
Integrating Quality of Service Aspects in Top-Down Business Process

Development using WS-CDL and WS-BPEL

Florian Rosenberg, Christian Enzi, Anton Michlmayr, Christian Platzer, Schahram Dustdar

VitaLab, Distributed Systems Group

Technical University of Vienna

A-1040 Vienna, Argentinierstrasse 8/184-1, Austria

{florian, enzi, anton, platzer, dustdar}@infosys.tuwien.ac.at

Abstract

Developing cross-organizational business processes is

a tedious task. The partners have to agree on a com-

mon data format and meaning as well as on the Quality

of Service (QoS) requirements each partner has to fulfill.

The QoS requirements are typically described using Ser-

vice Level Agreements (SLAs) among the partners. In this

paper, we propose a top-down modeling approach for Web

service based business processes to capture the functional

and non-functional aspects using a choreography language

(WS-CDL) which describes the message interactions among

the participants. The choreography is annotated with SLAs

for the different partners. For each partner in the process,

an orchestration (in WS-BPEL) and the necessary Web ser-

vice templates are automatically generated. Additionally,

the Service Level Objectives (SLOs) from the partner SLAs

are automatically translated into policies which can then be

enforced by a BPEL engine during execution.

1. Introduction

Service-oriented architecture (SOA) represents an

emerging paradigm to develop flexible and large-scale soft-

ware systems using the Internet as the main infrastructure.

Web services are one realization of this paradigm by us-

ing well-established standards to describe and interact with

other services1. Web services are “self-describing, open

components that support rapid, low-cost composition of dis-

tributed applications” [13].

Many organizations are building their cross-

organizational business processes based on Web services

because of their platform-agnostic nature and the ease

of integration. Currently available technologies such as

composition engines using the Web Service Business

1In this paper we use the term Web service and service interchangeably.

Process Execution Language (WS-BPEL, or BPEL for

short) [12] can be used to orchestrate business processes

within an organization.

An engineering method for Web service based business

processes involving multiple partners requires an agreement

on the data that is exchanged which can not be achieved

using BPEL. For this purpose, the Web Service Choreog-

raphy Description Language (WS-CDL) [22] provides a

XML-based language to describe the cross-organizational

message exchanges from a global viewpoint. The different

views (local vs. global) are described by the terms chore-

ography and orchestration. Choreography can be defined

as “processes involving multiple services where the inter-

actions between these services are seen from a global per-

spective” [22]. A choreography does not describe any in-

ternal actions that occur within a participating service, such

as internal computation or data transformation, but rather

focuses on the observable public exchange of messages. In

contrast to that, Peltz [14] defines orchestration as an “exe-

cutable business process that can interact with both internal

and external Web services. The interactions occur at the

message level. They include business logic and task exe-

cution order, and they can span applications and organiza-

tions to define a long-lived, transactional, multistep process

model.”

These two concepts imply that such a choreography de-

scription can be used to generate the orchestration behavior

(e.g., in the form of BPEL stubs) and the necessary WSDL

templates automatically. Nowadays, service level guaran-

tees and obligations among the service providers are be-

coming increasingly important as a mean to capture run-

time quality requirements and guarantees for a partners’ ser-

vice (such as response time, availability as well as security).

Such Quality of Service (QoS) requirements are generally

specified in a Service Level Agreement (SLA) and need to

be fulfilled during the service execution among the part-

ners. Using existing Web service standards and proposals

Customer Manufacturer Supplier CPU Supplier Mainboard Supplier Harddisk

QuoteRequest

orderCPU

CPUOrderResponse

orderMB

MainboardOrderResponse

orderHD

HarddiskOrderResponse

PurchaseOrderResponse

sendPurchaseOrder

requestForQuote

QuoteResponse

QuoteUpdate

loop

opt

PurchaseOrderRequest

QuoteResponse

updateQuote

HarddiskOrder

MainboardOrder

CPUOrder

Figure 1. BTO Case Study

there is currently no integrated modeling method available

to build such cross-organizational business processes con-

sidering SLA requirements as first class citizens from the

starting point of the development process. Additionally, the

orchestration parts and the WSDL files for each partner in

the choreography should be automatically generated.

In this paper, we propose a top-down modeling approach

to build such QoS-aware, Web service based business pro-

cesses using currently available technologies such as WS-

CDL and BPEL. It leverages a design approach for ef-

ficient development of cross-organizational business pro-

cesses similar to the idea of model-driven software develop-

ment (MDSD) [18]. A novelty of this approach is the con-

sideration of SLA requirements from the beginning of the

choreography development process. These SLA require-

ments are then automatically transformed and mapped to

a WS-QoS policy and attached to the BPEL process of the

affected partner allowing policy-aware middleware to check

and enforce the SLA.

This paper is organized as follows: Section 2 describes

the case study we implemented for evaluating the concepts

of this work. Section 3 introduces the basic concepts of

this paper whereas Section 4 describes our main approach

for realizing QoS-aware business process development. The

implementation of this approach is sketched in Section 5

followed by an evaluation in Section 6. Section 7 positions

our approach among existing work and finally, Section 8

concludes the paper.

2. Case Study

In this case study we developed a Build-to-Order (BTO)

scenario in the B2B area. The use case consists of a cus-

tomer, a manufacturer, and suppliers for CPUs, main boards

and hard disks. The manufacturer offers assembled IT hard-

ware equipment to its customers. For this purpose the man-

ufacturer has implemented a BTO business model. It holds

a certain part of the individual hardware components in

stock and orders missing components if necessary. In the

implemented BTO scenario, the customer sends a quote re-

quest with details about the required hardware equipment

to the manufacturer. The latter sends a quote response back

to the customer. As long as customer and manufacturer do

not agree on the quote, this process will be repeated. If a

mutual agreement was achieved the customer sends a pur-

chase order to the manufacturer. Depending on its hardware

stock the manufacturer has to order the required hardware

components from its suppliers. If the manufacturer needs to

obtain hardware components to fulfill the purchase order he

sends an appropriate hardware order to the respective sup-

plier. In turn the supplier sends a hardware order response

to the manufacturer. Finally, the manufacturer sends a pur-

chase order response back to the customer. The interactions

of the participants in our BTO scenario are illustrated in the

collaboration sequence diagram shown in Figure 1.

