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This paper describes technology and tools for intelligent
human–computer interaction (IHCI) where human cognitive, per-
ceptual, motor, and affective factors are modeled and used to adapt
the H–C interface. IHCI emphasizes that human behavior encom-
passes both apparent human behavior and the hidden mental state
behind behavioral performance. IHCI expands on the interpreta-
tion of human activities, known as W4 (what, where, when, who).
While W4 only addresses the apparent perceptual aspect of human
behavior, the W5+ technology for IHCI described in this paper
addresses also the why and how questions, whose solution requires
recognizing specific cognitive states. IHCI integrates parsing and
interpretation of nonverbal information with a computational
cognitive model of the user, which, in turn, feeds into processes
that adapt the interface to enhance operator performance and
provide for rational decision-making. The technology proposed
is based on a general four-stage interactive framework, which
moves from parsing the raw sensory-motor input, to interpreting
the user’s motions and emotions, to building an understanding
of the user’s current cognitive state. It then diagnoses various
problems in the situation and adapts the interface appropriately.
The interactive component of the system improves processing at
each stage. Examples of perceptual, behavioral, and cognitive
tools are described throughout the paper. Adaptive and intelligent
HCI are important for novel applications of computing, including
ubiquitous and human-centered computing.
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I. INTRODUCTION

Imagine a computer interface that could predict and diag-
nose whether the user was fatigued, confused, frustrated, or
momentarily distracted by gathering a variety ofnonverbal
information (e.g., pupillary responses, eye fixations, facial
expressions, upper-body posture, arm movements, and
keystroke force). Further imagine that the interface could
adapt itself—simplify, highlight, or tutor—to improve the
human–computer interaction (HCI) using these diagnoses
and predictions. Nonverbal information facilitates a special
type of communication where the goal is to probe the inner
(cognitive and affective) states of the mind before any verbal
communication has been contemplated and/or expressed.
This paper addresses the technology and tools required to
develop novel computer interfaces suitable for handling
such nonverbal information.

Assume now that a private, single-engine plane wanders
into a commercial flight sector. The air traffic controller
does nothing. Has she noticed the plane, evaluated its flight
path, and concluded that it will shortly leave the sector
without posing a threat to commercial aviation? Or has the
plane slipped in unnoticed, and the controller has not yet
considered the need to alert and reroute the five commercial
flights in her sector? From the simple data that the computer
gets from its operator (i.e., decisions made), it is impossible
to know whether the busy controller’s attention should be
directed to the intruder or left alone to focus on more urgent
matters. However, at the time when the intruder entered
the sector, the controller’s upper body was erect and tilted
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forward in the seat, her point of gaze was within 1of visual
angle of the intruder, her pupils were dilated, her facial
expression indicated surprise, and the force of her mouse
click (on a commercial jetliner) was much less intense than
normal. Imagine a computer interface that gathered such
information about the operator and correctly diagnosed
the operator’s current cognitive state. With the above data
it might decide to do nothing. With another combination
of nonverbal information, it might decide to make the
intruder’s icon blink on and off. With a third combination,
it might zoom the screen so that the intruder’s icon was at
the controller’s point of gaze.

Less dramatic types of human–computer problems could
also benefit by processing nonverbal information for adaptive
and intelligent interfaces. For example, an operator repeat-
edly uses the mouse to gesture at (i.e., point at, circle, or oth-
erwise indicate) an already classified target. Is he confused,
frustrated, or simply fatigued? If he is confused, the inter-
face could be automatically simplified (since optimal display
complexity is relative to the expertise of the operator), or a
tutorial could be offered during the next work lull. Again, this
diagnosis and remedial action could be carried out if the com-
puter had access to nonverbal information about the operator.
Arm movements can indicate cognitive states like surprise
and fatigue in addition to being a substitute for verbal com-
munication suitable for deaf and/or mute people, and ges-
tures can be appropriate for noisy environments.

Yet another example of using nonverbal information to
infer the cognitive state of the user comes from pupillometry,
the psychology of the pupillary response. There is general
agreement that the pupils dilate during increased cognitive
activity and constrict (or return to some previous baseline)
when the activity decreases (e.g., when a particular problem
has been solved and relaxation sets in). There is also evidence
to support the assertion that the constant motion of the pupil
(referred to as “pupillary unrest” or “hippus”) is more accen-
tuated under conditions of fatigue or drowsiness.

Knapp and Hall provide further evidence regarding non-
verbal information in the context of expressions of emotions
and their locations. In particular, they note [50] “rarely is
the eye area tested separately from the entire face in judging
emotions. Sometimes, however, a glance at the [brow and]
eye area may provide us with a good deal of information
about the emotion being expressed. For example, if we see
tears we certainly conclude that the person is emotionally
aroused, though without other cues we may not know
whether the tears reflect grief, physical pain, joy, anger, or
some complex blend of emotions. Similarly, downcast or
averted eyes are often associated with feelings of sadness,
shame, or embarrassment.”

Nonverbal information as a new communication medium
is most suitable for behavior interpretation. For example, the
existing work on facial processing can now be extended to
task-relevant expressions rather than the typical arbitrary set
of expressions identified in face processing research. More-
over, the technology and tools proposed will have the added
benefit of developing a framework by which one can improve
on predictions of the consequences of various interface deci-
sions on behavior—an important goal in the science of HCI.
In particular, this paper emphasizes that human behavior en-

compasses both apparent performance and the hidden mental
state behind performance. Toward that end we suggest an in-
tegrated system approach that can measure the corresponding
perceptual and cognitive states of the user, and then can adapt
the HCI in an intelligent fashion for enhanced human perfor-
mance and satisfaction.

The outline of this paper is as follows. Section II provides
the conceptual and intellectual framework needed to address
issues related to adaptive and intelligent nonverbal interfaces.
Section III describes recent research related to the interpre-
tation of human activities, also known as W4 (what, where,
when, who). The shortcomings of W4, since it is dealing
only with the apparent perceptual aspect, are discussed and
provide the motivation for our novel proposed methodology,
W5 (what, where, when, who, why, how); thewhyandhow
questions are directly related to recognizing specific cogni-
tive states. Section IV describes in detail the W5method-
ology and motivates the choices made. In addition to mi-
gration from W4 to W5 , emphasis is placed on the fact
that performance needs to be monitored in terms of both ap-
parent (external) and internal behavior. (Contrast our frame-
work with the more traditional use of Bayesian networks [65]
and dynamic belief networks, which “meter” only the ex-
ternal behavior). Section V describes the tools required to im-
plement the perceptual processing module, focusing on the
interpretation of lower arm movements, facial expressions,
pupil size, and eye-gaze location. Section VI describes the
technology required for behavioral processing, focusing on
the novel area of mouse gesture interpretation. Section VII
overviews the components of embodied models of cogni-
tion and how they can be extended to include affect. Sec-
tion VIII elaborates on how user interfaces can be adapted
dynamically using the embodied model of cognition, and
what additional issues need to be considered. We conclude
the paper in Section IX with a summary of the novel W5
technology and recommendations for further research and
tool development.

