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A major objective of systems biology is to organize molecular 

interactions as networks and to characterize information flow 

within networks. We describe a computational framework 

to integrate protein-protein interaction (PPI) networks 

and genetic screens to predict the ‘signs’ of interactions 

(i.e., activation-inhibition relationships). We constructed 

a Drosophila melanogaster signed PPI network consisting of 

6,125 signed PPIs connecting 3,352 proteins that can be 

used to identify positive and negative regulators of signaling 

pathways and protein complexes. We identified an unexpected 

role for the metabolic enzymes enolase and aldo-keto  

reductase as positive and negative regulators of proteolysis, 

respectively. Characterization of the activation-inhibition 

relationships between physically interacting proteins within 

signaling pathways will affect our understanding of many 

biological functions, including signal transduction and 

mechanisms of disease.

Objectives of systems biology research include organizing 
 molecular interactions as networks and characterizing their 
structure, dynamics and controllability. Tremendous progress 
has been made using ‘omics’ data sets to identify the parts and 
connections of these networks. For example: PPIs, identified 
from yeast-two hybrid or affinity purification–mass spectrometry  
(AP-MS) approaches, have provided information on the bio-
physical interactions occurring between two or more proteins1–5.  
Similarly, systematic loss-of-function analyses such as RNAi 
screens have identified sets of genes implicated in specific bio-
logical processes6. Integration of omics data sets and inferring 
information flow are critical aspects of the reconstruction of 
signaling networks7. Such reconstructions reveal how proteins 
communicate and coordinate cellular functions, and they allow 
researchers to explore the emergent properties of networks.

There is a need for systematic approaches to infer causal rela-
tionships between interacting proteins, by which we refer to the 
‘direction’ (edge direction), ‘sign’ (activation or inhibition) and 
‘mode’ (such as phosphorylation or ubiquitination) of signal 
flow in PPI networks. Genome-scale reconstruction of signaling 

Integrating protein-protein interaction networks with 
phenotypes reveals signs of interactions
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Anastasia A Samsonova1, Ralph A Neumüller1, Stephanie E Mohr1,2 & Norbert Perrimon1,4

 networks remains a challenge8 largely because of the difficulty of 
predicting such causal relationships, although small-scale net-
works have been successfully reconstructed. Furthermore, data-
bases of signaling pathways are incomplete, and annotations are 
inconsistent across databases9. Recent studies have attempted to 
infer direction of information flow10–14 and to reconstruct kinase-
substrate networks15, but few attempts have been made to predict 
activation-inhibition relationships among interacting proteins.

Here we have developed a computational framework to pre-
dict the signs (positive or negative) of physical interactions 
using RNAi screens. In a positive PPI, proteins A and B interact 
to form a functional complex in which A activates B (or vice 
versa). In a negative PPI, proteins A and B interact to form a 
protein complex in which A inhibits B (or vice versa), such 
that one of the proteins is a negative regulator of the complex.  
We applied this framework to construct a D. melanogaster signed 
PPI network and thereby identified unexpected roles for the 
metabolic enzymes enolase and aldo-keto reductase (AKR) as 
positive and negative regulators, respectively, of proteolysis in 
Drosophila. Finally, we built a database, the signed protein-protein 
interaction network (SignedPPI), to access, build and navigate 
signed interaction networks (http://www.flyrnai.org/SignedPPI/;  
Supplementary Software).

RESULTS
Development of a signed prediction framework
We compiled RNAi screens recording 42 phenotypes from 
various resources including the Drosophila RNAi Screening 
Center16, GenomeRNAi17, Neuroblasts Screen online data-
bases18 and Bristle Screen online database19 (Online Methods and 
Supplementary Table 1). We also included results from an image-
based RNAi screen measuring nucleolus size20 and six other 
phenotypes (R.A.N. and N.P., unpublished data). With respect  
to the hits, the screens showed an average 14% similarity with each 
other (Supplementary Fig. 1). Each screen identifies positive and 
negative regulators of a particular phenotype, allowing us to con-
struct a phenotypic matrix in which the rows correspond to genes 
and columns correspond to 49 different phenotypes (Fig. 1a);  
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positive and negative regulators are color coded differently.  
Next we use a simple correlation of phenotypes to predict  
activation-inhibition relationships, with positive correlations 
occurring when both genes have the same color and negative 
correlation when they have different colors. We compute a sign 
score (Ssign) when both of the interacting proteins in a pair score 
a nonzero value in two or more screens (Fig. 1a and Online 
Methods). The sign score determines whether the phenotypes 
have positive or negative correlations. We predict a positive edge 
sign (activation) if the Ssign is positive and a negative edge sign 
(inhibition) if the Ssign is negative.

