 

more thorough sensitivity study is needed to determine the extent of this effect. The control parameters 

used in this study were obtained based on simulations and even though the results revealed a fast and 

accurate control, it is believed that more optimal parameters can be found making the control even 

faster. It is also possible to let the offshore wind farm contribute to support the voltage on the offshore 

busbar by providing dynamic reactive power. In sum this would in theory lead to a even more stable 

voltage on the offshore busbar.  

The load on the platform varies greatly depending on which processes are running on the platforms and 

how the processes are designed. The simulation results revealed that a sudden change in the platform 

voltage caused the power drawn by the induction motors to oscillate. These oscillations will be affected 

by the motor parameters, and then especially the inertia of the rotor and the load. The motor power 

oscillations were however modest so the motor parameters are not believed to have a conspicuous 

effect on the systems stability. The sensitivity study also showed that the load on the platforms only has 

a minor influence on the results. The load model is therefore considered detailed enough and it is not 

believed that a more detailed model would have considerable effect on the simulation results.  

There are some uncertainties regarding the frequency measurements. The simulations were performed 

using a discrete model with a sampling time of 50 µs. This may lead to an inaccuracy in the frequency 

measurement which can explain the static variation from the fundamental frequency shown in Fig. 5.3. 

The transient behavior is also uncertain because of the limited number of voltage periods during the 

transients. The oscillations in the frequency is believed to be changes in the voltage phase angle.  
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7 Conclusion and further work. 

7.1 Conclusion 

A hypothetical power system in the north sea have been studied in order to investigate whether this 

system configuration is a feasible way to integrate offshore wind power and oil and gas platforms to the 

onshore power grid. A dynamic simulation model of the system has been made. A control strategy and a 

VSC control system based on vector control have also been created.  

It is concluded that the control system is working according to the control strategy. All the developed 

controllers are able to efficiently track there references even during large disturbances. The VSC-HVDC 

transmission system is capable of quickly adjusting the delivered power to meet changes in the offshore 

power demand, leaving the power production on the wind farm practically unaffected by the 

disturbances introduced to the system. The control system is also able to assure stable operation 

conditions for the oil and gas platforms during the disturbances simulated and the voltage and frequency 

oscillations are kept within the limits of the grid code. The system was exposed to, and able to handle, 

large and partly unrealistic disturbances, so it can be concluded that the system handles variations in the 

load very well.  

The results of the simulations indicate that the system configuration reviewed in this thesis represent a 

feasible way to integrate oil and gas platforms and offshore wind power with the onshore power grid.   

7.2 Further work 

The simulation results presented in this paper indicate feasibility of the system configuration 

investigated in this study. However more detailed work needs to be done before a clear conclusion is 

made. 

The simulations in this thesis are done using an average VSC model. This limits the transients it is 

possible to study. Simulations with a detailed VSC model including switches should be performed in 

order to study short circuits and other transients to fast to be investigated with an average VSC model.  

The reactive power from the wind farm is in this rapport set to zero. Dynamic reactive power from the 

wind farm can be used to support the voltage on the offshore busbar. To investigate different ways to 

control the voltage on the offshore busbar and the effect of including dynamic reactive power control 

from the wind farm is recommended as future work.  

This rapport only investigates one way to integrate oil and gas platforms and offshore wind power to the 

onshore power grid. Other system configurations should be investigated and the results should be 

compared in order to find the system configuration most suitable. The choice of configuration will 

however depend on a lot of things like: the number of platforms and wind farms and the distance 

between them, the distance from shore, and the investment cost. For instance if the distance between 

the offshore platforms is large, a multi terminal HVDC system might have certain advantages.  
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Appendix 

 

Appendix A: Base values for per unit representation 

Sbase=300MVA 𝑉𝑏𝑎𝑠𝑒 = 𝑉𝑛 (nominal peak phase-to-ground voltage) 

𝐼𝑏𝑎𝑠𝑒 =
𝑆𝑏𝑎𝑠𝑒𝑉𝑏𝑎𝑠𝑒 

𝑍𝑏𝑎𝑠𝑒 =
𝑉𝑏𝑎𝑠𝑒2𝑆𝑏𝑎𝑠𝑒 
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Appendix B: Parameters  

 

Onshore grid: 

Phase-to-phase rms voltage 300 kV 
Frequency 50 Hz 
3-phase short circuit level  2500 MVA 
X/R ratio 6 

 