II. BACKGROUND

HCI has developed using two competing methodologies
[78]: direct manipulation and intelligent agents (also known
as delegation). These approaches can be contrasted as
the computer sitting passively waiting for input from the
human versus the computer taking over from the human.
Another dimension for HCI is that of affective computing
[67]. Affective computing is concerned with the means
to recognize “emotional intelligence.” Whereas emotional
intelligence includes both bodily (physical) and mental
(cognitive) events, affective computing presently focuses
mainly on the apparent characteristics of verbal and non-
verbal communication, as most HCI studies elicit emotions
in relatively simple settings [67]. Specifically, recognition
of affective states focuses on their physical form (e.g.,
blinking or face distortions underlying human emotions)
rather than implicit behavior and function (their impact
on how the user employs the interface). In contrast to the
established paradigms of direct manipulation and intelligent
agents, intelligent human–computer interaction (IHCI) uses
computer intelligence to increase the bandwidth through
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Fig. 1. System architecture for adaptive and intelligent HCI.

which humans interact with computers [63]. Nonverbal
information such as facial expressions, posture, point of
gaze, and the speed or force with which a mouse is moved
or clicked can be parsed and interpreted by the computer
to iteratively construct and refine a model of the human’s
cognitive and affective states. The availability of such users’
models can be then used in an adaptive fashion to enhance
HCIs and to make them appear intelligent, i.e., causal, to an
outside observer.

It is not only computer technology that needs to change to
make such novel interfaces a reality. People have to change
as well and adapt to the interface that the computer presents
them with. In the end, both people and the computer have to
understand each other’s intentions and/or motivations, pro-
vide feedback to each other as necessary, and eventually
adapt to each other. W5systems are examples of novel in-
telligent interfaces, and they make the transition from HCI to
IHCI where people and computers can augment each other’s
capabilities and display characteristics of team behavior. The
methodology we propose for IHCI (see Fig. 1) integrates
parsing and interpretation of nonverbal information with
a computational cognitive model of the user that, in turn,
feeds into processes that adapt the interface to enhance oper-
ator performance and provide for rational decision-making.
Adaptive and intelligent HCI combines advanced work in
perceptual recognition, machine learning, affective com-
puting, and computational modeling of embodied cognition.
Our methodology is based on a general four-stage, inter-
active framework. The system moves from parsing the raw
sensory-motor input to interpreting the user’s motions and
emotions to building an understanding of the user’s current
cognitive state. It then diagnoses various problems in the sit-
uation and adapts the interface appropriately. The interactive
component of the system improves processing at each stage.
For example, knowledge of the user’s current cognitive state
helps predict changes in eye and head location, which in turn
improves image parsing. We expect that our approach will
have potential benefits for a broad class of HCIs. Moreover,
our integrated methodology will also advance many areas of
basic research (e.g., computer vision and facial processing,
perception, cognition, human learning, and adaptation). We
view our approach as a necessary step in developing IHCI
systems where human cognitive, perceptual, motor, and af-
fective factors are (fully) modeled and used to adapt the
interface.

IHCI also promotes human activity and creativity. As
part of emerging intelligent synthesis environments, IHCI
supports human-centered and immersive computing, the
infrastructure for distributed collaboration, rapid synthesis
and simulation tools, and life-cycle system integration and
validation. IHCI combines the (computational) ability to
perceive mixed affordance (input) patterns, reasoning and
abstraction, learning and adaptation, and finally, commu-
nication, language and visualization. These concepts echo
those of Kant, for whom perception without abstraction is
blind, while abstraction without perception is empty, and of
Confucius, for whom learning without thought is useless,
and thought without learning is dangerous.

Ubiquitous or pervasive computing, a new metaphor
for computing, provides users with constant access to
information and computation in the form of mobile and
wireless computing devices—personal digital assistants
(PDAs), such as cell phones, wearable computers, and
appliances—that are endowed with intuitive user interfaces.
Ubiquitous computing maintains computing at its core but
removes it from our central focus. Computing is embedded
into a surrounding, but almost invisible and friendly, world
in order to facilitate collaborative work and the creation
and dissemination of knowledge. Ubiquitous computing is
more than virtual reality, which puts people inside a com-
puter-generated world, and is more than PDAs. Ubiquitous
computing involves explicit representations of oneself and
other humans, possibly using avatars, and representation of
cognitive, affective, social, and organizational aspects of
the human behind the avatar (e.g., natural and expressive
faces and gestures, representing and reasoning about others’
places in organizational systems, and social relationships).
The boundaries between the “real world,” augmented
reality, and virtual environments are blurred to create a
mixed reality. Unlike virtual reality, mixed reality seeks
to enhance the real environment, not to replace it. That is,
while an interface agent or PDA will alert a pilot of an
impending collision, ubiquitous computing will display
for the pilot airspace information that provides continuous
spatial awareness of surrounding objects. The mixed reality
metaphor avoids making systems appear too human-like
in cases where they have very limited intelligence and are
brittle in their interaction.

IHCI makes ubiquitous computing possible by continu-
ously adapting the interface medium to meet specific user
needs and demands. The emergence of human-centered
interaction with intelligent systems buttresses the utilization
of both verbal and nonverbal communication to create a
richer, more versatile and effective environment for human
activity. Human-centered design is problem-driven, activity-
centered, and context-bound and employs computing tech-
nology as a tool for the user, not as a substitute. Thus, the
emphasis is on supporting human activity using adaptive
and intelligent interfaces rather than on building (fully)
autonomous systems that mimic humans. One approach
to a human-centered use of intelligent system technology
seeks to make such systems “team players” in the context
of human activity, where people and computer technology
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interact to achieve a common purpose. Another possible
approach focuses on building effective computational tools
for modeling, interpreting, fusing, and analyzing cognitive
and social interactions such as speech, vision, gesture, haptic
inputs, and/or affective state expressed using body language.
The goal of IHCI is to expand on human perceptual, intel-
lectual, and motor activities.

People tend to misjudge the bounds of systems’ capabili-
ties, ranging from over-reliance on system performance—in
cases where it is inappropriate to do so—to loss of trust and
lack of acceptance in situations where the system performs
well. Ubiquitous computing seeks to derive benefits from a
truly complementary relationship with the human partners,
forcing computing to thrive in an integrated (virtual and
physical) world with people and to become predictable,
comprehensible, and informative for the human partners.
To forge a trusted partnership and expand human intellect
and abilities, computing has to become compliant with
our demands, communicative regarding our processes, and
cooperative with our endeavors.

Ubiquitous computing emphasizes distributed affor-
dances instead of focused expertise. People are most
effective when they are fully engaged, mind and body, in the
world. What becomes apparent is situated (grounded) com-
puting, leading to practical intelligence facilitated by shared
context acquired at the intersection of perception (senses,
affective and physiological), language and communication,
thought and reason, and action (purposive and functional).
Shared context leads to recoordination of human behavior
and subsequent reconceptualization. We will soon reach
the point when computing power and storage are cheap
commodities relative to the challenge of making them
readily and effectively available to everyone, everywhere.
The vision of ubiquitous computing can become reality
only with the emergence of several components, and IHCI
is one of them. Wearable devices need to supply correct and
just-in-time information and reduce the wearer’s cognitive
load. Such devices combine communication, computation,
and context sensitivity, while also supporting increased
collaboration. Users must be able to leave their desktops and
continue their daily tasks, possibly engaging in hands-free
tasks, while still remaining connected to computing and
communication resources. With wearable computers, in-
teraction with the real world is the primary task, making
current windows–icons–menu–pointers (WIMP) interfaces
obsolete. An emerging augmented system that interfaces
people and computing devices promotes mutual under-
standing—including background, goals, motivations and
plans—and optimal sharing of the computational load.