We used interactions with known activation-inhibitory relations 
from the literature to test our model and find an appropriate cut-
off value for the sign score. We compiled such interactions from 
signaling pathway databases such as SignaLink21, the Database 
of Cell Signaling (http://stke.sciencemag.org/cm/) and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG)22 (Supplementary 

Table 2 and Online Methods). We selected 106 literature-based 
interactions in which both proteins scored in two or more RNAi 
screens, and we defined these as the positive reference set (PRS) 
(Fig. 1b and Supplementary Table 3). By reversing the original 
signs, we created a negative reference set (NRS; 106 interactions; 
see Online Methods). Next we used our model to predict signs and 
compared the results to the original annotations. We used three 
different RNAi data sets to assess the robustness of our model: 
published (42 phenotypes), unpublished (7 phenotypes) and 
combined (49 phenotypes). The results show that our model has 
good predictive power (area under the receiver operating char-
acteristic curve = 0.858) and is robust to various subsets of RNAi 
screen data (Fig. 1c,d and Supplementary Table 4). However, the 
predictive performance of sign score was impaired with a rand-
omized phenotype matrix (Supplementary Fig. 2). We found that 
the performance was comparable between a subset of reference 
interactions with respect to the source database or consider-
ing only positive or negative interaction signs (Supplementary 

Fig. 3). A minimum of nine RNAi screens was needed to make 

a reliable prediction, but coverage increased with an increasing 
number of screens (Supplementary Fig. 4a,b). Further, the rela-
tionship between the RNAi screens and number of hits in RNAi 
screens influenced coverage but not the predictive performance 
(Supplementary Fig. 4c–f).

We identified an appropriate sign score cutoff value of Ssign ≥ 1  
for positive signs and Ssign ≤ −1 for negative signs (Fig. 1c,d). 
At this cutoff value, we achieved 90% precision and 41% recall 
(2.8% false positive rate and 59% false negative rate). Note that 
we compared the performance of this simple model to various 
classifiers trained to predict signs using the phenotype matrix 
as features and found that the simple model performed better 
(Supplementary Table 5).

Constructing a signed Drosophila PPI network
We collected PPIs from major databases such as BioGrid23, 
IntAct24, DIP25, MINT26, DroID27 and DPiM1 (Supplementary 

Table 6), selecting PPIs identified as binary interactions (for 
example, from yeast two-hybrid screens), high-confidence 
AP-MS interactions and AP-MS interactions predicted to be 
direct interactions (Online Methods). The resulting integrated 
Drosophila network consists of 47,293 PPIs among 9,107 proteins. 
We next predicted signs for these Drosophila PPIs on the basis 
of the 49 phenotypic data sets. The signed network consists of 
6,125 PPIs connecting 3,352 proteins, among which 4,135 PPIs 
are positive interactions and 1,990 PPIs are negative (Fig. 2a and 
Supplementary Table 7), with the sign score of each interaction 
indicating the confidence of the predicted sign. Our predicted 
sign network consists of 13-fold more interactions than literature-
based signed interactions (434 PPIs).

We systematically analyzed various properties of the entire 
signed network and of subnetworks consisting of only positive or 
negative interactions. We observed a positive correlation between 
the number of phenotypes regulated by a gene and the number of 
interactions (‘degree’) of the gene (Supplementary Fig. 5). Further, 
subnetworks with positive and negative interactions showed a 
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similar degree distribution (Supplementary Fig. 6). Functional-
enrichment analysis revealed that kinases tend to be hubs with 
similar proportions of positive and negative interactions, whereas 
transcription co-regulators tend to be hubs with primarily posi-
tive interactions and transcriptional co-repressors are hubs with 
primarily negative interactions (Supplementary Table 8).

Correlating the number of neighbors and average clustering 
coefficient showed that hubs with positive interactions tend to 
cluster (Fig. 2b,c). Next we compared positive and negative inter-
actions with respect to the edge ‘betweenness centrality’, a mea-
sure based on the number of shortest paths that passes through 
an edge in the network. The intermodular interactions, bridging 
different biological processes, tend to have high edge between-
ness-centrality scores, whereas intramodular interactions, such 
as interactions within a protein complex, tend to have low edge 
betweenness centrality28. Our analysis revealed that negative 
interactions tend to have high edge betweenness centrality, 
 meaning that that they are likely to be intermodular interactions, 
in contrast to positive interactions, which are likely intramodular 
interactions (P = 2.2 × 10−16, Wilcoxon test; Fig. 2d).

