
Control and Cybernetics

vol. 29 (2000) No. 3

Integrating pivot based search with branch and bound
for binary MIPs

by

Arne Lfllkketangen* and David L. Woodruff**

*Molde College

Britveien 2, 6411 Molde, Norway

E-mail: Arne.Lokketangen@hiMolde.no

**Graduate School of Management, UC Davis

Davis, CA 95616, U.S.A.

E-mail: dlwoodruff@ucdavis.edu

Abstract: This paper examines integration of a sophisticated,
pivot-based tabu search into branch and bound for 0-1 MIPS and
global diversification tests using chunking. Issues related to behavior
of a tabu search within a branch and bound algorithm are analyzed
using computational experiments. Results are presented showing
that the inclusion of the local search sometimes results in fewer
nodes and lower CPU times even when used in a callback mode.
The main benefit in incorporating a pivot based heuristic is that
an integer feasible solution can be found earlier in the branching
process. Computational experiments are presented showing that for
some instances the overall search time is improved, while for some
others the tabu search can find good solutions quickly.

Keywords: tabu search, branch and bound, chunking, heuristics.

1. Introduction

Linear programming models with a mixture of real-valued and binary variables

are often appropriate in strategic planning, production planning with significant

setup times, personnel scheduling, and a host of other applications. The abstract

formulation for linear problems with binary integers takes as data a row vector

c of length n, an m x n matrix A and a column vector b of length m. Let D be

the index set 1, ... , n. The problem is to select a column vector, x, of length n

so as to

742

subject to

Ax~ b

Xi E {0, 1}, i E I

Xi ~ 0, i E D \I,

A. L0KI<ETANGEN, D.L. WOODRUFF

(1)

(2)

(3)

where the index set I gives the variables that must take on zero-one values. We

use f to indicate the number of integer variables.

Meta-heuristics, or heuristic search (HS) methods, such as tabu search

(Glover and Laguna, 1997) have also been proposed for such problems and have

been very successful in some settings. HS methods are often disadvantaged be­

cause they typically cannot , by themselves, prove optimality of their solutions

(exceptions include Glover, 1996). A related problem is that it is difficult to

know when the search should be terminated.

Exact methods of solving these problems such as branch and bound or branch

and cut operate by fixing some of the integer variables at an integer value; each

set of fixed integer values defines a node in the search tree. The remaining

integer values are left free to take on real or integer values; the resulting problem

is referred to as the relaxation for the node. Exact methods progress from node

to node to implicitly exhaust all possible combinations of integer values. The

best integer feasible solution currently available can be used to bound out some

combinations.

In this paper, issues related to behavior of a tabu search within a branch and

bound algorithm are analyzed using computational experiments. We integrate a

pivot based search (Aboudi and Jornsten, 1994; Glover and L0kketangen, 1997;

L0kketangen and Glover, 1996; L0kketangen, Jornsten and Stor0y, 1994) with

a branch and bound algorithm. The integration takes place primarily in the

form of searches launched from the nodes of the branch and bound tree. These

searches are terminated when an integer feasible solution is found or after some

number of pivots, NI. Any time a new best is found, the search is continued for

an additional NI of pivots. Chunking (Woodruff, 1998) is used to detect solutions

that should be used for special searches that begin at the LP relaxation and to

determine when the use of pivot searches should be discontinued.

Exact methods sometimes include 'quick' heuristics to help solve sub-prob­

lems and/or improve bounds. For example, MINTO (Savelsbergh and Nemhau­

ser, 1996) uses what they call a 'diving' heuristic every 25 nodes to see if an

integer feasible solution can be obtained using the solution for the node's relax­

ation as a starting point. An algorithm that combines genetic algorithms with

branch and bound for satisfiability problems has been proposed by researchers

at Loughborough University (French, Robinson and Wilson, 1997). They are

also pursuing other forms of integration between local search and branch and

bound as part of an on-going research project.

The next section describes the pivot based search and its behavior when

Integrating pivot based search with branch and bound for binary MIPs 743

establish local and global search parameter values are described. In Section 3

global issues are discussed such as termination of the use of pivot searches. The

full algorithm is summarized and computational experiments are described in

Section 4. The paper closes with a section devoted to conclusions and directions

for further research.

2. Searching within branch and bound

2.1. Pivot based tabu search

The branch and bound B&B algorithm (BBA) calls back to the controlling meta­

heuristic level at each new node in the B&B tree, and a local search from the

current node might be launched (see Section 3). This local search is based on

extreme point pivoting in a bounded variable simplex algorithm. A short de­

scription of the search is outlined in the Appendix, while the reader is referred to

Glover and L0kketangen (1997), L0kketangen and Glover (1996), for extensions

and variants.

