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Abstract This study aims at proposing novel approaches for integrating qualitative flow observations in

a lumped hydrologic routing model and assessing their usefulness for improving flood estimation. Routing is

based on a three‐parameter Muskingum model used to propagate streamflow in five different rivers in the

United States. Qualitative flow observations, synthetically generated from observed flow, are converted into

fuzzy observations using flow characteristic for defining fuzzy classes. Amodel states updatingmethod and a

model output correction technique are implemented. An innovative application of Interacting Multiple

Models, which use was previously demonstrated on tracking in ballistic missile applications, is proposed as

state updating method, together with the traditional Kalman filter. The output corrector approach is

based on the fuzzy error corrector, which was previously used for robots navigation. This study demonstrates

the usefulness of integrating qualitative flow observations for improving flood estimation. In particular,

state updating methods outperform the output correction approach in terms of average improvement of

model performances, while the latter is found to be less sensitive to biased observations and to the definition

of fuzzy sets used to represent qualitative observations.

1. Introduction

Severity and frequency of extreme flood events are increasing worldwide (Willner et al., 2018). Advanced

mathematical models are used to simulate and predict flood events on urbanized areas, but this is hindered

by the lack of gauge data with proper spatial and temporal resolution. On the other hand, remote sensing

and, more recently, citizen science initiatives provide useful data for hydrological purposes (Buytaert

et al., 2014). The use of crowdsourced observations for hydrological modeling applications has rapidly

increased in the last years (Assumpção et al., 2018; de Vos et al., 2017; Le Coz et al., 2016; Walker et al.,

2016; Yu et al., 2016; Yang & Ng, 2017). In particular, different studies have been carried out for integrating

quantitative expert‐based and citizens' observations within hydrological and hydraulic models to improve

model calibration and validation in ungauged basins (Seibert & McDonnell, 2002; van Meerveld et al.,

2017), to better characterize the spatial and temporal dimensions of a catchment hydrological processes

(Starkey et al., 2017; Weeser et al., 2018), and to improve flood predictions (Etter et al., 2018; Mazzoleni

et al., 2015, Mazzoleni, Verlaan, et al., 2017; Mazzoleni, Cortes Arevalo, et al., 2018).

Besides quantitative crowdsourced observations, the growing availability of qualitative flow information,

retrieved, for example, from social media, is opening more opportunities to complement standard sources

of information from gauges or remote sensors (Eilander et al., 2016). In fact, information from pictures

(e.g., Fohringer et al., 2015; Giuliani et al., 2016; Smith et al., 2015; Starkey et al., 2017), videos (e.g.,

Aronica et al., 1998; Le Boursicaud et al., 2016; Le Coz et al., 2016; Michelsen et al., 2016), or opinions shared

within social networks (e.g., Flickr and Twitter) have been increasingly and successfully used in combina-

tion with traditional measurements to better identify in (near) real‐time flood extent areas (Brouwer et al.,

2017; Eilander et al., 2016; Fohringer et al., 2015; Li et al., 2017; Schnebele et al., 2014; Smith et al., 2015;

Sun et al., 2015). Among these pioneering studies, Rosser et al. (2017) proposed a data fusion method to

rapidly estimate flood inundation extent by combining observations from remote sensing, social media,

and high‐resolution terrain mapping. In Restrepo‐Estrada et al. (2018), social media messages and rainfall

measurements from authoritative sources are used to create a proxy variable for rainfall, which is then used

as input to a hydrological and hydraulic model for improving flow estimation. Wang et al. (2018) used social
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media and crowdsourcing to complement the traditional data sets and remote sensing data to properly assess

flood extent. The authors pointed out that Twitter data seem to be weakly correlated with rainfall for flood

modeling purposes.

Despite these recent studies, only few research activities assessed the usefulness of qualitative observations

for hydrological and/or hydraulic modeling purposes. For example, Seibert andMcDonnell (2002) developed

an approach to calibrate hydrological models using both quantitative and qualitative data provided by expert

users. Kovitz and Christakos (2004) assimilated fuzzy (i.e., qualitative) data sets assigning probabilities of

plausible events based on general knowledge through information maximization and then applying

Bayesian maximum entropy method. Ross et al. (2008) developed a fuzzy Kalman filter in which the initial

estimate of the hydraulic conductivity field is based on expert judgment. Starkey et al. (2017) achieved sub-

stantial improvement in the spatial and temporal characterization of the catchment response when tradi-

tional network is complemented with community‐based qualitative and quantitative observations

(citizens' readings of water level gauge, pictures, and videos collected from Twitter, and other crowdsourced

sources as email, website, andmobile app) for modeling purposes. Despite the encouraging results, these stu-

dies showed that expert knowledge can be used to provide a preliminary information of a given hydrological

variable (e.g., hydraulic conductivity in Ross et al., 2008) to then be updated by more reliable and precise

data from traditional sensors.

However, none of the previous studies jointly used qualitative observations and hydrological models for

improving river flow assessment. For this reason, the aim of this research is to improve flood estimation

by developing and testing different approaches for updating model states and output by integrating qualita-

tive flow observations into a lumped hydrological model. In particular, Kalman filter (KF) and Interacting

Multiple Model (IMM), which was used in missile tracking applications (Bar‐Shalom et al., 2001;

Cooperman, 2002), are used as model state update methods, while a fuzzy error corrector used in robot track-

ing (Moulton et al., 2001) is used as the model output correction method. These approaches are applied in

five different river reaches in the United States, for a total of 100 flood events of various durations.

2. Methodology

2.1. From Qualitative Information to Fuzzy Flow Observations

Qualitative observations provide linguistic information about a certain physical variable. For example, dur-

ing a flood event, information of high water levels or intense precipitationmay be shared by people on social

networks (as reported in Figure 1). However, the underpinning assumption of any traditional mathematical

model implementation is its requirement of quantitative data. Therefore, for a qualitative information to be

integrated into a model, it needs to be converted into a quantitative value first.

Usually, integration of quantitative measurements within mathematical models requires indication of the

observations accuracy, expressed as probability distribution. However, a qualitative information can be also

described in possibilistic terms rather than probabilistic, that is, by the language of fuzzy logic, and there are

multiple examples of this in various areas. The methodology we are proposing here is based indeed on the

use of fuzzy logic, rather than probabilistic approaches, to represent uncertainty in qualitative

flow observations.

Examples of fuzzy descriptors of qualitative observations are reported, for example, by Ross et al. (2008) and

Salinas et al. (2015), who converted linguistic characteristics of hydraulic conductivity from expert users

(Ross et al., 2008) and historical qualitative flow (Salinas et al., 2016) into fuzzy observations by means of

specific values of membership functions (similar to the ones represented in Figure 2). These membership

functions may be wider or narrower depending on the vagueness of the statements.