Comparison of edge signs with gene expression from Drosophila 
developmental time-course data29 revealed that the positive 
interactions are more likely to show positive expression correla-
tion (Pearson correlation coefficient, PCC) than are negative 
interactions (P value = 2.2 × 10−16, Wilcoxon test; Fig. 2e and 
Supplementary Fig. 7). Although half of the negative interactions  

showed no expression correlation (−0.35 < PCC < 0.35), 
~13.6% of these interactions had strong positive expression  
correlations (Fig. 2f), which suggests potential tight negative 
regulation. Furthermore, over half of the positive interactions 
showed positive expression correlation.

Including signs on a PPI network allows the application of 
structural balance theory, which is based on the ratios of bal-
anced and unbalanced triad motifs, enabling us to measure the 
stability of the network in a given condition30. In a triad motif, 
if the product of the signs is positive, the motif is defined as a 
balanced motif. Our analysis reveals that, similarly to social net-
works, signed PPI networks have more balanced than unbalanced 
motifs (Fig. 2g, Supplementary Table 9 and Online Methods). 
Unbalanced motifs are particularly interesting because they are 
highly dynamic and unstable. For instance, type I unbalanced 
motifs, consisting of two positive and one negative interaction, 
could potentially function as negative feedback loops or incoher-
ent feed-forward loops, which are both associated with adapta-
tion responses and are crucial for system controllability31. We 
identified 95 type I unbalanced motifs in the signed network 
(Supplementary Table 10). The network can also be used to sys-
tematically explore larger unbalanced motifs (four nodes or more) 
that could contribute to the network dynamics. Finally, 16% of 
the signed Drosophila interactions are conserved in human and 
another 72% are potential human interologs (Fig. 2h). 35% of 
the conserved interactions are linked directly to human disease 
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 proteins, thereby implying the signed network is relevant to 
human diseases (Supplementary Table 11).

We constructed subnetworks focusing on major signaling 
pathways9 and known protein complexes32 to explore novel (pre-
viously unidentified) positive and negative interactions linked to 
core components (Fig. 3 and Supplementary Fig. 8). Compared 
to other signaling pathways, the EGFR-ERK pathway is densely 
connected because of the availability of both PPI networks and 
functional data sets for this pathway6,33. Consistent with our prior 
results (Fig. 2b), members of the same protein complexes are 
primarily connected to one another via positive interactions.

Validating novel regulators of the proteasome
We selected the proteasome complex to further investigate posi-
tive and negative interactions inferred using signed PPI net-
works. The proteasome is essential for regulating proteostasis via  
degradation of proteins modified by polyubiquitin. Moreover, 
deregulation of proteasome function is relevant to many human 
diseases, including neurodegeneration, cancer and cachexia34.

First we constructed a proteasome subnetwork with 51 nodes, 
including 29 proteins that are part of the proteasome complex 
and 22 proteins that interact with it (Fig. 4a). We selected these 
22 interacting proteins on the basis of high-confidence positive 
or negative interactions with the proteasome (Ssign ≥ 1.73 and 
Ssign ≤ −1.73, respectively) and for which we have three or more 
independent RNAi reagents for tissue culture experiments. Next 
we knocked down the genes encoding these 51 selected proteins 
(the 29 proteasome components served as controls) in primary 
embryonic D. melanogaster muscle cells and assessed the effect 
on proteasome activity by measuring the accumulation of ubiq-
uitinated proteins (Fig. 4b and Supplementary Data). Knocking 
down positive regulators should increase the accumulation of 
ubiquitinated proteins, whereas knocking down the negative regu-
lators should decrease their accumulation. We identified genes as 
proteasome regulators if two or more independent RNAi reagents 
met the fold-change cutoff (Online Methods and Supplementary  

Table 12). Out of ten putative hits, tests in primary cell cul-
ture showed that eight of them could regulate the proteasome 
in a manner that was consistent with the predicted edge signs  
(Fig. 4b,c and Supplementary Table 12).

Next we used a luminescence assay that 
measures the protease activities associ-
ated with the proteasome complex in 
S2R+ cultured cells to further validate 
our putative regulators. We observed that 
knockdown of candidate positive regula-
tors (Enolase (Eno), polo, Hsc70Cb and 
Pomp) with independent RNAi reagents 
decreased proteasome activity (Fig. 4d 
and Supplementary Table 13), whereas 
knockdown of the candidate negative 
regulators (MRP, CG32039, CG15717 and 
CG10638) increased this activity (Fig. 4d).  
Knockdown efficiency of the RNAi rea-
gents determined by qPCR is shown in 
Supplementary Figure 9. Our experi-
ments, together with the evidence of direct 
physical interactions (Supplementary 

Table 14), show that the hits we identified using the signed PPI 
network are bona fide candidate regulators of the proteasome.