III. REVIEW OF W4: WHAT, WHERE, WHEN, WHO

We briefly review here recent research related to the inter-
pretation of human activities (W4). As will become apparent
from our discussion, W4 deals only with the apparent percep-
tual aspect and makes no reference to the cognitive element

responsible for that aspect. Extensive work on analyzing im-
ages of humans’ activities began in the 1990s. Many refer-
ences are listed in [69]. A large number of papers on face
and gesture recognition were presented in the four interna-
tional conferences on the subject [89]–[92]. A very good re-
view of early work on motion understanding approaches and
applications was done by Cedras and Shah [17]. A review
of research papers on hand gesture recognition for HCI was
done by Pavlovicet al. [63], and a broader review of re-
search papers on visual analysis of human motion was done
by Gavrila [28]. A review of papers on nonrigid motion anal-
ysis, in particular on articulated and elastic motion, was pre-
sented by Aggarwalet al. [1]. A comprehensive review of
various methods for computer vision-based capture of human
motions was recently done by Moeslund and Granum [59].
In the remainder of this section, we review recent work on
motion analysis and understanding because it is the primary
force behind human activities. Three main criteria can be
used to classify research on human motion analysis. First,
the research can be classified in terms of the tasks that it fo-
cuses on: detection, tracking, or recognition. Second, it can
be classified in terms of the models used to represent objects
and humans. Third, it can be classified in terms of the control
mechanisms used.

Detection of humans in static or video images has
mostly been addressed through background subtraction
and matching. A background subtraction method that uses
colors and edges was described in [42]. Some authors have
used background subtraction as part of a system combining
detection, body labeling, and tracking of humans [21], [29],
[37], [85]. In some cases, cues such as skin color have been
used to detect humans in images [41]. Other authors have
used motion from single or multiple cameras to detect,
label, and track humans or their body parts in video images
[46], [48], [68], [72], [74], [83], [85]. Some authors have
approached this problem as one of matching. Humans or
their parts have been detected and tracked as configurations
of points such as light displays, markers, and image features
[81], as configurations of edges [30], [51]–[53], [62], [66],
[73], and as collections of particularly shaped strips [27],
cylinders, or superquadrics [22], [29], [72], [79], [83]. For
tracking, some authors have focused on using motions of
image points and edges. Human models have been initialized
by hand in the first frame of each sequence [14], [18]. Some
authors have considered the problem of action/activity/ges-
ture recognition for humans using shape and/or motion
information [8], [12], [20], [25], [26], [32], [36], [44], [45],
[71], [82], [86], [87]. Dynamic recognition, most appropriate
for interpreting video sequences, is done using recursive
and neural networks, deformable templates, spatio-temporal
templates [60], and graphical models [12] because they
offer dynamic time warping and a clear Bayesian semantics
for both individual (HMM) and interacting or coupled
(CHMM) generative processes [61]. Finally, some authors
have implemented systems that combine detection, tracking,
and recognition [2], [15], [20], [37], [39], [57], [58], [68].

A second set of criteria that can be used for classifying
research on human motions is based on how to model hu-
mans. Humans have been modeled as elongated, blob-like
shapes either implicitly [20], [37], [39], [57], [58], [68] or
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explicitly [30], [62], [66]. Deformable models have been uti-
lized for body part (hand) and facial feature tracking [12],
[73], [86]. Some authors have modeled humans as articu-
lated stick figures [2], [51]–[53], [71], [81]; this approach has
been particularly effective for moving light display analysis.
Finally, humans have been modeled as articulated objects,
where parts correspond to blobs [85], strips [14], [27], [46],
tapered superquadrics [29], [48], or cylinders [22], [72], [74],
[79], [83].

A third set of criteria that can be used for classifying
research on human motions is based on the mechanisms used
to control search in detection, tracking, and recognition.
Kalman filtering has been used frequently; examples include
[18], [48], [72], [74], and [83]. More recently, Bayesian
inference has been used [22], [66], [73], [79]; these methods
are also known as Condensation. Other strategies that have
been used include search algorithms such as best-first [29]
and/or “winner take all” [18], [57], [87].

Bobick [11] recently proposed a taxonomy of movement,
activity, and action. In his taxonomy, movements are primi-
tives, requiring no contextual or sequence knowledge in order
to be recognized. Activities are sequences of movements or
states, where the only knowledge required to recognize them
involves statistics of the sequence. According to Bobick, most
of the recent work on gesture understanding falls in this cate-
gory. Actions are larger scale events which typically include
interactions with the environment and causal relationships.
An important distinction between these levels is the degree
to which time must be explicitly represented and manipu-
lated, ranging from simple linear scaling of speed to con-
straint-based reasoning about temporal intervals.

Other related work includes biomechanics and human
modeling in computer graphics and movement notations in
choreography. In biomechanics, researchers are interested
in modeling forces and torques applied to human bodies
and tissues during various physical activities [88]; these
models provide tools for analyzing the relationship between
movements and actions. In computer graphics, researchers
are interested in producing realistic images for virtual reality
applications, human factor analysis and computer animation
[7], [8], [10], [38]. Formalisms for describing the motions
of humans include movement notations [7], [8] such as
Labanotation [35], which is mostly used for dance, and
Eshkol–Wachmann notation [24], [35], which is also used
for sign languages [19].

IV. A DAPTIVE AND INTELLIGENT HCI—METHODOLOGY

Our methodology is quite general and has been outlined
in Fig. 1. The main modules are perceptual processing,
behavioral processing, embodied cognition, and adaptive
system interface. The user is interacting with an adaptive
system interface, which changes as a function of the current
task state and the cognitive or mental state of the user. The
nonverbal front end includes the perceptual and behavioral
processing modules, and its input consists of raw sensory
information about the user. The perceptual module processes
images of the face, the eye (gaze location and pupil size),
and the upper body and analyzes their relative motions; the

behavioral module processes information about actions done
to the computer interface directly, such as keystroke choices,
the strength of keystrokes, and mouse gestures. Both the
perceptual and behavioral modules provide streams of
elementary features that are then grouped, parsed, tracked,
and converted eventually tosubsymbolic, summative affec-
tive representationsof the information in each processing
modality. In other words, one output of the perceptual and
behavioral processing modules is a stream of affective states
at each point in time. States that could be recognized include
confusion, fatigue, stress, and other task-relevant affective
states. The quest for subsymbolic and summative affective
representations is motivated by abstraction and general-
ization, communication, and reasoning, in particular, and
by the perception-control-action cycle [84]. Furthermore,
“Signal and symbol integration and transformation is an old
but difficult problem. It comes about because the world sur-
rounding us is a mixture of continuous space–time functions
with discontinuities. Recognition of these discontinuities in
the world leads to representations of different states of the
world, which in turn place demands on behavioral strategies.
Similarly, an agent’s (biological or artificial) closed-loop
interactions with the world/environment can be modeled as
a continuous process, whereas switching between behaviors
is naturally discrete. Furthermore, the tasks that are either
externally given to the agents or internally self-imposed
prespecify and, hence, discretize an otherwise continuous
behavior. Thus, we have three sources for discretization of
the agent-world behavioral space: 1) natural space–time
discontinuities of the world; 2) the model of agent-world
dynamics during execution of a given task; and 3) the task.
Furthermore, in computer vision, symbols served mainly as
a data reduction mechanism, while in AI the following were
missing: 1) explicit acknowledgment that the transformation
from signals to symbols results in the loss of information;
2) self-correction and updating mechanisms of the obtained
symbolic information; and 3) explicit models of the dynamic
interaction between an agent and its world. Symbols not only
provide nice abstractions for low-level strategies, but also
allow us to move one level up the modeling hierarchy and
observe the properties of the systems and their interactions
among each other and their environment at a more macro-
scopic level. Symbolic representation mediates reasoning
about the sequential and repetitive nature of various tasks”
[9]. The adaptive and intelligent HCI methodology proposed
in this paper addresses the problems raised above using
embodied cognition to connect the apparent perceptual
and behavioral subsymbolic affective representations and
symbolic mental states, and in the process adaptively derive
the summative subsymbolic states from raw signals and also
adapt the user/system interface for enhanced performance
and human satisfaction. The task description language
chosen for manipulation tasks using such an adaptive and
Intelligent HCI is that of the ACT-R/PM cognitive architec-
ture (see Section VII).