As the search is launched from nodes in a B&B tree, there are some special

considerations that come into play, setting this use of the pivot based search

somewhat apart from other implementations. First, there is no need to incorpo­

rate any diversification or intensification schemes into the local search, as these

matters are addressed by the chunking mechanism (see Section 3.1) and the

path-relinking based target searches (see Section 3.2), respectively. Second, the

purpose, or focus, of the search is somewhat different from the stand-alone search,

in that for some of the searches, the emphasis is shifted more towards obtaining

integer feasibility quickly. This focus is controlled by the parameter SKEW.

Another issue is that all the searches that are launched are similar, in that

they are all variants of the same original problem, but with a varying number

of integer variables fixed at the different nodes of the B&B tree. No variables

are fixed at the root node, while progressively more integer variables are fixed

further down the tree. This implies that searches should be launched only from

nodes "sufficiently" apart (see Section 3).

One problem with the pivot based search is that the neighborhood is very

costly to evaluate. Large speedups can be obtained, however, by proper candi­

date list strategies. These strategies are linked to the notions of Neighborhood

Exploration and Neighborhood Exploitation. A brief description of these mea­

sures are given below, while a fuller account can be found in L¢kketangen and

Glover (1998).

The full neighborhood in a pivot based search consists of the set of nonbasic

variables. We choose to evaluate only part of the full neighborhood at each

exploration phase. Typically, 10% to 30% of the possible neighbors are explored,

controlled by the search parameter NFRAC. Random variable selection is used,

as a round robin exploration scheme runs into trouble due to the fixed layout

744 A. L0KKETANGEN, D.L. WOODRUFF

The exploration phase gives a collection of candidate moves sorted in de­

creasing order of heuristic quality. After picking the best (non-tabu) move off

the list, we might continue to exploit the remaining moves on the candidate list,

thereby postponing the next (expensive) exploration phase. We thus proceed

down the candidate list, stopping when encountering a bad move or when RTN

moves have been explored. A bad move is defined as one that both reduces the

degree of integer feasibility and results in a degradation in the objective function

(see the Appendix). It should be noted that it is necessary to reevaluate the

move evaluation and re-identify the leaving pivot variables for all moves picked

off the candidate list after the fi rst (non-tabu) move. Typical values for RTN

are between 3 and 5.

2.2 . Parameter settings for the searches

In order to use a pivot based search from the nodes of a BBA, we need to find

parameter settings that are appropriate. This need, in turn, gives rise to a need

to study the ·behavior of the pivot search when launched from nodes. Of course,

the primary feature of searching in this environment is that some of the integer

variables are fixed. Furthermore, they are not fixed in random patterns, but by

using the rules and tricks built into a commercial MIP solver. The only way to

study this behavior is by example. We select three instances for our study that

have a varying fraction of their variables constrained to be integer and varying

sizes. The instances for the behavior study are summarized in Table 1.

Name Rows Columns Binary

misc05 300 136 74

misc06 820 1808 112

ex dash 10 575 575

Table 1. Instances for node search behavior study

The first value to set is the skew factor, SKEW, for search for feasibility from

a node. This task is rendered both difficult and easy by the fact that the search

performance is extremely robust with respect to this parameter. It is difficult

in the sense that it is hard to choose and easy in the sense that any choice is a

good one.

To study the dependence of the search on this parameter we conducted a

series of experiments using five replicates for each inst ance and parameter value,

where each replicate is characterized by a different random number stream. For

each replicate, we launched a search from every node with the experiment end­

ing at branch and bound termination or after 100 searches. Each search was

Integrating pivot based search with branch and bound for binary MIPs 745

primary goal in such searches is the discovery of an integer feasible solution.

Table 2 summarizes the results . The results are pro-intuitive in that lower skew

factors generally result in a few more feasible solutions, but not significantly.

The objective function values obtained were also of no help in picking a pa­

rameter value. There was not a statistically significant performance difference.

Due to the condition of the search finding a feasible solution, the number of

iterations required did not vary significantly with the parameter for misc05 or

misc06, but for exdash, fewer iterations were required with SKEW = 0.01 (an

average of 189 versus averages of very nearly 220 for the other settings). This

difference is not big, but lacking any other clear criteria, we use it to set the

value of SKEW at 0.01 for searches from a node.

SKEW

Instance 1 0.1 0.01 0.001

misc05 0.56 0.53 0.56 0.60

misc06 1.00 1.00 1.00 1.00

ex dash 0.43 0.53 0.55 0.56

Table 2. Fraction of searches from nodes resulting in integer feasibility

The next two parameters are somewhat more complicated. They are re­

ferred to collectively as the neighborhood parameters. In order to set the values

of NFRAC and RTN, we conduct a study with samples of searches from the

nodes. For each of the three instances, we again conduct an experiment with

five replicates for each parameter setting. We search from a sample of the nodes

with roughly seven searches per replicate. The searches were terminated at in­

teger feasibility or after n pivots. Table 3 summarizes the results. The columns

misc05 misc06 ex dash

Ave. Frac. Cond. Ave. Frac. Cond. Ave. Frac. Cond.