To further validate these regulators in vivo, we selected two 
metabolic enzymes Eno and CG10638, for which two or more 
transgenic RNAi fly lines were available. Using the muscle-
 specific Mef2 (Dmef2)-GAL4 line to drive the expression of the 
upstream activating sequence–RNAi hairpins, we assayed the for-
mation of ubiquitinated protein aggregates in the RNAi-treated 
muscles compared to in control Rpn1 (encoding regulatory par-
ticle non-ATPase 1, a proteasome component) and white RNAi 
knockdown samples. All RNAi constructs targeting Eno (three of 
three) and CG10638 (two of two) gave consistent phenotypes. In 
agreement with our predicted signs, knockdown of Eno resulted 
in an increase in ubiquitin aggregates, whereas knockdown of 
CG10638 led to a decrease in aggregates (Fig. 4e). Eno is a multi-
functional protein with a key role in glycolysis35, and its role 
in proteasome regulation had not previously been established. 
CG10638 is an AKR family member. AKRs catalyze the NADPH-
dependent reduction of aldehydes and ketones to alcohols36.  
A subset of mammalian AKRs have previously been shown to 
be regulated by drug-induced proteasome inhibition37. However, 
direct regulation of the proteasome or proteolysis by an AKR has 
not been previously reported. We note that knockdown of Eno or 
CG10638 had no effect on ubiquitin gene expression in S2R+ cell 
lines (Supplementary Fig. 10). Altogether, using the proteasome 
complex as an example, our results demonstrate the usefulness of 
predicted edge signs to discover protein function.

Database to navigate signed PPI networks
We created the SignedPPI database (http://www.flyrnai.org/
SignedPPI/) to build and navigate signed interaction networks 
(Supplementary Fig. 11). In addition to focusing on PPI networks, 
we also predicted signs for Drosophila functional interaction 
derived from the STRING (search tool for the retrieval of interact-
ing genes/proteins) database38. We successfully predicted signs for 
40,216 functional interactions, including 31,178 positive and 9,038 
negative interactions; these data are accessible via the SignedPPI 
database (Supplementary Table 15). We created a prediction tool 
called SignPredictor that accepts a phenotype matrix and PPIs 
as input and predicts signed PPIs (Supplementary Software).  
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The tool is implemented as a Perl module that can be downloaded 
from the SignedPPI database and installed locally.

DISCUSSION
Unlike previous studies that have used genetic interaction cor-
relation39 or phenotype similarity40 to predict functional inter-
actions, we used phenotype correlation to predict the function of 
physical interactions (signs). Our method is robust with respect 

to inherent noise in RNAi screens and has high predictive power. 
It is limited, however, to predicting context-dependent signs 
such as asymmetric bidirectional signs (for example, the nega-
tive feedback loop between Cdc2 and the anaphase-promoting 
complex (APC), wherein Cdc2 activates the APC, which in turn  
inactivates Cdc2).

The signed network we constructed for Drosophila covers only 
~10% of known PPIs owing to the limited number of RNAi data 
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Figure 4 | Validation of predicted proteasome regulators. (a) Subnetwork of a proteasome complex (as in Fig. 3). Gray arrows highlight subsequently 
validated proteins. (b) Results from the image-based RNAi screen measuring the accumulation of ubiquitinated proteins in primary muscle cells in which 
regulators shown in a have been knocked down with RNAi. Blue and red dotted lines indicate the cutoff values used for positive and negative regulators, 
respectively. The green line highlights the region corresponding to most proteasome core components. (c) Muscle cells stained with phalloidin (red)  
and anti-ubiquitin (green); the indicated candidate regulators have been knocked down with RNAi. Arrows point to ubiquitinated proteins in cells.  
(d) Enzymatic activity of the proteasome upon the indicated RNAi treatment in S2R+ cultured cells. Blue and red bars corresponds to significant 
reductions and increases in proteasome activity, respectively. Independent RNAi reagents are shown for each gene. (e) Third instar larval longitudinal 
muscles expressing the indicated RNAi hairpins under control of the muscle-specific driver line Mef2-GAL4 (red, anti-ubiquitin (FK2); blue, DAPI).  
Arrows point to ubiquitin-labeled aggregates.
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sets available. As more RNAi screens become available, it will 
become possible to further expand the scope and utility of the 
constructed network. In addition, the resource will benefit from 
additional PPI data sets such as ongoing interactome mapping 
projects41. Finally, the sign-prediction approach could be easily 
applied to other species.