Grid impedance: 𝑍𝐺 =
𝑈𝐺2𝑆𝐺 =

300𝑘𝑉22500𝑀𝑉𝐴 = 36𝛺 

Grid resistans: 𝑅𝐺 = cos𝜙 ∙ 𝑍𝐺 = cos (tan−1 6)) ∙ 36𝛺 = 5.92𝛺 

Grid inductance: 𝐿𝐺 =
6𝑅𝐺2𝜋𝑓 = 0.113𝐻 

Converter transformer: 

Nominal power 300 MVA 
Configuration Yg,Yg 
Frequency 50 Hz (Onshore transformer) 

60 Hz (Offshore transformer) 
Voltage ratio 300𝑘𝑉120𝑘𝑉 (Onshore transformer) 

 120𝑘𝑉90𝑘𝑉  (Offshore transformer) 

R1 0.0025 pu 
R2 0.0025 pu 
L1 0.075 pu 
L2 0.075 pu 
Rm 500 pu 
Lm 500 pu 

 

Phase reactor:  

XL 0.15 pu 
R 0.01 pu 

 

VSC-HVDC system: 

VDC,n(pole-to-pole) 240 kV 
Pn 300 MVA 
In 𝑃𝑛𝑉𝑛 =

300𝑀𝑉𝐴240 𝑘𝑉 =1250A 

CDC 5.21µF 
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DC cable: 

Length 220 km 
Number of pi sections 2 
Resistance 13.9 mΩ/km 
Inductance 0.159 mH/km 
Capacitance 0.231 µF/km 

 

AC cables: 

Number of pi sections 1 
Resistance 99.1 mΩ/km 
Inductance 0.46 mH/km 
Capacitance 0.14 µF/km 

 

Wind turbine: 

Nominal mechanical output power 2 MW 
Base wind speed 12 m/s 
Maximum power at base wind speed 1 pu 

 

PMSG: 

Nominal power 2 MW 
Stator phase resistance 0.015 Ω 
Armature inductance  2.122 mH 
Flux linkage established by magnets 4.814 V.s 
Inertia 8000 kg*m2 
Pole pairs 40 
Rotor type Round 
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Control parameters: 

Onshore controller   

Inner controller Kp 2 
 Ki 50 
DC voltage controller Kp 5 
 Ki 200 
Offshore controller   

Busbar voltage controller Kp 0.1 
 Ki 150 
Wind farm generator side    

Inner controller Kp 5 
 Ki 50 
Speed controller Kp 10 
 Ki 100 
Wind farm grid side   
Inner controller Kp 2 
 Ki 50 
Reactive power controller Kp 0.5 
 Ki 100 
DC voltage controller Kp 1 
 Ki 1000 
Pitch controller   
 Kp 5 
 Ki 50 
 Kw 3.33 

  



45 
 

Appendix C: MATLAB script 

 

This scrip plots Cp-λ characteristic for the wind turbine model. 

%plots Cp to lamda for the simulink wind turbine model for different pitch 
%angles 
for b=0:5:15 
    hold on; 
    la=0:0.1:15; 
    la_i=1./((1./(la+0.08*b))-(0.035./(b^3+1))); 
    Cp=0.5176.*((116./la_i)-(0.4.*b)-5).*exp(-21./la_i)+0.0065.*la; 
    plot(la,Cp); 
end 
axis([0 15 -0.1 0.5]); 
xlabel('\lambda'); 
ylabel('c_p'); 
grid; 

  
b=0; 
la=0:0.1:15; 
la_i=1./((1./(la+0.08*b))-(0.035./(b^3+1))); 
Cp=0.5176.*((116./la_i)-(0.4.*b)-5).*exp(-21./la_i)+0.0065.*la; 
maxCp=max(Cp); 
indexAtMax = find(Cp == maxCp); 
xAtMax = la(indexAtMax); 
x=[0 xAtMax]; 
y=[maxCp maxCp]; 
plot(x,y,'--'); 
plot([xAtMax xAtMax],[-0.1 maxCp],'--'); 

 

This script prints all simulation results to diff image files.  

figure (1) 
hFig = figure(1); 
set(gcf,'PaperUnits','inches','PaperPosition',[0 0 6.52 1.85]) 

