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Abstract

Integration of genome-wide association studies (GWAS) and expression quantitative trait

loci (eQTL) studies is needed to improve our understanding of the biological mechanisms

underlying GWAS hits, and our ability to identify therapeutic targets. Gene-level association

methods such as PrediXcan can prioritize candidate targets. However, limited eQTL sample

sizes and absence of relevant developmental and disease context restrict our ability to

detect associations. Here we propose an efficient statistical method (MultiXcan) that lever-

ages the substantial sharing of eQTLs across tissues and contexts to improve our ability to

identify potential target genes. MultiXcan integrates evidence across multiple panels using

multivariate regression, which naturally takes into account the correlation structure. We

apply our method to simulated and real traits from the UK Biobank and show that, in realistic

settings, we can detect a larger set of significantly associated genes than using each panel

separately. To improve applicability, we developed a summary result-based extension

called S-MultiXcan, which we show yields highly concordant results with the individual level

version when LD is well matched. Our multivariate model-based approach allowed us to use

the individual level results as a gold standard to calibrate and develop a robust implementa-

tion of the summary-based extension. Results from our analysis as well as software and

necessary resources to apply our method are publicly available.

Author summary

We develop a new method, MultiXcan, to test the mediating role of gene expression varia-

tion on complex traits, integrating information available across multiple tissue studies.

We show this approach has higher power than traditional single-tissue methods. We

extend this method to use only summary-statistics from public GWAS. We apply these

methods to 222 complex traits available in the UK Biobank cohort, and 109 complex traits

from public GWAS and discuss the findings.
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Introduction

Recent technological advances allow interrogation of the genome to a high level of coverage

and precision, enabling experimental studies that query the effect of genotype on both complex

and molecular traits. Among these, GWAS have successfully associated genetic loci to human

complex traits. GWAS meta-analyses with ever increasing sample sizes allow the detection of

associated variants with smaller effect sizes [1–3]. However, understanding the mechanism

underlying these associations remains a challenging problem.

Another approach is the study of expression quantitative trait loci (eQTLs), measuring asso-

ciation between genotype and gene expression. These studies provide a wealth of biological

information but tend to have smaller sample sizes. A similar observation applies to QTL stud-

ies of other traits such methylation, metabolites, or protein levels.

The importance of gene expression regulation in complex traits [4–7] has motivated the

development of methods to integrate eQTL studies and GWAS. To examine these mechanisms

we developed PrediXcan [8], which tests the mediating role of gene expression variation in

complex traits. Briefly, PrediXcan tests the hypothesis that genetic variants affect phenotypes

through the regulation of gene expression traits. To do that, it correlates genetically predicted

gene expression and the phenotype with the idea that causal genes are likely to show a signifi-

cant association. Linear prediction models of expression using genetic variation in the vicinity

of the gene are trained in reference transcriptome datasets such as Genotype-Tissue Expres-

sion project (GTEx) [9].

Due to sharing of eQTLs across multiple tissues, we have shown the benefits of an agnostic

scanning across all available tissues [10]. Despite the increased multiple testing burden (for

Bonferroni correction, the total number of gene-tissue pairs must be used when determining

the threshold), we gain considerably in number of significant genes. However, given the sub-

stantial correlation between different tissues [9], Bonferroni correction can be too stringent

increasing the false negative rate.

In order to aggregate evidence more efficiently, we present here a method termed Multi-

Xcan, which tests the joint effects of gene expression variation from different tissues. Further-

more, we develop and implement a method that only needs summary statistics from a GWAS:

Summary-MultiXcan (S-MultiXcan). We make our implementation publicly available to the

research community in https://github.com/hakyimlab/MetaXcan. We apply this method to

simulated and real data (222 traits from the UK Biobank study [11] and 109 public GWAS) to

show the performance and proper calibration of p-values. We make all of the results publicly

available at https://doi.org/10.5281/zenodo.1402225.

Results

MultiXcan combines information across tissues using multivariate
regression

To integrate information across tissues, MultiXcan regresses the phenotype of interest on the

predicted expression of a gene in multiple tissues as follows:

y ¼ μ þ t
1
g
1
þ t

2
g
2
þ � � � þ tpgp þ e ð1Þ

where y is the n-dimensional phenotype vector, μ is an intercept term, ti is standardized pre-

dicted expression of the gene in tissue i, gi is its effect size, and e an error term with variance

s
2

e ; p is the number of available tissue models. We use an F-test to assess the joint significance

of the regression.
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Expression predictions across tissues can be highly correlated. We predicted expression

for individuals from the UK Biobank cohort using models trained on 44 GTEx tissues (as

presented in [10]), and found a median pair-wise correlation of rp50 = 0.56 (IQR = 0.69)

between different tissue models in a given gene, across genes (see Methods for details). To

avoid numerical issues caused by collinearity, we use principal components of the predicted

expression data matrix as explanatory variables, and discard the axes of smallest variation

(PCA regularization). Additional covariates can be added to the regression seamlessly. Fig

1-a displays an overview of the method; see further details in the Methods section. S1 Fig

shows an example of the correlation between tissues of predicted expression of the gene

SLC5A6.

MultiXcan detects more associations than single-tissue PrediXcan

We applied MultiXcan to 222 traits from the UK Biobank cohort. The traits were chosen

based on several criteria, such as availability of well-established literature, binary traits having

enough cases, or potential interest for a phenome-wide study (allergy, behavioral, metabolic

and anthropometric phenotypes). We used Elastic Net prediction models trained on 44 tissues

from GTEx, originally presented in [10].

We compared three approaches for assessing the significance of a gene jointly across all

tissues: 1) running PrediXcan using the most relevant tissue; 2) running PrediXcan using all

tissues, one tissue at a time; 3) running MultiXcan. Fig 1-b illustrates the results from each

approach. We summarize a comparison between approaches 2) and 3) in Table 1. PrediXcan

overcomes MultiXcan only in 21 traits, all of them with less than 50 significant associations

across both methods. MultiXcan detects more associations in 103 traits.