Our analysis of the Drosophila signed network revealed insights 
into the design principles of network organization and identi-
fied unexpected roles for two metabolic enzymes, Eno and AKR, 
in regulating proteasome function. The signed network opens 
new possibilities for network analysis, such as the application 
of structural balance theory. Further integration of other infor-
mation-flow properties such as edge direction would enable  
sophisticated flow-based network analysis.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 

online version of the paper.
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ONLINE METHODS
Compiling RNAi screens. We compiled Drosophila RNAi 
screens that cover 49 phenotypes from the following resources: 
(i) Drosophila RNAi Screening Center (DRSC, http://www.flyrnai.
org/), (ii) GenomeRNAi (http://genomernai.de/GenomeRNAi/), 
(iii) Neuroblasts Screen online database (http://neuroblasts.
imba.oeaw.ac.at/), (iv) Bristle Screen online database (http://
bristlescreen.imba.oeaw.ac.at/), and (v) unpublished data 
(seven phenotypes). Refer to Supplementary Table 1 for more  
details. The data sets are preprocessed according to general guide-
lines provided by the DRSC to handle potential off-targets (only 
for data sets where amplicon level information is available). This 
includes (i) filtering out the amplicons that have predicted off- 
target effects, (ii) averaging values of multiple RNAi reagents tar-
geting the same gene to consider the most consistent phenotype, 
and (iii) filtering out the hits that are not shown to be expressed 
in a given cell line. The screens reported the phenotypic contribu-
tions as either a Z score or as categorical data. For screens with 
Z scores, we used a standard cutoff of 1.5/−1.5 and define those 
genes with Z score ≥1.5 as negative regulators and genes with 
Z score ≤−1.5 as positive regulators of the phenotype. For the 
categorical data, we directly used the annotation: for example, 
“Down regulation of Wg Pathway” or “Upregulation of Wg path-
way,” to define positive and negative regulators of the phenotypes. 
Note that we selected only screens that include both positive and 
negative regulators of a specific phenotype.

Model for predicting signs. For each RNAi screen, the positive 
and negative regulators were distinguished with the values +1 and 
−1, respectively. Genes that did not score in a particular screen 
were assigned the value 0. We constructed a phenotype matrix by 
combining multiple RNA screens, where the rows correspond to 
genes and columns correspond to the RNAi screens. In a given 
RNAi screen, if both interacting proteins have nonzero values, 
then the relationship is classified as either a positive correlation 
(both +1 or both −1) or a negative correlation (one is +1 and 
another is −1). For each interacting pair, we computed the total 
number of positive and negative correlations. Then we used a 
simple model to calculate a sign score (Ssign) for each interaction 
as follows

S
P N

T
Tsign

c c

n
p=

−

Pc and Nc correspond to the number of positive and negative 
correlations, respectively. Tp is the total number of matching 
phenotypes (Pc + Nc). Note that Tp should be ≥2 in order to be 
considered for sign predictions (to compute the correlation, a 
minimum of two data points are needed). √Tp is the weight fac-
tor to assign more confidence for signs predicted on the basis of 
a larger number of phenotypes. If a score has a positive value, the 
interaction gets a positive sign (activation); similarly, interactions 
with negative values are assigned a negative sign (inhibition).

Validation of the model. To validate the model, we compiled 
known signaling PPIs from SignaLink (http://signalink.org/), 
KEGG (http://www.genome.jp/kegg/pathway.html) and the 
Database of Cell Signaling (STKE) (http://stke.sciencemag.org/
cm/). All the data correspond to the versions available online 
at those sites as of September 2012. The three data sets were 

