
Integrating Program Transformations in the Memory-Based

Synthesis of Image and Video Algorithms�

David J. Kolson Alexandru Nicolau Nikil Dutt

Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92717-3425

Abstract

In this paper we discuss the interaction and in-

tegration of two important program transformations

in high-level synthesis|Tree Height Reduction and

Redundant Memory-access Elimination. Intuitively,

these program transformations do not interfere with

one another as they optimize di�erent operations in

the program graph and di�erent resources in the syn-

thesized system. However, we demonstrate that in-

tegration of the two tasks is necessary to better uti-

lize available resources. Our approach involves the

use of a \meta-transformation" to guide transforma-

tion application as possibilities arise. Results observed

on several image and video benchmarks demonstrate

that transformation integration increases performance

through better resource utilization.

1 Introduction

Tree height reduction (THR) [1, 12] is a well-known
technique for reducing the critical path length and in-
creasing the parallelism of expressions and/or recur-
rences through the introduction of redundant compu-

tation. THR has been applied to the synthesis of DSP
applications [8, 11, 13, 19] and will continue to play
an important role in system and architectural level
synthesis. The synthesis of memory-intensive behav-
iors, such as image and video algorithms, have been
identi�ed as important application areas [7, 16, 20].

Typically, designs synthesized for memory-intensive
behaviors contain a secondary (slower) memory, due to
the large data size, which is explicitly represented and
accessed in the behavior by arrays. It then becomes
crucial to optimize memory access in order to obtain
acceptable performance. Redundant memory-access
elimination (RME) [4, 9, 16] is a technique to remove
memory operations (possibly on the critical path) that

�Research partially supported by NSF grant CCR8704367,
ONR grant N0001486K0215and a UCI Faculty Research Grant.

access locations previously loaded from and/or stored
to the memory within and across loop iterations.

Although both RME and THR share the common
goal of reducing the critical path length and do not
compete in terms of the resource utilization that they
optimize, it is important to consider the combined ef-
fect of both optimizations to obtain quality schedules
for a set of given resources. Previously, no work has
adequately addressed this interaction.

As an illustration, consider the code in Fig. 1(a).
In Figs. 1(b) and 1(c) two distinct versions of the
data
ow graph for the inner loop appear scheduled
with the resource constraints of one pipelined two-
cycle latency adder and one non-pipelined memory
port with two-cycle latency1. Both versions consist
of eight operations and the height of the tree (i.e.,
the length of the critical dependency chain) in (b) is
four, while in (c) it is �ve. Although the tree in (c)
has greater height, the performance of the resulting
schedule is faster than in (b). In (b) operations add
redundant2 and non-redundant memory values (C and
D, for instance) whereas in (c) operations add memory
values with the same redundancy types (E and D, for
instance) resulting in di�erent schedule lengths given
the available resources.

The key to automatically deriving the graph in
Fig. 1(c) is to integrate the transformations rather
than allowing them to work individually as opportuni-
ties arise. In this paper we propose the use of a \meta-
transformation" to guide the application of transfor-
mations so as to make better decisions concerning the
utilization of resources and allow trade-o�s between
transformations.

1For clarity, no restriction on the number of registers (i.e.,
temporaries) is imposed and the division of the sum by nine is
omitted.

2Throughout this paper we use the term redundant to refer
to computation on memory values loaded and/or stored redun-
dantly in loop execution.

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0027 $3.50

+

+

+ +

+

+

+

+ + +

+

+

+

+

+ +

+

+

+

+

+

+

+

+

T1 = A + B

T2 = G + H A = B

Load C1

2

3

4

5

6

7

8

9

10

11

12

T3 = C + D

T4 = E + F

T5 = T1 + T3

T6 = T2 + T4

T7 = T5 + T6

B = C, G = HLoad F

D = E

E = F

T8

T1

T6

T7

T5

T3 T4 T2 T1 T2

T8

T7

T4

T1 = A + B

T2 = D + E

Load C

A = B

G = HT4 = T1 + T2

T3 = G + H Load F

1

2

3

4

5

6

7

8

9

10

11

T6 = C + F

T7 = T5 + T6

T8 = T7 + I

T5 = T3 + T4

T3

A B D E G H C F I

T5

T6

Load I

B = C, D = E

H = I

E = F

A B C D E F G H I

H = I

Load I

T8 = T7 + I

A B

C

D

E

F

G

H

I

(a)

