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Abstract: This paper examines integration of a sophisticated, 
pivot-based tabu search into branch and bound for 0-1 MIPS and 
global diversification tests using chunking. Issues related to behavior 
of a tabu search within a branch and bound algorithm are analyzed 
using computational experiments. Results are presented showing 
that the inclusion of the local search sometimes results in fewer 
nodes and lower CPU times even when used in a callback mode. 
The main benefit in incorporating a pivot based heuristic is that 
an integer feasible solution can be found earlier in the branching 
process. Computational experiments are presented showing that for 
some instances the overall search time is improved, while for some 
others the tabu search can find good solutions quickly. 
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1. Introduction 

Linear programming models with a mixture of real-valued and binary variables 

are often appropriate in strategic planning, production planning with significant 

setup times, personnel scheduling, and a host of other applications. The abstract 

formulation for linear problems with binary integers takes as data a row vector 

c of length n, an m x n matrix A and a column vector b of length m. Let D be 

the index set 1, ... , n. The problem is to select a column vector, x, of length n 

so as to 
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subject to 

Ax~ b 

Xi E {0, 1}, i E I 

Xi ~ 0, i E D \I, 
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(1) 

(2) 

(3) 

where the index set I gives the variables that must take on zero-one values. We 

use f to indicate the number of integer variables. 

Meta-heuristics, or heuristic search (HS) methods, such as tabu search 

(Glover and Laguna, 1997) have also been proposed for such problems and have 

been very successful in some settings. HS methods are often disadvantaged be­

cause they typically cannot , by themselves, prove optimality of their solutions 

(exceptions include Glover, 1996). A related problem is that it is difficult to 

know when the search should be terminated. 

Exact methods of solving these problems such as branch and bound or branch 

and cut operate by fixing some of the integer variables at an integer value; each 

set of fixed integer values defines a node in the search tree. The remaining 

integer values are left free to take on real or integer values; the resulting problem 

is referred to as the relaxation for the node. Exact methods progress from node 

to node to implicitly exhaust all possible combinations of integer values. The 

best integer feasible solution currently available can be used to bound out some 

combinations. 

In this paper, issues related to behavior of a tabu search within a branch and 

bound algorithm are analyzed using computational experiments. We integrate a 

pivot based search (Aboudi and Jornsten, 1994; Glover and L0kketangen, 1997; 

L0kketangen and Glover, 1996; L0kketangen, Jornsten and Stor0y, 1994) with 

a branch and bound algorithm. The integration takes place primarily in the 

form of searches launched from the nodes of the branch and bound tree. These 

searches are terminated when an integer feasible solution is found or after some 

number of pivots, NI. Any time a new best is found, the search is continued for 

an additional NI of pivots. Chunking (Woodruff, 1998) is used to detect solutions 

that should be used for special searches that begin at the LP relaxation and to 

determine when the use of pivot searches should be discontinued. 

Exact methods sometimes include 'quick' heuristics to help solve sub-prob­

lems and/or improve bounds. For example, MINTO (Savelsbergh and Nemhau­

ser, 1996) uses what they call a 'diving' heuristic every 25 nodes to see if an 

integer feasible solution can be obtained using the solution for the node's relax­

ation as a starting point. An algorithm that combines genetic algorithms with 

branch and bound for satisfiability problems has been proposed by researchers 

at Loughborough University (French, Robinson and Wilson, 1997). They are 

also pursuing other forms of integration between local search and branch and 

bound as part of an on-going research project. 

The next section describes the pivot based search and its behavior when 
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establish local and global search parameter values are described. In Section 3 

global issues are discussed such as termination of the use of pivot searches. The 

full algorithm is summarized and computational experiments are described in 

Section 4. The paper closes with a section devoted to conclusions and directions 

for further research. 

2. Searching within branch and bound 

2.1. Pivot based tabu search 

The branch and bound B&B algorithm (BBA) calls back to the controlling meta­

heuristic level at each new node in the B&B tree, and a local search from the 

current node might be launched (see Section 3). This local search is based on 

extreme point pivoting in a bounded variable simplex algorithm. A short de­

scription of the search is outlined in the Appendix, while the reader is referred to 

Glover and L0kketangen (1997), L0kketangen and Glover (1996), for extensions 

and variants. 