 integrated, and we selected signaling PPIs with two or more 
matching phenotypes in the phenotype matrix as the reference 
sets (Supplementary Tables 2 and 3). Next we manually curated 
the entire reference set by verifying the literature for the valid-
ity of the signs assigned by the databases. The sign annotation 
from the signaling databases was used as a PRS. To construct 
the NRS, the signs from the signaling databases were reversed. 
As our objective is to predict signs of physical interactions, 
both the PRS and the NRS include physically interacting pairs. 
However, the PRS has true signs and the NRS has incorrect signs. 
Consider the example reference interactions Dsor1-rolled from 
the MAPK signaling pathway and Akt-Foxo from the insulin 
signaling pathway. In the first example, Dsor1 (the Drosophila 
ortholog of MAP2K) activates rolled (the Drosophila ortholog 
of ERK/MAPK) by phosphorylation. In other words, whenever 
an interaction between these two proteins occur, Dsor1 only 
activates rolled and never inhibits it, and the interaction sign is 
always positive. In the next example, Akt inhibits Foxo by phos-
phorylation, hence the interaction sign is negative. In the PRS 
the Dsor1-rolled interaction is assigned a positive sign and the 
Akt-Foxo interaction is assigned a negative sign, but in the NRS, 
they are assigned inverse signs (negative sign for Dsor1-rolled 
and positive sign for Akt-Foxo). On the basis of the current 
literature, Dsor1 never inhibits rolled and Akt never activates 
Foxo, thus making valid negative reference sets. With the PRS 
and NRS, the true positive rate, false positive rate, precision and 
recall were calculated at various Ssign cutoff values. We then plot-
ted receiver operating characteristic (ROC) and precision-recall  
(PR) curves.

Compiling PPI networks. We compiled experimentally identi-
fied PPIs from BioGrid, IntAct, DIP, MINT, DroID and DPiM 
(Supplementary Table 6). The data correspond to versions avail-
able in September 2012. Next we grouped the PPIs as direct (for 
example, those identified from yeast-two hybrid screens) or indi-
rect (for example, those identified from AP-MS) according to 
the experimental approach used to detect PPIs. We constructed 
a binary interaction network as follows. (i) All interactions iden-
tified as direct interactions were selected. (ii) High-confidence 
AP-MS interactions reported in the literature were selected.  
(iii) We analyzed the rest of the AP-MS interactions network to 
look for additional evidence such as domain-domain interactions, 
kinase-substrate interactions, interologs and genetic interactions 
as described in ref. 33. We selected the AP-MS interactions that 
overlap with any of these networks and considered them to be 
direct interactions.

Network analysis and visualization. To analyze properties of 
the signed network, we used various publicly available tools. 
Networks were visualized using Cytoscape, an open-source plat-
form for network analysis and visualization42. NetworkAnalyzer, 
a Cytoscape plug-in for analysis of network properties, was used 
to analyze the degree distribution, clustering coefficient, and edge 
betweenness centrality43. Both Cytoscape and NetworkAnalyzer 
were downloaded from http://www.cytoscape.org/ and installed 
locally. The triad-motif enrichment analysis was performed 
using FANMOD44 (Supplementary Table 9). Triad motifs were 
extracted using Perl scripts developed in-house; these are freely 
available upon request.

http://www.flyrnai.org/
http://www.flyrnai.org/
http://genomernai.de/GenomeRNAi/
http://neuroblasts.imba.oeaw.ac.at/
http://neuroblasts.imba.oeaw.ac.at/
http://bristlescreen.imba.oeaw.ac.at/
http://bristlescreen.imba.oeaw.ac.at/
http://signalink.org/
http://www.genome.jp/kegg/pathway.html
http://stke.sciencemag.org/cm/
http://stke.sciencemag.org/cm/
http://www.cytoscape.org/
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For the box plots in Figure 2d,e, upper whiskers were calculated 
as min(max(x), (Q3 + 1.5 × IQR)) and lower whiskers were calcu-
lated as max(min(x), (Q1 − 1.5 × IQR)), where Q1 is the lower quar-
tile, Q3 is the upper quartile and IQR is the interquartile range.

Computing gene expression correlation. To compute cor-
relation coefficients from gene expression profiles, we used 
Drosophila developmental time-course data from the mod-
ENCODE Consortium29. A gene expression matrix was generated  
from RNA-seq data using the latest fly genome annotation as 
provided by modENCODE (http://www.modencode.org/). The 
profiles characterize expression dynamics for 15,998 coding 
and noncoding genes during 27 distinct stages of development, 
including 12 embryonic, 6 larval, 6 pupal and 3 sexed adult stages 
(30 data points in total). The Pearson correlation coefficient was 
computed for 6,125 signed PPIs across 30 data points.

Constructing subnetworks around signaling pathways and pro-

tein complexes. Annotation of signaling pathways was obtained 
from the SignaLink database21. The protein-complex annotations 
are used as defined in the protein complex enrichment analysis 
tool (COMPLEAT) resource32. For each pathway/protein com-
plex, direct signed interactions were extracted and integrated 
with gene expression correlation. Note that for this analysis we 
excluded signed interactions from the literature but not those 
predicted by our approach.