Fig 2-a and 2-b show a comparison of detections for both MultiXcan and PrediXcan. See S1

Dataset for a summary of detections per trait, and S2 and S3 Datasets for the full list of signifi-

cant MultiXcan and PrediXcan results respectively.

As an illustrative example, we examined more closely the results for self-reported high cho-

lesterol phenotype (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20002). We used 50,497

cases and 100,994 controls. After Bonferroni correction, MultiXcan was able to detect a larger

number of significantly associated genes (251 detections) than PrediXcan using all tissues (196

detections) or only a single tissue (whole blood, 33 detections). 172 genes were detected by

both PrediXcan and MultiXcan. Fig 2-c shows the QQ-plot for associations in these three

approaches.There are 79 genes associated to high cholesterol via MultiXcan and not PrediX-

can. Among them, we find genes related to lipid metabolism (APOM [12], PAFAH1B2 [13]),

glucose transport(SLC5A6 [14]), and vascular processes (NOTCH4 [15]). The well known gene

SORT1 is detected by both MultiXcan and PrediXcan.

Performance and calibration of MultiXcan in simulated traits

To evaluate MultiXcan’s performance in different known scenarios, we simulated traits as a

function of different numbers of causal tissues for each gene: a single tissue, multiple tissues,

all available tissues. We executed PrediXcan, MultiXcan without PCA regularization, and Mul-

tiXcan with PCA regularization. We show proper calibration under the null hypothesis of no

association in S3 Fig, and robustness of the regularization approach in S6 Fig. See further

details in S1 Supplementary Note.

As expected, when there is a known single causal tissue, PrediXcan with the known tissue

yields more significant associations. However, when there are multiple causal tissues, Multi-

Xcan yields more significant associations than the best single tissue PrediXcan results. In traits
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simulated from a single causal tissue, PrediXcan outperforms MultiXcan in 99.9% of the cases

(AOV p-value< 10−16). MultiXcan performs best in scenarios with multiple causal tissues

(84.4% of the times when a few tissues are causal, and 99.5% when all tissues are causal; AOV

p-value< 10−16 in both cases).

Fig 1. MultiXcan method. Panel a illustrates the MultiXcan method. Predicted expression from all available tissue models are used
as explanatory variables. To avoid multicolinearity, we use the first k Principal Components of the predicted expression. y is a vector
of phenotypes for n individuals, ttissue jg is the standardized predicted gene expression for tissue j, gj is its effect size, a is an intercept

and e is an error term. Panel b shows a schematic representation of MultiXcan results compared to classical PrediXcan, both for a
single relevant tissue and all available tissues in agnostic scanning. y is a (centered) vector of phenotypes for n individuals, tj is the
standardized predicted gene expression for model j, gj is its effect size in the joint regression, γj is its effect size in the marginal
regression using only prediction j, e and �j are error terms.

https://doi.org/10.1371/journal.pgen.1007889.g001
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One caveat is that the simulation does not cover cases when the prediction in the single tis-

sue has low quality. In such an scenario, borrowing information from other tissues will still be

beneficial.

MultiXcan results can be inferred from GWAS summary results

To expand the applicability of our method to massive sample sizes and to studies where indi-

vidual level data are not available, we extend our method to use summary results rather than

individual-level data. We call this extension Summary-MultiXcan (S-MultiXcan).

We infer the joint estimates of effect sizes of predicted expression on phenotype (Eq 1)

using the marginal estimates. We also compute the covariance matrix of the effect sizes and

leverage the asymptotic multivariate normality of the estimates, to compute a statistic that is

approximately w2p (p number of tissues). The final expression is equivalent to the omnibus test

mentioned in [16], which can be interpreted as a specific case of general weighted association

analysis [17]. Fig 3-a illustrates our approach and the details can be found in the Methods

section.

Table 1. Summary statistics comparing MultiXcan and PrediXcan on UK Biobank.

Traits with more MultiXcan-significant associations 103

Traits with more PrediXcan-significant associations 21

Tied traits 6

Traits without significant associations 92

Average increase in significant associations for MultiXcan � 162.7

Average significant association overlap �� 48.0%

�: average performed across traits where there is at least one PrediXcan- or MultiXcan-significant association.
��: computed as #shared

#unionðM;PÞ, withM the MultiXcan-significant associations, P the PrediXcan-significant associations,

and #shared the number of shared associations.

https://doi.org/10.1371/journal.pgen.1007889.t001

Fig 2. Improved significance of MultiXcan vs PrediXcan across a broad set of traits. Panel a compares the number of significant associations
detected by MultiXcan and PrediXcan for 222 traits from UK Biobank. These numbers were thresholded at 800 for visualization purposes. Panel b
shows the number of discoveries in each method across the 222 UK Biobank traits. MultiXcan is able to detect more findings PrediXcan, either with a
single tissue or using all 44 GTEx tissues. Panel c compares the distribution of MultiXcan’s p-values to PrediXcan’s p-values for the Cholesterol trait in
the UK Biobank cohort. Both PrediXcan with a single tissue model (GTExWhole Blood) and 44 models (GTEx v6p models) are shown. Notice that
Bonferroni-significance levels are different for each case, since 6588 genes were tested in PrediXcan for Whole Blood, 195532 gene-tissue pairs for all
GTEx tissues, and 17434 genes in MultiXcan. P-values were truncated at 10−30 for visualization convenience.

https://doi.org/10.1371/journal.pgen.1007889.g002
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As with the individual level approach, the correlation between tissues leads to numerical

problems (due to near singular covariance matrices that need to be inverted). We address this

by using a pseudo inverse approach which, in a nutshell, uses singular value decomposition

(SVD) of the covariance matrix to keep only the components of large variation. This is

analogous to the PCA regularization used for the individual level approach. Thus we test for

significance using w2k with k the number of surviving components. See details in the Methods

Section.