In our study, flow is categorized based on predefined five‐class fuzzy sets (dry, low, medium, high, and

extreme flow) according to the statistical characteristics of the historical observed flow values. The feasibility

interval of the five classes is represented by the 0.01 and 0.99 quantiles q0.01 and q0.99 (see Figure 2). Fuzzy

sets are defined as equally spaced within the interval. The membership to each category is characterized by a

trapezoidal or triangular functions with support (base of the triangular function) estimated as a linear func-

tion between the difference of two adjacent fuzzy cores and coefficient α (e.g., Lup in Figure 2). A higher

value of the α coefficient corresponds to a bigger overlap between adjacent fuzzy sets (i.e., higher
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uncertainty). We considered two different coefficients α, αΟ and αM used to identify the fuzzy class support to

the observations and the model output. The different values of αΟ and αM are described in section 3.

Moreover, D, L, M, H and E are the fuzzy cores of the Dry, Low, Medium, High, and Extreme flow fuzzy

classes, respectively. The 0.01 and 0.99 quantiles are used to define the dry and extreme core values of the

flow sets and indirectly also the low, medium, and high sets.

Based on the fuzzy sets illustrated in Figure 2, we considered two possible alternatives to assign a quantita-

tive value to qualitative flow information. In the first approach, the qualitative information is converted into

Figure 1. Example of tweets reporting qualitative flow observations from several random Twitter accounts.

Figure 2. Classification of the five fuzzy sets used to classify qualitative river flow classes (dry, low, medium, high, and

extreme) in case of two different hypothetical α values, where α1 < α2 represents the fuzzy support and μ(Q) is the

membership function. Calculation of the fuzzy cores D, L, M, H, and E and upper extreme of the low fuzzy set class L
up

is

presented in the right part of the figure.
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a deterministic value represented by the core value of the considered fuzzy set. However, in case of qualita-

tive observations the observed true flow value might be any within the assigned fuzzy set. For this reason, in

the second approach, an ensemble of flow observations is randomly generated within the range of the fuzzy

set class in which the qualitative observation falls. For each ensemble member, the membership function

value is actually treated as probability—to be further used in calculations by the data integration procedures.

2.2. Hydrologic Routing Model

The hydrologic routing method implemented in this study is the three‐parameter Muskingum model

(Musk3p) developed by O'Donnell (1985). This model is based on the same assumptions of the standard

Muskingum method, with the difference that an additional model parameter is included to account for pos-

sible distributed lateral flow along the river reach. As described in O'Donnell (1985), in case of distributed

lateral flow the Muskingum model can be represented as

QD
tþ1 ¼ C1Q

U
t þ C2Q

U
tþ1 þ C3Q

D
t (1)

where QU and QD are the upstream and downstream flows (model output), t is the time index, and C1, C2,

and C3 are the model coefficients, which are estimated as

C1 ¼ 1þ εð Þ·
0:5·Δt þ K·X

K· 1−Xð Þ þ 0:5·Δt

C2 ¼ 1þ εð Þ·
0:5·Δt−K·X

K· 1−Xð Þ þ 0:5·Δt

C3 ¼
K· 1−Xð Þ−0:5·Δt

K· 1−Xð Þ þ 0:5·Δt

(2)

where Δt is the model time step (hours), X is a weighting factor, K is the parameter function of the storage

constant (hours), and ε is a parameter representing the distributed lateral inflow. If no lateral inflow is pre-

sent, ε equals zero and the coefficients in equation 2 are equivalent to the ones proposed in the standard for-

mulation of the Muskingum model (Todini, 2007).

The state‐space form of Musk3p can be expressed by means of states and measurements equations. The

model states at time t + 1, that is, the streamflow Q, are expressed as a function of the model states at time

t based on the following standard system model formulations typically used in data assimilation

(Georgakakos et al., 1990):

xtþ1 ¼ Φxt þ ΓI t þwt (3)

where x is the nstate × 1 model state matrix representing the calculated streamflow at each river reach, nstate
is the number of reaches into which the river is divided, It is the upstream boundary conditions vector

(defined as [Qu
t ;Qu

tþ1]), and wt is the white noise vector (a diagonal matrix nstate × nstate) with zero mean

and covariance S. The matrix Φ (nstate × nstate) is the state‐transition matrix, and Γ (nstate × 2) is the

input‐transition matrix. Both Φ and Γ are functions of the three model coefficients C1, C2, and C3, derived

based on equation 1, following Georgakakos et al. (1990) in the general case of nstate > 1.

The corresponding measurement equation representing the flow along the river channel, is expressed as

ztþ1 ¼ Htxtþ1 þ vt (4)

where zt is the nobs × 1 observation matrix representing the streamflow at the observation location,H is the

nobs × nstates output matrix, and vt is the measurement noise represented by normal distribution with zero

mean and covariance R.

In this study, a lumped version of the Musk3p model is applied on all river reaches. Therefore, nstates is set

equal to 1 and consequently the model states matrix corresponds to the scalar streamflow value at the outlet

of the river reach. For this reason, the matrix H is set equal to 1. It is worth noting that a distributed model

structure may allow to provide more information regarding flow propagation for long river reaches.

However, a comparison between integration of flow observations in lumped and distributed model
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structures, using different model updating methods, has been already carried out in Mazzoleni, Alfonso,

et al. (2017) and Mazzoleni, Chacon‐Hurtado, et al. (2018). In those studies, the authors also accounted

for other sources of uncertainty, related to estimation of model error covariance matrix and to location of

the assimilation point. Because of this, we decided to test our new approaches using the lumpedmodel struc-

ture and thus avoid other sources of uncertainty (e.g., related to model calibration and to choice of model

spatial and temporal time steps), which may additionally affect assimilation performances. In addition,

we believe that the use of a lumpedmodel is legitimate due the fact that the flow observations are assimilated

only at the river outlet and not at internal points.

2.3. Model Updating

Model updating methods are used for integrating the real‐time observations within mathematical models

and thus to correct model input, states, parameters, or outputs to reduce model uncertainty (Lahoz et al.,

2010; Liu et al., 2012; Refsgaard, 1997; WMO, 1992). In this study, states updating and output correction

methods are used to improve flow estimation. This is done by integrating hourly (model updating frequency)

fuzzy flow observations derived from qualitative information. In case of hydrologic routing methods, regard-

less of the lumped or distributed structure, river flow (which is the observed and assimilated variable) cor-

responds to the state of the model. For this reason, the integration of flow observations would update

model states using both output correction and model states techniques. Therefore, an updated estimate of

the initial state can be used to initialize flow prediction. However, in this study no flow prediction is pro-

vided. It is worth noting that output correction methods applied to a lumped hydrological model (e.g.,

HBV model) would only provide correction of the output at the current time step while no update will be

performed to the model states.