These affective subsymbols are fed into the embodied
cognition module and mediate fusion and reasoning about
possible cognitive states. While the subsymbols correspond
to external manifestations of affective states, the cognitive
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states are hidden and not directly observable. The embodied
cognition module generates hypotheses about possible
task-relevant cognitive states, resolves any resulting ambi-
guity by drawing from contextual and temporal information,
and optimally adapts the interface in order to enhance
human performance. Knowledge of the user’s state and
the system’s state are used to diagnose potential problems,
and these diagnoses trigger adaptive and compensatory
changes in the computer interface. While this process has
been described as a linear process, in fact it is an interactive
process in which information from later phases can feed
back to augment processing in earlier phases. For example,
knowledge of current cognitive activities can be used to
improve recognition of affective states.

The development of the perceptual and behavioral pro-
cessing and embodied cognition modules and their interac-
tions is the key to making progress on constructing adaptive
intelligent interfaces. The embodied cognition module is a
novel addition to the more traditional HCI approaches as:
1) it bridges between direct manipulation and intelligent
agents through physical modeling of the users and 2) it aug-
ments emotional intelligence through cognitive modeling
of user behavior. The capability of modeling the effects of
the affective state on cognitive performance will have an
impact on the choice of models as well as the computational
techniques employed.

The experimental platform envisions continuous operation
of the system over extended periods of time with a single
user in a particular task environment. While it is possible to
personalize the user interface and be able to detect charac-
teristics of the user automatically, one can also assume that
the system will be properly initialized for a particular user.
This would comprise initialization of hardware and software
by acquiring both a physical (perceptual and behavioral) and
cognitive model of the user, calibration of the video cameras
and eye tracker, and detection of the face and upper body.
Initial localization of facial landmarks is crucial for success-
fully tracking features over time. For a first-time user, generic
information concerning the user’s expertise and experience
is used to initialize the cognitive model. For return users, the
cognitive model from the user’s last session is retrieved and
instantiated in the current setting.

The raw video data for the perceptual processing module
include color and intensity. Standard low-level computer
vision techniques are used to extract additional features such
as corners, edge information and motion feature maps. The
feature extraction process is guided by the initialized model,
for which the spatial locations of head, upper body, eyes,
and mouth have been determined. Our previous research
on perceptual processing includes detecting faces and the
upper body [40], [42], [57], [58] and automatic detection of
facial landmarks [80]. The measurements acquired (color,
intensity, edge information, and motion) can be considered
as first-order features. These features are combined together
in order to acquire reliable estimates of the shape (contour)
and motion fields of the eye and mouth facial regions, and/or
arms. In the next immediate level of the hierarchy, lower
order parametric descriptions of the shapes and motion fields
associated with smaller spatial regions corresponding to the

eyes and mouth are sought. The modes of these parametric
descriptions accumulated over time are processed using
learned vector quantization (LVQ) and yield subsymbolic
indicators contributing to the assessment of the affective
state. A variety of eye movements involving pupils, irises,
eyelids, and eyebrows are captured as different modes. For
example, the movement of the eyelids can reveal information
about the stress level and tension of the user. At this level
we also capture lower arm and hand movements; Section V
provides an additional description of this module. The last
level of the hierarchy uses upper body shape and motion
information. One can estimate independently the 3-D poses
of the head and shoulders, which can undergo independent
or combined motions. Information on the two 3-D poses is
then abstracted using modal analysis and then fed into the
embodied cognition module.

The processing of raw eye data (pupil location and size)
requires additional computations and is currently performed
most effectively using special-purpose hardware. The eye
tracker data includes time stamped– coordinates of the
point of gaze (POG) and the diameter of the pupil (at 60 sam-
ples or more per second). The particular state information
corresponds to a spatial location where a fixation occurred
and the transitions between the states (events) correspond to
saccadic eye movements. Changes in recorded eye positions
are parsed as fixations or saccades according to their magni-
tudes and directions. Eye blinks are calculated from the raw
data by detecting consecutive samples with zero pupil dila-
tion. An eye blink is indicated if these samples span a time
of 30–300 ms. Like fixation data, the number of eye blinks
and rate of eye blinks between mouse clicks is calculated.

The behavioral processingmodule processes keystroke
(choice and rate)and mousedata (clicks andmovements).The
keystroke data include key choice and timing of keystrokes.
The mouse data include the time-stamped– coordinates of
the pointer, the force and the frequency of mouse clicks, and
the acceleration applied to mouse movements. The keystroke
data are the primary means by which the cognitive model of
the user is updated, through the process of model tracking (see
below). Raw mouse data are collected at the same time that a
raw eye data sample is collected. For the mouse, motion could
be a movement from one position on the screen to another,
and the dynamics would describe the applied force and the
duration of the movement.

Parsing and interpreting the mouse data deserve additional
notes, as they represent very novel uses of mouse data. The
mouse data provide more than the obvious performance data
about how fast and how accurately users make choices. We
analyze the force data (how hard individuals click the mouse)
and the trajectory data (how users move the mouse). The
force data are divided into two dimensions: average force of a
click and duration of the click. The trajectory data are treated
as a form of gesture data. In other domains, we have found
that people will gesture at various aspects of the screen using
the mouse and these mouse gestures are indicators of prelim-
inary cognitions [77]. For example, people sometimes circle
objects, trace trajectories, or move rapidly between objects.
Informally, we have seen the same behavior in the Argus do-
main (to be described below). To recognize mouse gestures,
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we will use a technique that we developed in the context of
sign language recognition [36]. There, hand gestures corre-
sponding to American Sign Language are first located using
projection analysis and then normalized in size, while recog-
nition takes place using a hybrid mixture of (connectionist
and symbolic) experts consisting of ensembles of radial basis
functions (ERBFs) and decision trees (DTs).

The mouse data will be used in two different ways. First,
the subsymbols corresponding to mouse gestures will be
passed on to the embodied cognition module, with the goal
of providing additional information about the aspects of the
screen that are being attended to. Second, the addition of
subsymbols corresponding to combined mouse gestures and
force data will allow for the possibility of recognizing com-
binations of affective states in the user. That is, a person’s
face may reflect fatigue and the person’s mouse gestures
may reflect confusion. Research on hand gestures has often
found that people can reflect different information about
their internal cognition in speech than they do in co-occur-
ring gestures [31]. Similarly, real affective states are often
a combination of basic states, and our hypothesis is that
the components of the combinations may be externalized
simultaneously but in different external forms (e.g., fatigue
in mouse movements, disgust in facial expressions).

One simple alternative to our approach would be to try to
go directly from these diagnoses of affective states to adapta-
tions of the interface (e.g., confusion simplify interface).
However, such a simple method is not likely to work because
it does not take into account the cognitive state of the in-
dividual with respect to the task being performed. How to
best adapt the interface will usually depend upon what cogni-
tive operations are currently being performed. For example,
simplifying an interface by removing information will only
work if that information is not needed in the computations
currently being performed by the individual. Moreover, af-
fective states are often directed at particular aspects of the
current task/interface. For example, a particular object on the
screen or aspect of an interface is often a source of confusion,
and it is better to clarify or simplify the offending object/as-
pect than to simplify random aspects of the interface or the
entire interface, which would cause more confusion. The em-
bodied cognition module uses the process of model tracing
to understand the user’s behavior, thereby making intelligent
interface adaptation possible. In model tracing, a cognitive
model is built that is capable of solving the human tasks in
the same way as they are solved by the humans. The model
is then aligned with the task and behavioral choice data (i.e.,
what the state of the world is and what the human chose to
do) such that one can see which internal cognitive steps the
human must have taken in order to produce the observed be-
havioral actions. Toward that end, the embodied cognition
model also uses the affective subsymbols and their degrees
of belief, derived earlier by the perceptual and behavioral
processing modules. The embodied cognition module is de-
scribed further in Section VII.