As the search is launched from nodes in a B&B tree, there are some special 

considerations that come into play, setting this use of the pivot based search 

somewhat apart from other implementations. First, there is no need to incorpo­

rate any diversification or intensification schemes into the local search, as these 

matters are addressed by the chunking mechanism (see Section 3.1) and the 

path-relinking based target searches (see Section 3.2), respectively. Second, the 

purpose, or focus, of the search is somewhat different from the stand-alone search, 

in that for some of the searches, the emphasis is shifted more towards obtaining 

integer feasibility quickly. This focus is controlled by the parameter SKEW. 

Another issue is that all the searches that are launched are similar, in that 

they are all variants of the same original problem, but with a varying number 

of integer variables fixed at the different nodes of the B&B tree. No variables 

are fixed at the root node, while progressively more integer variables are fixed 

further down the tree. This implies that searches should be launched only from 

nodes "sufficiently" apart (see Section 3). 

One problem with the pivot based search is that the neighborhood is very 

costly to evaluate. Large speedups can be obtained, however, by proper candi­

date list strategies. These strategies are linked to the notions of Neighborhood 

Exploration and Neighborhood Exploitation. A brief description of these mea­

sures are given below, while a fuller account can be found in L¢kketangen and 

Glover (1998). 

The full neighborhood in a pivot based search consists of the set of nonbasic 

variables. We choose to evaluate only part of the full neighborhood at each 

exploration phase. Typically, 10% to 30% of the possible neighbors are explored, 

controlled by the search parameter NFRAC. Random variable selection is used, 

as a round robin exploration scheme runs into trouble due to the fixed layout 
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The exploration phase gives a collection of candidate moves sorted in de­

creasing order of heuristic quality. After picking the best (non-tabu) move off 

the list, we might continue to exploit the remaining moves on the candidate list, 

thereby postponing the next (expensive) exploration phase. We thus proceed 

down the candidate list, stopping when encountering a bad move or when RTN 

moves have been explored. A bad move is defined as one that both reduces the 

degree of integer feasibility and results in a degradation in the objective function 

(see the Appendix). It should be noted that it is necessary to reevaluate the 

move evaluation and re-identify the leaving pivot variables for all moves picked 

off the candidate list after the fi rst (non-tabu) move. Typical values for RTN 

are between 3 and 5. 

2.2 . Parameter settings for the searches 

In order to use a pivot based search from the nodes of a BBA, we need to find 

parameter settings that are appropriate. This need, in turn, gives rise to a need 

to study the ·behavior of the pivot search when launched from nodes. Of course, 

the primary feature of searching in this environment is that some of the integer 

variables are fixed. Furthermore, they are not fixed in random patterns, but by 

using the rules and tricks built into a commercial MIP solver. The only way to 

study this behavior is by example. We select three instances for our study that 

have a varying fraction of their variables constrained to be integer and varying 

sizes. The instances for the behavior study are summarized in Table 1. 

Name Rows Columns Binary 

misc05 300 136 74 

misc06 820 1808 112 

ex dash 10 575 575 

Table 1. Instances for node search behavior study 

The first value to set is the skew factor, SKEW, for search for feasibility from 

a node. This task is rendered both difficult and easy by the fact that the search 

performance is extremely robust with respect to this parameter. It is difficult 

in the sense that it is hard to choose and easy in the sense that any choice is a 

good one. 

To study the dependence of the search on this parameter we conducted a 

series of experiments using five replicates for each inst ance and parameter value, 

where each replicate is characterized by a different random number stream. For 

each replicate, we launched a search from every node with the experiment end­

ing at branch and bound termination or after 100 searches. Each search was 
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primary goal in such searches is the discovery of an integer feasible solution. 

Table 2 summarizes the results . The results are pro-intuitive in that lower skew 

factors generally result in a few more feasible solutions, but not significantly. 

The objective function values obtained were also of no help in picking a pa­

rameter value. There was not a statistically significant performance difference. 

Due to the condition of the search finding a feasible solution, the number of 

iterations required did not vary significantly with the parameter for misc05 or 

misc06, but for exdash, fewer iterations were required with SKEW = 0.01 (an 

average of 189 versus averages of very nearly 220 for the other settings). This 

difference is not big, but lacking any other clear criteria, we use it to set the 

value of SKEW at 0.01 for searches from a node. 