2.3.1. States Update

One method we used to update model states is the KF (Kalman, 1960). KF is a mathematical tool that

allows for estimating the model states of a linear system, in an efficient optimal recursive way, as the

response to new available hydrological noisy observations (Heemink & Segers, 2002; Kalman, 1960; Liu

& Gupta, 2007; McLaughlin, 2002; Walker & Houser, 2005). The KF method can be divided into two

parts: the update (or analysis) and the forecast (or background). The update equations are generally

expressed as

K t ¼
P−t H

T

HP−t H
T þ Rt

(5)

xþt ¼ x−t þ K t· Q
O
t −Hx−t

� �
(6)

Pþ
t ¼ I−K tHð ÞP−t (7)

where K is the nstates × nobs Kalman gain matrix, P is the nstates × nstates error covariance matrix, and QO is

the real‐time vector of flow observations. Because of the lumped nature of the Musk3p model, QO, K, and P

are reduced to scalars.

The forecast equations use the system model formulation in equation 3 and are as follows:

P−tþ1¼ΦPþ
t Φ

T þ ΓMbΓ
T þ St (8)

whereMb is the 2 × 2 covariance matrix of the boundary conditions matrix I of equation 3, the superscript +

indicates the updated states values, while the superscript − represents the background estimates. An impor-

tant aspect of the correct implementation of KF is the proper estimation of model covariance matrix S. An

overview on the methods used to calculate model error is given by Maybeck (1982). The value of the nstates
× nstates model covariance matrix S is estimated as

St ¼ γ·xtð Þ2 ¼ γ2xtx
T
t (9)

where γ is the coefficient that may take different values depending on the assumptions about the model

error; they are reported in section 2.4. Similarly, the nobs × nobs observational error matrix can be esti-

mated as
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Rt ¼ β·QO
t

� �2
¼ β2QO

t Q
O;T
t (10)

where β is the coefficient related to observation error ranging between 0 and 1, as defined later in section 3,

and T indicates the transposed matrix. Because of the lumped structure of the model, the matrices S and R

are considered to be scalar values.

The presented procedure is applied for the integration of one single fuzzy observation (corresponding to the

core value of the flow fuzzy class) each hourly model time step within the Musk3p. On the other hand, in

case of the ensemble of fuzzy flow observations it would be natural to use multiple updating filters for each

member of the fuzzy observations ensemble. We decided to modify the IMMs approach (originally proposed

used by Bar‐Shalom et al., 2001 and Cooperman, 2002) to integrate each observation within the Musk3p

model. In his study, Cooperman (2002) developed a tactical ballistic missile tracker within an IMM frame-

work in order to fuse measurements from multiple sensors in the three different models representing the

boost, the exo‐atmospheric, and the endo‐atmospheric phases of a flight. An IMM framework can be divided

into the three main parts: (a) interaction, (b) filtering, and (c) combination. The initial condition for each

model is obtained from the state estimates of the filter at previous time steps. Then, multiple model updating

methods (e.g., KF) are applied to the models to update them as a response to the observed data. Finally, a

weighted combination of the updated states and models covariance matrices is performed yielding the com-

bined estimation of x and P.

However, we did not apply IMM in case of multiple models but in case of single model and multiple obser-

vations. For this reason, in this modified version of the IMM the updating part of the assimilation process

(equations 5–7 for the KF) consists only in the filtering and combination phases (Figure 3), while the inter-

action phase is not considered.

The first step in our approach is the implementation of the observations ensemble. The ensemble of

fuzzy flow observations QO is randomly generated at each time step, by sampling from the minimum

and maximum value of the membership function range in which an observation falls. During the updat-

ing phase, we used the filtering equations 5–7 to assimilate each flow ensemble member. Then, in addi-

tion to the updated values of x and P, we also estimated the likelihood of the observations for each

filter as

Λi
t ¼ N vit; 0; Sit

� �
(11)

where v is the observation error. Then, the probability of each filter i and time step t is estimated as

Figure 3. Schematic representation of the modified IMMprocedure with both filtering and combination steps reported. In

particular, P indicates the error covariance matrix, x is the model state, Q
O
the ensemble of fuzzy observations, c is a

normalizing factor, Λ the likelihood of the observations, ψ is the probability of each filter KF, where the superscript

number indicates the ensemble member. IMM = Interacting Multiple Model; KF = Kalman filter.
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ψi
t ¼

1

c
Λi
t·μ Qð Þit (12)

where c a normalizing factor calculated as

c ¼ ∑
Nens

i¼1

Λi
t·μ Qð Þit (13)

whereNens is the ensemble number and μ(Q) is the membership function value for the giver ensemble mem-

ber i.

In the combination part, the combined values of the states and covariance matrices are estimated as

bxt ¼ ∑
Nens

i¼1

ψi
t·x

i
t (14)

bPt ¼ ∑
Nens

i¼1

ψi
t× Pi

t x
i
t−
bxt

� �
xit−bxt
� �Tn o

(15)

The updated values of x and P are then used for the next model time step where the procedure is repeated for

the new observations ensemble (see Figure 3). It is worth mentioning that ensemble Kalman filter (EnKF)

could also be considered as a possible state updating method instead of IMM as both can be applied in case

of an ensemble of observations. However, due to (a) the type of probabilistic distribution of the flow ensem-

ble, (b) the linear nature of the Musk3p model, and (c) applicability of IMM for multiple independent flow

observations, we decided to implement the IMM method instead of EnKF.

The first reason is related to the type of probabilistic distribution used in this study to convert the fuzzy infor-

mation in an ensemble of quantitative flow observations. We adopted a uniform distribution for the obser-

vations ensemble. However, in case of qualitative observations the ensemble could be associated with any

type of probabilistic distribution, which will result in a nonoptimal implementation of the EnKF. Second,

EnKF is mainly used in case of highly nonlinear models while theMusk3pmodel is linear. Last but not least,

IMM can be applied in case of multiple flow observations that are independently taken and are not gener-

ated as ensemble of a single flow information as for EnKF.

2.3.2. Output Correction

One disadvantage of the state updating methods is the need to quantify the model covariance matrix S (Liu

et al., 2012) which in many practical situation is hardly possible. Therefore, the second approach that we

implemented is the output correction, in which no information regarding model covariance matrix is

required. The approach we proposed to assimilate qualitative streamflow observations is based on the ideas

presented in the study of Moulton et al. (2001), where a Fuzzy Error Correction (FEC) control system is used

to navigate a robot along a path of magnetic disks.