(b) (c)

+ A[i+1][j-1] /* G */
+ A[i+1][j] /* H */

+ A[i][j+1] /* F */

+ A[i][j-1] /* D */
+ A[i][j] /* E */

+ A[i-1][j+1] /* C */
+ A[i-1][j] /* B */

For j = 1 to N
For i = 1 to M

+ A[i+1][j+1])/9; /* I */

B[i][j] = (A[i-1][j-1] /* A */

Figure 1: Schedules for THR graphs.

2 Previous Work

Previous work has been done in three areas: re-
moval of redundant memory operations, tree height re-
duction, and integration of program transformations.

Redundant Memory-access Optimization

Techniques which speci�cally reduce memory access-
ing by eliminating memory operations are described
in [4, 5, 16]. In [6] iteration distance relationships be-
tween memory operations are formulated for memory
analysis. In [9] we present a technique for removing
memory operations that are redundant over loop exe-
cution. Our technique uses memory anti-aliasing the-
ory so as to detect redundancy in a general manner.

Tree Height Reduction

Tree height reduction was �rst studied [1, 12] as a
method for reducing critical dependency chains to in-
crease parallelism and was later extended in [3]. Vari-
ous synthesis systems [8, 19] include support for THR,
but do not speci�cally factor resource availability into

the process, or do so in an exhaustive manner [11]. In
[13] an incremental reduction technique is presented
which globally (i.e., over multiple expressions in the
program) exploits unused resources by factoring re-
source availability into the THR conditions.

Integrating Transformations

Work on integrating transformations in compiler the-
ory addresses both coarse-grain (source-code level)
and �ne-grain (register-transfer level) aspects. In [21]
a tool for studying the ordering of coarse-grain trans-
formations is discussed. However, this approach does
not allow for trade-o�s between transformations. In
�ne-grain compilation, the thrust is to integrate reg-
ister allocation and instruction scheduling. Proposed
techniques [2, 15] typically make allocation decisions
based on the parallelism automatically detected. In
[14] resource trade-o�s are made dynamically during
scheduling but this work does not address transforma-
tion interaction.

3 Our Approach

Our approach to integrating THR and RME is to
use a \meta-transformation" that makes trade-o�s be-
tween individual transformations during scheduling.
In this way, a global view of the e�ects of a transforma-
tion is maintained and is useful in assessing whether
a transform should be applied. Due to the complex-
ity of this task, however, this assessment must rely on
heuristics.

3.1 Memory Analysis

In a pre-scheduling phase, all memory operations
in the program are analyzed for redundancy to deter-
mine which are candidates for removal. This informa-
tion is propagated throughout the program once it is
exposed.

Determining Candidates

Memory operations in our model contain symbolic ex-

pressions [9] which represent the referenced address
in as reduced a form as is possible. Essentially, pro-
gram variables used in address calculation are \nor-
malized" in terms of a new looping variable. This
allows easy dependency testing of memory operations
without having to maintain complex relationships be-
tween program variables.

Fig. 2 contains an algorithm to determine memory
operations which are candidates for removal and is es-
sentially built on top of the techniques presented in [9].
The symbolic expression of each memory operation in
the program is compared with all other memory oper-
ations' symbolic expressions that reference the same

Procedure determine candidates(program)
begin

/* collect all memory operations */
foreach /* memory operation - m1 */ do

Forall /* other memory ops - m2 */
if (/* m1 and m2 access same array */) then

/* dist = m2's sym. expr. - m1's sym. expr. */
set iters to dist / element size
if (/* iters is integer */) then

/* tag m1 as a candidate for removal */
endif

endif

end

end

end determine candidates

Figure 2: Determining redundancy candidates.