SKEW 

Instance 1 0.1 0.01 0.001 

misc05 0.56 0.53 0.56 0.60 

misc06 1.00 1.00 1.00 1.00 

ex dash 0.43 0.53 0.55 0.56 

Table 2. Fraction of searches from nodes resulting in integer feasibility 

The next two parameters are somewhat more complicated. They are re­

ferred to collectively as the neighborhood parameters. In order to set the values 

of NFRAC and RTN, we conduct a study with samples of searches from the 

nodes. For each of the three instances, we again conduct an experiment with 

five replicates for each parameter setting. We search from a sample of the nodes 

with roughly seven searches per replicate. The searches were terminated at in­

teger feasibility or after n pivots. Table 3 summarizes the results. The columns 

misc05 misc06 ex dash 

Ave. Frac. Cond. Ave. Frac. Cond. Ave. Frac. Cond. 

NFRAC RTN Time Fe as. Obj. Time Fe as. Obj. Time Fe as. Obj. 

0.1 1 1.3 0.48 2997 15.4 1.00 12930 23.4 0.63 -708528 

3 1.3 0.48 2997 10.0 1.00 12977 16.1 0.51 -698337 

5 1.3 0.48 2997 8.4 1.00 12974 14.1 0.51 -713648 

0.2 1 1.8 0.40 2988 22.6 1.00 12939 32.2 0.80 -717328 

3 1.5 0.52 2997 12.3 1.00 12917 29.3 0.63 -714330 

5 1.5 0.52 2997 9.3 1.00 12918 20.0 0.80 -698043 

0.3 1 2.0 0.60 3010 33.8 1.00 12906 42.5 0.77 -722025 

3 1.7 0.56 2996 13.8 1.00 12968 35.1 0.86 -702118 

5 1.7 0.56 2996 14.0 1.00 12915 31.2 0.66 -718580 
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labeled "Ave. Time" give the average number of seconds for each search from 

the node (on a computer with a 120 MHz Pentium Processor), "Frac. Feas." is 

the fraction of searches that resulted in a feasible solution, and "Cond. Obj." 

gives the average objective function value for those searches that resulted in 

integer feasibility. 

There are no parameter values that are clearly superior, so we resort to 

heuristic reasoning. The product of the Ave Time and Frac Feas columns is the 

expected amount of time per feasible solution. This would be a good thing to 

minimize, all other things being equal. This criterion suggests that the NFRAC 

parameter be set at 0.1, with 3 being a reasonable value for RTN; however, 

there are objective function considerations. An NFRAC value of 0.2 would seem 

better in terms of getting a lower objective function value (however, the pairwise 

differences are typically significant only at levels below 0.9). We select two sets 

of neighborhood parameter pairs (NFRAC, RTN}: the "slower" pair (0.2, 3} and 

the "faster" pair (0.1, 3). For the search that is launched from the root node of 

the tree, we use the slower pair based on the heuristic reasoning that a quality 

solution is preferred and worth the wait. For subsequent nodes, we use the faster 

pair when a larger number of iterations are allocated and the slower pair with 

fewer iterations based on the typical heuristic reasoning that we can "afford 

more time" for each move when there will be fewer moves and furthermore that 

we need to "make the most" of each move. When there are possibly more moves, 

we cannot "afford to spend a lot of time on each move." 

To set the number of iterations, NI, we need to pause to consider the nature 

of integration of a pivot search into a branch and bound algorithm. A BBA does 

not select variables to fix at random. T he B&B tree is searched in a manner that 

incorporates heuristic variable selection and node selection based on the ability 

to solve the resulting subproblems efficiently and effectively. It would not be 

prudent to launch a search from every node because it is very likely that there 

is not much difference from one node to the next. To provide a high likelihood 

that we are launching searches from nodes that are significantly different, we 

search every l nodes. 

In order to determine an appropriate number of pivots (or moves) for each 

search, NI, we again turn to experimental analysis of search behavior. Figures 

1 through 3 display the results of an experiment with five replicates of samples 

from the nodes of the exdash instance. The searches were terminated at integer 

feasibility or when n pivots had been executed without finding an integer feasible 

solution (there is no guarantee that an integer feasible solution exists for the 

values fixed at each node}. The graphs show one point for each search (with 

many points overlapping} giving the number of pivots versus the fraction of the 

integers that have been fixed by the branch and bound algorithm. The main 

thing to notice is that the number of pivots goes down with the fraction fixed 

as would be expected, but only sightly. 