A robust implementation for calculating predicted expression correlation is critical to avoid

unnecessary false positive results. In principle, it is possible to simply calculate the correlation

between tissues using predicted expression in a reference set. However, we found that this

approach can lead to large differences between the individual level data results (our gold stan-

dard) and the summary level ones when SNPs from the reference set are missing in the GWAS

results. An example of this is shown in S8 Fig with the Type 1 Diabetes study from the Well-

come Trust Case-Control Consortium (WTCCC); association data is included in S9 Dataset.

To avoid this problem, we calculate the covariance matrix between tissues using only the pre-

dictor SNPs that are common in both the GWAS summary and the reference LD set.

Fig 3. MultiXcan results can be inferred from GWAS summary statistics and a reference panel. Panel a illustrates
the S-MultiXcan method: the joint effect sizes are inferred from the marginal univariate effect sizes obtained from
S-PrediXcan. Significance is quantified using the estimated covariance of the multivariate effect sizes. With the
approximations described in Methods, the final χ2 statistics ends up being equivalent to the omnibus test. Panel b
compares the number of associations significant via S-MultiXcan versus those significant via S-PrediXcan, for the same
GWAS Studies. In most cases, S-MultiXcan detects a larger number of significant associations. The number of
discoveries was thresholded at 200 for visualization purposes. Panel c displays QQ-Plots for the association p-values
from S-MultiXcan and S-PrediXcan in Schizophrenia, using a model trained on brain’s cerebellum, and S-PrediXcan
associations for all 44 GTEx tissues. Panel d shows the number of significant associations across all public GWAS traits
for each method as a bar plot.

https://doi.org/10.1371/journal.pgen.1007889.g003
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Fig 4 displays a few examples of the general agreement between the individual-level Multi-

Xcan and S-MultiXcan. The summary-based version’s results tend to be slightly more conser-

vative than MultiXcan, as illustrated in S2 Fig. As a general comparison to the individual-level

method, we list a summary of S-MultiXcan’s application to the 222 UK Biobank traits on

Table 2; we observe an adequate similarity between S-MultiXcan’s and MultiXcan’s summa-

ries. The small loss in power arises from the imperfect match of LD between the UK cohort

and the reference panel.

To reduce false positives due to LD misspecification when dealing with GWAS summary

statistics, we discard any significant association result for a gene if the best single tissue result

has p-value greater than 10−4 (“suspicious associations”). In other words, we keep significant

associations if at least one single gene-tissue pair association is borderline significant or better

(10−5 is the Bonferroni threshold for a typical tissue model). This is rather conservative since it

is possible that evidence with modest significance from weakly correlated tissues can lead to

very significant combined association when their effects get aggregated. For example among

Bonferroni significant genes in the individual level analysis, a median of 8.3% across traits

(IQR = 5.7%) have the most significant marginal (PrediXcan) p-value greater than 10−4. We

list the number of such genes for each of the 222 UK Biobank traits in S8 Dataset.

Fig 4. Comparison between S-MultiXcan and individual-level MultiXcan. This figure compares S-MultiXcan to MultiXcan in four UK Biobank
phenotypes. GTEx individuals were used as a reference panel for estimating expression correlation in the study population. The summary data-based
method shows a good level of agreement with the individual-based method. In cases where the LD-structure between reference and study cohorts is
mismatched, the summary-based method becomes less accurate. For example in Asthma, two genes are overestimated; however it tends to be
conservative for most genes.

https://doi.org/10.1371/journal.pgen.1007889.g004

Table 2. Summary statistics comparing S-MultiXcan and S-PrediXcan on UK Biobank.

Traits with more S-MultiXcan-significant associations 102

Traits with more S-PrediXcan-significant associations 22

Tied traits 14

Traits without significant associations 84

Average increase in significant associations for S-MultiXcan � 125.5

Average significant association overlap �� 50.0%

�: average performed across traits where there is at least one PrediXcan- or MultiXcan-significant association.
��: computed as #shared

#unionðSM;SPÞ, with SM the S-MultiXcan-significant associations, SP the S-PrediXcan-significant

associations, and #shared the number of shared associations.

https://doi.org/10.1371/journal.pgen.1007889.t002
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Application to a broad set of complex traits with only summary results

We applied S-MultiXcan to 109 traits on publicly available GWAS, chosen with a similar crite-

ria as UK Biobank’s traits. Like the individual level method, we observed S-MultiXcan to detect

more associations than S-PrediXcan in most cases (average detection increase 10), as shown in

Fig 3-b, after discarding suspicious associations. We also show the QQ-plots for a sample trait

(Schizophrenia) on Fig 3-c and the total number of associations across all public GWAS traits

in 3-d.

We display a summarized comparison between S-MultiXcan and S-PrediXcan in S1 Table,

after discarding suspicious associations. The list of analyzed traits can be found in S4 and S5

Datasets contains a summary of significant associations for each trait and for each method.

S6 Dataset lists the significant S-MultiXcan results for each trait. These results have been

uploaded to https://doi.org/10.5281/zenodo.1402225.

New associations identified by S-MultiXcan. We examine below the biological relevance

of a few of the genes detected by our new method that was missed when using one tissue at a

time (S-PrediXcan).

For example, in the Early Growth Genetics (EGG) Consortium’s Body-Mass Index

(BMI) study, S-MultiXcan detects three genes not significant in S-PrediXcan: POMC (p-

value = 1.4 × 10−6, tied to childhood obesity [18]); RACGAP1 (p-value = 1.2 × 10−10; embryo-

genesis [19], cell growth and differentiation, [20]); and TUBA1B (p-value = 1.23 × 10−09, circa-

dian cycle processes and psychological disorders [21], suggesting a behavioral pathway).