NFRAC RTN Time Fe as. Obj. Time Fe as. Obj. Time Fe as. Obj.

0.1 1 1.3 0.48 2997 15.4 1.00 12930 23.4 0.63 -708528

3 1.3 0.48 2997 10.0 1.00 12977 16.1 0.51 -698337

5 1.3 0.48 2997 8.4 1.00 12974 14.1 0.51 -713648

0.2 1 1.8 0.40 2988 22.6 1.00 12939 32.2 0.80 -717328

3 1.5 0.52 2997 12.3 1.00 12917 29.3 0.63 -714330

5 1.5 0.52 2997 9.3 1.00 12918 20.0 0.80 -698043

0.3 1 2.0 0.60 3010 33.8 1.00 12906 42.5 0.77 -722025

3 1.7 0.56 2996 13.8 1.00 12968 35.1 0.86 -702118

5 1.7 0.56 2996 14.0 1.00 12915 31.2 0.66 -718580

746 A : L0KKETANGEN, D.L . WOODRUFF

labeled "Ave. Time" give the average number of seconds for each search from

the node (on a computer with a 120 MHz Pentium Processor), "Frac. Feas." is

the fraction of searches that resulted in a feasible solution, and "Cond. Obj."

gives the average objective function value for those searches that resulted in

integer feasibility.

There are no parameter values that are clearly superior, so we resort to

heuristic reasoning. The product of the Ave Time and Frac Feas columns is the

expected amount of time per feasible solution. This would be a good thing to

minimize, all other things being equal. This criterion suggests that the NFRAC

parameter be set at 0.1, with 3 being a reasonable value for RTN; however,

there are objective function considerations. An NFRAC value of 0.2 would seem

better in terms of getting a lower objective function value (however, the pairwise

differences are typically significant only at levels below 0.9). We select two sets

of neighborhood parameter pairs (NFRAC, RTN}: the "slower" pair (0.2, 3} and

the "faster" pair (0.1, 3). For the search that is launched from the root node of

the tree, we use the slower pair based on the heuristic reasoning that a quality

solution is preferred and worth the wait. For subsequent nodes, we use the faster

pair when a larger number of iterations are allocated and the slower pair with

fewer iterations based on the typical heuristic reasoning that we can "afford

more time" for each move when there will be fewer moves and furthermore that

we need to "make the most" of each move. When there are possibly more moves,

we cannot "afford to spend a lot of time on each move."

To set the number of iterations, NI, we need to pause to consider the nature

of integration of a pivot search into a branch and bound algorithm. A BBA does

not select variables to fix at random. T he B&B tree is searched in a manner that

incorporates heuristic variable selection and node selection based on the ability

to solve the resulting subproblems efficiently and effectively. It would not be

prudent to launch a search from every node because it is very likely that there

is not much difference from one node to the next. To provide a high likelihood

that we are launching searches from nodes that are significantly different, we

search every l nodes.

In order to determine an appropriate number of pivots (or moves) for each

search, NI, we again turn to experimental analysis of search behavior. Figures

1 through 3 display the results of an experiment with five replicates of samples

from the nodes of the exdash instance. The searches were terminated at integer

feasibility or when n pivots had been executed without finding an integer feasible

solution (there is no guarantee that an integer feasible solution exists for the

values fixed at each node}. The graphs show one point for each search (with

many points overlapping} giving the number of pivots versus the fraction of the

integers that have been fixed by the branch and bound algorithm. The main

thing to notice is that the number of pivots goes down with the fraction fixed

as would be expected, but only sightly.

~ini'P. onr initial l!oal in searching from a node is to see if there is an integer

Integrating pivot based search with branch and bound for binary MIPs 747

140 ~ -- ·- - -·· · ·----

120

100

!I 80
0

~ 60

40 . :
20

::
0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Fraction Fixed

Figure 1. P ivots to integer feasibility for misc05 (stopped at n)

70 .----------------------------

60

1

.

50

!I 40

~
II. 30 •• • • . .

20 •a .. .
10

0 ~----~--~--~----~------~----~

0.1 0.2 0.3 0.4 0.5

Fraction Fixed

Figure 2. Pivots to integer feasibility for misc06 (stopped at n)

600

..
500

.·: .
400

~ 300
.•·

;;: : :

200 , I• • .,•:

. ~ . ·.
100 • • • • • • • ·,· ':•

• • ·•.: • !'cc ••• , :
0 ~~~~ - ·~· dj_t--- ~ ~~~~- , __ '_!_:._J• ~ Ij(_l._ .. _____ __

..