In Moulton et al. (2001), the purpose of the robot is to follow a path defined by a sequence of ferromagnetic

disks located on the floor. It is suggested that the robot can better follow smooth path, while the path of fer-

romagnetic disks can assume any shape. At the bottom of the robot the array of Hall sensors is located, posi-

tioned between the two driving wheels, used to detect the metal disks. The direction in which the robot

moves defines the azimuth of the robot, while the Hall arrays defines the x axis. Each time that the robot

passes over a ferromagnetic disk, one or two sensors of the Hall arrays produce an electric signal that iden-

tifies the position of the disk on the x axis of the robot. The FEC is used to correct the trajectory of the robot

based on the position of the magnetic disk with respect to the array of Hall sensors. The FEC control system

has two inputs: (a) the signal produced by the Hall arrays to identify the location of the disk, and (b) the azi-

muth of the robot indicating its current direction. The output of the FEC control system is the angle of rota-

tion, that is, the error correction of the robot to be added to the azimuth to get the updated direction of the

robot. Ideally, the robot would move directly to the disk in case of steady path. However, because of the ran-

dom location of the ferromagnetic disks the robot will have to adjust its position each moment.

It is suggested that the described approach by Moulton et al. (2001) for robot navigation can be reformulated

for the task of simulated flow correction. In fact, similar to the robot (which has to follow the path made by

ferromagnetic disks), the simulated hydrograph (calculated with the hydrologic model) needs to move
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forward the qualitative flow observations as well. The position of the robot can be seen as the hydrologic

model at a particular time step, the robot trajectory as the simulated flow hydrograph, while the magnetic

disk as the observed flow value.

The idea behind our approach is to correct the direction of the simulated flow hydrograph at the time step t

as a response to the observed qualitative observations using the correction factor in a similar fashion to the

one proposed by Moulton et al. (2001). The only difference is that, while the robot does not have an original

trajectory, the simulated flow has a trajectory defined by the lumped hydrologic routing model. In addition,

the robot can potentially move in any physical direction, while the simulated flow hydrograph can only

move forward positive time directions.

The first step for the implementation of the output updating method is the estimation of the angle of rotation

(AOR) of the simulated flow hydrograph (see Figures 4 and 5) calculated as

AOR ¼ tan
QD
t −Q

D
t−1

dt

� �
(16)

The AOR corresponds to the azimuth direction in the robot application proposed by Moulton et al. (2001),

which can assume values only between the −90° and + 90° range. The preliminary step in the FEC method

is the fuzzification of the AOR together with the model output at time t,

indicated with a and b in Figure 4. It is worth noting that the fuzzification

of the qualitative observation (named c in Figure 4) is already performed

in the previous steps. In particular, the fuzzification of the model output

and qualitative observations at time step t is performed using the fuzzy

sets defined in section 2.2 for different values of the α coefficient reported

in section 3. Regarding the AOR, seven fuzzy sets, Large Negative,

Medium Negative, Small Negative, Zero, Small Positive, Medium

Positive, and Large Positive are identified and shown in Figure S1c of

the supporting information. Similarly, we defined the AOC to be between

−179 and +179° and 13 fuzzy sets are introduced. In addition to the pre-

vious seven fuzzy sets, the other six sets, Large Negative Extreme,

Medium Negative Extreme, Small Negative Extreme, Small Positive

Extreme, Medium Positive Extreme, and Large Positive Extreme, are con-

sidered for the AOC. These extra sets are introduced to account for situa-

tions in which a model, observations, and AOR are in disagreement with

each other. An example of this situation is described below and reported

in Figure 5.

The three fuzzified variables are then fed into a Mamdani's fuzzy infer-

ence system (Mamdani & Assilian, 1975), with the centroid‐based defuzzi-

fication, to calculate the angle of correction (AOC) as reported in Figure 4.

Figure 4. Schematic representation of the output updating method, where Q is the simulated flow, AOR is the angle of

rotation, AOC is the angle of correction, and dAOR is the updated angle of rotation.

Figure 5. Left side: graphical representation of the analogies between flood

prediction problem and robot tracking problem with indication of the main

variables used in the explanatory example of the error correction method

and reported in Table 1.
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As expected, a crucial part of the proposed method is the proper assess-

ment of the fuzzy rule in the Mamdani inference method. The 175 rules

used in the Mamdani inference method are reported in Table S1 as sup-

porting information. For each combination of inputs, there is an asso-

ciated AOC output value, based on the amount of correction necessary

to keep the flow hydrograph trajectory close to observations. It can be

noted that there is a certain amount of symmetry present in the fuzzy

rules used to assess AOC. An important assumption made is that when

both the model and observations are in the same fuzzy set, no correction

is made. Moreover, the farther the observation is from the model class,

depending on the model gradient, the larger the AOC will be.

Once the AOC is calculated from the FEC, it is then used to correct the

AOR at time step t (and as a consequence also the flow hydrograph trajec-

tory) and estimate its updated value as

dAOR ¼ AORþ AOC (17)

Based on the updated AOR value, the updated model output bQt is assessed

applying basic trigonometric computations using the model output Q at

time t − 1

bQD
t ¼ QD

t−1 þ atan dAOR
� 	

·dt (18)

Finally, the model output at t + 1 is calculated using bQt within equations 3 and 4.

In order to strengthen the explanation of the output correction approach, a small example is presented in

Figure 5 and Table 1.

In this example, we assumed amodel time step of 10 hr, while in the other experiments we considered hourly

time step. Hypothetical values of model inputs, parameters, and error coefficients are reported in Table 1.

In addition, we assumed four different qualitative flow observation values belonging to the low and dry flow

class (see Figure 5). The Musk3P model of equation 3 is used to calculate the value of QD at time step t1, for-

cing the model with the information of upstream and downstream simulated flow at t0. Then, the AOR at t1
is calculated using equation 16. Knowing the value of AOR, simulated flow, and qualitative flow observa-

tions, it is possible to use them as input in the FEC. Their corresponding fuzzy classes are reported in

Figure S1 and derived from the values αO, αΜ, and fuzzy set cores.

From Table 1 it can be observed that simulated flowQD
t1 tends to overestimate the observed fuzzy valueQobs

t1

and has a high value of AOR in the range of Medium Positive (angle). In order to correct the model trajectory

toward the lower values of flow, the resulting AOC provides a negative correction value to force the model

toward the low flow. The derived AOC value is then used to correct the value of AOR, using equation 17, and

the consequent corrected value of bQD
t1 (see equation 18). Finally, bQD

t1 is used in equation 3 to calculate the

corrected value of bQD
t2. This sequence is repeat for each time step in which a flow observation is available.