Procedure propagate redundancy info(program)
begin

changes = false

while (changes) do
foreach node in program

foreach op in node
def ops = /* ops which de�ne vars that op reads */

tmp tags = /* union of red. tags for def ops */
changes = changes or tmp tags 6= op's tags

/* tag op with tmp tags */
end

end

end

end propagate redundancy info

Figure 3: Propagating redundancy information.

array to determine the distance between two refer-
ences. When this distance is normalized by the array
element size, the number of iterations over which re-
dundancy spans is known and operatoins are tagged
appropriately.

Propagating Redundancy Information

Once redundancy in memory interaction has been de-
termined, that information is propagated through-
out the program. Fig. 3 contains an algorithm to
propagate redundancy information and is essentially
patterned after
ow analysis routines. Initially, all
operations have no tagging information, except for
those memory operations that are redundant, tagged
with \r," and those memory operations that are non-
redundant, tagged with \n." Then, for each operation
in the program, all of the operations that de�ne any
variable used by that operation are collected. All of
the redundancy tags of those operations are unioned
to derive the local redundancy information on that
sub-expression.

FunctionMeta-Transformation(xform, its arguments)
begin

case xform is:
Tree-height reduction:

if (/* paired args redundancy tags match */) then
/* recursively descend tree tagging redundant */
/* memory operations \ready" */
Return Go Ahead

else

/* \rotate-down" any redundant subtrees */
Return Inhibit

Redundant Memory Elimination:
if (/* memory op is tagged \ready" */) then

Return Go Ahead
else

Return Inhibit
end case

end Meta-Transformation

Figure 4: The Meta-Transformation

3.2 The Meta-Transformation

The heuristic that we have selected for integrat-
ing THR and RME is a simple greedy scheme that
only allows THR to progress when both operands of
a new THR operation are either redundant or non-
redundant sub-trees and allows RME to eliminate re-
dundant memory operations once they become part of
a redundant sub-tree.

The Meta-Transformation appears in Fig. 4. Be-
cause our goal is to pair values with the same redun-
dancy tags, the THR transformation is given the \go
ahead" when the tags match. In this case the sub-trees
are recursively descended to tag redundant memory
operations as \ready" for elimination. If the redun-
dancy tags mismatch, then the redundant sub-trees
are rotated. This has the e�ect of moving computa-
tion on redundant values towards the leaves and non-
redundant computation towards the root allowing the
schedule to better tolerate the latency of memory op-
erations which will not be removed. The RME trans-
formation is inhibited from removing redundant mem-
ory operations until they become part of redundant
sub-trees (i.e., tagged as \ready"). This strategy has
the e�ect of minimizing the live ranges of redundant
memory values stored in the register �le.

4 Experiments and Results

Our approach has been implemented in our
Percolation-based scheduler [17] with which we con-
ducted some experiments. Twelve core routines in
image and video algorithms were used. The spa-
tial �lters, edge enhancements and blurring bench-
marks were obtained from [10], while the compression
benchmarks|wavelet and predictor-corrector (pred-

Table 1: Experimental results.
Benchmark FUs. w/ w/o Impr.

Spatial �lters
General coe�. 2+,1* 18 20 11%
Low-pass
median 2+, 1* 11 12 9%
powers of 2 2+ 12 14 17%

High-pass
median 2+, 1* 15 17 13%
powers of 2 2+ 13 16 23%

Edge enhancement
Laplace1 2+, 1* 10 12 20%
Laplace2 2+ 16 19 19%
north-gradient 2+ 15 18 20%
matched-edge 2+ 21 25 19%

Blurring 2+ 28 31 11%

Compression
wavelet 2+, 1* 15 18 20%
pred-corr 2+ 9 11 22%

corr)|were obtained from [18]. Although the ba-
sic structure of many of the benchmarks is similar|
namely, the loading of a neighborhood of values, multi-
plication of those values by respective coe�cients and
then summation to produce a new value|the expres-
sion trees become vastly di�erent due to positive and
negative coe�cients. Furthermore, resource utiliza-
tion di�ers due to the possibility that a coe�cient is
a power of two (resulting in shifts).