The BTO scenario consists of six different Web service

invocations which correspond to the following SOAP

operations: requestForQuote, updateQuote,

sendPurchaseOrder, orderCPU, orderMB,

orderHD. Each SOAP operation depicts a synchronous

message request-reply scenario which will be illustrated

exemplary for the requestForQuote operation. The

customer invokes the operation requestForQuote

on the service interface of the manufacturer sending the

QuoteRequest message. The manufacturer receives

the message request and replies to the service invocation

be returning the QuoteResponse message. Contrary

to this, an asynchronous message scenario would require

additional callback operations on the service requestor

side. In this case the manufacturer invokes an operation

requestForQuoteCallback on the service interface

of the customer to send back the QuoteResponse.

The definition of SLA and QoS plays a crucial rule in

cross-organizational business processes. Each participant

offers services to other partners over the Internet which the

latter need to run their businesses. Therefore, a certain de-

gree of reliability concerning response time, throughput,

uptime, etc. is desired and has to be specified and explicitly

expressed from the beginning of the modeling phase. In our

scenario we distinguish four different relationships between

the choreography participants. The customer interacts with

the manufacturer, the manufacturer interacts with different

suppliers. For each relationship an SLA is defined between

the partners to regulate this degree the partners need for

their business.

3. Basic Concepts

In this section we introduce the basic concepts and tech-

niques we use in our approach including some illustrating

examples.

3.1. An Overview of WS-CDL

WS-CDL represents a non-executable XML-based spec-

ification language which allows each involved party to de-

scribe its part in the message exchange by specifying details

on collaborations, information handling and activities. In

the following paragraphs we introduce the basic concepts

by using the case study from Section 2 to illustrate some

WS-CDL examples.

Collaborations. The collaborations of a choreography

are specified by defining participantTypes, role-

Types, relationshipTypes and channelTypes.

These declarations define the collaborating participants and

their coupling.

A participant type declares an entity playing a particular

set of roles in the choreography. Thus a participant-

Type definition contains one or more roleType defini-

tions.

A role type defines a role that enumerates the observ-

able behavior a participant can exhibit in order to interact

throughout a message exchange. A roleType definition

declares a behavior interface which identifies a WSDL in-

terface type.

The relations between roles are defined through

relationshipType definitions. A relationship type

always contains exactly two roleTypes, restricting the

relationshipType definition to 1:1 relations.

A channel type definition specifies where and how in-

formation between participants is exchanged by defining a

reference to a role type which is the target of an informa-

tion exchange (either the receiver of a message request or

the sender of a message reply). This role type reference in-

dicates the behavior interface which is used throughout the

information exchange.

Information Handling. The definition and handling

of information within a choreography is performed by

informationTypes and variables.

Information used within a choreography is specified by

informationTypes which do not directly reference

data types but rather reference type definitions. Such a ref-

erenced type definition can be either a WSDL 1.1 Message

type, an XML Schema type, a WSDL 2.0 Schema element

or an XML Schema element.

Variables capture information about objects in a

choreography such as the information exchanged or the ob-

servable information of the roleTypes involved and are

either bound to informationType or channelType

definitions.

Activities. A choreography comprises three different

types of activities, namely ordering structures, workunit,

and basic activities.

Ordering structures are block structured, enclosing a

number of activities or ordering structures which can be

used recursively. Such activities include sequence for

handling activities in sequential order, parallel for a

parallel execution of activities, and choice for handling

data or event-driven conditions.

Workunits prescribe the conditional execution of an ac-

tivity. This conditional execution can either be repetitive

(attribute repeat is set to true), competitive (multiple

workunit activities are defined inside a choice activity) or

blocking (attribute block is set to true). The conditional

statement is defined by the attribute guard which specifies

a Boolean conditional expression according to the XPath

1.0 lexical rules. In Listing 1, an example with competitive

guard conditions from our case study is depicted. If there

are no CPUs in stock they are ordered from the supplier,

otherwise available CPUs are selected.

✞ ☎
<c h o i c e>

<w o r k u n i t name="Choice_CPUNotInStock"

guard ="cdl:getVariable(’CPUNotInStock’,’’,’’)>0">

<!−− s e l e c t a v a i l a b l e CPUs −−>

</ w o r k u n i t>

<w o r k u n i t name="Choice_CPUInStock"

guard ="cdl:getVariable(’CPUNotInStock’,’’,’’)=0">

<!−− o r d e r CPUs from s u p p l i e r −−>

</ w o r k u n i t>

</ c h o i c e>
✝ ✆

Listing 1. Workunit Example

Basic activities define interactions, actions or variable

assignments of the choreography flow. An interaction ac-

tivity defines the information to be exchanged and by what

means this information exchange will be performed. The

attribute channelVariable binds the interaction to a

channelType and therefore to a specific WSDL inter-

face. The attribute operation corresponds to a SOAP

operation which is defined throughout this WSDL inter-

face description. The element participate defines the

requesting and receiving part of the interaction. Finally

the element exchange defines whether the interaction is

a request or response and which variables will be used

throughout the message exchange. Listing 2 illustrates an

interaction activity which defines a message request from

our case study. Throughout the message request the op-

eration requestForQuote will be invoked at the cor-

responding WSDL interface of the ManRoleType to re-

quest a quote from the manufacturer. The message request

is stored in the variable QuoteRequest. The response

from the ManRoleType has to be modeled as another

interaction (not shown in Listing 2).