In the CARDIoGRAM+C4D Coronary Artery Disease (CAD) study, S-MultiXcan detected

12 associations not significant in S-PrediXcan. The top result wasAS3MT (p-value = 4.3 × 10−9),

related to arsenic metabolism; interestingly, environmental and toxicological studies link

arsenic exposure and AS3MT polymorphisms with cardiovascular disease [22, 23]. Associa-

tions previously linked to CAD included CDKN2B (p-value<1.0 × 10−6, [24]) HECTD4

(p-value<2.3 × 10−6, [25]). Other interesting S-MultiXcan findings were CLCC1 (pvalue =

1.2 × 10−7, a gene for chloride channel activity); IREB2 (p-value = 2.1 × 10−7, recently linked to

pulmonary conditions, [26]), and ADAM15 (p-value = 2.5 × 10−07, from the disintegrin and

metalloproteinase family, linked to atherosclerosis [27], atrial fibrillation [28], and other vascu-

lar processes [29, 30]).

The list of significant S-MultiXcan and S-PrediXcan results for all traits can be found in S6

and S7 Datasets.

Discussion

Motivated by the widespread sharing of regulatory processes across tissues [9], we propose

MultiXcan, a method that aggregates information by jointly fitting the phenotype on predicted

expression across multiple tissues. In simulations and real data, we show that our approach

can detect more associations. To expand the applicability of our approach, we derive the ana-

lytical expression to infer the association using summary results only, which we show is

approximately equivalent to the omnibus test. An important benefit of our multivariate

approach is that we can use the individual level data as gold standard to calibrate the type and

degree of regularization needed to invert the near singular covariance matrices found in prac-

tice. The availability of a gold standard also allowed to identify the need for robust estimates of

correlations between tissues.

We found high concordance, in general, between the individual level and summary version

with the latter slightly more conservative. As any method relying on a reference panel, S-Multi-

Xcan may be inaccurate when the study population has a different LD structure than the refer-

ence panel. We attempted to address this by flagging results where none of the marginal
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associations reached a somewhat arbitrary threshold of 10−4. This is far from perfect. To take

full advantage of summary results and summary-based methods, reference sets that are the

closest to the study population should be used. This also stresses the need to generate represen-

tative reference LD datasets for a wide variety of populations.

Via simulations, we show that MultiXcan is properly calibrated under the null hypothesis

of no associations. This is reassuring, but it is possible that in real data there are hidden con-

founders that we did not capture in our simulations. For example, significant association

results might arise due to LD contamination, i.e. when causal variants for the trait and expres-

sion are different but in LD with each other, inducing a spurious correlation between the pre-

dicted expression and the trait. This is a complex problem that we are currently working to

address. In Barbeira et al [10], we sought to address the LD contamination issue by adding a

colocalization filtering step where we discard associations with low colocalization probability,

using COLOC [31] to keep only associations with Pcolocalized > 0.5. A similar strategy may be

applied for MultiXcan by restricting the analysis to gene-tissue pairs with high colocalization

probability in the marginal analysis.

In practice, we emphasize the need to further validate the significant associations with addi-

tional replication and experimental follow-up.

Importantly, we provide compelling examples where using multiple tissues rather than

picking one considered to be relevant for the phenotype increases the list of candidate causal

genes. In our simulations, we found that only when the single causal tissue is known and the

regulatory mechanism is captured perfectly by predicted expression in that tissue, using Pre-

diXcan with that tissue yields more significant associations than MultiXcan. This scenario is

unlikely to occur in practice. Therefore, in general, we recommend jointly scanning of all tis-

sues in addition to focusing on a few tissues selected based on prior knowledge.

Software and resources

Wemake our software publicly available on a GitHub repository: https://github.com/

hakyimlab/MetaXcan. Prediction model weights and covariances for different tissues can

be downloaded from http://predictdb.org/. A short working example can be found on the

GitHub page; more extensive documentation can be found on the project’s https://github.

com/hakyimlab/MetaXcan/wiki. The results of S-MultiXcan applied to the 44 human tissues

and a broad set of phenotypes can be queried on http://gene2pheno.org. The data used in this

paper is publicly available in https://doi.org/10.5281/zenodo.1402225.

Materials and Methods

Ethics statement

This study uses de-identified genotype and phenotype data from public repositories including

dbGaP, EGA, and UK Biobank. Our study has been determined to be non-human subject

research by the University of Chicago’s IRB protocol number IRB16-0921.

Definitions, notation and preliminaries. In the following, we shall denote scalar quanti-

ties by italicized lower-case letter (e.g. a); vector quantities with bold lower-case letters (e.g., a)

and matrices with bold capital letters (e.g. A). Corresponding scalar entries will be denoted by

subscripts (e.g. ai is the i-th entry for vector a).

Let us consider a GWAS study of n samples, and assume availability of prediction models

in p different tissues. Each model j is a collection of prediction weights w
j
i.

Let:

• y be an n-vector of phenotypes, assumed to be centered for convenience.
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• X the genotype matrix, where each column Xl is the n-vector genotype for SNP l. We assume

it coded in the range [0, 2] but it can be defined in another range, or standardized.

• ~tj ¼
X

i2modelj
w
j
iXi be the predicted expression in tissue j. This is the independent variable

used by single-tissue PrediXcan. A prediction model j is defined by the set of weights fwjig.

• tj be the standardization of ~t j tomean = 0 and standard deviation = 1.

In our application, different genes have different numbers of available tissue models trained

on GTEx data, ranging up to p = 44. This method is easily extensible to support incorporation

of other covariates, or correction by them.

MultiXcan

MultiXcan consists of fitting a linear regression of the phenotype on predicted expression

from multiple tissue models jointly:

y ¼
Xp

j¼1

tjgj þ e

¼ Tgþ e

ð2Þ

where y is a centered vector of phenotypes for n individuals, tj is an n-vector of standardized

predicted gene expression for model j, gj is the effect size for the predicted gene expression j, e

is an error term with variance s2

e , and p is the number of tissues. Thus, T is a data matrix

where each column j contains the values from tj, and g is the p-vector of effect sizes gj.