  
%Onshore grid conection 
plot(gridcon.time,gridcon.signals(1,1).values(:,1));  
xlabel('Time (s)','FontSize',9); 
ylabel('V_g_r_i_d_ _c_o_n_e_c_t_i_o_n (pu)', 'FontSize',9); 
axis([1.5 3.5 0.9 0.97]); 
grid 
print -dtiff -r300 Vgridcon; 

  
plot(gridcon.time,gridcon.signals(1,2).values(:,1));  
xlabel('Time (s)','FontSize',9); 
ylabel('I_g_r_i_d_ _c_o_n_e_c_t_i_o_n (pu)', 'FontSize',9); 
axis([1.5 3.5 0.7 0.9]); 
grid 
print -dtiff -r300 Igridcon; 

  
plot(gridcon.time,gridcon.signals(1,3).values(:,1));  
xlabel('Time (s)','FontSize',9); 
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ylabel('P_g_r_i_d_ _c_o_n_e_c_t_i_o_n (pu)', 'FontSize',9); 
axis([1.5 3.5 0.7 0.9]); 
grid 
print -dtiff -r300 Pgridcon; 

  
%DC cable offshore conection 
plot(DCoffshore.time,DCoffshore.signals(1,1).values(:,1));       
axis([1.5 3.5 0.6 0.9]); 
xlabel('Time (s)','FontSize',9); 
ylabel('I_D_C_,_o_f_f_s_h_o_r_e (pu)','FontSize',9); 
grid; 
print -dtiff -r300 Idcoffshore; 

  
plot(DCoffshore.time,DCoffshore.signals(1,2).values(:,1));       
axis([1.5 3.5 0.95 1.05]); 
xlabel('Time (s)','FontSize',9); 
ylabel('V_D_C_,_o_f_f_s_h_o_r_e (pu)','FontSize',9); 
grid; 
print -dtiff -r300 Vdcoffshore; 

  
plot(DCoffshore.time,DCoffshore.signals(1,3).values(:,1));       
axis([1.5 3.5 0.6 0.9]); 
xlabel('Time (s)','FontSize',9); 
ylabel('P_D_C_,_o_f_f_s_h_o_r_e (pu)','FontSize',9); 
grid; 
print -dtiff -r300 Pdcoffshore; 

  
%Offshore bubar 
plot(BB_IVPQ.time,BB_IVPQ.signals(1,1).values(:,1));       
axis([1.5 3.5 0.7 0.9]); 
xlabel('Time (s)','FontSize',9); 
ylabel('I_b_u_s_ _b_a_r (pu)','FontSize',9); 
grid; 
print -dtiff -r300 Ibusbar; 

  
plot(BB_IVPQ.time,BB_IVPQ.signals(1,2).values(:,1));       
axis([1.5 3.5 1 1.08]); 
xlabel('Time (s)','FontSize',9); 
ylabel('V_b_u_s_ _b_a_r (pu)','FontSize',9); 
grid; 
print -dtiff -r300 Vbusbar; 

  
plot(BB_IVPQ.time,BB_IVPQ.signals(1,3).values(:,1));       
axis([1.5 3.5 0.7 0.8]); 
xlabel('Time (s)','FontSize',9); 
ylabel('P_b_u_s_ _b_a_r (pu)','FontSize',9); 
grid; 
print -dtiff -r300 Pbusbar; 

  
plot(BB_IVPQ.time,BB_IVPQ.signals(1,4).values(:,1));       
axis([1.5 3.5 -0.6 -0.2]); 
xlabel('Time (s)','FontSize',9); 
ylabel('Q_b_u_s_ _b_a_r (pu)','FontSize',9); 
grid; 
print -dtiff -r300 Qbusbar; 
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%Platform 1 
plot(P4_IVPQ.time,P4_IVPQ.signals(1,1).values(:,1));       
axis([1.5 3.5 0.15 0.35]); 
xlabel('Time (s)','FontSize',9); 
ylabel('I_p_l_a_t_f_o_r_m_1 (pu)','FontSize',9); 
grid; 
print -dtiff -r300 Iplatform1; 

  
plot(P4_IVPQ.time,P4_IVPQ.signals(1,2).values(:,1));       
axis([1.5 3.5 0.85 1.05]); 
xlabel('Time (s)','FontSize',9); 
ylabel('V_p_l_a_t_f_o_r_m_1 (pu)','FontSize',9); 
grid; 
print -dtiff -r300 Vplatform1; 

  
plot(P4_IVPQ.time,P4_IVPQ.signals(1,3).values(:,1));       
axis([1.5 3.5 0.15 0.45]); 
xlabel('Time (s)','FontSize',9); 
ylabel('P_p_l_a_t_f_o_r_m_1 (pu)','FontSize',9); 
grid; 
print -dtiff -r300 Pplatform1; 

  
plot(P4_IVPQ.time,P4_IVPQ.signals(1,4).values(:,1));       
axis([1.5 3.5 -0.1 0.4]); 
xlabel('Time (s)','FontSize',9); 
ylabel('Q_p_l_a_t_f_o_r_m_1 (pu)','FontSize',9); 
grid; 
print -dtiff -r300 Qplatform1; 