✞ ☎
< i n t e r a c t i o n c h a n n e l V a r i a b l e ="tns:QuoteChannelInstance"

name="RequestForQuote" o p e r a t i o n ="requestForQuote">

<p a r t i c i p a t e fromRoleTypeRef="tns:CustRoleType"

r e l a t i o n s h i p T y p e ="tns:CustMan"

t oRoleTypeRef ="tns:ManRoleType" />

<exchange a c t i o n ="request" name="request"

i n f o r m a t i o n T y p e ="tns:QuoteRequest" >

<send v a r i a b l e ="cdl:getVariable(

’QuoteRequest’,’’,’’)" />

<r e c e i v e v a r i a b l e ="cdl:getVariable(

’QuoteRequest’,’’,’’)" />

</ exchange>

</ i n t e r a c t i o n>

✝ ✆

Listing 2. Interaction Activity

The other basic activities include assign, silent-

Action and noAction. The assign activity enables

the creation and manipulation of variables within the chore-

ography. The silentAction defines a non-observable

behavior which is either performed by one or all partici-

pants in the choreography. A silentAction has to be

further defined in the orchestration layer e.g., in the BPEL

process of the corresponding participant.

A WS-CDL tool suite from Pi4soa [15] is available to

allow the modeling of choreographies without the need to

write the XML representation directly. We also used it to

model our case study presented in Section 2.

3.2. An Overview of BPEL

BPEL defines a model and grammar for describing the

behavior of a business process based on interactions be-

tween the process and its partners. A BPEL process defines

how multiple service interactions with partners are coordi-

nated to achieve a business goal [12].

Each partner interacting with a BPEL process is defined

using a partnerLink. Two different roles (myRole

and partnerRole) exist for a partner link to define the

sending and receiving side of the process. The basic el-

ement in a BPEL process is an activity which come in

two flavors, basic and structured activities. Basic activi-

ties mainly define communication primitives for interacting

with the partner. For example, invoke to invoke a part-

ner service, receive to receive a Web service invocation

in a synchronized scenario. The reply activity is used

to send a response message to a previously received Web

service invocation message. Other basic activities include

onMessage, assign and empty.

Additionally, structured activities are similar to control-

flow constructs in imperative programming languages. In

BPEL, a sequence activity is used to execute a given set

of activities within a sequence. Parallelism can be achieved

by using the flow activity. The while and switch ac-

tivities are used to represent loops and conditional branches

respectively.

The execution of a BPEL process is achieved using an

orchestration engine, such as ActiveBPEL [1].

3.3. Service Level Agreements and Policies

In [9] the authors specify that “Service Level Agree-

ments (SLAs) are agreements between a service provider

and a service consumer and as such define the obligations

of the parties involved.” Such obligations are expressed by

Service Level Objectives (SLOs) on performance and de-

pendability related QoS attributes of Web services. Cur-

rently, two different proposals for specifying Service Level

Agreements exist, namely WSLA [9] from IBM and WS-

Agreement [8] mainly driven by the Grid community.

The WS-Policy family [21] defines an extensible frame-

work to describe capabilities and requirements of services.

For instance, using WS-Policy enables to specify if a ser-

vice requires security or if it supports transactions.

4. Top-Down Modeling Approach

In Section 3, we discussed the concepts of WS-CDL

to describe the participants and their message interactions

within a choreography. In this section, we give an overview

of our top-down modeling approach.

4.1. Overview

As shown in Figure 2, the language constructs of WS-

CDL can be mapped to BPEL allowing a choreography de-

scription to be transformed into separate BPEL processes,

one for each partner in the choreography, including corre-

sponding WSDL descriptions.

CHOREOGRAPHY LAYER ORCHESTRATION LAYER

WS-CDL

PolicyAssertion
PolicyAssertion

WSDLWSDLWSDL

PolicyAssertion
PolicyAssertion

SLA Parameter Policy Assertion

WS-CDL to WSDL Mapping

WS-CDL to BPEL Mapping

SLA to Policy Mapping

SLA (QoS)SLA (QoS)SLA (QoS)

WS-BPEL
WS-BPEL

WS-BPEL

WS-Policy
WS-Policy

WS-Policy

invokes

Figure 2. Modeling Approach

On the highest level of abstraction (the choreography

layer), a number of models have to be specified which can

then be used to generate specific parts for each participant

in the business process on the orchestration layer.

This is achieved by transforming the models from the

choreography layer to executable code in the orchestration

layer as depicted in Figure 2. The models of the chore-

ography layer include a choreography description in WS-

CDL and one or more SLAs. The choreography is used

to describe the partners in the process and the message

exchanges. The SLAs define obligations and guarantees

among the participants. They bridge the gap between the

choreography description and the SLAs. We have anno-

tated the choreography with the SLA references to allow a

pairwise agreement on a specific SLA.

During the transformation, we map the WS-CDL chore-

ography to a number of BPEL processes (the amount de-

pends on the number of participants) and we generate the

WSDL descriptions of the Web services each partner has

to implement and provide to its business partners. The im-

portance of QoS in cross-organizational business processes

makes it necessary to consider these aspects from the begin-

ning of the development process. Similarly, the SLAs are

transformed to WS-QoSPolicy statements (our extension to

WS-Policy) that are directly attached to the corresponding

partner links in BPEL to allow an enforcement by a BPEL

engine.

In the following paragraphs, we present each of

these transformation steps, the QoS integration and WS-

QoSPolicy in detail.

4.2. Mapping WS-CDL to BPEL

The main goal of transforming WS-CDL to BPEL is to

allow the participants a rapid modeling and development

process and generate relevant BPEL and WSDL documents

which can then be used as a basis to implement the pri-

vate (non-visible) business logic. The projection of such a

global description to endpoint processes whose interactions

precisely realize the global description is called endpoint

projection [3].