~ini'P. onr initial l!oal in searching from a node is to see if there is an integer 
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goal is to minimize the number of pivots per integer feasible solution found. We 

should set the number of iterations, NI, accordingly. For any given instance, we 

cannot know a priori what that value would be, so we set NI = f. for the first 

'Y searches and then determine the value of NI that would have resulted in the 

minimum number of pivots per feasible solution. For the remaining searches we 

set NI to be the minimum of this value and n/10. Assuming that this value is 

lower than f., it might seem that we will have "wasted" pivots during the first 

'Y searches, but this probably is not really the case. We are not only sampling 

to determine a good value for NI , because these searches are being done early in 

the BBA process, where a good bound will have the greatest affect on pruning 

the tree. Hence, longer searches are in order for the first few nodes sampled. 

To clarify the search for NI , we formalize it. Let >< be the sup of the number 

of iterations needed to find an integer feasible solution during search i. Let 

>.i(Nr) be the number of iterations expended in search number i. So, >.i(Nr) = 

min(>.~, NI) for finite NI. If we let 8 be t he usual indicator function, we can write 

down our objective. After the fi rst 'Y searches, we want the value NI that is 

. ~ .Xi(Nr) 
argmm ~ s:( " ) 

Nl v Nl < II. 
i~l - • 

(4) 

based on the heuristic just ification that this will approximately result in the 

lowest possible number of pivots per feasible solution found during subsequent 

searches. We state again a lemma t hat has been given and proven in a wide 

variety of settings. 

Lemma 1 If a search is conducted with Nl = f. for the first 'Y nodes, then the 

minimum for Equation 4 subject to Nl~ f. is achieved at one of the observed 

values, Ai(n), i = 1, ... , 'Y· 

This lemma leads immediately to a proof of optimality for an algorithm that 

checks at most 'Y candidate values for NI. We use the notation NI* to refer to the 

value found by such an algorithm with a constraint that the value be at least 

n/10. In our implementations we always use 'Y = 5 based on the argument that 

this is the minimum reasonable size for any statistical sample. 

3. Global issues 

In the previous sections we have described the pivot based search and exper­

iments done to establish parameter values for searches launched from nodes. 

This leaves us with a few global issues unresolved. Two related questions must 

be answered. When should the pivot based searches be terminated? When 

should special searches be launched? Both of t hese questions can be addressed 

via the use of chunking. 

A major advantage of BBA is that it will eventually result in proof of opti-
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the optimal solution has been found. The relaxations must be solved so that 

branches of the tree can be fathomed, but continued use of a pivot search is 

clearly pointless. We cannot know for sure when the pivot searches should be 

terminated, but we can construct a mechanism that terminates them when they 

seem to be no longer operating from a diverse set of starting points. 

Conversely, if we find a "unique" or "outlying" solution we might want to 

make use of it in a special search. The details of special searches are given 

in Section 3.2. The meaning of "unique" and "outlying" can be supplied by 

chunking. 

3.1. Chunking 

The basic idea behind chunking is to dramatically reduce the dimension of the 

solution vectors while retaining (or obtaining) a reasonable measure of distance 

between them. For pure binary problems, Hamming distances might suffice. 

However, for MIPs Hamming distances can be misleading because they do not 

take into account the real valued variables. One source of useful metrics is 

chunking. For a more general discussion of chunking, see Woodruff (1998, 1996). 

A terse summary of chunking will be given here. We will refer to a non­

empty subset of solution vector indexes as a chunk. An instance of a partial 

vector corresponding to a chunk is referred to as a chunk instantiating value. 

That is, a chunk instantiating value for a given chunk C ~ D depends on the 

specific vector x whose values are under consideration. Let P be a partition 

of D with p cells. The mappings from chunk instantiating values to reals are 

referred to as chunk valuation functions, v. We will deal with a fairly specific 

valuation function. Let Vp ( x) be the (column) vector of chunk valuations for 

a given vector x under partition P. Each element of the valuation vector is 

defined as 

1 
vc(x)) = -ICI L:xi, 

iEC 

where ICI is the number of indexes in the chunk for each chunk C E P. If we 

index the chunks C E P, we can write Vi in the same way fori= 1, ... ,p. 