The high degree of eQTL sharing between different tissues induces a high correlation

between predicted expression levels. In order to avoid collinearity issues and numerical insta-

bility, we decompose the predicted expression matrix into principal components and keep

only the eigenvectors of non negligible variance. To select the number of components, we used

a condition number threshold of lmax

li
< 30, where λi is an eigenvalue of the matrix Tt T. As a

side effect, we observe moderate increases in significance levels because less informative com-

ponents of tissue expression are discarded from the model. A range of values between 10 and

100 yielded similar results in the simulations described in S1 Supplementary Note as displayed

in S6 Fig.

Lastly, we use an F-test to quantify the significance of the joint fit.

We use Bonferroni correction to determine the significance threshold. For MultiXcan, we

use the total number of genes with a prediction model in at least one tissue, which yields a

threshold approximately at 0.05/17500� 2.9 × 10−6. For PrediXcan across all tissues, we use

the total number of gene-tissue pairs, which yields a threshold approximately at 0.05/200,

000� 2.5 × 10−7. Since the tested hypotheses are not independent, Bonferroni correction is

overly conservative, as can be seen when counting the number of associations via FDR in S7

Fig.

Application to UK Biobank data. UK Biobank genotype data for 487, 409 individuals

was downloaded and processed in the Bionimbus Protected Data Cloud (PDC https://

bionimbus-pdc.opensciencedatacloud.org/), a secure biomedical cloud operated at FISMA

moderate as IaaS with an NIH Trusted Partner status for analyzing and sharing protected data-

sets. We computed GWAS results using BGENIE, a program for efficient GWAS for multiple

continuous traits [32]. We selected 222 traits available for these individuals, covering continu-

ous phenotypes such as height and self reported diseases such as asthma, prioritizing potential

interest for a phenome-wide study (allergy, behavioral, metabolic, anthropometric and
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common disease phenotypes) and literature availability. We used different covariate groups

for these phenotypes as in [33].

We computed gene expression on all individuals using 44 models trained on GTEx release

v6p (presented in [10]). For every gene, we computed correlation between available tissues,

and then obtained the median correlation from all tissue pairs across all genes.

To allow for uniform correction of unwanted variation, we treated all traits as quantitative

and adjusted for the same covariates reported in [33]. These covariates include the first ten

genotype principal components, sex, age, genotyping array, and depending on the trait, others

such as body mass index (BMI), weight or height. For diseases, we randomly sampled twice as

many healthy controls as there were cases. PrediXcan was computed for all tissue-trait combi-

nations and MultiXcan was computed for all traits. For the MultiXcan-significant associations

in the 222 traits, the median number of available models is 11 (IQR = 9), with�77% compo-

nents surviving PCA thresholding.

On most continuous phenotypes, there were between 300, 000 and 400, 000 individuals

with available data determined by the intersection of covariates and traits. For the case of self

reported diseases, we found a number of cases ranging from a few hundreds (i.e. Acne) to 50,

000 (i.e. High Cholesterol).

Summary-MultiXcan

We have demonstrated that S-PrediXcan can accurately infer PrediXcan results from GWAS

Summary Statistics and LD information from a reference panel [10], with the added benefits

of reduced computational and regulatory burden. Here we extend MultiXcan in a similar

fashion.

Summary-MultiXcan (S-MultiXcan) infers the individual-level MultiXcan results, using

univariate S-PrediXcan results and LD information from a reference panel. It consists of the

following steps:

• Computation of single tissue association results with S-PrediXcan.

• Estimation of the correlation matrix of predicted gene expression for the models using the

Linkage Disequilibrium (LD) information from a reference panel (typically GTEx or 1000

Genomes [34])

• Discarding components of smallest variation from this correlation matrix to avert collinear-

ity and numerical problems (Singular Value Decomposition, analogue to PC analysis in indi-

vidual-level data).

• Estimation of joint effects from the univariate (single-tissue) results and expression

correlation.

• Discarding suspicious results, suspect to be false positives arising from LD-structure

mismatch.

Joint analysis estimation frommarginal effects. To derive the multivariate regression

(2) effect sizes and variances using the marginal regression (3) estimates, we employ a tech-

nique presented in [35].

More specifically, we want to obtain the multivariate regression coefficient estimates for gj
(2) using the estimates from the marginal regression:

y ¼ tjgj þ �j ð3Þ
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where we assume y is centered for convenience (so that no intercept term is needed), and �j is

the marginal regression error term with variance s2

� (i.e. we assume a common variance s2

� for

all j).

First, notice that the solution to the multivariate regression in Eq (2) is

ĝ ¼ ðTtTÞ�1
Tty ð4Þ

varðĝÞ ¼ s
2

eðTtTÞ
�1 ð5Þ

whereas the solution to the marginal regression in Eq (3) is:

ĝ ¼ D�1 Tty ð6Þ

varðĝÞ ¼ s
2

�D
�1 with D ¼ diagðTtTÞ ð7Þ

where γ is the vector of effect sizes γj. Please note that, since the tj are standardized, then

D ¼ ðn� 1Þ1 (1 being the p × p identity matrix) and seðgjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðgjÞ

q
¼ s�ffiffiffiffiffiffi

n�1
p .

From (6) we get Tty ¼ Dĝ, which we replace in (4) and obtain the relationship between

marginal and joint estimates:

ĝ ¼ ðTtTÞ�1
Dĝ ð8Þ

To compute the variance of the estimated effect sizes (5) we use the variance of the pheno-

type as a conservative estimate of s2

e and LD information from reference samples as described

next.