✞ ☎
<package>

<c h o r e o g r a p h y>

<s e q u e n c e>

<!−− . . . −−>

<s e q u e n c e>

<!−− . . . −−>

<s e q u e n c e>

< i n t e r a c t i o n o p e r a t i o n ="sendPO" . . .>

<p a r t i c i p a t e fromRoleTypeRef="Customer"

t oRoleTypeRef ="Manufacturer" . . . />

<exchange a c t i o n ="request" . . .>

<!−− . . . −−>

</ exchange>

</ i n t e r a c t i o n>

< i n t e r a c t i o n o p e r a t i o n ="sendPO" . . .>

<p a r t i c i p a t e fromRoleTypeRef="Customer"

t oRoleTypeRef ="Manufacturer" . . . />

<exchange a c t i o n ="respond" . . .>

<!−− . . . −−>

</ exchange>

</ i n t e r a c t i o n>

</ s e q u e n c e>

</ s e q u e n c e>

</ s e q u e n c e>

</ c h o r e o g r a p h y>

</ package>
✝ ✆

Listing 3. Choreography Example

In [10], Mendling and Hafner define the basic mapping

rules from WS-CDL to BPEL. They use an recursive XSLT-

based approach to generate the BPEL processes by iterat-

ing through each role type to check the relevance of the

node. The authors consider a node as relevant if it con-

tains activities with the attribute cdl:toRoleTypeRef

and cdl:fromRoleTypeRef. However, this approach

does not correspond with the endpoint projection definition

given above, because more structured BPEL elements are

generated than necessary. This is due to the fact that all par-

ent nodes are considered during the mapping process even

if they are not directly relevant (it can be considered as a

WS-CDL BPEL Semantics

Activities

workunit (nested in choice) case repeat and block attributes always false in this case

workunit (block = true) (receive) Concept of blocking condition not defined in BPEL [2]

workunit (all other cases) while repeat = true and block = false

sequence sequence Sequential execution of activity units

parallel flow Parallel execution of activities

choice switch If inspected roleType is referenced in the guard condition of

the inner workunit

onMessage (nested in) pick If inspected roleType is not referenced in the guard condi-

tion of the inner workunit but referenced in an interaction

activity

interaction

action = request invoke fromRoleType attribute corresponds to inspected role type

action = request receive toRoleType attribute corresponds to inspected role type. If

cdl:interaction inside cdl:workunit which is de-

fined inside a cdl:choice generate a BPEL onMessage

action = response reply toRoleType attribute corresponds to inspected role type

action = response receive receive only in the asynchronous case. For synchronous in-

teraction append outputVariable to corresponding BPEL

invoke which is defined in case 1

perform no mapping Separately defined choreography is performed

assign assign (for party in roleType) Variable assignment

silentAction sequence with nested empty To be refined in the BPEL process

noAction empty (for party in roleType) Do nothing

finalize compensationHandler Finalizing activities after completion

Table 1. WS-CDL to BPEL Mapping

simple 1:1 mapping). Listing 3 depicts an example of this

problem by using three nested sequence elements.

Therefore, we have used and adapted the rules from [10]

and propose an extended endpoint projection mechanism

based on a so-called relevance mapping. The basic idea

is to map only those WS-CDL elements which are relevant

in the BPEL process. To map the different ordering struc-

tures we need to distinguish between child and descendant

relevance. The former describes that a relevant basic ac-

tivity occurs as an immediate child of the respective order-

ing structure in the tree whereas the latter describes that a

relevant basic activity is nested at an arbitrary level. The

relevance of a WS-CDL basic activity is determined by the

occurrence of a cdl:interaction, cdl:assign or

cdl:silentAction where the roleType attribute is

matching the roleType of the corresponding BPEL pro-

cess.

If a node represents a relevant activity as described

above, it is mapped to a BPEL activity according to Table 1,

otherwise no mapping is generated. The basic algorithm for

the relevance mapping is depicted in Listing 4.

From Line 2 to 8, we generate a BPEL pro-

cess for each role type. The algorithm inspects the

cdl:choreography tag of the WS-CDL document by

iterating each activity. If the activity type is an ordering

structure or a workunit a relevance mapping has to be per-

formed. If the currently inspected activity is descendant

relevant we have to consider all child nodes of this activity

(Line 12). If an activity is child relevant (Line 16), we have

to generate the corresponding BPEL mapping according to

Table 1 (Line 17). Otherwise, we recursively visit all child

nodes (Line 19).

✞ ☎
1 void t r a n s f o r m (WscdlDoc doc , L i s t<RoleType> r o l e s) {
2 f o r (RoleType r o l e : r o l e s) {
3 f o r (a c t i v i t y : n . g e t A c t i v i t e s ()) {
4 i f (i s O r d e r i n g S t r u c t u r e (a c t i v i t y) | |
5 isWorkUni t (a c t i v i t y))

6 r e l e v a n c e M a p p i n g (a c t i v i t y , r o l e) ;

7 }
8 }
9 }

10

11 void r e l e v a n c e M a p p i n g (Node n , RoleType r o l e) {
12 i f (i s D e s c e n d a n c e R e l e v a n t (n)) {
13 i f (n . g e t R e l e v a n t C h i l d C o u n t () > 1)

14 createBPELMapping (n) ;

15 f o r (c h i l d : n . g e t C h i l d N o d e s ()) {
16 i f (i s C h i l d R e l e v a n t (c h i l d))

17 createBPELMapping (c h i l d) ;

18 e l s e

19 r e l e v a n c e M a p p i n g (c h i l d , r o l e) ;

20 }
21 }
22 }

✝ ✆

Listing 4. Relevance Mapping

For our BPEL mapping we implemented an additional

optimization concerning the ordering structures. If a

cdl:parallel or cdl:sequence ordering structure

contains only one basic child activity, this ordering struc-

ture is ignored in the BPEL mapping (Line 13–14). For

instance considering the example from Listing 3, only one

BPEL sequence activity will be generated.

In Table 1 we have depicted a detailed overview of the

WS-CDL to BPEL mapping rules. These rules are based

on the mappings proposed by Mendling and Hafner [10]

and adapted where necessary. These adaption mainly in-

clude cdl:interaction and cdl:choice. For the

cdl:interaction activity and cdl:choice ordering

structure, we also have to consider the role types to deter-

mine the sending and receiving party. Additionally, we ad-

dress the synchronous and asynchronous message exchange

patterns properly in the cdl:interaction activity.

4.3. Generating WSDL Descriptions

The WSDL descriptions define a static structure which

can be extracted from the choreography without analyzing

the choreography flow in detail. The necessary element

mapping from WS-CDL to WSDL is shown in Table 2. On

the left side the structure of a WSDL file is used to show the

corresponding elements of WS-CDL on the right side.

The knowledge from this mapping is then used to imple-

ment a WSDL generation algorithm as shown in Listing 5.