Theadaptive system interfacemodule adapts the interface
to the current needs of the human participant. Different af-
fective and cognitive diagnoses include confusion, fatigue,
stress, momentary lapses of attention, and misunderstanding

of procedures. Different adaptations include simplifying the
interface, highlighting critical information, and tutoring on
selected misunderstandings. For instance, in one of the exam-
ples described earlier, if the force of the controller’s mouse
click and parsing of facial expressions concur in suggesting
that the participant’s visual attention is totally consumed by
a commercial airliner, the system will intervene to alert the
controller to the intruder’s presence. Similarly, if later in her
work shift, the controller’s facial expressions and a wan-
dering POG indicate a waning of attention, and the cognitive
model interprets this as resulting from a decrease in cogni-
tive resources (due to fatigue), steps may be taken to off-load
parts of the tasks, to increase the salience of the most safety-
critical components, or to relieve the controller. The types of
interface adaptations that one can consider include: 1) addi-
tion and deletion of task details; 2) addition and deletion of
help/feedback windows; 3) changing the formatting/organ-
ization of information; and 4) addition and removal of au-
tomation of simple subtasks. Further details will be given in
Section VIII.

V. PERCEPTUALPROCESSING

We describe here tools for perceptual processing, in-
cluding lower arm movements, facial data processing,
eye-gaze tracking, and mouse gestures. Additional tools are
possible, including upper body posture (head and shoulders).

A. Interpretation of Lower Arm Movements

We describe next a method of detecting, tracking, and in-
terpreting lower arm and hand movements from color video
sequences (for details, see [23]). This method is relevant
to parsing the raw sensory-motor input and in particular
to interpreting the user’s hand motions. It corresponds to
perceptual processing (see Fig. 1) and its role is to transform
signals to subsymbols expressing an affective state and
suitable for the embodied cognition component. The method
works as follows. The moving arm is detected automatically,
without manual initialization, foreground, or background
modeling. The dominant motion region is detected using
normal flow. Expectation maximization (EM), uniform
sampling, and Dijkstra’s shortest path algorithm are used
to find the bounding contour of the moving arm. An affine
motion model is fit to the arm region; residual analysis and
outlier rejection are used for robust parameter estimation.
The estimated parameters are used for both prediction of
the location of the moving arm and motion representation.
In analogy to linguistic analysis, the processed sensory
information is made compact and suitable for interpretation
using LVQ, whose task is to abstract motion information.
LVQ maps the affine motion parameters into a discrete set of
codes A, B, G, J, C, E, D, I, H . The final transition from
signals to a hierarchical and subsymbolic representation is
enabled by clustering. In particular, clustering will map the
discrete set of codes generated by LVQ into more abstract
“subactivity” codes up, down, circle first, and finally
into specific “activity” pounding, swirling subsymbols.
Each activity or the expression of some cognitive state now
corresponds to its own sequence of subsymbols and can
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Fig. 2. The first frames from two image sequences and their corresponding normal flow. Left: the
first frame from a “pounding” sequence of 400 frames. Right: the first frame from a “swirling”
sequence of 100 frames. Upper row: images. Lower row: normal flows. These images were collected
using a Sony DFW-VL500 progressive scan camera; the frame rate was 30 frames/s and the
resolution was 320� 240 pixels per frame.

Fig. 3. Delineating the foreground objects for the images in Fig. 2. Top: points with high normal
flow values and high gradient magnitudes. Bottom: foreground object outlines.

be properly distinguished from other activities or affective
states of mind. Figs. 2–4 show some of the steps respon-

sible for parsing the raw signal to generate a subsymbolic
description.
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Fig. 4. Residual and reestimated flows for the detected arms in Fig. 2. Top: residual flow computed
as the difference between the computed normal flow and the estimated affine normal motion field.
Bottom: reestimated affine flow after outlier rejection.

(a) (b) (c)

Fig. 5. Facial expressions of an individual under (a) baseline, (b) easy, and (c) difficult load
conditions.

B. Processing of Facial Data

The cognitive and emotional states of a person can be
correlated with visual features derived from images of the
mouth and eye regions [50]. Fig. 5 illustrates pilot data of fa-
cial expressions in a complex simulated radar classification
task—expressions of the same subject in a baseline condi-
tion (9 targets to track), a low load condition (5 targets), and

a high load condition (30 targets). There are detectable differ-
ences of the type that one would expect, but the differences
are subtle; in particular, the mouth and eye regions display
an increase of tension for the difficult task.

For the eye region, the visual features related to cogni-
tive states of a person include gaze direction (position of the
irises relative to the eyes), pupil dilation, and the degree of
occlusion of the iris and the pupil by the eyelids. For ex-
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Fig. 6. Eye parameters: pupil diameter(P ), iris diameter(P ),
distance from center of the iris to the upper eyelid(P ), distance
from center of the iris to the lower eyelid(P ), and distance from
center of the iris to the eyebrow(P ).

ample, the pupil dilation indicates arousal or heightened cog-
nitive activity, while an averted gaze may indicate increased
mental activity associated with the processing of data. The
visual features related to emotional states include the degree
of openness of the eyes, the positions of the eyelids relative to
the irises, the positions and shapes of the eyebrows (arched,
raised, or drawn together), and the existence and shape of
lines in particular eye regions (eye corners, between the eye-
brows, below the lower eyelids). For example, surprise is
indicated by wide-open eyes with the lower eyelids drawn
down, and raised and arched eyebrows; fear is indicated by
wide-open eyes with the upper eyelids raised (exposing the
white of the eye) and the lower eyelids tensed and drawn up,
and with the eyebrows raised and drawn together; happiness
is indicated primarily in the lower eyelids, which have wrin-
kles below them and may be raised but are not tense.

Fig. 6 illustrates some of the parameters measured on the
eyes. Note that we expect that the parameters– will al-
ways be positive; and/or can only become small when
the eyes are almost closed. Note that other parameters, such
as density of lines around the eyes and curvature of the eye-
lids and the eyebrows, can be added to complement these
parameters.

The eye parameters are acquired from high-resolution
color images. The color edges are detected by combining
the gradients in red, green, and blue color bands [43]; the
edges are thinned using nonmaxima suppression. Irises and
pupils are located via generalized Hough transform using
multiple size templates; it is assumed that their shapes are
always circular. Eyelids and eyebrows are detected using a
variation of the method described in [80]; the edges in the
vicinity of irises are labeled as the candidates for the eyelids
and the eyebrows. The left column of Fig. 7 shows eye
regions corresponding to anger, surprise, and happiness; the
right column of the figure shows the results of detecting the
irises, eyelids, and eyebrows for the corresponding images
on the left.

Numerical results for the examples shown in Fig. 7 are as
follows. For the images showing anger (top row), the irises
were detected at positions (114, 127) and (499, 103) with
radii . For the left eye (in the image) the distance
from the upper eyelid to the iris was , the distance
from the lower eyelid to the iris center was , and the

distance from the iris center to the eyebrow was . For
the right eye (in the image) the distance from the upper eyelid
to the iris was , the distance from the lower eyelid
to the iris center was , and the distance from the iris
center to the eyebrow was . For the images showing
surprise (middle row) the irises were detected at positions
(100, 173) and (483, 149) with radii . For the left
eye (in the image) the distance from the upper eyelid to the
iris was , the distance from the lower eyelid to the
iris center was , and the distance from the iris center
to the eyebrow was . For the right eye (in the image)
the distance from the upper eyelid to the iris was ,
the distance from the lower eyelid to the iris center was

, and the distance from the iris center to the eyebrow was
. For the images showing happiness (bottom row)

the irises were detected at positions (148, 139) and (497, 115)
with radii ; for the left eye (in the image) the distance
from the upper eyelid to the iris was , the distance
from the lower eyelid to the iris center was , and the
distance from the iris center to the eyebrow was .
For the right eye (in the image) the distance from the upper
eyelid to the iris was , the distance from the lower
eyelid to the iris center was , and the distance from
the iris center to the eyebrow was . Computing the
ratios we obtain the following results
for the left and right eye pairs: for anger (0.34, 1.09, 0.81) and
(0.62, 1.22, 1.19); for surprise (1.13, 1.06, 2.22) and (1.13,
1.22, 2.4); and for happiness (0.47, 0.9, 1.63) and (0.57, 1.1,
1.6).