We can use chunking to quantify the location and shape of a group of solution 

vectors. This characterization then allows us to quantify the distance between 

solution vectors using the shape to define a metric. In particular, we measure 

the distance to the location of the group used to define the shape. 

To get the appropriate metric, we make use of a location vector (mean) J1 

of length p and a p x p shape matrix (covariance matrix) S. A p-vector v can 

be said to have a Mahalanobis distance from J1 using S that is given by 

(5) 

Short distances are consistent with J1 and S and longer distances are not as 
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The motivation for this metric comes from multivariate probability theory. 

If S and p. define a multivariate normal distribution, then for points governed 

by the distribution, the Mahalanobis distances are distributed x~ (see e.g., An­

derson, 1984, pages 72-75). We make use of a matrix S that is the covariance 

estimate for the valuation vectors of the most recent N feasible integer solutions 

sampled. In our work described here, p is left as a free parameter and N is fixed 

at 5p. We will make use of the x~ distribution only as a method of character­

izing distances in a way that depends on the data and p in a rational way that 

can be characterized by the single parameter a; hence we really are not relying 

at all heavily on normality. 

If for the most recent N integer feasible solutions that have been obtained S 

lies entirely on a hyperplane of dimension p, the pivot searches are terminated. 

This corresponds to a lack of diversity in the results of the pivot searches and/or 

BBA thereby indicating that further pivot searches will be a waste. 

If solutions, x, are encountered whose valuation vectors vc(x) are far from 

the mean of the sample of N solutions, then a special search is indicated. The 

notion of "far" is captured by a parameter a that gives the threshold for the 

inverse of the chi~ distribution for d2 (p. , S; vc(x)). This parameter typically 

has a low value; e.g., of the order of one half. The special searches that are 

launched are now described. 

3.2. Special searches 

After a best-so-far solution x• has been found, the chunking mechanisms try 

to identify distant (w.r. t . the current sample of solutions) solutions, x'. When 

such a distant solution has been identified, a 2-target search is launched. This 

is a variant of path relinking, with the purpose of launching a new search into 

unknown territory, while at the same time keeping good parts of the solutions. 

To put it another way: this will intensify the search, while at the same time 

diversifying the search. 

The starting point of this search is t he relaxed root node solution LP* (being 

an upper bound on the objective function value), and the target for the path 

relinking is the hyperplane defined by the common integer solution values of x• 

and x'. All integer variables are freed. 

To allow the search to focus on this hyperplane, the integer infeasibility part 

of the move evaluation function is temporarily modified. (The objective function 

value component is unaltered, as is the aspiration criterion - see the Appendix). 

Instead of using the normal integer infeasibility measure of summing up over 

all the integer variables the distance to the nearest integer, we use the following 

scheme: 

• Sum up over all the integer variables. 

• If the two targets have the same integer solution value for the variable, 
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• If the two targets differ, use the normal integer infeasibility measure (i.e. 

the closest integer value). 

When the search reaches the hyperplane connecting x• and x', the nor­

mal move evaluation function is reinstated, and the search continues in normal 

fashion for NI iterations. 

4. Computational results 

4.1. Summary of the algorithm and implementation 

The searches from nodes are implemented as callbacks from the branch and 

bound code XPRESS-MP version 10.1 (Dash Assoc., 1998) with default param­

eter settings. A special pivoting interface is implemented to facilitate the pivot 

search. Termination of further pivot searches is implemented simply by cancel­

ing the callbacks. The code for the pivot based search is implemented in C++ 

and experiments were conducted on a 200 Mhz Pentium PC. 

Name SKEW NFRAC RTN NI 

ROOT 0.10 0.2 3 n 

SMALL 0.01 0.1 3 f. 

BIG 0.01 0.2 5 NI* 

Table 4. Parameter sets 

To describe the algorithm it is useful to refer to the parameter sets given in 

Table 4. The algorithm proceeds in four phases, but when a new best solution 

is found during any phase a search from that solution is launched for NI iter­

ations with the variables that were fixed at that point in time and using the 

same parameter set as the search from the node except with a SKEW value one 

order of magnitude greater and termination on the iteration limit or a new best 

found. For every search from a node, the search is terminated at the iteration 

limit or when an integer feasible solution is found. Special searches have other 

termination criteria. Here are the phases: 

1. Search from the root node (the LP relaxation) using the parameter set 

named RooT. 
2. For the next "(n nodes, search from every nth node using the parameter set 

named SMALL. Calculate the value of NI that would have minimized Equa­

tion 4 for the "' searches done so far. Use this value for NI in subsequent 

node searches. 