✞ ☎
1 void generateWSDLs (WscdlDoc wscdl) {
2 f o r (r o l e T y p e : wscdl . g e t R o l e T y p e s ()) {
3 i f (i sRoleTypeUsed (r o l e T y p e))

4 createWSDL (wscdl , r o l e T y p e) ;

5 }
6 }
7

8 void createWSDL (WscdlDoc wscdl , RoleType r o l e T y p e) {
9 c r e a t e F i l e (r o l e T y p e . b e h a v i o r I n t e r f a c e + ".wsdl") ;

10 c r e a t e N o d e ("wsdl:definition") ;

11 f o r (i : wscdl . g e t I n t e r a c t i o n s ()) {
12 i f (r o l e T y p e == i . g e t A t t r ("toRoleTypeDef"))

13 c r e a t e N o d e ("wsdl:message") ;

14 }
15 f o r (b : r o l e T y p e . g e t B e h a v i o r ()) {
16 ptNode = c r e a t e N o d e ("wsdl:portType") ;

17 bdNode = c r e a t e N o d e ("wsdl:binding") ;

18

19 f o r (i : wscdl . g e t I n t e r a c t i o n s ()) {
20 i f (r o l e T y p e == i . g e t A t t r ("toRoleTypeDef")) {
21 ptNode . append ("wsdl:operation") ;

22 bdNode . append ("wsdl:operation") ;

23 }
24 }
25 sNode = c r e a t e N o d e ("wsdl:service") ;

26 sNode . append ("wsdl:port") ;

27 }
28 }

✝ ✆

Listing 5. WSDL Generation Pseudocode

The WSDL generation works as follows: In Line 2–5,

we generate a new WSDL document for each roleType

of the choreography if the service interface is invoked some-

where in the choreography flow. This check is done in the

isRoleTypeUsed() method. The main idea is to check

if the roleType is referenced within a channelType

and a variable for this channelType exists that is

used in an interaction with another partner. If this

is the case, the roleType is in use and a WSDL needs

to be generated. The WSDL document itself is created in

the createWSDL() method (Line 8–28). The methods

createNode() and appendNode() are used to build

the WSDL document. For readability we omitted the gen-

eration of the XML attributes (which can be seen in Table

2).

WSDL WS-CDL

Element Attribute Element Attribute

definitions xmlns:tns package xmlns:tns

targetNS targetNS

name behavior name

message name exchange informationType

portType name behavior interface

operation name interaction operation

[input ‖ output] name exchange action

message informationType

binding name behavior name + “Binding”

type “tns:”+interface+“Binding”

operation name interaction operation

soap:operation soapAction behavior interface namespace

input interaction operation

soap:body namespace behavior interface namespace

output

soap:body namespace behavior interfaces namespace

service name behavior interface+“Service”

port name behavior interface+“Port”

binding “tns:”+name+“Binding”

Table 2. WS-CDL to WSDL Mapping

4.4. SLA/QoS Integration

The integration of QoS parameters in Web service based

business process development raises the need for appropri-

ate techniques to consider QoS at the choreography and

orchestration layer. Considering QoS at the choreography

layer can be achieved by using SLAs which focus (among

others) on performance and dependability aspects of the un-

derlying QoS model. In contrast, the integration of QoS at

the orchestration layer can be attained by the use of Web

service policies. This section describes how WS-CDL and

BPEL can be extended to support QoS attributes.

SLA Integration. As mentioned above, we use SLAs to

integrate QoS at the choreography layer. For the definition

of the SLAs we decided to use WSLA as it seems to be more

suitable than WS-Agreement. For the actual integration,

we extended WS-CDL with a construct which holds SLA

references. We therefore leverage semantic annotations in

WS-CDL constructs using the description element as

shown in Listing 6.

WS-QoS Policy. In order to bring QoS aspects from the

choreography to the orchestration layer, SLAs have to be

mapped to the corresponding Web service policies. How-

ever, the current WS-Policy specification focuses on se-

curity (WS-SecurityPolicy) and reliable messaging (WS-

RMPolicy), whereas performance and dependability are not

addressed. Hence, we had to extend the WS-Policy frame-

work by defining a WS-QoSPolicy. The WS-Policy Frame-

work therefore provides a grammar for the definition of

domain-specific policies.

✞ ☎
<r o l e T y p e name="ManRoleType">

<b e h a v i o r i n t e r f a c e ="b2o:manInterface"

name="ManBehavior" />

<d e s c r i p t i o n t y p e ="semantics">

<q o s p : s l a R e f e r e n c e

name="SLA1"

u r i ="ManufacturerCustomerSLA.xml"

s e r v i c e c o n s u m e r ="CustRoleType"

</ q o s p : s l a R e f e r e n c e>

</ d e s c r i p t i o n>

</ b e h a v i o r>

</ r o l e T y p e>
✝ ✆

Listing 6. SLA Integration in WS-CDL

Before, we go into the details of our mapping between

SLAs and policies, we briefly sketch the underlying QoS

model. In previous work [16], we have defined a QoS model

for Web services by identifying different QoS attributes.

Since some attributes are either dependent on external fac-

tors or derived from empirical values, not all attributes are

determinable in advance. Table 3 illustrates the relevant

QoS attributes in the context of Web service choreography.

QoS Attribute Relevant Reason (if not relevant)

Processing Time YES

Wrapping Time YES

Execution Time YES

Latency NO Represents external factor

Response Time NO Depends on external factor

Round Trip Time NO Depends on external factor

Throughput YES

Scalability NO Depends on external factor

Availability YES

Accuracy NO Depends on empirical values

Robustness NO Depends on empirical values

Table 3. QoS Attribute Relevance

According to this table, we consider Processing Time,

Wrapping Time, Execution Time, Throughput, and Avail-

ability as possible QoS Attributes in the WS-QoSPolicy.

However, guarantees on the Execution Time will usually be

defined in SLAs instead of Processing Time and Wrapping

Time.

The WS-QoSPolicy defines assertions for all QoS at-

tributes. The normative outline of the assertions is shown

in Listing 7. It defines type, unit, predicate, and

value of the assertion. A concrete example for two such

policy assertions is illustrated in Listing 8.