The aforementioned output correction procedure refers to the case of qualitative observation being equal to

the core of the corresponding fuzzy set. When an ensemble of observations is considered, the FEC procedure

is applied to each ensemble member of the observation vector QO. The corresponding model output is then

calculated as the arithmetic average of the ensemble model output. In the following, the ensemble variant of

the FEC method is called EnsFEC.

One of the limitations of the output correction methods is the lack of a spatial error covariance for a distrib-

uted structure of the Musk3p model. In fact, once a given flow observation is integrated at a specific location

of the river, the updating benefits come from two aspects: (a) from the downstream propagation of the

updated river flow following the state‐space equation of the Musk3p model (see equation 3); and (b) from

a distributed update along the river reach due to the spatial characteristic of the covariance error (e.g., the

Table 1

Calculation Results Obtained When Applying Error Correction in the Four

Time Steps Example Showed in Figure 5, Where Model Input, Parameters,

and Error Coefficients Are QU
t0 = 45 m

3
/s, QD

t0 = 75 m
3
/s, K = 2.59 hr, X =

0.14, ε = 0.02, αM = 0.55, and αO = 0.75

t1 t2 t3 t4

Qobs
t (m

3
/s)

50.0 50.0 25.0 25.0

QU
t (m

3
/s)

85.0 75.0 60.0 55.0

QD
t (m

3
/s)

85.8 89.3 78.1 68.5

AORt (degrees) 47.3 64.3 69.2 71.9

AOCt (degrees) −79.9 −123.5 −119.9 −119.9
dAORt (degrees) −32.7 −59.3 −54.4 −47.9

bQD
t (m

3
/s)

68.6 51.8 37.8 26.7

Error (m
3
/s) 18.6 1.8 12.3 1.7

Note. AOR = angle of rotation; AOC = angle of correction; dAOR =
updated angle of rotation.

10.1029/2018WR023768Water Resources Research

MAZZOLENI ET AL. 6096



Kalman gain matrix in case of IMM and KF). For FEC, only the state update due to the downstream flow

propagation of equation 3 is carried out. This will result in a lower model update at the downstream or

upstream location of the assimilation point. Another limitation would emerge if the output correction

method would be used to more complex hydrological models, in which the output updating methods

would only provide a correction of the output while no update will be made to the model states (as in

case of hydrologic routing models). A summary of the features of the state updating and output correction

methods is reported in Table 2.

2.4. Performance Measures

Two metrics are used to assess the improvement in the Musk3p model performance after integrating the

quantitative and qualitative observations. First, Nash‐Sutcliffe efficiency (NSE)

NSE ¼ 1−
∑T

t¼1 Qm
t −Q

o
t

� �2

∑T
t¼1 Qm

t −Q
o� �2 (19)

and, second, bias ratio (BR)

BR ¼
∑T

t¼1Q
m
t

∑T
t¼1Q

o
t

(20)

where Qt
m is the simulated streamflow at time step t; Qt

o is the observed streamflow value; Q
o
is the average

observed streamflow.

3. Experimental Setup

Four numerical experiments are carried out to explore the benefit of assimilating qualitative observations in

hydrological modeling. Different scenarios of observation bias, core (D and E), and support values of the

fuzzy sets to generate fuzzy model output and flow observations (αM and αO) from qualitative indications

are proposed. Model results integrating quantitative flow observations using KF are used as benchmark to

compare the integration of qualitative observations. To assess the sensitivity of states updates to model error,

two different values of model error γ are considered in all experiments: lowmodel error of γ= 0.01 (γlow) and

high model error of γ = 0.1 (γhigh).

In the first experiment, the comparison between the methods used to integrate qualitative observations into

the Musk3p model is carried out. In this case, fixed values of αM, αO, and β are considered (Table 3). The

model fuzzy sets are narrower, that is, more accurate, than the observation fuzzy sets (αM < αO). Both deter-

ministic (KF, FEC) and ensemble (IMM, EnsFEC) methods are used. In this experiment, an ensemble of

flow observations with 100 members is generated.

The second experiment focuses on understanding the influence of the core value of each fuzzy set on the

assimilation of qualitative observations. For this reason, the 0.01 and 0.99 quantile values are perturbed

Table 2

Summary of the Main Features of the State Update and Error Correction Methods Used to Integrate Qualitative Flow Observations

Feature KF IMM FEC EnsFEC

Updated variables Model states Model states Model output Model output

Applicable to Linear models Linear models Any model Any model

Type of errors Observation (β) and model

(γ) errors

Observation (β) and model

(γ) errors

Observation (αO) and model

(αM) errors

Observation (αO) and model

(αM) errors

Type of update Recursive Recursive Recursive (in hydrologic

routing models)

Recursive (in hydrologic

routing models)

Type of observation

error

Normal error Normal error Fuzzy sets Fuzzy sets

Ensemble based No Yes No Yes

Note. KF = Kalman filter; IMM = Interacting Multiple Model; FEC = Fuzzy Error Correction; EnsFEC = ensemble variant of the FEC method.
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adding a uniform noise that varies from zero to λ, a value proportional to the distance between E and D as (E‐

D)/8. In particular, in case of D this noise is added to the 0.01 quantile, while for E it is subtracted from the

0.99 quantile (see Table 3). Because of the approach use to estimate the other core value sets, a change in E

and D generates a resulting proportional variation in L, M, and H.

In the third experiment, the influence of biased qualitative information on the updating performances are

studied. Four different scenarios of biases are considered: (1) no bias, (2) negative bias, (3) positive bias,

and (4) random bias at each time step during the considered flood event. Regardless the type of bias, the

observation classes is biased only by one positive or negative fuzzy class. For example, in case of negative

bias, if the qualitative observation at time t belongs to high flow the corresponding biased flow value is med-

ium flow and not low or dry flow classes.

In the fourth and the last experiments, the effect of the fuzzy sets' support coefficient αO on the estimation of

fuzzy observations is studied. The value of α equal to 0.5 indicates no overlap between sets, while the higher

values represent higher overlap and hence a higher uncertainty. This experiment is carried out only for

ensemble methods (IMM and EnsFEC). In fact, varying the membership functions' support in deterministic

approaches (KF and FEC) would not induce any change in the assimilation performance since the observed

flow value is chosen equal to the core of the fuzzy set, so independent of the set support value. Different

values of observational error (β, model state updating) and fuzzy support coefficient of mode output (αM,

output correction).

4. Material

4.1. Case Study and Data Set

Five rivers in the United States (Figure 6) are included in this study: the McKenzie, Missouri, Allegheny,

Sabine, and Trinity Rivers. These rivers cover a wide range of hydrometeorological conditions, and for each

of these rivers data from an upstream and a downstream gauging station were available.