Preparation of dsRNAs. Gene-specific amplicons (~200–500 bp) 
were amplified by PCR using Choice Taq Mastermix (Denville 
Scientific, CB4070-8) from genomic DNA, using synthesized  
oligos with an attached T7 sequence. dsRNA was then synthesized 
from PCR templates using the T7 Megascript kit (Ambion), and 
product size was confirmed by gel electrophoresis. Following puri-
fication with Millipore Multiscreen PCR plates (#MANU03050), 
dsRNAs were quantified by measurement of the OD260  
(Nano-drop 8000, Fisher Scientific) and then stored at −20 °C 
until use.

Primary cell culture RNAi experiments. Embryonic primary 
cell cultures were isolated from gastrulating Oregon R embryos 
as described previously45–47 and seeded in 384-well plates at  
4 × 104 cells (10-µl volume) per well. Each well contained 5 µl dsRNA  
(0.25 µg dsRNA in water) targeting a gene from the proteasome 
network or control dsRNAs targeting lacZ or thread. Following 
a 20-h incubation in serum-free M3 medium at 18 °C, 30 µl of 
serum-containing medium was added to each well for a final FCS 
concentration of 10%. Primary cells were then cultured for an 
additional 5 d at 18 °C before fixation for 2 h in 2% formaldehyde. 
Cells were stained overnight at 4 °C with anti-ubiquitin mAb FK2 
(Enzo Life Sciences, 1:400), washed and stained for 2 h with Alexa 
Fluor 594 goat anti-mouse (Molecular probes, 1:1,000), phalloidin 
Alexa Fluor 635 (Molecular Probes, 1:2,000), and 4,6-diamidino-
2-phenylindole (DAPI; Sigma, 1:5,000), and then washed again. 
All antibody incubations and washes were performed in PBT, 
except for a final rinse in PBS before image analysis. This experi-
ment was repeated to give four biological replicates.

Image analysis. Acquisition of high-quality images of the primary 
cell culture was performed with the Evotec Opera microscope 

at the DRSC (http://www.flyrnai.org/). With the use of a 20× 
water-immersion lens, 24 microscope fields were obtained per 
well for both the anti-ubiquitin and phalloidin stains. Images 
were analyzed with MetaXpress high-content image acquisition 
and analysis software (Molecular Devices). For each microscope 
field, muscles were identified from the mixed population of cells 
by positive phalloidin staining. Then ubiquitin aggregates were 
identified within these muscles using the MetaXpress granularity 
application module. Total ubiquitin aggregate area was divided 
by total muscle area for each field. These values were then com-
bined to give a measure of the total area of aggregates per muscle 
cell area per well (ubiquitin accumulation). Normalized ubiquiti-
nated protein accumulation was computed by taking the log2(fold 
change) of ubiquitin accumulation over the lacZ control. For each 
amplicon (unique dsRNA design), the replicates (four) were com-
bined and median values were obtained. A gene was considered 
a regulator of proteolysis if two or more amplicons targeting that 
gene met the threshold (±0.32 log2(fold change)). We did not 
consider a gene to be a regulator if different dsRNAs gave incon-
sistent results, i.e., one scored as positive and another as negative. 
The dsRNAs used for the screening and the results are shown in 
Supplementary Table 12.

Proteasome activity assay. For each experiment, 5 × 103 S2R+ 
cells in serum-free Schneider’s medium were added to each well 
(in a 384-well tissue culture plate) and incubated with 0.25 µg 
dsRNA for 30 min before serum was added to a final volume of  
30 µl. Following 1 d of incubation, 30 µl of Proteasome-Glo 
trypsin-like cell-based reagent (Promega G8760) was added to 
each well, and the plate was incubated for 30 min at room temper-
ature. Luminescence was measured with a SpectraMax Paradigm 
plate reader. Readings from cell culture medium control wells (no 
cells) were subtracted from all experimental values. Four replicates 
were performed for each dsRNA, and readings were normalized 
to those of the lacZ control RNAi wells. Normalized protea-
some activity was computed by taking log2 median values from  
four replications.