✞ ☎
<q o s p : [QoS] A s s e r t i o n

u n i t ="xs:string"

p r e d i c a t e ="tns:PredicateType"

v a l u e ="xs:integer | xs:flow" />
✝ ✆

Listing 7. WS-QoSPolicy Assertions

✞ ☎
<w s p : P o l i c y>

<w s p : A l l>

<q o s p : E x e c u t i o n T i m e A s s e r t i o n u n i t ="seconds"

p r e d i c a t e ="Less" v a l u e ="5" />

<q o s p : T h r o u g h p u t A s s e r t i o n u n i t ="requests"

p r e d i c a t e ="GreaterEqual" v a l u e ="1" />

</ w s p : A l l>

</ w s p : P o l i c y>
✝ ✆

Listing 8. Assertion Example

SLA/QoS Mapping. Our extension of the WSLA

schema restricts the SLA parameters to the pre-defined QoS

attributes introduced in the previous section. Therefore, the

SLA can be directly mapped to the WS-QoSPolicy which

consists of the following two steps: Firstly, each SLA is

mapped to a policy and secondly, each SLA parameter is

mapped to a policy assertion.

As each SLA may consist of one or more SLOs, we iden-

tified three different patterns:

1. One SLO is defined for each SLA parameter.

2. One SLO consists of multiple SLA parameters.

3. SLA parameters are defined in multiple SLOs.

Each of these patterns can be successfully mapped to an

equivalent policy. In the first case, one All operator is used

to contain all policy assertions. For each SLO, exactly one

policy assertion will be generated. For example, an SLO

SLOServiceExecutionTime defines an SLA parame-

ter which corresponds to the type ExecutionTime. This

parameter will be mapped to the corresponding policy as-

sertion according to the WS-QoSPolicy.

In the second case, SLA parameters are grouped through

an SLO by using the logical operators And, Or, Not,

Implies. Table 4 shows how these constructs can be

mapped to equivalent WS-QoSPolicy operators.

SLA operator WS-QoSPolicy operator

And → All

Or → ExactlyOne

Not → Reverse predicate

Implies → ExactlyOne and reverse predicate

Table 4. SLA operator mapping

For example, such a grouping of SLA parameters can be

used to define an SLO SLOServicePerformance by

combining Throughput and ExecutionTime in vari-

ous way using the provided logical operators.

In the third case, for each SLO a time period has to be

specified. Therefore, it is possible to define multiple SLOs

for different time periods. For instance, during peak-hours

the execution time of a service has to be less than a specific

value. A detailed description of the SLA/QoS mapping al-

gorithms can be found in [6].

WS-QoS Policy Integration. The definition of a QoS

policy and QoS/SLA mapping rules are the fundamental

concepts for considering QoS in Web service based busi-

ness process development. Yet, the question remains how

to integrate the generated QoS policies in the orchestra-

tion layer. Regarding the top-down modeling approach of

Web services, two integration approaches can be differenti-

ated: Policies can either be attached to service descriptions

(WSDL) or be integrated in BPEL processes.

Attaching policies to WSDL descriptions following the

WS-PolicyAttachment [20] specification has two main

drawbacks. Firstly, service invocations are always subject

to a policy, even if the service consumer has no corre-

sponding SLA. Secondly, the service provider cannot differ

between multiple policies for the same service since poli-

cies do not contain information about the participating par-

ties. Therefore, following the second approach the policies

should be integrated in BPEL processes.

Extensibility in BPEL is achieved by allowing elements

from other namespaces. The BPEL partnerLink ele-

ment is the place to integrate the policy. For this integration,

both synchronous (request-reply) and asynchronous (call-

back) message exchange patterns have to be considered. In

contrast to the asynchronous case, the service provider has

no additional information about the service consumer in the

synchronous case, because the partnerLink has no ser-

vice consumer specific details. Therefore, the policy has to

be integrated at the service consumer side as illustrated in

Listing 9.

✞ ☎
<p r o c e s s>

<p a r t n e r L i n k s>

<p a r t n e r L i n k name="POService"

p a r t n e r L i n k T y p e ="ns1:POServiceLT"

p a r t n e r R o l e ="POServiceRole">

<w s p : P o l i c y x m l n s : q o s p ="..." xmlns :wsu="..."

ws u : I d ="xs:QName"

q o s p : o p e r a t i o n ="...">

. . .

</ w s p : P o l i c y>

</ p a r t n e r L i n k>

. . .

<p a r t n e r L i n k s>

. . .

</ p r o c e s s>
✝ ✆

Listing 9. Policy Integration in BPEL

5. Implementation

We have implemented the concepts and algorithms in

Java 1.5 using a simple Swing-based graphical user inter-

face. The architecture of the system is depicted in Figure 3.

It consists of three main parts:

• Editing: It allows the developer to load and inspect

a choreography and add SLA references to a specific

Choreography
Editor

CDL2BPEL

Transformer

WSDL
Generator

SLA2Policy
Mapper

WS-CDL

SLA
SLA

SLA
SLA2-

Policy.xslt

WSDL-

Gen.xslt

SLA
SLA

WSDL

SLA
SLA

BPEL

EDITOR TRANSFORMATION GENERATION

Figure 3. System Architecture

role type. We have not built an editor for modeling the

choreography, this was out of scope and can be done

for example with Pi4soa [15].

• Transformation: This part implements the algorithms

for transforming WS-CDL to BPEL, and SLA to poli-

cies. The WS-CDL to BPEL transformation is imple-

mented using the DOM4J API [11] whereas the SLA

transformation is implemented using XSLT [19]. Dur-

ing the transformation step one BPEL document is

generated for each partner including the policy refer-

ences which conform to the SLAs in the choreography

layer.

• Generation: The last part implements the generation

of the WSDL files from a choreography. It simply

generates all the WSDL files in a directory selected by

the user according to the algorithm described in Sec-

tion 4. This part is again implemented using an XSLT

stylesheet.

In Figure 4, we have depicted a simple screenshot of our

tool support. When a choreography description is loaded,

the role type definitions can be seen in a tree-based view on

the left side. After adding an SLA reference to a specific

role type, the “Tools” menu item can be used to start the

different transformations and the WSDL generation.