3. Continue node searches from every nth node using the parameter set 

named BIG until N = 5p integer feasible solutions have been found. Con­

struct valuation vectors for each of the N solutions and the resulting 
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4. Continue launching searches from every nth node using parameter set BIG. 

Launch a special search as described in Section 3.2 if a solution, x, is 

encountered such that its valuat ion vector vc(x) has the property that 

d2 (J.L, S; vc(x)) is greater than the inverse of the x~ distribution at 0.5. 

Terminate callbacks if the determinant of S becomes zero or if the sample 

is refreshed without a special search launched. 

4.2. Results 

The computational tests were done on a set of test problems obtained from 

miplib (ftp:/ /softlib.cs.rice.edufsoftlib/miplib/) and Dash Associates (exdash 

and hpw15) (see address at Dash Assoc., 1998). These are listed in Table 5, 

together with the problem dimensions. Some of these are not too difficult, 

while others require substantial amounts of cpu time to prove optimality. The 

selection contains both pure IP's and MIP's. 

Name Rows Columns Binary 

dcmulti 290 548 75 

egout 98 141 55 
ex dash 10 575 575 
hpw15 55 90 30 
misc05 300 136 74 

misc06 820 1808 112 

misc07 212 260 259 

pkl 45 86 55 

pp08a 136 240 64 

pp08aCUTS 246 240 64 
vpm1 234 378 168 

vpm2 234 378 168 

Table 5. Test cases 

It should be pointed out that our heuristics are "grafted" onto Xpress. This 

implies that the data structures that are internal to Xpress have to be copied 

over to our local data structures. This overhead, together with the overhead as­

sociated with the actual callbacks, is quite significant, and leads to less favorable 

comparisons. 

The main benefit for the B&B of the local search is to hopefully obtain 

integer feasible solutions earlier, and thus better cut-off values, leading to fewer 

nodes expanded and shorter overall search time. It should be noted, however, 

that better cut-off values does not necessarily speed up the B&B, neither in 
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Due to the chunking criteria, local searches usually are not used after a few 

thousand nodes. This has the beneficial effect of not wasting time on the local 

searches for the test cases that need many nodes in the B&B. 

A series of tests, with a maximum of one million nodes for the B&B, were 

run for each of the test cases. For each test case the B&B were run alone, as 

well as 5 runs (with different random seeds) with full search and 5 runs with 

root node search only. 

For many test cases there was no appreciable effect, even though integer 

feasible solutions were found quite early. Table 6 shows the overall running 

time for the B&B on its own, as well as the average extra time spent when 

adding the local searches. The column Root signifies root-only search, and the 

Full column the searches as described in the previous chapter. A bold figure in 

the B&B column signifies that the optimum was found. For dcmulti and misc06 

the extra search time is quite large, while for the rest it is quite negligible. 

Name B&B Root Only Full 

dcmulti 29 37.6 107 

ex dash 15 3.5 29 

misc05 15 3.5 29 

misc06 10 99.1 173 

Table 6. Times for test cases where local search has a bad effect 

There are also many instances for which the search at the root node is able 

to find quickly a good, feasible solution, but this does not necessarily result in 

a speedup for the overall combined algorithm. These instances are summarized 

in Table 7. The column labeled "Root Only Gap" gives the percent deviation 

between the solution found by the root node tabu search and the solution found 

by the branch and bound algorithm. The quality of the solutions is reasonable 

given that the time required is very low. It is also important to note that the time 

B&B Root Only Root Only Full 

Name Time Time Gap Time 

misc07 1,009 15.7 4% 1,199 

pk1 19,705 1.6 18% 20,225 

pp08a 28,263 4.5 27% 28,208 

pp08aCUTS 38,825 7.0 12% 39,565 

vpm1 34,401 4.4 5% 34,414 

vpm2 34,813 7.6 12% 35,273 

Table 7. Test cases where a root node search was useful and the Full Time was 
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for the full search is almost the same as the time for B&B alone. In the interest of 

being conservative in drawing conclusions, we cannot claim that this "proves" 

that our methods would speed up a branch and bound algorithm for some 

instances if incorporated by the professionals who develop commercial software 

with full access to internal data structures. However, given the overhead of 

implementing as a callback, this conclusion is strongly supported. Certainly, 

these results suggest that the full search is worthy of further consideration. 