  
Pbase=300e6; 
Ptot=PQplatform.signals(1,1).values(:,1)/Pbase; 
Pind=PQplatform.signals(1,2).values(:,1)/Pbase; 
Pvsd=PQplatform.signals(1,3).values(:,1)/Pbase; 
Ppassive=PQplatform.signals(1,4).values(:,1)/Pbase; 
plot(PQplatform.time,Ptot,PQplatform.time,Pind,PQplatform.time,Pvsd,PQplatform

.time,Ppassive); 
axis([1.5 3.5 -0.05 0.3]); 
xlabel('Time (s)','FontSize',9); 
ylabel('Active power. Platform1 (pu)','FontSize',9); 
grid; 

  
Qtot=PQplatform.signals(1,1).values(:,2)/Pbase; 
Qind=PQplatform.signals(1,2).values(:,2)/Pbase; 
Qvsd=PQplatform.signals(1,3).values(:,2)/Pbase; 
Qpassive=PQplatform.signals(1,4).values(:,2)/Pbase; 
plot(PQplatform.time,Qtot,PQplatform.time,Qind,PQplatform.time,Qvsd,PQplatform

.time,Qpassive); 
axis([1.5 3.5 -0.05 0.]); 
xlabel('Time (s)','FontSize',9); 
ylabel('Reactive power. Platform1 (pu)','FontSize',9); 
grid; 

  

  
%Cable to platform 1 
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plot(P12_IVPQ.time,P12_IVPQ.signals(1,1).values(:,1));       
axis([1.5 3.5 0.15 0.35]); 
xlabel('Time (s)','FontSize',9); 
ylabel('I_c_a_b_l_e_P_1 (pu)','FontSize',9); 
grid; 
print -dtiff -r300 IcableP1; 

  
plot(P12_IVPQ.time,P12_IVPQ.signals(1,2).values(:,1));       
axis([1.5 3.5 0.95 1.1]); 
xlabel('Time (s)','FontSize',9); 
ylabel('V_c_a_b_l_e_P_1 (pu)','FontSize',9); 
grid; 
print -dtiff -r300 VcableP1; 

  
plot(P12_IVPQ.time,P12_IVPQ.signals(1,3).values(:,1));       
axis([1.5 3.5 0.2 0.5]); 
xlabel('Time (s)','FontSize',9); 
ylabel('P_c_a_b_l_e_P_1 (pu)','FontSize',9); 
grid; 
print -dtiff -r300 PcableP1; 

  
plot(P12_IVPQ.time,P12_IVPQ.signals(1,4).values(:,1));       
axis([1.5 3.5 -0.2 0.2]); 
xlabel('Time (s)','FontSize',9); 
ylabel('Q_c_a_b_l_e_P_1 (pu)','FontSize',9); 
grid; 
print -dtiff -r300 QcableP1; 

  
%wind farm 
plot(wind.time,wind.signals(1,1).values(:,1));       
axis([1.5 3.5 0.98 1.02]); 
xlabel('Time (s)','FontSize',9); 
ylabel('V_D_C_,_w_i_n_d_ _f_a_r_m (pu)','FontSize',9); 
grid; 
print -dtiff -r300 VDCwind; 

  
plot(wind.time,wind.signals(1,2).values(:,1));       
axis([1.5 3.5 0.7 1.3]); 
xlabel('Time (s)','FontSize',9); 
ylabel('I_D_C_,_w_i_n_d_ _f_a_r_m (pu)','FontSize',9); 
grid; 
print -dtiff -r300 IDCwind; 

  
plot(wind.time,wind.signals(1,3).values(:,1));       
axis([1.5 3.5 0.6 1.3]); 
xlabel('Time (s)','FontSize',9); 
ylabel('P_D_C_,_w_i_n_d_ _f_a_r_m (pu)','FontSize',9); 
grid; 
print -dtiff -r300 PDCwind; 

  
plot(wind.time,wind.signals(1,4).values(:,1));       
axis([1.5 3.5 0.98 1.02]); 
xlabel('Time (s)','FontSize',9); 
ylabel('\omega_t_u_r_b_i_n_e (pu)','FontSize',9); 
grid; 
print -dtiff -r300 wturbine; 
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%Motor 
plot(motor.time,motor.signals(1,1).values(:,1));       
axis([1.5 3.5 -500 2000]); 
xlabel('Time (s)','FontSize',9); 
ylabel('Rotor speed (rpm)','FontSize',9); 
grid; 
print -dtiff -r300 nmotor; 

  
plot(motor.time,motor.signals(1,2).values(:,1));       
axis([1.5 3.5 -1500 2000]); 
xlabel('Time (s)','FontSize',9); 
ylabel('Electromagnetic torque (N*m)','FontSize',9); 
grid; 
print -dtiff -r300 Temotor; 