The decision to implement the tool-support with Java

Swing was mainly due to simplicity reasons. As a future

work the integration into the Pi4soa Eclipse plugin is envi-

sioned to achieve better integration with existing WS-CDL

tool support.

Figure 4. QoS Integrator

6. Validation and Discussion

We have implemented the case study from Section 2 to

demonstrate the feasibility of our approach2. For modeling

the choreography we have used the Pi4soa Eclipse Plugin.

During the modeling phase, the important part is the iden-

tification of partners in the process and the messages that

are exchanged among the partners. Most parts of the BTO

scenario are implemented in the choreography itself. How-

ever, some non-observable implementation specific details

cannot be considered from a choreography point of view

but have to be implemented internally by the choreography

participants.

The choreography itself is then used to generate the

BPEL and WSDL templates for each partner in the choreog-

raphy. The SLAs are modeled pairwise and independently

among the partners. The partners agree on a set of runtime

constraints that need to hold during the message interac-

tions. In general, the SLAs are independent of the chore-

ography itself, nevertheless the integration of an SLA in the

development process can be achieved by adding an SLA ref-

erence to a specific roleType in the WS-CDL (compare

Listing 6 for an integration example)

In our case study we have identified four different SLAs:

one between the customer and the manufacturer, and one

for every manufacturer-supplier pair. For example, an SLA

between the manufacturer and the CPU supplier specifies

the expected response time, throughput and execution time

of a service including the periods where these obligations

are valid. After the transformation of the WS-CDL to

BPEL processes, the generated BPEL process contains a

partnerLink annotated with the following WS-Policy

statements to express the SLOs as enforceable policies as it

can be seen in Listing 7 for execution time and throughput.

2The case study files can be downloaded from http://www.

vitalab.tuwien.ac.at/˜florian/qosintegrator/.

For our case study we summarize the different input files

and the generated output files in Table 5. These files can be

found online at the URL provided in the footnote.

Processing Step Choreography Layer Orchestration Layer

Transformation BuildToOrder.cdl

Initiator.bpel

Customer.bpel

Manufacturer.bpel

SupplierCPU.bpel

SupplierHD.bpel

SupplierMB.bpel

WSDL Generation BuildToOrder.cdl

Customer.wsdl

Manufacturer.wsdl

SupplierCPU.wsdl

SupplierHD.wsdl

SupplierMB.wsdl

Table 5. Input and Output Files

The transformation of SLAs to policy assertions does not

generate new files, instead, the policy assertions are directly

embedded in the corresponding BPEL partner link.

After the transformation steps, the generated BPEL and

WSDL files from Table 5 have to be taken as a starting point

for implementation of the private business logic. It mainly

deals with aspects which cannot be modeled from a global

viewpoint in the choreography. These internal implementa-

tions are referred to as silent actions (containing the internal

business logic) and have to be implemented during refine-

ment of the BPEL code. After that, the services and the

BPEL processes can be deployed to an orchstration engine.

Discussion. During the implementation of our case study

we encountered several aspects which have to be consid-

ered when using such top-down modeling approach. Some

of these issues seem inherent to the domain of model-driven

development in general. On the one hand, our approach

is based on choreographies representing a global viewpoint

of the business processes which raises the need for precise

modeling of the global behavior. To be more concrete, the

business partners have to precisely agree on the message

format used for their interaction. On the other hand, af-

ter the choreography was initially defined, the underlying

business model may evolve and lead to significant changes.

Such changes clearly affect the partner processes which

causes the generation of new BPEL processes and corre-

sponding WSDL files.

Another point of discussion is the use WS-CDL. Some

may scrutinize why we use choreographies instead of fol-

lowing a bottom-up approach that builds on orchestra-

tion languages such as BPEL. In fact, both modeling ap-

proaches are feasible and have their strengths and weak-

nesses. However, BPEL is intended for modeling busi-

ness processes without knowledge of global viewpoint. In

contrast to this, we decided to stay close to the vision

of cross-organizational choreography descriptions by using

WS-CDL.

7. Related Work

Integrating QoS in Web service based business process

development has not yet received much attention whereas

modeling of choreographies is subject of various research

activities (e.g., [4, 23]). We mainly discuss existing chore-

ography modeling and transformation approaches as well

as extensions of current Web services standards to include

QoS attributes and the integration of policies in BPEL.

Choreography Modeling and Transformation.

Mendling and Hafner [10] define mapping rules for

the derivation of BPEL processes from a WS-CDL chore-

ography description. For each WS-CDL ordering structure

and activity the corresponding BPEL construct respective

activity is determined. These mapping rules define the

basis for the mapping rules used throughout the top-down

modeling process in this work. Whereas the mapping of

WS-CDL to BPEL is referenced in detail, the generation

of WSDL interfaces using in the BPEL process is not

addressed explicitly. In contrast to this work, no explicit

endpoint projection rules are defined to determine which

ordering structures are relevant for the participants of the

choreography description. Finally, this work additionally

defines mapping rules for the generation of WSDL descrip-

tions which correspond to the service interface descriptions

of the derived BPEL processes.

In [5], Diaz et al. use an intermediary model for the gen-

eration of BPEL processes from a WS-CDL choreography

description concentrating on Web services where time con-

straints play a critical role. A choreography description is

first transformed into a Timed Automata model which is

verified and validated for correctness using formal model

checking techniques. This model is then further used to

generate BPEL processes. In contrast to this work the fo-

cus is laid on the generation and verification of the Timed

Automata model. Detailed mapping rules for the derivation

of BPEL processes out of this model are not specified. In

the context of top-down modeling it seems more appropriate

to perform a direct mapping between WS-CDL and BPEL

instead of using an intermediary model.

Pi4soa [15] is a toolset from π4 Technologies and one

of the first WS-CDL implementations. They provide a de-

signer tool as an Eclipse plugin, which we used for mod-

eling our choreographies, and a possibility to generate Java

services from a WS-CDL. The support for generating BPEL

processes is currently in progress. In contrast to pi4soa our

works considers QoS from the beginning of the develop-

ment. It might be interesting to include the SLA/QoS re-

lated aspects into the pi4soa Eclipse plugin.