Estimating expression correlation from a reference panel. As the genotypes from most

GWAS are typically unavailable, we must use a reference panel to compute Tt T, using only

those SNPS available in the GWAS results. To do so, notice that:

ðTtTÞij
n� 1

¼ Corðti; tjÞ

¼ Covðti; tjÞ

¼
Covð~t i;~tjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cvarð~tiÞcvarð~tjÞ

q

¼
Cov

P
a2modeli

wiaXa;
P

b2modelj
w
j

bXb

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cvarð~t iÞcvarð~tjÞ

q

¼

P
a2modeli
b2modelj

wiaw
j

bCov ðXa;XbÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cvarð~t iÞcvarð~tjÞ

q

¼

P
a2modeli
b2modelj

wiaw
j

bGab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cvarð~tiÞcvarð~tjÞ

q

ð9Þ

where Γij are the elements of the covariance matrix G ¼ cvarðXÞ ¼ ðX� �XÞtðX� �XÞ=ðn� 1Þ.
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We compute the variances as in the S-PrediXcan analysis:

cvarð~t jÞ ¼ ŝ2

j

¼ ðWjÞtGjWj

¼
X

a 2 modelj
b 2 modelj

wjaw
j

bG
j

ab

ð10Þ

We restrict the computation to using only SNPS in the intersection between reference

panel and GWAS. Failing to do so may lead to inaccurate inference of predicted expression

covariance, typically underestimating correlation, leading to false positives as can be seen in

S8 Fig.

Addressing singularity of the correlation matrix. Given the high degree of correlation

among many of the prediction models, Tt T is often close to singular and its inverse cannot be

reliably calculated for many genes. To address this problem, we compute the pseudo-inverse

via Singular Value Decomposition, decomposing the correlation matrix into its principal com-

ponents and removing those with small eigenvalues (SVD regularization). In other terms, we

will restrict the analysis to axes of largest variation of the expression data. This is analogous to

the principal components-based approach used with individual level data. We denote with S+

the pseudo-inverse for any matrix S. We use the same condition number from individual-

level MultiXcan (lmax

li
< 30) as threshold. For S-MultiXcan-significant associations across 100

public traits, we found a median number of available models of 9 (IQR = 10), with� 80% of

components surviving the SVD threshold.

Estimating significance. To quantify significance of the inferred multi-tissue gene-level

association, we use the fact that the regression coefficient estimates follow (approximately) a

multivariate normal distribution: ĝ � N ðg; s2

eðTtTÞ
�1Þ. Under the null hypothesis of no asso-

ciation, it follows that ĝ t T
tT

s
2
e
ĝ � w

2

p We can then replace ĝ with its estimate from the marginal

regression:

ĝtðTtTÞĝ
s2

e

¼ ĝ
tDðTtTÞ�1

TtTðTtTÞ�1
Dĝ

s2

e

¼ ĝ
tD

se

ðTtTÞ�1 Dĝ

se

� ĝ
t1ðn� 1Þ

s�

ðTtTÞ�1 ðn� 1Þ1ĝ
s�

� ĝ
t

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

s�

TtT

n� 1

� ��1
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

s�

ĝ

� ẑtCorðTÞ�1
ẑ

where Cor(T) is the autocorrelation of T, and ẑ is the p-vector of marginal analysis z-scores,

γj/se(γj). We have used s2

e � s
2

� as an approximation (i.e. the residual variance of themarginal

regression as approximation of the residual variance of the joint regression). This simplifica-

tion is conservative, and based on our comparison to the individual multivariate results we

consider the loss of efficiency acceptable.

In practice, we will use the SVD pseudo-inverse Cor(T)+ as explained in the previous sec-

tion, and a χ2-test: ẑtCorðTÞþẑew2k , with k the number of components surviving the SVD

pseudoinverse.
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Application to GWAS summary statistics. 109 public GWAS and GWAS meta-analysis

summary statistics data sets were downloaded and analyzed with S-PrediXcan and S-Multi-

Xcan, using the 44 prediction models from GTEx tissues in release version 6p. The list of traits

and their Consortium/publication information is available in S4 Dataset.

A type 1 Diabetes study from the Wellcome Trust Case-Control Consortium [36] was

acquired fromWTCCC (https://www.wtccc.org.uk/). The individual-level data was analyzed

with MultiXcan; and GWAS summary statistics were obtained using PLINK2 [37], to enable

computation of S-PrediXcan and S-MultiXcan.

Implementation and computation

Prediction Models were obtained from http://predictdb.org/ resource. These models were

trained using Elastic Net as implemented in R’s package glmnet [38], with a mixing parameter

α = 0.5, on 44 tissue studies from GTEx’ release version 6p. The underlying GTEx study data

was obtained from dbGaP with accesion number phs000424.v6.p1. Please see [10] for details.

We implemented MultiXcan and S-MultiXcan using python scientific packages, working up

from existing software in the MetaXcan package. S-PrediXcan, PrediXcan, MultiXcan and

S-MultiXcan analysis were computed using the Center for Research Informatics’ high perfor-

mance cluster at the University of Chicago. PrediXcan, S-PrediXcan, MultiXcan and S-Multi-

Xcan results have been uploaded to the http://gene2pheno.org resources. The databases are

open to the research community for arbitrary programmatic query.

Supporting information

S1 Supplementary Note. Simulation description.

(PDF)

S1 Dataset. Summary statistics for 222 UK Biobank traits used in the MultiXcan analysis

included in S1_datatxt. Columns are: tag: trait, gene2pheno.org display name; n_predixcan_

significant: Number of Bonferroni-significant PrediXcan results; n_multixcan_significant

number of Bonferroni-significant results for MultiXcan; n_predixcan_only number of results

only significant in PrediXcan; n_multixcan_only number of results only significant in Multi-

Xcan.

(TXT)

S2 Dataset. Significant associations for MultiXcan on UK Biobank included in S2_data.txt.

Columns are: phenotype: trait, gene2pheno.org display name; gene: Ensembl id; gene_name:

HUGO name; pvalue: p-value of the S-MultiXcan association; n_models number of predic-

tion models available for the gene; n_used number of independent components surviving

PCA selection; n_samples: number of individuals available.

(TXT)

S3 Dataset. Significant associations for PrediXcan on UK Biobank included in S3_data.txt.

Columns are: Phenotype: trait, gene2pheno.org display name;model: GTEx tissue where the

model was trained; gene: Ensembl Id; gene_name: HUGO name; zscore PrediXcan associa-

tion Z-score, pvalue PrediXcan association p-value; n_samples: number of individuals avail-

able.