C. Eye-Gaze Tracking

Because people can consider and discard various aspects of
a task rather quickly (in less than 200 ms), eye movements can
provide detailed estimates of what information an individual
is considering. Eye tracking is becoming an increasingly
popular online measure of high-level cognitive processing
(e.g., [55]). By gathering data on the location and duration
of eye fixations, psychologists are able to make many
inferences about the microstructure of cognition. The use
of eye tracking in estimating cognitive states rests on the
immediacy assumption (people process information as it is
seen) and the eye-mind assumption (the eye remains fixated
on an object while the object is being processed). As long
as the visual information requires fine discrimination, these
assumptions are generally considered valid, but when the
visual information is very coarse-scale, people can process
the information without fixating on it.

In order to reliably separate eye fixations from saccades,
one needs to sample gaze data at least 60 times per second
with an accuracy of at least 2of visual angle. A variety of
eye-tracking methods exist. In terms of the data collected
from the eye, two popular methods are: 1) shining a light
on the eye and detecting corneal reflection and 2) simply
taking visual images of the eye and then locating the dark
iris area. Which method is best depends upon the external
lighting conditions.

To compute where in the world a person is fixating, there
are three popular methods. The first method simplifies the
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Fig. 7. Left column: eye regions displaying (from top to bottom) anger, surprise, and happiness.
Right column: processed eye regions.

calculations by having fixed geometries by forcing the person
to hold still by biting on a bar or putting the head in a re-
straint. The second method has the person wear a head sensor
that tracks the head orientation and location in three dimen-
sions and then combines this information with eye-direction
information. The third method places the eye-tracking appa-
ratus on the person’s head along with a scene camera so that
a visual image is displayed showing what the person is cur-
rently looking at, with a point on the image indicating the
object being fixated. To achieve the high levels of accuracy
required, all three methods require recalibration for each in-
dividual being tracked in a given session; however, methods
exist for automatic recalibration. While the first method of
computing the point of fixation is the most accurate, it is
purely a research method with no applicability to IHCI for
obvious practical reasons. If one wants to track upper-body
and facial gestures at the same time, a head-mounted camera
is not practical either. The remote camera is the least accu-
rate method, but extreme levels of precision are probably not
needed for IHCI.

To separate out fixations from the raw point-of-regard
data, the most popular method is to use a movement/time
threshold: whenever the distance between consecutive points
of regard is below a threshold for a sufficient length of time,
a fixation is assumed. A more sophisticated and accurate
approach uses a centroid submodel tracing methodology
developed by Salvucci and Anderson [75]. The methodology
involves categorizing eye movements using hidden Markov
models (HMMs) and model tracing. Raw eye data are first
categorized into fixations and saccades using a two-state
HMM given velocity information alone. The centroid of
each fixation is then determined. One could examine which
object on the screen is closest to this centroid and simply
assume the person was looking at that object. However,

because of noise in the eye data, this would frequently
miscategorize the fixation. Instead, another HMM fitting
process is used which takes into account the closeness of
each fixation to objects on the screen AND the context of
which other objects were just fixated. This model fitting
process is done by comparing the sequence of fixations
with all plausible sequences of fixations and selecting the
sequence with the highest probability (best overall fit).

Fig. 8 presents an example of point-of-regard data ex-
tracted while a user interacts with a complex computer
display. From the locations of the fixations, one can de-
termine which objects were likely encoded at a detailed
level. From the durations of the fixations, one can determine
which objects were most likely involved in more detailed
computations.

VI. BEHAVIORAL PROCESSING

Behavioral processing focuses on two kinds of data input:
keyboard and mouse. Both the keyboard and mouse data are
first used as primary inputs into the computer interface. We
are not proposing that perceptual processing sources of in-
formation replace the mouse and keyboard. In addition to
serving as direct interaction with the interface, keyboard,
and mouse input will have additional functions of providing
insights into the cognitive and affective states of the user.
Keystroke data will provide information about the cognitive
state of the user through the process of model tracing, which
will be described in Section VII. Mouse data will provide in-
formation about user cognition and user affect; this process
is described next.

Mouse data can be divided into two primary types: mouse
gestures and mouse move and clicks. Mouse gestures are
movements of the mouse that do not result in mouse clicks.
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Fig. 8. Example of eye-tracking data from a complex simulated radar classification task. The
moving targets to be identified are represented by the numbers in the left half of the screen. The
details of target track 15 are in the table on the right half of the screen. Overlaid on the interface
image is 10 s of POG data (changing from dark to light over time). Identified eye fixations
(minimum= 100 ms) are indicated with disks (larger disks for longer fixations).

In most HCI environments, these movements are nonfunc-
tional, although some systems provide rollover information.
For the moment, we treat rollover cases as if they involve a
mouse click. The mouse gestures, the nonfunctional mouse
movements, can be viewed as windows into the mind. That
is, they indicate what objects are currently being reasoned
about [77]. Common mouse gestures include circling objects,
linking objects, circling groups of objects, and shape tracing
of large objects or groups. Object circling represents indeci-
sion about an object. Repetitive movement between objects
is a linking gesture, and like circling groups of objects, rep-
resents a categorical decision that the linked objects are sim-
ilar along an important dimension. Shape tracing of larger
objects represents reasoning about the shape of the object.

Move-and-click movements have three important dimen-
sions: speed of movement, force of click, and directness of
movement to the clicked object. These dimensions are in-
dicators of the general level of arousal and of indecision
and confusion. Slower movements and weaker clicks com-
bined with direct movements indicate low levels of arousal
(i.e., fatigue). Slower movements and weaker clicks com-
bined with indirect movement indicate confusion. Fast move-
ments with strong clicks combined with indirect movements
indicate frustration.

To recognize mouse gestures, one can use a technique that
we developed in the context of sign language recognition
[36]. There, hand gestures corresponding to American Sign
Language are first located using projection analysis and then

normalized in size, while recognition takes place using a
mixture of (connectionist and symbolic) experts consisting
of ERBFs and DTs. ERBFs display robustness when facing
the variability of the data acquisition process, using for
training both original data and distortions caused by geomet-
rical changes and blurring, while preserving the topology
that is characteristic of raw data. In addition, ERBFs are
similar to boosting, as each of their RBF components is
trained to capture a subregion of the perceptual or behavioral
landscape and can then properly recognize it. Inductive
learning, using DTs, calls for numeric to subsymbolic data
conversion, suitable for embodied cognition. The ERBF
output vectors chosen for training are tagged as “CORRECT”
(positive example) orINCORRECT” (negative examples)
and properly quantized. The input to the DT implemented
using C4.5 [70], consists of a string of learning (positive
and negative) events, each of them described as a vector of
discrete attribute values. To further parse the move-and-click
movements, one can use HMMs because the user is likely
to stay in a given affective state for several movements. The
states of the Markov model are the diagnosed affective states
(alertness, fatigue, and confusion).