  
Te_base=110.31e3/(60*pi); 
Te_pu=motor.signals(1,2).values(:,1)/Te_base; 
n_pu=motor.signals(1,1).values(:,1)/(1800); 

  
plot(motor.time,n_pu);       
axis([1.5 3.5 -0.2 1.2]); 
xlabel('Time (s)','FontSize',9); 
ylabel('Rotor speed (pu)','FontSize',9); 
grid; 
print -dtiff -r300 nmotor_pu0; 

  
plot(motor.time,Te_pu);       
axis([1.5 3.5 -2 4]); 
xlabel('Time (s)','FontSize',9); 
ylabel('Electromagnetic torque (pu)','FontSize',9); 
grid; 
print -dtiff -r300 Temotor_pu0; 

  
%Frequency 
plot(freq.time,freq.signals(1,1).values(:,1));       
axis([1.5 3.5 59.75 60.05]); 
xlabel('Time (s)','FontSize',9); 
ylabel('f_b_u_s_ _b_a_r (Hz)','FontSize',9); 
grid; 
print -dtiff -r300 Fbusbar; 

  
plot(freq.time,freq.signals(1,2).values(:,1));       
axis([1.5 3.5 49.7 50.1]); 
xlabel('Time (s)','FontSize',9); 
ylabel('f_o_n_s_h_o_r_e_ _c_o_n_v_e_r_t_e_r (Hz)','FontSize',9); 
grid; 
print -dtiff -r300 Fgrid; 

  
%power 
Pw=wind.signals(1,3).values(:,1)*50/300; 
plot(BB_IVPQ.time,BB_IVPQ.signals(1,3).values(:,1),wind.time,Pw,gridcon.time,g

ridcon.signals(1,3).values(:,1),DCoffshore.time,DCoffshore.signals(1,3).values

(:,1)); 
axis([1.5 3 0 1]); 
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xlabel('Time (s)','FontSize',9); 
ylabel('Active Power (pu)','FontSize',9); 
grid; 
print -dtiff -r300 activepower2; 

  
plot(BB_IVPQ.time,BB_IVPQ.signals(1,4).values(:,1),P4_IVPQ.time,P4_IVPQ.signal

s(1,4).values(:,1)); 
axis([1.5 3.5 -0.5 0.5]); 
xlabel('Time (s)','FontSize',9); 
ylabel('Rective Power (pu)','FontSize',9); 
grid; 
print -dtiff -r300 reactivepower; 

  
S_offc=sqrt(BB_IVPQ.signals(1,3).values(:,1).^2+BB_IVPQ.signals(1,4).values(:,

1).^2); 
plot(BB_IVPQ.time,S_offc,BB_IVPQ.time,BB_IVPQ.signals(1,3).values(:,1),BB_IVPQ

.time,BB_IVPQ.signals(1,4).values(:,1)); 
axis([1.5 3.5 -0.5 1]); 
xlabel('Time (s)','FontSize',9); 
ylabel('Power (pu)','FontSize',9); 
grid; 
print -dtiff -r300 apparentpower; 

  
%voltage 
plot(BB_IVPQ.time,BB_IVPQ.signals(1,2).values(:,1),wind.time,wind.signals(1,1)

.values(:,1),DCoffshore.time,DCoffshore.signals(1,2).values(:,1),P4_IVPQ.time,

P4_IVPQ.signals(1,2).values(:,1)); 
axis([1.5 3 0.8 1.2]); 
xlabel('Time (s)','FontSize',9); 
ylabel('Voltage (pu)','FontSize',9); 
grid; 
print -dtiff -r300 systemvoltage; 
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Appendix d: Simulation model 

 

Complete model: 

 

Wind farm: 
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Converter model 

 

Onshore controller: 
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Offshore controller: 

 

Wind farm grid side controller: 
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Wind farm generator side controller: 
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