(TXT)

S4 Dataset. List of Genome-wide Association Meta Analysis (GWAMA) Consortia and

phenotypes included in S4_data.txt. Columns are consortium name, study name, gene2-

pheno.org display name, study sample size, study population, URL of portal where data was
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downloaded from, link to pubmed entry if available.

(TXT)

S5 Dataset. Summary statistics for 109 traits used in the MultiXcan analysis included in

S5_data.txt. Columns are: tag: gene2pheno.org display name; consortium: Consortium

Name; name: study name; n_spredixcan_significant: Number of Bonferroni-significant

S-PrediXcan results; n_smultixcan_significant number of Bonferroni-significant results for

MultiXcan; n_spredixcan_only number of results only significant in S-PrediXcan; n_smultix-

can_only number of results only significant in S-MultiXcan.

(TXT)

S6 Dataset. Significant associations for Summary-MultiXcan on public GWAS included

in S6_data.txt. Columns are: tag: gene2pheno.org display name; consortium: Consortium

Name; name: study name; gene: Ensembl id; gene_name: HUGO name; pvalue: p-value of

the S-MultiXcan association; n number of S-PrediXcan results available for the gene; n_indep

number of independent components surviving SVD; p_i_best best p-value of S-PrediXcan;

t_i_best tissue that presented best S-PrediXcan result; p_i_worst worst p-value of S-PrediX-

can; t_i_worst tissue that presented worst S-PrediXcan result.

(TXT)

S7 Dataset. Significant associations for Summary-PrediXcan on public GWAS. Significant

results included in S7_data.txt. Columns are: consortium: Consortium Name; name: study

name; tag: gene2pheno.org display name; gene: Ensembl Id; gene_name: HUGO name;

model GTEx tissue where model was trained; zscore S-PrediXcan association Z-score, pvalue

S-PrediXcan association p-value.

(TXT)

S8 Dataset. MultiXcan-significant associations with modest individual model significance

from UK Biobank traits included in S8_data.txt. Columns are: trait: UK Biobank trait name

and code; n_flagged: number of significant genes with best individual model p-value>10−4;

n_significant: number of Bonferroni-significant genes; percent: percentage of n_flagged to

n_significant. MultiXcan significance was computed with condition number 30 and the indi-

vidual model effects’ significance obtained from PrediXcan.

(TXT)

S9 Dataset. MultiXcan and S-MultiXcan associations for WTCCC Type 1 Diabetes

study included in S9_data.txt. Columns are: gene: gene’s ensemble id; pvalue: significance

achieved;method: a label specifying that either MulTiXcan, S-MulTiXcan with naive covari-

ance from predicted expression, or S-MulTiXcan with correction for missing SNPs was ran.

(TXT)

S1 Fig. Predicted expression correlation for gene SLC5A6.We observe a high degree of pre-

dicted expression correlation, in agreement with recent publications on the high degree of

mechanism sharing across tissues [9]. This behavior is exhibited in most genes.

(TIF)

S2 Fig. Summary-MultiXcan vs MultiXcan for miscellaneous traits. There is a satisfactory

agreement between the individual-level and the summary-level versions of MultiXcan in UK

Biobank traits.

(TIF)

S3 Fig. Distribution of MultiXcan significance under the null hypothesis of no association.

Here we use a simulated trait, generated from a standard normal distribution as the phenotype.
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We performMultiXcan, regressing the simulated phenotype on predicted expression for

17,435 genes in 1,000 individuals from the UK Biobank. As described in the Methods, we drop

principal components of small variation to avoid multi collinearity. We keep the number of

principal components so that the condition number of the covariance matrix of the predicted

expression across tissues (ratio of the maximum and minimum eigenvalues) is below 30.Panel

a compares the MultiXcan p-values to the expected uniform distribution. Most points (genes)

lie on the identity line showing no obvious inflation or deflation.Panel b compares the distri-

bution of p-values with and without regularization.

(TIF)

S4 Fig. MultiXcan simulations for different synthetic traits. For each gene, we simulate

traits as different combinations of predicted expression from multiple tissues in one thousand

individuals from the UK Biobank. We add a noise term from the normal distribution with var-

iance chosen so that 1% of the total variance in the trait is explained by predicted expression.

For each trait, we show results from running MultiXcan with no regularization, MultiXcan

with regularization (condition number< 30), PrediXcan with ‘best’ single tissue (either the

single causal tissue or most significant p-value in each gene). For a trait with specific causal tis-

sues, we also showMultiXcan using only them.Panel a compares p-value distributions for

traits generated from a single tissue (Whole Blood, 6588 genes available). In this case, PrediX-

can using whole blood prediction outperforms MultiXcan as expected from the fact that Multi-

Xcan’s statistic becomes less significant when more explanatory variables of no effect are used;

both unregularized and PCA-regularized MulTiXcan are similarly affected.Panel bUses a trait

built from the combination of five brain tissues (Cerebellum, Cerebellar Hemisphere, Hippo-

campus, Cortex, Frontal Cortex BA9, 488 genes in the intersection of tissue models). As

expected, MultiXcan using only the causal tissues performs best. MultiXcan using all tissues

displays the second best performance, with the regularized version being slightly better than

the unregularized version. PrediXcan (i.e. a single tissue) has the lowest performance.Panel c

shows simulations when all tissues are causal (for 1000 random genes); MultiXcan with PCA

regularization has slightly better performance than unregularized MultiXcan, and ‘best tissue’

PrediXcan has a significantly lower performance.