VII. EMBODIED COGNITION

The embodied cognition module has at its core an em-
bodied cognitive model and a model tracing function. A cog-
nitive model is capable of solving tasks using the same cog-
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nitive steps as humans use to solve the tasks. An embodied
cognitive model also has affective states to match the user’s
states and the ability to perceive and interact with an external
world as the user does. In model tracing, the model is aligned
with the task and behavioral choice data (i.e., what the state
of the world is and what the human chose to do), so that one
can see which internal cognitive steps the human must have
taken in order to produce the observed behavioral actions.
Toward that end, the embodied cognition model also uses the
affective subsymbols and their degrees of belief, derived ear-
lier by the perceptual and behavioral processing modules.

Currently the best way to build models of embodied cog-
nition is to use a cognitive architecture (e.g., ACT-R, Soar,
EPIC, 3CAPS) that has a relatively complete and well-vali-
dated framework for describing basic cognitive activities at
a fine grain size. The currently most developed framework
that works well for building models of embodied cognition
is ACT-R/PM [16], a system that combines the ACT-R cog-
nitive architecture [5] with a modal theory of visual atten-
tion [6] and motor movements [49]. ACT-R is a hybrid pro-
duction system architecture, representing knowledge at both
a symbolic level (declarative memory elements and produc-
tions) and subsymbolic level (the activation of memory ele-
ments, the degree of association among elements, the prob-
ability of firing productions, etc.). ACT-R/PM contains pre-
cise (and successful) methods for predicting reaction times
and probabilities of responses that take into account the de-
tails of and regularities in motor movements, shifts of visual
attention, and capabilities of human vision. The task for the
embodied cognition module is to build a detailed mapping of
the interpretations (i.e., motion/affective state) of the parsed
sensory-motor data onto the ACT-R/PM model.

One can extend ACT-R/PM to make it a true model of
embodied cognition by incorporating the effects of affect
on performance. For example, in addition to handling the
interactions among memory, vision, and motor movements,
the model becomes fatigued over time and distracted when
there is too much to attend to. Better than merelybecoming
fatigued and distracted, such an extended ACT-R/PM can
model the effects of fatigue and distractionon memory,
vision, and motor behavior and thereby on performance.
Like people, as the model becomes fatigued, several changes
may occur. First, the model slows down (increasing the
interval between physical actions and shifts in visual at-
tention, as well as increasing the time needed to store or
retrieve information from memory). Second, the accuracy of
its responses decreases (this includes the physical accuracy
due to increased noise in eye–hand coordination and mental
accuracy due to increased noise in memory retrieval, e.g.,
retrieving the target’s old, rather than current, flight infor-
mation). Third, the model becomes distracted, losing its
focus of attention (running the risk of applying the “right”
response to the “wrong” object or the “wrong” response
to the “right” object). Fourth, it becomes narrower in what
it chooses to encode [56].

This incorporation of affective subsymbols into models
of embodied cognition is a product in its own right. Such a
capability can be applied to other task environments (simu-

lated or prototypes of real systems) to determine changes in
human performance over time. As such, models of embodied
cognition could become an important tool for designers of
real-time safety-critical systems (see, e.g., [34]). One novelty
here lies in using a broader range of nonverbal data in guiding
the model tracing process. Recent work in cognitive science
suggests that nonverbal information, such as gestures, pro-
vides important insights into an individual’s cognition [3].
Mouse gestures, the eye data, and affective states are impor-
tant tools to improve this model tracing process.

One can explore three qualitatively different methods of
incorporating affect into the cognitive model. First, affect
can be thought of as directly modifying parameters in the
cognitive model to produce relatively simple changes in
behavior. For example, fatigue may affect processing speed
(i.e., how fast someone thinks) as well as working memory
capacity (i.e., how much information can be kept in mind).
Similarly, confusion or frustration may influence the noise
parameter in the decision process (i.e., the likelihood of
making nonoptimal choices) or the threshold amount of
effort a person will expend on a task (which influences the
probability of giving up). Parameters controlling processing
speed, working memory capacity, noise, and effort ex-
pended are formally defined within the ACT-R architecture.
Second, affect can also change more structural or strategic
aspects of the cognitive model. For example, when people
become confused, fatigued, or frustrated, they may adopt an
entirely different way of thinking about the task and making
choices (i.e., alternative strategies). Thus, the performance
parameters of the cognitive model may be held constant,
but the action and decision rules themselves may change as
the affect changes. A third possibility is some combination
of these two types of changes in the model with changing
affect. Individuals use a wide variety of qualitatively dif-
ferent strategies to solve any given type of problem [76],
and changes in model performance parameters are likely to
produce changes in strategy choice. For example, in a classic
decision making study, Payneet al. [64] showed that, as
the cognitive effort required for task performance increased
(thereby placing greater demands on a limited-capacity
working memory system), the decision-making strategies
that people adopted changed. Lohse and Johnson [55]
showed that changes in decision-making strategies were
also induced by tradeoffs between perceptual-motor versus
cognitive effort. Hence, it may well be that changes in
strategies induced by changes in affective state are mediated
by changes in underlying cognitive parameters. ACT-R con-
tains clear predictions of how certain parameter changes will
influence strategy choice, assuming a good characterization
of the features of each strategy.

The process of model tracing keeps the model aligned
with the user. It takes as primary input the behavioral in-
teractions with the interface (i.e., the keystroke and mouse
click data) and tries to match symbolic steps in the model.
In a production system model, this amounts to matching to
sequences of production firings. There are three factors that
shape the model tracing process. First, any realistic model of
human cognition acknowledges some stochastic variability
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in human choices. That is, at many points in time, the model
on its own must choose randomly (although typically with
biases) among a set of alternative actions. Model tracing ex-
amines the behavioral data and identifies which of all the pos-
sible alternative paths the model could have taken best fits the
observed behavioral data. The second factor shaping model
tracing is that typically there are several internal steps for
every external step. Thus, the model must be run for several
steps, with each step potentially having alternative choices,
to produce the full set of possible matches to the behavioral
data. If there are many internal steps between external behav-
iors, then a large set of internal paths may need to be gen-
erated. The third factor is that the behavioral data may not
uniquely distinguish among different model paths. In such
circumstances, one must select the currently most probable
path. With the addition of eye-tracking data, the density of
observable data points goes up significantly, making it easier
to match models to data.

VIII. A DAPTATION OF USER/SYSTEM INTERFACE

A system based on IHCI can adapt the interface based on
current needs of the human participant as found in the em-
bodied model of cognition. As stated earlier, different af-
fective and cognitive diagnoses include confusion, fatigue,
stress, momentary lapses of attention, and misunderstanding
of procedures. Different adaptations include simplifying the
interface, highlighting critical information, and tutoring on
selected misunderstandings. The types of interface adapta-
tions that one can consider include: 1) addition and deletion
of task details; 2) addition and deletion of help/feedback win-
dows; 3) changing the formatting/organization of informa-
tion; and 4) addition and removal of automation of simple
subtasks. These changes are described generically here.

With respect to the addition and deletion of task details,
the important insight is that modern interfaces contain details
relevant to many subtasks. When an operator becomes con-
fused or distracted, it may well be because details relevant
to subtask A interfere with the attention to details needed to
accomplish subtask B. One general strategy is to identify the
currently critical subtask with the goal of eliminating details
relevant to other subtasks or enhancing details relevant to the
critical subtask. Interface details relevant to other subtasks
can be restored when the user appears able to handle them.
The combination of the POG data (via eye tracking) and the
affective response data (via facial expressions) provides im-
portant information regarding which aspects of the interface
to change and in what manner to change them. For example,
if an important aspect of the screen is not attended to and the
individual appears fatigued, then that aspect should be high-
lighted. By contrast, if an aspect of the screen is attended
to for an unusually long period of time and is coupled with
a look of confusion, then a situation-relevant help window
will be displayed. All of the possible interface structures that
are possible will have advantages and disadvantages that are
likely to vary with the cognitive and affective state of the
user. Thus, different interface structures will be optimal at
different points in time, and if a particular structure is gen-

erally suboptimal, there is no reason to ever use it. For ex-
ample, having a help window display help messages may be
useful for a confused individual, but may be distracting for a
nonconfused individual. Alternatively, having less informa-
tion on the screen may be helpful to a fatigued individual,
but harmful to a fully attentive individual (who could make
appropriate use of the extra information to handle more sub-
tasks).