The McKenzie river extends for about 150 km in the state of Oregon (north‐west United States), draining an

area of about 3400 km2. The Missouri River flows for 3,768 km fromMontana to Missouri (where it joins the

Mississippi River), and it is the longest in the contiguous United States. The drainage area is 1,371,000 km2,

and it is largely semiarid. The Allegheny flows through the Allegheny Plateau of Pennsylvania and New

York (north‐west USA) for about 507 km. The Sabine River is a transboundary river between the states of

Texas and Louisiana and has a drainage area of about 25,270 km2, while the Trinity River flows for 1,140

km across the state of Texas, draining an area of 46,100 km2. For all the river reaches hourly discharge data

(i.e., the same time step of the model time step) are available from monitoring stations managed by the U.S.

Geological Survey (USGS, 2016). Table 4 summarizes the considered upstream and downstream stations for

each river reach, the length of the reaches, and the period of the flow time series (more details are provided

in the next section).

4.2. Model Setup

Model calibration is performed using the least squares minimization technique by means of the Broyden‐

Fletcher‐Goldfarb‐Shanno variant of the Davidon‐Fletcher‐Powell minimization algorithm (Press et al.,

Table 3

Summary of the Experiments Performed in This Study Where αO and αM Are Coefficients of the Fuzzy Set Support for the Estimation of Qualitative Observations and

Modeled Flow Values, γ and β Are the Model and Observation Errors Used in KF and IMM, λ Is a Perturbation Coefficient of the Fuzzy Sets Core, and E and D Are the

Core Values of the Dry and Low Fuzzy Sets, While q0.01 and q0.99 Are the 0.01 and 0.99 Quantiles

Experiment Fuzzy sets αO αM γ β Biased

1 Initial comparison D = q0.01
E = q0.99

0.75 0.55 0.01, 0.1 0.4 No

2 Effect of fuzzy sets core choice D = q0.01 + U(0,λ)

E = q0.99 − U(0,λ)

0.75 0.55 0.01, 0.1 0.4 No

3 Effect of biased observations D = q0.01
E = q0.99

0.75 0.55 0.01, 0.1 0.4 Yes

4 Effect of fuzzy sets support choice D = q0.01
E = q0.99

[0.5, 1.5] 0.5, 1.0, 1.5 0.01, 0.1 0.2, 0.4, 0.6 No
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1992). The use of gradient‐based technique in this case is possible due to the analytical representation of

model equations and differentiability of the error function. The optimal model parameters are reported in

Table 5. The flow data period is divided in two sets for model calibration and validation. Because the

Musk3p model for the Trinity and Sabine Rivers was already calibrated by Lee et al. (2011), the same

optimal parameter sets are used in this study. On the other hand, the model for the remaining three river

reaches is calibrated using the aforementioned approach for the periods from 1 January 1991 to 7 March

2001 (McKenzie River), 1 January 1991 to 18 February 1996 (McKenzie River), and 15 December 1991 to

6 August 1999 (Allegheny River). The resulting calibrated hydrographs for the three river reaches are

Table 4

Characteristics of the Selected River Reaches in Terms of River Length, Upstream and Downstream Station and Duration of the Flow Data Period Used for Model

Calibration and Validation

River Upstream station Downstream station Reach length Flow data period

McKenzie Leaburg dam Vida 12 km October 1989 to November 2017

Missouri Nebraska city Rulo 80 km December 1991 to November 2017

Allegheny Kittanning Natrona 25 km December 1991 to November 2017

Trinity Rosser Trinidad 78 km January 2007 to January 2015

Sabine Bon Wier Deweyville 88 km January 2007 to January 2015

Figure 6. Location of the five river reaches and corresponding upstream and downstream flow stations.
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reported in the supporting information. The NSE values obtained by using

the calibrated sets of parameters for the three river reaches are reported in

Table 5. During the validation period, 100 major flood events (20 events

per reach) occurred during the flow data period are subjectively selected

to assess the proposed methodology.

4.3. Synthetic Qualitative Observations

To explore the benefits of the proposed approaches under controlled

experimental conditions, different assumption of fuzzy classes features,

and due to the lack of real data, synthetic qualitative flow observations

are used. As mentioned in section 1, one potential application of our

approach could be the integration of qualitative flow observations pro-

vided by people using social media in hydrologic routing models. For this reason, the observed flow value

used as input in our experiments is considered to belong to only flow class, for example, low flow.

In order to generate synthetic observations of flow classes we used observed quantitative flow observations.

A number of fuzzy sets are created (using αO= 0.5 in order to avoid any overlapping between sets) to identify

the flow classes for each river reach. Then, the observed flows are combined with the fuzzy set information to

identify in which flow class each flow observation belongs and provide an indication of the qualitative flow

observation class.

Figure 7 show the comparison between quantitative and qualitative observations for five randomly selected

flood events occurred in the river reaches of this study. The ensemble of qualitative observations is generated

by sampling from a uniform distribution with the ranges coinciding with the support of a fuzzy set.

5. Results and Discussions

5.1. Experiment 1: Initial Comparison

The aim of this experiment is to compare states and output correctionmethods in case of base assumption on

model (γ) and observation errors (β). Fixed values of αΟ and β are used (see Table 3), and Nens is set equal to

100 to properly represent all the streamflow values belonging to a specific fuzzy set. Experiment 1 is then

Table 5

The Optimal Sets of Parameter Values for the Musk3p Model Implemented

Along the Five River Reaches

Parameters Trinity Sabine McKenzie Missouri Allegheny

K (hr) 47.28 78.97 2.59 10.75 15.62

X (−) 0.47 0.35 0.024 0.021 0.011

ε (−) 0.109 0.105 0.233 0.132 0.190

NSE 0.67 0.90 0.95

Note. The last row indicates the NSE values achieved in calibration. (No
NSE value is reported for the Trinity and Sabine rivers as they have been
calibrated in previous studies.) NSE = Nash‐Sutcliffe efficiency.

Figure 7. Comparison between quantitative and qualitative flow observations calculated with αO = 0.5 for the five selected flood events occurred in the river

reaches. The ensemble of qualitative flow observations is represented by the light blue shaded area, while D, L, M, H and E represents the fuzzy cores for the

dry, low, medium, high, and extreme flow classes.
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performed using all the 100 flood events occurred in the five case studies. KF assimilating quantitative flow

observations is used as the benchmark to compare the other techniques. The outcomes of Experiment 1 are

summarized in Figure 8, where the mean of the NSE and BR indices of each updating method (estimated for

each flood event) are compared.

Overall, integration of qualitative observations improves model performances if compared to the model

results without update. Output correction approaches tend to provide lower results than model states updat-

ing. It can be observed that the results obtained with KF and IMM with γlow in most of the river reaches are

comparable to the ones achieved without model update (NoDA) in both NSE and BR. On the other hand,

assimilation of qualitative observations using KF and IMM for γhigh values gives satisfactory improvement.