Schedules were generated with latency parameters
of two-cycles for add, three-cycles for multiply and
two-cycles for load/store. The functional resources
used included two adders, one muliplier3 and a two-
port memory. Table 1 presents our observed results.
The column labelled \FUs" indicates the functional

unit resources used. The columns labelled \w/" and
\w/o" contains the number of cycles for the inner
loop schedules produced with and without the Meta-
transformation, respectively, while the last column in-
dicates the percentage improvement of our technique.

Our results convincingly demonstrate that integra-
tion of the transformations results in better perfor-
mance. Improved performance is due largely to the
ability to perform a signi�cant amount of computation
on the redundant portions of the algorithm during the
latency of non-redundant memory operations.

3In some cases the multiplier was not necessary due to
shifting.

References

[1] J. L. Baer and D. P. Bovet. Compilation of Arithmetic Ex-
pressions for Parallel Computations. Proc. of IFIP Congress,
pages 34{46, 1968.

[2] D. G.. Bradlee, S. J. Eggers, and R. R. Henry. Integrating
Register Allocation and Instruction Scheduling for RISCs. AS-
PLOS, 26(4), April 1991.

[3] R. P. Brent. The Parallel Evaluation of General Arithmetic
Expression. Journal of the ACM, 21(2), 1974.

[4] D. Callahan, J. Cocke, and K. Kennedy. Estimating Interlock
and Improving Balance for Pipelined Architectures. ICPP,
1987.

[5] J. W. Davidson and S. Jinturkar. Memory Access Coalescing:
A Technique for Eliminating Redundant Memory Accesses.
PLDI, 29(6), June 1994.

[6] E. Duesterwald, R. Gupta, and M. So�a. A Practical Data
Flow Framework for Array Reference Analysis and its Use in
Optimizations. PLDI, 28(6), June 1993.

[7] D. Gajski, N. Dutt, A. Wu, and S. Lin. High Level Synthesis:

Introduction to Chip and System Design. Kluwer Academic
Publishers. Norwell, MA., 1992.

[8] Z. Iqbal, M. Potkonjak, S. Dey, and A. Parker. Critical Path
Minimization Using Retiming and Algebraic Speed-Up. 30th

DAC, 1993.

[9] D. J. Kolson, A. Nicolau, and N. Dutt. Minimization of Mem-
ory Tra�c in High-Level Synthesis. 31st DAC, June 1994.

[10] J. S. Lim. Two-Dimensional Signal and Image Processing.
Prentice Hall Signal Processing Series, 1990.

[11] D. A. Lobo and B. M. Pangrle. Redundant Operator Creation
- An Optimized Scheduling Technique. 28th DAC, 1991.

[12] Y. Muraoka. Parallelism Exposure and Exploitation in Pro-

grams. PhD thesis, Univ. of Ill. Urbana-Champagne, 1971.

[13] A. Nicolau and R. Potasman. Incremental Tree Height Reduc-
tion for High-Level Synthesis. 28th DAC, 1991.

[14] S. Novack and A. Nicolau. Mutation Scheduling: A Uni�ed
Approach to Compiling for Fine-Grain Parallelism. Proc. 7th
Int'l Wksp on Lang. and Comp. for Par. Computing, 1994.

[15] S. S. Pinter. Register Allocation with Instruction Scheduling:
A New Approach. PLDI, 1993.

[16] P. P�ochm�uller, M. Glesner, and F. Longsen. High-Level Syn-
thesis Transformations for Programmable Architectures. Euro-
DAC '93, 1993.

[17] R. Potasman, J. Lis, A. Nicolau, and D. Gajski. Percolation
Based Synthesis. 27th DAC, 1990.

[18] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery. Numerical Recipes in C: The Art of Scienti�c Comput-

ing. Cambridge University Press, second edition, 1992.

[19] H. Trickey. Flamel: A High-Level Hardware Compiler. IEEE
Trans. on CAD, 6(2), March 1991.

[20] J. Vanhoof, K. Van Rompaey, I. Bolsens, G. Goossens, and
H. DeMan. High Level Synthesis for Real Time Digital Signal
Processing. Kluwer Academic Publishers. Norwell, MA., 1993.

[21] D. Whit�eld and M. L. So�a. Investigating Properties of Code
Transformations. ICPP, 1993.