Because no one particular interface structure is better than
others across all situations, one can avoid strange feedback
loops in which a user becomes trained (either implicitly or
explicitly) to always look frustrated because that makes the
task easier. Instead, users will be trained to correctly ex-
ternalize their internal states. For example, when frustrated,
look frustrated, because that will produce a change that is
useful for dealing with this particular source of frustration;
but when not frustrated, do not look frustrated, because that
will produce changes that reduce optimal performance (of
someone who is not frustrated).

A model of embodied cognition that is continuously
being updated to reflect the individual’s cognitive, percep-
tual, motor, and affective states makes it possible to have
two different methods of adapting the interface: reactive
and proactive. In reactive adaptation, the system waits for
external evidence of some cognitive or affective change
before adapting the interface. For example, the user becomes
confused and this confusion is manifested by a confused
look, longer choice latencies, and longer fixations across a
broader range of entities. A reactive system adapts the inter-
face only after the confusion is manifested. Alternatively, a
proactive system applies the model of embodied cognition
(which is capable of performing the task) to the correct
task state and predicts what kinds of problems the user is
likely to encounter. These predictions are used to adapt
the interface, that is, the interface changes before the user
becomes confused, frustrated, or bored (or at least before
this can be diagnosed from outward performance changes).
Once the model tracing has approached a high level of
accuracy, so that we believe it can use its broadened set of
inputs, then one can explore including proactive interface
adaptation in the system.

For either proactive or reactive adaptation, the adaptation
will have to be conservative (i.e., relatively infrequent with
relatively small changes at any one time). An interface that
is constantly changing is a source of frustration in itself.
Moreover, there should be a relatively small set of possible
changes to the interface, and the set needs to be introduced
during initial training. The embodied model provides
insights into how conservative to be (i.e., to predict how
disruptive various interface changes will be), in addition to
providing insights into what interface adaptations are likely
to be helpful.

IX. CONCLUSION

This paper has described a W5methodology for IHCI
that extends current methods of interpreting human activ-
ities. Our approach to IHCI has four central pieces. First,
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the behavioral interactions between the user and the inter-
face are processed in a very rich fashion, including the novel
use of mouse gestures, to provide a richer understanding of
the user’s cognitive and affective states. Second, additional
nonverbal information is gathered through perceptual pro-
cessing of eye gaze, pupil size, facial expressions, and arm
movements to further enrich the understanding of the user’s
cognitive and affective states. Third, an embodied model of
cognition is synchronized with the behavioral and percep-
tual data to produce a deep understanding of the user’s state.
Fourth, the computer interface is adapted in reaction to prob-
lems diagnosed in the user’s cognitive and affective states in
a task-sensitive way.

While our complete methodology has not yet been imple-
mented in a running system, we have described the tools that
would be required to implement such a system. Further, these
tools appear to be well within current computational capabil-
ities. We are currently engaging in research to further flesh
out the computer science and cognitive psychology under-
lying these tools.

Some subtle components in our methodology require fur-
ther comment. In particular, the process of building an em-
bodied cognitive model has three separate advantages for in-
telligent adaptation of an interface. First, it forces one to de-
velop highly detailed models of the precise cognitive and af-
fective problems that a user might experience because the
model must be designed to perform the task in the same way
that the user does. This enforced detail allows for more pre-
cise diagnosis of sources of problems. Second, the embodied
cognitive model allows one to test the consequences of dif-
ferent changes to the interface so that one can have a good un-
derstanding of which interface changes are likely to help and
why they will help. Without the embodied cognitive model,
one must rely on simple rules of thumb and past experiences
to determine which changes will be effective. Third, the em-
bodied cognitive model has a predictive component that al-
lows one to predict what problems a user is likely to have
in the future and warn the user about them in advance (e.g.,
when fatigue is likely to begin to occur given the recent load
and current arousal level).

In developing a running system that implements our
methodology, we recommend a strategy of using a simu-
lated task environment. In field research, there is often too
much complexity to allow for definite conclusions, and in
laboratory research, there is usually too little complexity to
allow for any interesting conclusions [13]. Those who study
complex situations as well as those who wish to gener-
alize their results to complex situations have often faced the
dilemma so succinctly framed by Brehmer and Dörner. Sim-
ulated task environments are the solution to this dilemma.
The term “simulated task environment” is meant to be both
restrictive and inclusive. There are many types of simula-
tions; however, the term is restricted to those that are in-
tended as simulations of task environments. At the same
time, the term includes the range of task simulations from
high-fidelity ones that are intended as a substitute for the
real thing, all the way to microworlds that enable the per-
formance of existing tasks [33]. The common denominator

in these simulated task environments is the researcher’s de-
sire to study complex behavior. The task environment must
be complex enough to challenge the current state of the art,
but malleable enough so that task complexity and interface
adaptivity can be controlled and increased as the research
progresses. These requirements can be met by using simu-
lated task environments. We are working on the IHCI ap-
proach in the context of human operators interacting with
ARGUS, a simulated task environment for radar operator
tasks [33]. These tasks represent a real-time safety-critical
environment in which improving HCI is of utmost impor-
tance. Similar issues relating to image processing, cognitive
modeling, and intelligent interface adaptation can be found
in the HCI of a wide variety of domains (e.g., medical, ed-
ucational, business). We can collect and time stamp every
mouse click made by the subject, every system response,
and every mouse movement with an accuracy of 17 ms and
interleave this record with POG data collected 60 times per
second. ACT-R/PM models currently interact with Argus.
In addition, because we own the ARGUS code and it is
written in Lisp, the simulated task environment is easy to
modify.

Perception in general, and form and behavior analysis in
particular, are important not only because they can describe
things but, as Aristotle realized long ago, because they make
us know and bring to light many differences between things
so we can categorize them and properly respond to their
affordances. Once both forms and behaviors are represented,
their most important functionality is to serve for discrimi-
nation and classification. Recognition is thus based on both
perceptual form and behavior, together with their associated
functionalities. Form and behavior analysis considers things
like average prototypes and/or the similarity between them,
while functionality carves the perceptual and behavioral
layout according to innate physical and geometrical con-
straints, sensor-motor affordances, and their corresponding
cognitive mental states. According to this view, functional
and purposive recognition takes precedence over percep-
tual and behavioral reconstruction. As things are always
changing and constancy is an illusion, form and behavior
recognition require generalization and motivate learning and
adaptation. What form and behavior analysis do not require,
however, is taking them to bits in ways that destroy the
very relations that may be of the essence; as Lewontin [54]
would say, “one murders to dissect.” Embodied cognition,
as described and advocated in this paper, provides the glue
connecting the apparent visual form and behavior with
hidden mental models, which bear on both functionality
and performance. To further emphasize the important role
functionality plays in perception, it is instructive to recall
Oliver Sacks’ well-known book,The Man Who Mistook his
Wife for a Hat. The book describes someone who can see,
but not interpret what he sees: shown a glove, the man calls
it a “receptacle with five protuberances.” The moral is that
people see not only with the eyes, but with the brain as well.
In other words, perception involves a whole and purposive
cognitive process, and this is what this paper advocates in
terms of technology and tools for IHCI.
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