0 0.2 0.4 0.6 0.8 1 1.2

Fraction Fixed

1 I '

748 A. LQlKKETANGEN, D.L. WOODRUFF

goal is to minimize the number of pivots per integer feasible solution found. We

should set the number of iterations, NI, accordingly. For any given instance, we

cannot know a priori what that value would be, so we set NI = f. for the first

'Y searches and then determine the value of NI that would have resulted in the

minimum number of pivots per feasible solution. For the remaining searches we

set NI to be the minimum of this value and n/10. Assuming that this value is

lower than f., it might seem that we will have "wasted" pivots during the first

'Y searches, but this probably is not really the case. We are not only sampling

to determine a good value for NI , because these searches are being done early in

the BBA process, where a good bound will have the greatest affect on pruning

the tree. Hence, longer searches are in order for the first few nodes sampled.

To clarify the search for NI , we formalize it. Let >< be the sup of the number

of iterations needed to find an integer feasible solution during search i. Let

>.i(Nr) be the number of iterations expended in search number i. So, >.i(Nr) =

min(>.~, NI) for finite NI. If we let 8 be t he usual indicator function, we can write

down our objective. After the fi rst 'Y searches, we want the value NI that is

. ~ .Xi(Nr)
argmm ~ s:(")

Nl v Nl < II.
i~l - •

(4)

based on the heuristic just ification that this will approximately result in the

lowest possible number of pivots per feasible solution found during subsequent

searches. We state again a lemma t hat has been given and proven in a wide

variety of settings.

Lemma 1 If a search is conducted with Nl = f. for the first 'Y nodes, then the

minimum for Equation 4 subject to Nl~ f. is achieved at one of the observed

values, Ai(n), i = 1, ... , 'Y·

This lemma leads immediately to a proof of optimality for an algorithm that

checks at most 'Y candidate values for NI. We use the notation NI* to refer to the

value found by such an algorithm with a constraint that the value be at least

n/10. In our implementations we always use 'Y = 5 based on the argument that

this is the minimum reasonable size for any statistical sample.

3. Global issues

In the previous sections we have described the pivot based search and exper­

iments done to establish parameter values for searches launched from nodes.

This leaves us with a few global issues unresolved. Two related questions must

be answered. When should the pivot based searches be terminated? When

should special searches be launched? Both of t hese questions can be addressed

via the use of chunking.

A major advantage of BBA is that it will eventually result in proof of opti-

Integrating pivot based search with branch and bound for binary MIPs 749

the optimal solution has been found. The relaxations must be solved so that

branches of the tree can be fathomed, but continued use of a pivot search is

clearly pointless. We cannot know for sure when the pivot searches should be

terminated, but we can construct a mechanism that terminates them when they

seem to be no longer operating from a diverse set of starting points.

Conversely, if we find a "unique" or "outlying" solution we might want to

make use of it in a special search. The details of special searches are given

in Section 3.2. The meaning of "unique" and "outlying" can be supplied by

chunking.

3.1. Chunking

The basic idea behind chunking is to dramatically reduce the dimension of the

solution vectors while retaining (or obtaining) a reasonable measure of distance

between them. For pure binary problems, Hamming distances might suffice.

However, for MIPs Hamming distances can be misleading because they do not

take into account the real valued variables. One source of useful metrics is

chunking. For a more general discussion of chunking, see Woodruff (1998, 1996).

A terse summary of chunking will be given here. We will refer to a non­

empty subset of solution vector indexes as a chunk. An instance of a partial

vector corresponding to a chunk is referred to as a chunk instantiating value.

That is, a chunk instantiating value for a given chunk C ~ D depends on the

specific vector x whose values are under consideration. Let P be a partition

of D with p cells. The mappings from chunk instantiating values to reals are

referred to as chunk valuation functions, v. We will deal with a fairly specific

valuation function. Let Vp (x) be the (column) vector of chunk valuations for

a given vector x under partition P. Each element of the valuation vector is

defined as

1
vc(x)) = -ICI L:xi,

iEC

where ICI is the number of indexes in the chunk for each chunk C E P. If we

index the chunks C E P, we can write Vi in the same way fori= 1, ... ,p.

We can use chunking to quantify the location and shape of a group of solution

vectors. This characterization then allows us to quantify the distance between

solution vectors using the shape to define a metric. In particular, we measure

the distance to the location of the group used to define the shape.

To get the appropriate metric, we make use of a location vector (mean) J1

of length p and a p x p shape matrix (covariance matrix) S. A p-vector v can

be said to have a Mahalanobis distance from J1 using S that is given by

(5)

Short distances are consistent with J1 and S and longer distances are not as

750 A. L0KKETANGEN, D.L. WOODRUFF

The motivation for this metric comes from multivariate probability theory.