(TIF)

S5 Fig. Trend in MultiXcan significance for increasing number of included tissues. For

each gene, we simulate traits as different combinations of predicted expression from multiple

tissues in one thousand individuals from the UK Biobank. We add a noise term from the nor-

mal distribution with variance chosen so that 1% of the total variance in the trait is explained

by predicted expression. The top panel shows traits generated from the combination of 5 brain

tissues (Cerebellum, Cerebellar Hemisphere, Hippocampus, Cortex, Frontal Cortex BA9; top

panel), and the bottom panel a combination of all available tissues. These traits were analyzed

through MultiXcan both with PCA regularization and without regularization. The lines corre-

spond to smoothed conditional means, and the gray area displays the confidence intervals. We

observe that PCA regularization has increased power over no regularization with larger effect

as the number of included tissues increases. When the number of causal tissues is small (“5

Brains”), significance decreases when more tissue models are available, and the regularized

and unregularized MultiXcan perform similarly. This is expected since extra uninformative

components add noise and reduce power. Conversely, when all tissues are causal, significance

increases as we increase the number of included tissues. Regularized MultiXcan achieves

higher significance than unregularized MultiXcan.

(TIF)
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S6 Fig. Stability of significance for different condition number thresholds in the PCA regu-

larization. Using simulated traits in two scenarios (5 brain causal tissues and all causal tissues,

as described in the Supplementary Note), we display MultiXcan’s significance distribution for

different PCA regularization thresholds. In both scenarios the significance remains relatively

constant for all thresholds tested. More stringent regularization thresholds achieve slightly

higher significance. We consider the threshold of 30 to be a conservative choice.

(TIF)

S7 Fig. Association detection for PrediXcan and MultiXcan using FDR. The number of

FDR-significant associations are shown for PrediXcan using both a single tissue and all tissues,

and MultiXcan. Using FDR< 0.05, we observe that the number of significant associations for

both PrediXcan and MultiXcan increase significantly, and their difference decreases. Using

smaller FDR thresholds increases the difference, and for FDR< 10−4 we observe a similar

number of detections as when performing traditional multiple-testing correction at 0.05/n.

This is consistent with Bonferroni correction being overly conservative because the hypotheses

are not independent.

(TIF)

S8 Fig. Accuracy of predicted expression inference. A scatter plot of association significance

between MultiXcan and S-MultiXcan is shown for the Wellcome Trust Case-Control Type 1

Diabetes study. The left plot uses the covariance matrix computed from predicted expression

in a reference panel (GTEx). The right plot uses predicted expression covariance taking into

account missing SNPs (i.e.: using only SNPs in the intersection between reference panel and

the GWAS study). We observe that using expression predicted in the reference panel without

correction leads to false positives and negatives, as the inferred covariance is inaccurate.

(TIF)

S1 Table. Summary statistics comparing S-MultiXcan and S-PrediXcan on public GWAS.

(PDF)
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16. Gusev A, Lee SH, Trynka G, Finucane H, Vilhjálmsson BJ, Xu H, et al. Integrative approaches for large-
scale transcriptome-wide association studies. Nature Genetics. 2016; 48:245–252. https://doi.org/10.
1038/ng.3506 PMID: 26854917

17. Xu Z, Wu C, Wei P, PanW. A powerful framework for integrating eqtl and gwas summary data. Genet-
ics. 2017;. https://doi.org/10.1534/genetics.117.300270

18. Kuehnen P, MischkeM, Wiegand S, Sers C, Horsthemke B, Lau S, et al. An alu element-associated
hypermethylation variant of the POMC gene is associated with childhood obesity. PLoS Genetics.
2012; 8(3). https://doi.org/10.1371/journal.pgen.1002543 PMID: 22438814

19. Grewal S, Carver JG, Ridley AJ, Mardon HJ. Implantation of the human embryo requires Rac1-depen-
dent endometrial stromal cell migration. Proceedings of the National Academy of Sciences of the United
States of America. 2008; 105(42):16189–16194. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/
eutils/elink.fcgi?dbfrom=pubmed{&}id=18838676{&}retmode=ref{&}cmd=prlinks{%}5Cnpapers2://
publication/doi/10.1073/pnas.0806219105. PMID: 18838676

20. Hallstrom TC, Mori S, Nevins JR. An E2F1-Dependent Gene Expression Program that Determines the
Balance between Proliferation and Cell Death. Cancer Cell. 2008; 13(1):11–22. https://doi.org/10.1016/
j.ccr.2007.11.031 PMID: 18167336

21. Byrne EM, Heath AC, Madden PAF, Pergadia ML, Hickie IB, Montgomery GW, et al. Testing the role of
circadian genes in conferring risk for psychiatric disorders. American Journal of Medical Genetics, Part
B: Neuropsychiatric Genetics. 2014; 165(3):254–260. https://doi.org/10.1002/ajmg.b.32230

22. Gong G, O’Bryant SE. Low-level arsenic exposure, AS3MT gene polymorphism and cardiovascular dis-
eases in rural Texas counties. Environmental Research. 2012; 113:52–57. https://doi.org/10.1016/j.
envres.2012.01.003 PMID: 22341486

23. Moon K, Guallar E, Navas-Acien A. Arsenic exposure and cardiovascular disease: An updated system-
atic review; 2012.

24. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. Genomewide Associa-
tion Analysis of Coronary Artery Disease. New England Journal of Medicine. 2007; 357(5):443–453.
Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa072366.PMID: 17634449

25. Lu X,Wang L, Chen S, He L, Yang X, Shi Y, et al. Genome-wide association study in Han Chinese iden-
tifies four new susceptibility loci for coronary artery disease. Nature Genetics. 2012; 44(8):890–894.
https://doi.org/10.1038/ng.2337 PMID: 22751097

26. DeMeo DL, Mariani T, Bhattacharya S, Srisuma S, Lange C, Litonjua A, et al. Integration of Genomic
and Genetic Approaches Implicates IREB2 as a COPD Susceptibility Gene. American Journal of
Human Genetics. 2009; 85(4):493–502. https://doi.org/10.1016/j.ajhg.2009.09.004 PMID: 19800047

27. Oksala N, Levula M, Airla N Pelto-Huikko M, Ortiz RM, JÃd’rvinen O, et al. ADAM-9, ADAM-15, and
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