Table 8 shows the search times for the test cases where the local searches 

have good effect. The columns Root and Full now give the total search 

time including the searches (as opposed to the extra search time as shown 

in Table 6}. The reason for the same time for both Root and Full search 

for hpw15 is that the search is so short that no searches are launched after 

the first (root node} search. The instance slsp3 is the deterministic equiva­

lent of a stochastic mixed integer programming instance that is available at 

www.gsm.ucdavis.edu;-dlw/testcase-ejor.zip on the web. These instances are 

quite "easy" in the sense that they can be solved quickly with, or without, the 

addition of local search. However, the speedup that we can offer can be signif­

icant when such problems are solved as sub-problems for a larger problem (for 

example, when using progressive hedging for stochastic programming, Rockafel­

lar and Wets, 1991.} Note that the reduction in full search times versus B&B 

alone is a very large percentage, so if such problems must be solved repeatedly 

the overall savings can be quite meaningful. 

Name B& B R oot Full 

egout 2.1 1.1 1.6 
hpw15 2.4 1.0 1.0 
slsp3 1.6 0.6 1.0 

Table 8. Times for test cases where local search has good effect 

As can be seen, the best effect is for the root node search, less so for the full 

search. We believe that root node search can have a beneficial effect, and does 

not cost too much in terms of computational t ime. It might also be included for 

instances where the (proven} optimum might not be needed, but a good feasible 

solution suffices. 

5. Conclusions and d irections for further research 

This paper has examined integration of a sophisticated, pivot-based local search 

into branch and bound for binary MIPS and global diversification tests using 

chunking. The search behavior is analyzed using computational experiments. 
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local search sometimes results in fewer nodes and lower CPU times even when 

used in a callback mode. 

It is very difficult to beat a high quality commercial solver like Xpress from 

the "outside." Such code includes many "tricks of the trade" and has been 

refined over many years of programming. In addition, by using callbacks that 

must recreate data structures that are available internally we burden ourselves 

with additional overhead. However, in spite of this limitation the version that 

calls back to our code was fairly competitive with the commercial solver in 

terms of cpu use. Our experiments support the contention that tabu search 

embedded in branch and bound algorithm can be viable for some classes of 

instances. 

The main benefit in incorporating a pivot based heuristic is the ability to find 

an integer feasible solution earlier in the branching process than one otherwise 

would. We were able to produce speedups on a few instances. These instances 

could be solved quickly anyway, but the fact that the speed improvement was 

significant could prove very valuable in a setting where many such instances 

must be solved as sub-problems or when a diverse set of solutions is needed 

(Glover, L0kketangen, and Woodruff, 2000). It remains for further research to 

characterize the classes of instances for which combinations of heuristic search 

with branch and bound are most useful. 

Also left for future research are issues associated with incorporating popula­

tion based tabu searches with branch and bound. The branch and bound process 

can generate a large number of candidate population members. In this paper 

we have demonstrated the usefulness of chunking for detection of diversity, so 

the ingredients are in place. 
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Appendix - Pivot search details 

The necessary background for the tabu search extreme point pivot search method 

is outlined here, using the notation and definitions of earlier studies. For more 

details, see Glover and L0kketangen (1997) . The reader is assumed to be familiar 

with tabu search (see e.g. Glover and Laguna, 1997) and with the basic concepts 

of the bounded variable simplex method. 

Given the 0-1 MIP problem formulation described in the introduction sec­

tion, the first-level Tabu Search (TS) heuristic for this problem may then be 

outlined as follows: 

Let X* denote the best MIP feasible solution, and let Z* denote its objective 

funct ion value. 

1. Solve the LP relaxation (i.e. ignoring integer constraints) to obtain an 

optimal LP basic (extreme point) solution. 

2. Consider the feasible pivot moves that lead to adjacent basic LP feasible 

solutions. If a candidate move would lead to an 0-1 MIP feasible solution x 

whose associated z value yields z > Z*, record x as the new X* and 
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3. Select the pivot move with the highest move evaluation, applying tabu 

restrictions and aspiration criteria. 