If S and p. define a multivariate normal distribution, then for points governed

by the distribution, the Mahalanobis distances are distributed x~ (see e.g., An­

derson, 1984, pages 72-75). We make use of a matrix S that is the covariance

estimate for the valuation vectors of the most recent N feasible integer solutions

sampled. In our work described here, p is left as a free parameter and N is fixed

at 5p. We will make use of the x~ distribution only as a method of character­

izing distances in a way that depends on the data and p in a rational way that

can be characterized by the single parameter a; hence we really are not relying

at all heavily on normality.

If for the most recent N integer feasible solutions that have been obtained S

lies entirely on a hyperplane of dimension p, the pivot searches are terminated.

This corresponds to a lack of diversity in the results of the pivot searches and/or

BBA thereby indicating that further pivot searches will be a waste.

If solutions, x, are encountered whose valuation vectors vc(x) are far from

the mean of the sample of N solutions, then a special search is indicated. The

notion of "far" is captured by a parameter a that gives the threshold for the

inverse of the chi~ distribution for d2 (p. , S; vc(x)). This parameter typically

has a low value; e.g., of the order of one half. The special searches that are

launched are now described.

3.2. Special searches

After a best-so-far solution x• has been found, the chunking mechanisms try

to identify distant (w.r. t . the current sample of solutions) solutions, x'. When

such a distant solution has been identified, a 2-target search is launched. This

is a variant of path relinking, with the purpose of launching a new search into

unknown territory, while at the same time keeping good parts of the solutions.

To put it another way: this will intensify the search, while at the same time

diversifying the search.

The starting point of this search is t he relaxed root node solution LP* (being

an upper bound on the objective function value), and the target for the path

relinking is the hyperplane defined by the common integer solution values of x•

and x'. All integer variables are freed.

To allow the search to focus on this hyperplane, the integer infeasibility part

of the move evaluation function is temporarily modified. (The objective function

value component is unaltered, as is the aspiration criterion - see the Appendix).

Instead of using the normal integer infeasibility measure of summing up over

all the integer variables the distance to the nearest integer, we use the following

scheme:

• Sum up over all the integer variables.

• If the two targets have the same integer solution value for the variable,

Integrating pivot based search with branch and bound for binary MIPs 751

• If the two targets differ, use the normal integer infeasibility measure (i.e.

the closest integer value).

When the search reaches the hyperplane connecting x• and x', the nor­

mal move evaluation function is reinstated, and the search continues in normal

fashion for NI iterations.

4. Computational results

4.1. Summary of the algorithm and implementation

The searches from nodes are implemented as callbacks from the branch and

bound code XPRESS-MP version 10.1 (Dash Assoc., 1998) with default param­

eter settings. A special pivoting interface is implemented to facilitate the pivot

search. Termination of further pivot searches is implemented simply by cancel­

ing the callbacks. The code for the pivot based search is implemented in C++

and experiments were conducted on a 200 Mhz Pentium PC.

Name SKEW NFRAC RTN NI

ROOT 0.10 0.2 3 n

SMALL 0.01 0.1 3 f.

BIG 0.01 0.2 5 NI*

Table 4. Parameter sets

To describe the algorithm it is useful to refer to the parameter sets given in

Table 4. The algorithm proceeds in four phases, but when a new best solution

is found during any phase a search from that solution is launched for NI iter­

ations with the variables that were fixed at that point in time and using the

same parameter set as the search from the node except with a SKEW value one

order of magnitude greater and termination on the iteration limit or a new best

found. For every search from a node, the search is terminated at the iteration

limit or when an integer feasible solution is found. Special searches have other

termination criteria. Here are the phases:

1. Search from the root node (the LP relaxation) using the parameter set

named RooT.
2. For the next "(n nodes, search from every nth node using the parameter set

named SMALL. Calculate the value of NI that would have minimized Equa­

tion 4 for the "' searches done so far. Use this value for NI in subsequent

node searches.

3. Continue node searches from every nth node using the parameter set

named BIG until N = 5p integer feasible solutions have been found. Con­

struct valuation vectors for each of the N solutions and the resulting

752 A . L0KKETANGEN, D .L . WOODRUFF

4. Continue launching searches from every nth node using parameter set BIG.

Launch a special search as described in Section 3.2 if a solution, x, is

encountered such that its valuat ion vector vc(x) has the property that

d2 (J.L, S; vc(x)) is greater than the inverse of the x~ distribution at 0.5.

Terminate callbacks if the determinant of S becomes zero or if the sample

is refreshed without a special search launched.

4.2. Results

The computational tests were done on a set of test problems obtained from

miplib (ftp:/ /softlib.cs.rice.edufsoftlib/miplib/) and Dash Associates (exdash

and hpw15) (see address at Dash Assoc., 1998). These are listed in Table 5,

together with the problem dimensions. Some of these are not too difficult,

while others require substantial amounts of cpu time to prove optimality. The

selection contains both pure IP's and MIP's.