However, opposite outcomes are achieved for the Missouri River, where μ (NSE) values are higher for KF

and IMMwith γlow than with γhigh. This can be related to the combined effect of qualitative observations that

tend to misrepresent streamflow observation and to the γhigh value that is driving the model closer to the

qualitative observations. In fact, for γlow, less trust is given to observations, and the model results are actually

better than for the γhigh values. This brings us to a conclusion that assimilation of uncertain qualitative

observations is not always beneficial to improve the model output if high model errors are assumed.

Overall, underestimation of the river flow is observed on all the river reaches, with the exemption of the

McKenzie and Trinity Rivers. In particular, on the Trinity River such overestimation is significant for

NoDA, FEC, and EnsFec methods. This can be due to the slow response of the output correction methods

to improve overestimated simulated flow integrating qualitative observations in steep rising hydrograph.

A possible solution could be to change the fuzzy set rules of the FEC in order to provide amore negative value

of AOC when simulated flows are in high flood classes (e.g., H and E) and observed flows are in low classes.

One can see that on average, the output correction methods typically slightly improve NSE values if com-

pared with the ones obtained without update. For the Missouri and Allegheny Rivers, output correction

shows similar and lower NSE values than the ones without model update. However, the FEC and

Figure 8. Average values of NSE (μ (NSE), first row) and BR (μ (BR), second row) calculated considering the 20 flood

events occurred in each of the 5 case studies (different color lines) for all updating methods (with low and high values

of model error γ) and model without update (NoDA) KF = Kalman filter; IMM = Interacting Multiple Model;

FEC = Fuzzy Error Correction; NSE = Nash‐Sutcliffe efficiency; BR = bias ratio.
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EnsFEC methods give higher μ (NSE) and lower σ (NSE) values than KF with γlow. On average, FEC and

EnsFEC show comparable BR values.

Last but not least, performances of ensemble methods like IMM and EnsFEC are slightly higher than those

obtained using their corresponding deterministic approaches (KF and FEC). In particular, IMM gives similar

μ (NSE) and σ (NSE) values to KF in case of γlow (less assimilation effect), while results of IMM are better

than KF with γhigh. On the other hand, outcomes of EnsFEC are comparable to the ones achieved with

FEC for the Missouri and McKenzie Rivers, while they are worse for the other three river reaches.

Integration of qualitative flow observations are highly dependent on the characteristic of the fuzzy sets used

to calculate qualitative observations. The following experiments are specifically designed to address

this issue.

5.2. Experiment 2: Effect of Fuzzy Sets Core Choice

In Experiment 2, several scenarios of core values for dry and extreme flow sets (D and E) are introduced for

representing the uncertainty in the proper characterization of fuzzy sets and the effect on the assimilation

performances. In this way, different values of L, M, and H are also generated. The outcomes of

Experiment 2 are summarized in Figure 9. Only KF and FEC methods are considered at this stage because

of the similar model performance achieved using the ensemble methods. As for Experiment 1, a better μ

(NSE) is found for the model error γhigh in all the three river reaches displayed in Figure 9. KF with γlow
and FEC show similar performances in the Sabine and Allegheny Rivers. In addition to these outcomes,

Experiment 2 provides the other two important outcomes.

The first one is that model results obtained with KF for γlow are not influenced by the different characteriza-

tions of fuzzy sets, and, in general, by the assimilation of fuzzy observations. Similar weak dependency can

be also seen for FEC. In fact, also for μ (NSE) there is no a clear correlation between μ (NSE) and the varia-

tion of E and D. Hence, the FEC method can be considered a useful approach when it is difficult to define a

priori the characteristics of the fuzzy sets.

On the other hand, the results of KF with γhigh show higher μ (NSE) variability than the other two

approaches. In particular, model output is more sensitive to the value of the dry fuzzy set rather than the

extreme flow set in the Trinity and Sabine Rivers, while a mixed effect can be observed in the Allegheny

River. Figure 9 shows the results achieved only on three river reaches as small variations of NSE are obtained

with the McKenzie River (which does not allow to draw any general conclusions about influence of D and E

values), while similar results are obtained on the Missouri River. The results for the McKenzie and Missouri

Rivers are included as the supporting information.

5.3. Experiment 3: Effect of Biased Observations

In order to evaluate the effect of biased qualitative (fuzzy) observations on the model output, four diverse

scenarios are considered: (1) no bias, (2) negative bias, (3) positive bias, and (4) random bias at each time

step. All updating methods are considered. In case of random bias, 100 simulations are run to randomly gen-

erate negative and positive biases for each simulation time step. The outcomes are summarized in Figures 10

and 11. As in the case of Experiment 1, μ (NSE) represents the average values of the single NSE obtained in

the 20 flood events occurred on the river reaches. As expected, integrating qualitative observations without

bias outperforms all the remaining three bias scenarios both in terms of NSE and BR.

Positive bias leads to the lowest μ (NSE) in the Trinity and Sabine Rivers, while negative bias leads to worse

performance for McKenzie, Missouri, and Allegheny. Random observation bias tends to provide higher μ

(NSE) value, while μ (BR) values are found always lower than 1 and similar to those obtained integrating

qualitative observations with negative bias. It is worth noting that assimilation of positively biased observa-

tions shows a μ (BR) value higher than 1, as opposed to the negatively biased observations. As expected, low

variations of μ (NSE) and μ (BR) are obtained for γlow as the updated model tends tomistrust the qualitative

observations and no update is performed.

An interesting result is that output correction methods are only marginally affected by different bias scenar-

ios. In fact, small variations of μ (NSE) and μ (BR) are achieved with FEC and EnsFEC (in particular for the

McKenzie, Missouri, and Allegheny Rivers). On the other hand, KF implemented for γhigh shows to be very

sensitive to biased observations.
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As mentioned, the previous outcomes are obtained considering the support of the fuzzy observations sets

(αO) equal to 0.75, without accounting for the uncertain nature of the fuzzy sets definition.

5.4. Experiment 4: Effect of Fuzzy Sets Support Choice

Experiment 4 aims at understanding the effect of different supports of fuzzy sets (αΟ) for the qualitative flow

observations. In addition, different values of model error γ, observational error β, and model fuzzy sets' sup-

port αM are considered as well. Only the ensemble methods IMM and EnsFEC are analyzed as KF and FEC

are not affected by different αO. The range of variation of the coefficient αO is from 0.5 to 1.5 in order to cover

scenarios with no overlap between fuzzy sets (αO= 0.5) and scenarios with extreme overlap between sets (αO
= 1.5). The outcomes of Experiment 4 are summarized in Figure 12. The main finding is that EnsFEC pro-

vides similar model outputs for varying values of αO, as opposed to IMM. In addition, EnsFEC is not very

sensitive to big variation of model fuzzy sets' support αM.