4. Execute the selected pivot, updating the associated tabu search memory 

and guidance structures. Return to Step 2. 

Note that the method may not necessarily visit the best MIP feasible neigh­

bor of the current solution, since the move evaluation of Step 2 depends on other 

factors in addition to the objective function value (see below). 

Neighborhood structure 

Let x(O) denote the current extreme point solution, let { Xj : j E N B} denote 

the current set of non basic variables, and let {xi : j E B} denote the set of basic 

variables (B = N- N B). The extreme points adjacent to x(O) have the form 

x(h) = x(O)- D~tfh for hEN B 

where Dh is a vector associated with the nonbasic variable Xh, and Bh is the 

change in the value of Xh that moves the current solution from x(O) to x(h) 

along their connecting edge. 

We thus start the search from an integer infeasible point, and may also spend 

large parts of the search visiting integer infeasible solution states. 

Move evaluation 

The move evaluation function is composite, based on two independent measures. 

The first measure is the change in objective function value when going from 

x(O) to x(h), and the second measure is the change in integer infeasibility. Let 

near(xj(h)) denote the integer nearest to the value Xj(h). Then we define u(h) 

to be the amount of integer infeasibility for the solution x(h), where 

u(h) = L lxi- near(xj(h))i 

jEl 

Restricting consideration to h E N B, we define 

L).z(h) = z(h)- z(O) 

L).u(h) = u(O)- u(h). 

Note that it is not necessary to execute a pivot to identify x(h) or the values 

of u(h) and z(h), since only the vector Dh, the scalar Bh, and the current solution 

x(O) are required to make this determination. 

Move types and choice rules 

The moves are grouped into four distinct move types, according to the values 
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Move 

Type 

I 

II 

III 

IV 
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Defining 

Conditions 

Llz(h) < 0, Ll1L(h) > 0 

Llz(h) > 0, Llu(h) < 0 

Llz(h) ~ 0, Llu(h) ~ 0 

all others 

Table 9. Move types 

The classification of move types is made according to the degree to which 

they may be considered favorable. Moves of type III are generally the most 

favorable, improving in both of the measures used in t he move evaluation func­

. tion, while moves of type IV are the least favorable, worsening in both measures. 

Moves of types I and II are improving in one of the measures, and worsening in 

the other. 

The ranking of moves within each move group is as follows, with the best 

move in the group being indicated by Table 10. 

Move Move 

Type Ranking 

I Max(Llz(h)/Llu(h)) 
II Max(Llu(h)/Llz(h)) 

III Max(Llu(h) * Llz(h)) 
IV Min(Llu(h) * Llz(h)) 

Table 10. Move classifications and ranking functions 

When move evaluations tie within a group, we choose the move with the 

largest value of the positive component for moves of type I and II. For moves of 

type III and IV we choose the move which is most balanced in its components, 

i.e. where the Az(h) and Au(h) components are most equal. The ranking of 

different move type groups is done by always considering type III moves first, 

and type IV moves last, with move types I and II grouped together in the 

middle. To be able to properly rank move types I and II, their values need to 

be normalized. 

We first define the ratio R by 

R _ E abs(z(h)) 

- wE abs(u(h))' 

where the summations are taken over the currently available moves of type I -
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between the two measures making up the move evaluation function, with low 

values giving a bias towards selecting moves resulting in a lower integer infeasi­

bility measure. 

The normalized move values are 

MoveTypel: Rl(h) = (~z(h)/~u(h))/R 

MoveTypell: R2(h) = (~u(h)/~z(h)) * R. 

The preferred move selection from groups I and II is then 

MoveTypel and II: Max(Rl(h), R2(h)). 

Tabu status and aspiration criteria 

We impose tabu restrictions on the variable that leaves the basis in a move. In 

other words, a variable that has just left the basis is not allowed to reenter the 

basis until its tabu tenure has expired. 

Aspiration is by new global best. As mentioned, a new integer feasible 

solution may be encountered during a move evaluation without subsequently 

selecting the move leading to it. This is due to the process for evaluating 

and ranking the moves. Such a solution is, however, picked by the aspiration 

criterion, and will thus be selected. 

For more detailed explanations of the workings of this section, the reader is 

again referred to Glover and L0kketangen (1997). 