Name Rows Columns Binary

dcmulti 290 548 75

egout 98 141 55
ex dash 10 575 575
hpw15 55 90 30
misc05 300 136 74

misc06 820 1808 112

misc07 212 260 259

pkl 45 86 55

pp08a 136 240 64

pp08aCUTS 246 240 64
vpm1 234 378 168

vpm2 234 378 168

Table 5. Test cases

It should be pointed out that our heuristics are "grafted" onto Xpress. This

implies that the data structures that are internal to Xpress have to be copied

over to our local data structures. This overhead, together with the overhead as­

sociated with the actual callbacks, is quite significant, and leads to less favorable

comparisons.

The main benefit for the B&B of the local search is to hopefully obtain

integer feasible solutions earlier, and thus better cut-off values, leading to fewer

nodes expanded and shorter overall search time. It should be noted, however,

that better cut-off values does not necessarily speed up the B&B, neither in

Integrating pivot based search with branch and bound for binary MIPs 753

Due to the chunking criteria, local searches usually are not used after a few

thousand nodes. This has the beneficial effect of not wasting time on the local

searches for the test cases that need many nodes in the B&B.

A series of tests, with a maximum of one million nodes for the B&B, were

run for each of the test cases. For each test case the B&B were run alone, as

well as 5 runs (with different random seeds) with full search and 5 runs with

root node search only.

For many test cases there was no appreciable effect, even though integer

feasible solutions were found quite early. Table 6 shows the overall running

time for the B&B on its own, as well as the average extra time spent when

adding the local searches. The column Root signifies root-only search, and the

Full column the searches as described in the previous chapter. A bold figure in

the B&B column signifies that the optimum was found. For dcmulti and misc06

the extra search time is quite large, while for the rest it is quite negligible.

Name B&B Root Only Full

dcmulti 29 37.6 107

ex dash 15 3.5 29

misc05 15 3.5 29

misc06 10 99.1 173

Table 6. Times for test cases where local search has a bad effect

There are also many instances for which the search at the root node is able

to find quickly a good, feasible solution, but this does not necessarily result in

a speedup for the overall combined algorithm. These instances are summarized

in Table 7. The column labeled "Root Only Gap" gives the percent deviation

between the solution found by the root node tabu search and the solution found

by the branch and bound algorithm. The quality of the solutions is reasonable

given that the time required is very low. It is also important to note that the time

B&B Root Only Root Only Full

Name Time Time Gap Time

misc07 1,009 15.7 4% 1,199

pk1 19,705 1.6 18% 20,225

pp08a 28,263 4.5 27% 28,208

pp08aCUTS 38,825 7.0 12% 39,565

vpm1 34,401 4.4 5% 34,414

vpm2 34,813 7.6 12% 35,273

Table 7. Test cases where a root node search was useful and the Full Time was

754 A. L0KKETANGEN, D.L. WOODRUFF

for the full search is almost the same as the time for B&B alone. In the interest of

being conservative in drawing conclusions, we cannot claim that this "proves"

that our methods would speed up a branch and bound algorithm for some

instances if incorporated by the professionals who develop commercial software

with full access to internal data structures. However, given the overhead of

implementing as a callback, this conclusion is strongly supported. Certainly,

these results suggest that the full search is worthy of further consideration.

Table 8 shows the search times for the test cases where the local searches

have good effect. The columns Root and Full now give the total search

time including the searches (as opposed to the extra search time as shown

in Table 6}. The reason for the same time for both Root and Full search

for hpw15 is that the search is so short that no searches are launched after

the first (root node} search. The instance slsp3 is the deterministic equiva­

lent of a stochastic mixed integer programming instance that is available at

www.gsm.ucdavis.edu;-dlw/testcase-ejor.zip on the web. These instances are

quite "easy" in the sense that they can be solved quickly with, or without, the

addition of local search. However, the speedup that we can offer can be signif­

icant when such problems are solved as sub-problems for a larger problem (for

example, when using progressive hedging for stochastic programming, Rockafel­

lar and Wets, 1991.} Note that the reduction in full search times versus B&B

alone is a very large percentage, so if such problems must be solved repeatedly

the overall savings can be quite meaningful.

Name B& B R oot Full

egout 2.1 1.1 1.6
hpw15 2.4 1.0 1.0
slsp3 1.6 0.6 1.0

Table 8. Times for test cases where local search has good effect

As can be seen, the best effect is for the root node search, less so for the full

search. We believe that root node search can have a beneficial effect, and does

not cost too much in terms of computational t ime. It might also be included for

instances where the (proven} optimum might not be needed, but a good feasible

solution suffices.

5. Conclusions and d irections for further research

This paper has examined integration of a sophisticated, pivot-based local search

into branch and bound for binary MIPS and global diversification tests using

chunking. The search behavior is analyzed using computational experiments.