qPCR. For each experiment, 2 × 106 S2R+ cells in serum-free 
Schneider’s medium were added to each well (in a six-well tissue  
culture plate) and incubated with 20 µg dsRNA for 30 min 
before serum was added. Two days later, cells were harvested 
with Trizol (Invitrogen), and this step was followed by phenol- 
chloroform extraction and purification with the RNeasy kit 
(Qiagen). cDNA was synthesized with the iScript cDNA Synthesis 
kit (Bio-Rad), and quantitative RT-PCR was performed with the 
iQ SYBR Green Supermix (Bio-Rad). Rp49 was used as nor-
malization reference. Relative quantitation of mRNA expression  
was calculated using the comparative CT method. The primers  
used were Rp49, 5′-ATCGGTTACGGATCGAACAA-3′ (forward)  
and 5′-GACAATCTCCTTGCGCTTCT-3′ (reverse); Eno, 5′-CC 
GAGAACAAGAGCAAGTTCG-3′ (forward) and 5′-CATGGCC 
TCTGTGAAGCTGG-3′ (reverse); CG10638, 5′-AGCTCGCT 
CCGACTGTTAAG-3′ (forward) and 5′-AGGCCCAGAATTGGC 
ATCTC-3′ (reverse); Rpn1, 5′-CCGACGCTGGAGAGTATGG-3′  
(forward) and 5′-GCATGAACTTCAAAGGCTTGG-3′ (reverse);  
Hsc70Cb, 5′-CGTGGCCGCTAAGAACCAG-3′ (forward) and  
5′-ATGCTCGTGAGTTCGTGTTGT-3′ (reverse); CG32039,  
5′-GAGCCTGTCTGTCCTGCTG-3′ (forward) and 5′-AGGCGA 

http://www.modencode.org/
http://www.flyrnai.org/
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TGGCATCAGGTT-3′ (reverse); pomp, 5′-TATCAGCCATCAC 
TGAAAGTCCA-3′ (forward) and 5′-GTTGCGGTTGTACTGG 
TGC-3′ (reverse); MRP, 5′-CGCCTTCTACTGGGCGTTC-3′  
(forward) and 5′-ACCAGAGCTTTGCTCACGTTC-3′ (reverse);  
mts, 5′-ACGGTCAGTTTCACGACCTC-3′ (forward) and 5′-CT 
CCACGGAGTAGTATCCACG-3′ (reverse); polo, 5′-TCACCGC 
AGCCTTAACCATC-3′ (forward) and 5′-ACAGCTCCAGCA 
CAATGTAGAT-3′ (reverse); GNBP2, 5′-CCGCCCAAACGATA 
GTGAG-3′ (forward) and 5′-GATGTCATGCTTCCAGGTGGT-3′  
(reverse); CSN4, 5′-AAGTTGCCTGACGATCTGTCC-3′ (forward)  
and 5′-TATGCCAGCCACTTGCTCTTC-3′ (reverse); CG15717,  
5′-AGTCCCTGCAGAATCCCTTT-3′ (forward) and 5′-GGCTTT 
CGCCTTGTACTGTC-3′ (reverse); Ubi-p5E, 5′-TCTTCACTTG 
GTCCTGCGTC-3′ (forward) and 5′-ATGGCTCGACCTCCAAA 
GTG-3′ (reverse); Ubi-p63E, 5′-ACGCACCCTGTCCGATTAC-3′  
(forward) and 5′-TGGTCTTTCCGGTCAAAGTCTT-3′ (reverse).

Larval muscle histology. Wandering third instar larvae were dis-
sected in ice-cold PBS and fixed for 20 min in 4% formaldehyde in 
PBS. After being washed, body-wall muscles were incubated over-
night at 4 °C with anti-ubiquitin mAb FK2 (Enzo Life Sciences, 
1:250), washed and stained for 2 h with Alexa Fluor 594 goat anti-
mouse (Molecular probes, 1:1,000), and DAPI (Sigma, 1:5,000), 
and then washed again and mounted in 50% glycerol/PBS. All 
antibody incubations and washes were performed in PBT, except 
for a final rinse in PBS before mounting. The ventral longitudinal 
muscles from segment 3 or 4 were imaged with a Leica TCS SP2 
confocal laser-scanning microscope.

Fly stocks. Mef2-GAL4 (ref. 48) was used to drive transgene 
expression specifically in the larval muscles via the Gal4/UAS 
system49. The following RNAi hairpin lines targeting protea-
some network components were obtained from the NIG Japan: 
Enolase (17655R-1 and 17654R-2) and CG10638 (32101R-2 
and 32101R-3). An additional line for Enolase (JF02070) was 
obtained from the DRSC/TRiP at Harvard Medical School. 
All RNAi experiments were performed at 25 °C, and all lines  
gave phenotype.

Implementation of SignedPPI. The SignedPPI user interface 
was implemented as a collection of Java servlets, JavaScript, 
and Adobe Flash components. SignedPPI integrates existing  
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