Overall, IMM with γhigh gives higher NSE values than IMM with γlow. In addition, more stable and higher μ

(NSE) values are achieved by IMM with respect to FEC for σO lower than 1. In fact, as in Experiment 1, no

Figure 9. Contour graphs representing the μ (NSE) values obtained from Experiment 2 using different D and E values on the Trinity, Sabine, and Allegheny Rivers

for KF for model error γ having low value (first column), high value (second column), and for the FEC method (third column). Nash‐Sutcliffe efficiency;

KF = Kalman filter; FEC = Fuzzy Error Correction
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assimilation effect is observed for low model error so that also small influence of αO can be observed in the

model results. This means that for low value of observational error, the state updating methods outperform

output correction techniques. However, IMM shows that a significant reduction in the μ (NSE) values is

obtained for αO values higher than 1. Similar trend in μ (NSE) are achieved in the Trinity, Sabine, and

Figure 10. μ (NSE) values obtained in case of different assumptions for the bias of the qualitative fuzzy observations on the five river reaches for all types of updat-

ing techniques with low and high values of model error γ.

Figure 11. μ (Bias) values obtained in case of different assumptions for the bias of the qualitative fuzzy observations on the five river reaches for all types of updating

techniques with low and high values of model error γ.
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Allegheny Rivers. On the McKenzie River the μ (NSE) achieved with IMM is stable and higher than FEC

only for γhigh. A higher variability of model's results is achieved with small values of β, that is, small

observational error and more influence on the state update technique. An interesting behavior can be

observed in the Missouri River, where a drastic reduction of μ (NSE) occurs with IMM for high model

error. This is not due to the low model performances without update but to the misrepresentation of the

observed flow value by the synthetic qualitative observations; as demonstrated in Experiment 1 and

Figure 8. In this way, the γhigh value drives the model closer to the uncertain qualitative observations.

As for the previous experiments, also Experiment 4 shows the importance of an accurate estimation of the

model error γ in state update approaches. For this purpose, data‐driven models estimating model errors

(e.g., Abebe & Price, 2003; Pathiraja et al., 2018) or the model error distribution (Solomatine & Shrestha,

2009) may be useful to apply. In addition, for uncertain estimation of the set support for the fuzzy observa-

tions, output update methods tend to provide more stable results than the state updates techniques.

Experiment 4 strengthens the outcomes of Experiments 2 and 3 and demonstrates that FECmethod can be a

powerful tool when the characteristics of the flow fuzzy sets (core and support values) are not a priori

known. However, the low sensitivity of the FEC method to different cores and supports fuzzy sets' values

does not results in sizeable improvement of the NSE, if compared to data integration is applied as previously

described in Experiment 1 and Figure 8.

6. Conclusions

This study proposes two innovative approaches to integrate qualitative flow observations, expressed as fuzzy

numbers, within a hydrologic routing model. A lumped three‐parameter Muskingum model is used to pro-

pagate river flow. Deterministic and ensemble synthetic qualitative observations are generated based on

observed flow measurements. Two model update methods are implemented: (a) state updating (Kalman

Filter, KF, and IMM) and (b) output correction method (Fuzzy Error Corrector, FEC). The IMM and FEC

methods implemented in this study are based on techniques employed for the problems of missile tracking

and robotics. The methodology is applied to 100 flood events occurred in five river reaches in the United

Figure 12. μ (NSE) values obtained for different values of the coefficient αO on the five river reaches in case of low and high values of model error γ, various assump-

tion on observation error β for IMM method, and three values of coefficient αM for the FEC approach. IMM = Interacting Multiple Model; FEC = Fuzzy Error

Correction; NSE = Nash‐Sutcliffe efficiency.
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States. Different numerical experiments are performed assuming various cores and supports of the fuzzy sets

for demonstrating the pros and cons of assimilating qualitative observations into a hydrologic routing model.

This study demonstrates that qualitative flow observations can provide valuable information for improving

streamflow estimation if integrated within a hydrological model using states or output updating techniques.

We prove that state updating methods are strongly affected by the estimation of the model error, which is in

accordance with the earlier studies on the topic. The model performance after applying KF, in case of low

model error, is comparable to the one without model update, so the assimilation effects are negligible in this

case. When the model error is assumed to be high, KF‐based approaches, unsurprisingly, provide the best

model improvement. However, if streamflow observations are misrepresented by observers, and their esti-

mates are inaccurate, model updating method can bring model closer to uncertain observation and lead to

lower performances than the ones without model update. The comparison between deterministic and

ensemble methods shows a slightly higher performance by the latter.

Different experiments are carried out to investigate the sensitivity of the updating approaches to the charac-

teristics (cores and supports) of the flow fuzzy sets used to estimate the fuzzy flow observations. An impor-

tant result is that the output correction techniques provide robust results when the characteristics of the flow

fuzzy sets are not a priori known and in case of biased fuzzy observations. In fact, output correction methods

show steady performance for any core and support value of the fuzzy sets, although NSE values are lower

than the ones obtained with state updating methods. For high model errors, the experiments show that

the sensitivity to the fuzzy set core values is higher for the state updating methods than that for the output

correction methods. In particular, model performances depend more on the assumed core value for the dry

fuzzy set, rather than of the extreme flow set. Moreover, high NSE values are obtained with IMM for low

uncertainty of the fuzzy sets, while a fast reduction of model performance occurs when such

spread increases.

One of main limitations of the output correction approach implemented in this study is the lack of any spa-

tial error covariance structure for a distributed structure of the Musk3p model. The recommendation for

future study is to include such spatial covariance error using a time invariant gain function to distribute

model errors (based on the error at the measurement point) across the entire state of the river system, in a

fashion similar to the one presented by Madsen and Skotner (2005). Moreover, in case of additional river

reaches, more analysis would be needed to attribute the different performances and sensitivities of the pro-

posed model updating depending on the locations and characteristics of these river reaches (e.g., presence of

hydraulic structures, human footprint, climatic region, etc.). Finally, future research activities should focus

on the integration of qualitative flow observations within a distributed structure of the Musk3p model, on

employment of more complex hydrological models, and on the integration of qualitative flow observations

to complement an existing network of quantitative flow data when the latter is not fully available, either

temporally or spatially.

Overall, this study demonstrates, on a number of examples, the usefulness of using the qualitative flow

observations (represented as fuzzy numbers) in model‐based streamflow estimation, and presents the novel

model updating techniques that could be used to integrate qualitative flow observations posted by people on

social networks.
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