Integrating pivot based search with branch and bound for binary MIPs 755

local search sometimes results in fewer nodes and lower CPU times even when

used in a callback mode.

It is very difficult to beat a high quality commercial solver like Xpress from

the "outside." Such code includes many "tricks of the trade" and has been

refined over many years of programming. In addition, by using callbacks that

must recreate data structures that are available internally we burden ourselves

with additional overhead. However, in spite of this limitation the version that

calls back to our code was fairly competitive with the commercial solver in

terms of cpu use. Our experiments support the contention that tabu search

embedded in branch and bound algorithm can be viable for some classes of

instances.

The main benefit in incorporating a pivot based heuristic is the ability to find

an integer feasible solution earlier in the branching process than one otherwise

would. We were able to produce speedups on a few instances. These instances

could be solved quickly anyway, but the fact that the speed improvement was

significant could prove very valuable in a setting where many such instances

must be solved as sub-problems or when a diverse set of solutions is needed

(Glover, L0kketangen, and Woodruff, 2000). It remains for further research to

characterize the classes of instances for which combinations of heuristic search

with branch and bound are most useful.

Also left for future research are issues associated with incorporating popula­

tion based tabu searches with branch and bound. The branch and bound process

can generate a large number of candidate population members. In this paper

we have demonstrated the usefulness of chunking for detection of diversity, so

the ingredients are in place.

R eferences

ABOUD!, R. and JORNSTEN, K. (1994) Tabu search for general zero-one integer

programs using the pivot and complement heuristic. ORSA J. Comput.,

6, 82-93.

Dash Assoc. (1998) XPRESS-MP Reference Manual, Version 10.1, Binswood

Ave, Leamington Spa, Warwickshire, CV32 5TH, UK.

FRENCH, A.P ., ROBINSON, A.C. and WILSON, J.M . (1997) Solving satisfia­

bility problems using a hybrid genetic-algorithm/branch-and-bound ap­

proach. Working paper, Loughborough University, Loughborough, LE11

3TU, England.

GLOVER, F. (1996) Ghost Image Methods for Integer Programming. Working

paper, University of Colorado, Boulder, CO, U.S.A.

GLOVER, F . and LAGUNA, M. (1997) Tabu Search. Kluwer Academic Publish­

ers, Norwell, MA.

GLOVER, F. and L0KKETANGEN, A. (1997) Solving zero-one mixed integer

756 A. L0KKETANGEN, D.L. WOODRUFF

GLOVER, F., L0KKETANGEN, A. and WOODRUFF, D.L. (2000) Scatter search

to generate diverse MIP solutions. With F . Glover and A. L0kketangen in

Computing Tools for Modeling Optimization and Simulation, Laguna and

Velarde, eds., 299- 320, Kluwer.

L0KKETANGEN, A. and GLOVER, F. (1996) Probabilistic move selection in tabu

search for zero-one mixed integer programming problems. In: Metaheuris­

tics: Theory and Applications, I.H. Osman and J.P. Kelly, eds., 555- 570.

L0KKETANGEN, A. and GLOVER, F. (1998) Candidate list and exploration

strategies for solving 0/1 MIP problems using a pivot neighborhood. In:

Meta-Heuristics: Advances and Trends in Local Search Paradigms for Op­

timization, S. Vof3, S. Martello, I.H. Osman and C. Roucairol, eds., Kluwer

Academic Publishers , 141-155.

L0KKETANGEN, A., JORNSTEN, K. and STOR0Y, S. (1994) Tabu search within

a pivot and complement framework. Int. Trans. Oper. Res., 1, 305-316.

Miplib. ftp:/ jsoftlib.cs.rice.edujsoftlib/miplib/

ROCKAFELLAR, R.T. and WETS, R.J.-B. (1991) Scenarios and policy aggre­

gation in optimization under uncertainty. Math. of OR, 16, 119- 147.

SAVELSBERGH, M.W.P. and NEMHAUSER, G.L. (1996) Functional Descrip­

tion of MINTO, a Mixed Integer Optimizer, Version 2.3, ISYE, Georgia

Institute of Technology, At lanta, GA, 30332, U.S .A.

WOODRUFF, D.L. (1998) Proposals for chunking and tabu search. EJOR, 106,

585- 598.

WOODRUFF, D .L. (1996) Chunking applied to reactive tabu search. In: Meta­

heuristics: Theory and Applications, I.H. Osman and J.P. Kelly, eds.,

555-570.

Appendix - Pivot search details

The necessary background for the tabu search extreme point pivot search method

is outlined here, using the notation and definitions of earlier studies. For more

details, see Glover and L0kketangen (1997) . The reader is assumed to be familiar

with tabu search (see e.g. Glover and Laguna, 1997) and with the basic concepts

of the bounded variable simplex method.

Given the 0-1 MIP problem formulation described in the introduction sec­

tion, the first-level Tabu Search (TS) heuristic for this problem may then be

outlined as follows:

Let X* denote the best MIP feasible solution, and let Z* denote its objective

funct ion value.

1. Solve the LP relaxation (i.e. ignoring integer constraints) to obtain an

optimal LP basic (extreme point) solution.

2. Consider the feasible pivot moves that lead to adjacent basic LP feasible

solutions. If a candidate move would lead to an 0-1 MIP feasible solution x

whose associated z value yields z > Z*, record x as the new X* and

Integrating pivot based search with branch and bound for binary MIPs 757

3. Select the pivot move with the highest move evaluation, applying tabu

restrictions and aspiration criteria.

4. Execute the selected pivot, updating the associated tabu search memory

and guidance structures. Return to Step 2.

Note that the method may not necessarily visit the best MIP feasible neigh­

bor of the current solution, since the move evaluation of Step 2 depends on other

factors in addition to the objective function value (see below).

Neighborhood structure

Let x(O) denote the current extreme point solution, let { Xj : j E N B} denote

the current set of non basic variables, and let {xi : j E B} denote the set of basic

variables (B = N- N B). The extreme points adjacent to x(O) have the form

x(h) = x(O)- D~tfh for hEN B

where Dh is a vector associated with the nonbasic variable Xh, and Bh is the

change in the value of Xh that moves the current solution from x(O) to x(h)

along their connecting edge.

We thus start the search from an integer infeasible point, and may also spend

large parts of the search visiting integer infeasible solution states.

Move evaluation

The move evaluation function is composite, based on two independent measures.

The first measure is the change in objective function value when going from

x(O) to x(h), and the second measure is the change in integer infeasibility. Let

near(xj(h)) denote the integer nearest to the value Xj(h). Then we define u(h)

to be the amount of integer infeasibility for the solution x(h), where

u(h) = L lxi- near(xj(h))i

jEl

Restricting consideration to h E N B, we define

L).z(h) = z(h)- z(O)

L).u(h) = u(O)- u(h).

Note that it is not necessary to execute a pivot to identify x(h) or the values

of u(h) and z(h), since only the vector Dh, the scalar Bh, and the current solution

x(O) are required to make this determination.

Move types and choice rules

The moves are grouped into four distinct move types, according to the values

758

Move

Type

I

II

III

IV

A. L0KKETANGEN, D.L . WOODRUFF

Defining

Conditions

Llz(h) < 0, Ll1L(h) > 0

Llz(h) > 0, Llu(h) < 0

Llz(h) ~ 0, Llu(h) ~ 0

all others

Table 9. Move types

The classification of move types is made according to the degree to which

they may be considered favorable. Moves of type III are generally the most

favorable, improving in both of the measures used in t he move evaluation func­

. tion, while moves of type IV are the least favorable, worsening in both measures.

Moves of types I and II are improving in one of the measures, and worsening in

the other.

The ranking of moves within each move group is as follows, with the best

move in the group being indicated by Table 10.

Move Move

Type Ranking

I Max(Llz(h)/Llu(h))
II Max(Llu(h)/Llz(h))

III Max(Llu(h) * Llz(h))
IV Min(Llu(h) * Llz(h))

Table 10. Move classifications and ranking functions

When move evaluations tie within a group, we choose the move with the

largest value of the positive component for moves of type I and II. For moves of

type III and IV we choose the move which is most balanced in its components,

i.e. where the Az(h) and Au(h) components are most equal. The ranking of

different move type groups is done by always considering type III moves first,

and type IV moves last, with move types I and II grouped together in the

middle. To be able to properly rank move types I and II, their values need to

be normalized.

We first define the ratio R by

R _ E abs(z(h))

- wE abs(u(h))'

where the summations are taken over the currently available moves of type I -

Integrating pivot based search with branch and bound for binary MIPs 759

between the two measures making up the move evaluation function, with low

values giving a bias towards selecting moves resulting in a lower integer infeasi­

bility measure.

The normalized move values are

MoveTypel: Rl(h) = (~z(h)/~u(h))/R

MoveTypell: R2(h) = (~u(h)/~z(h)) * R.

The preferred move selection from groups I and II is then

MoveTypel and II: Max(Rl(h), R2(h)).

Tabu status and aspiration criteria

We impose tabu restrictions on the variable that leaves the basis in a move. In

other words, a variable that has just left the basis is not allowed to reenter the

basis until its tabu tenure has expired.

Aspiration is by new global best. As mentioned, a new integer feasible

solution may be encountered during a move evaluation without subsequently

selecting the move leading to it. This is due to the process for evaluating

and ranking the moves. Such a solution is, however, picked by the aspiration

criterion, and will thus be selected.

For more detailed explanations of the workings of this section, the reader is

again referred to Glover and L0kketangen (1997).