Decker et al. [4] propose an new extension to BPEL,

called BPEL4Chor that allows modeling of choreographies

within BPEL by leveraging an interconnected interface be-

havior model, whereas WS-CDL represents an interaction

model. As stated in [4], it has not been investigated yet

which of these two approaches is more appropriate for hu-

man modelers. While we follow a top-down approach by

transforming WS-CDL into BPEL, the authors propose a

bottom-up approach by introducing a new choreography

layer on top of BPEL. However, in contrast to our work,

the integration of QoS into Web service choreographies is

not addressed.

QoS Integration Approaches. Several approaches exist

which integrate QoS into the Web service stack. These ap-

proaches can be seen complementary to the work presented

in this paper. Here we focus on the modeling part and left

out the execution part of the developed orchestrations and

their Web services.

In our previous work [16], we proposed a QoS model

for performance and dependability related aspect of Web

services and a client-side measurement tool determine the

QoS from a client perspective.

In [17], a Web service broker (WSB) is used to perform

QoS based service selection based on a set of defined QoS

parameters. A client application sends a service request

along with QoS requirements to a WSB. The WSB then re-

ceives all the providers and their QoS values to select the

best one.

Garcia et al. [7] propose an architecture for QoS man-

agement by extending the current Web services standards

UDDI and WS-Policy. This approach includes an extended

UDDI information model specifying a QoS tModel and the

use of WS-Policy to specify QoS policies. The authors pro-

pose a broker based architecture to select appropriate ser-

vices (fulfilling functional and QoS requirements) in the

UDDI registry and reports the selected service back to the

consumer. The monitor component is used to intercept mes-

sages exchanged between the consumer application and the

Web service to monitor the service execution and passes up-

dated QoS information to the broker to update the QoS in-

formation. Similar to this work the WS-Policy framework is

used to express QoS related aspects for Web services. How-

ever, no further details on the proposed QoS policy are as-

serted.

8. Conclusions

There have been some considerable debates as to the re-

lationship between choreography and orchestration. Some

people argue that there is no need for choreography and all

business interactions can, and in fact, should be modeled in

BPEL. Others advocate the use of modeling by using WS-

CDL but then lament the lack of execution abilities. The

prime motivation for the contribution of this paper is today’s

lack of modeling support for QoS-aware business processes.

In particular, the need for QoS-aware processes is apparent

in inter-organizational business processes.

The novelty of our approach lies within the fact that we

consider SLAs as first class entities while modeling service

choreographies. Our approach allows for automatic gener-

ation of executable BPEL orchestrations and WSDL files

for each partner in the choreography. A novel contribu-

tion is the mapping of QoS information specified in SLAs to

WS-QoS policies which are attached to the BPEL process.

As a consequence, a policy-aware middleware can verify

and possibly enforce SLAs. The approach has been imple-

mented and the feasibility is demonstrated using a simpli-

fied version of a Built-to-Order case study.

As future work we envision the implementation of our

tool support within the Pi4soa Eclipse plugin to allow a bet-

ter integration with existing modeling tools. Additionally,

we need to study the applicability of WS-Agreement as an

alternative way to specify the SLAs and transform them to

WS-QoSPolicy.

References

[1] Active Endpoints. ActiveBPEL Engine, 2007. http://

www.active-endpoints.com/ (Last accessed: May

07, 2007).

[2] A. Barros, M. Dumas, and P. Oaks. A Critical Overview

of the Web Services Choreography Description Language

(WS-CDL). BPTrends Newsletter, 3(3), Mar. 2005.

[3] M. Carbone, K. Honda, N. Yoshida, and R. Milner.

Structured Communication-Centred Programming for Web

Serices. In Proceedings of the 16th European Symposium

on Programming (ESOP’07), Barga, Portugal, 2007.

[4] G. Decker, O. Kopp, F. Leymann, and M. Weske.

BPEL4chor: Extending BPEL for Modeling Choreogra-

phies. In Proceedings of the IEEE International Conference

on Web Services (ICWS’07), Salt Lake City, Utah, USA, July

2007.

[5] G. Diaz, M. Cambronero, J. Pardo, V. Valero, and F. Cuar-

tero. Automatic generation of Correct Web Services Chore-

ographies and Orchestrations with Model Checking Tech-

niques. In Proceedings of the International Conference

on Internet and Web Applications and Services (ICIW’06),

Guadeloupe, French Caribbean, Feb. 2006.

[6] C. Enzi. Implementing QoS in Web Service based

Business Process Development Scenarios. Master’s

thesis, Technical University of Vienna, Austria, 2007.

URL: http://www.vitalab.tuwien.ac.at/

˜florian/qosintegrator/da_enzi.pdf (Last

accessed: August 1, 2007).

[7] D. Garcia and M. Toledo. A Web Service Architecture Pro-

viding QoS Management. In Proceedings of the Fourth Latin

American Web Congress (LA-WEB’06), Mexico, Oct. 2006.

[8] Grid Resource Allocation Agreement Protocol (GRAAP)

WG. Web Services Agreement Specification (WS-

Agreement), Nov. 2005. (Last accessed: May 7, 2007).

[9] IBM. Web Service Level Agreement (WSLA) Language

Specification, Jan. 2003. http://www.research.

ibm.com/wsla/, (Last accessed: May 7, 2007).

[10] J. Mendling and M. Hafner. From WS-CDL Choreography

to BPEL Process Orchestration. Journal of Enterprise Infor-

mation Management. forthcoming.

[11] MetaStuff Ltd. DOM4J, 2005. http://www.dom4j.

org (Last accessed: May 07, 2007).

[12] OASIS. Web Service Business Process Execution Language

2.0, 2006. URL: http://www.oasis-open.org/

committees/tc_home.php?wg_abbrev=wsbpe

(Last accessed: Apr. 17, 2007).

[13] M. P. Papazoglou. Service-oriented computing: concepts,

characteristics and directions. In Proceedings of the Fourth

International Conference on Web Information Systems En-

gineering, pages 3–12, Dezember 2003.

[14] C. Peltz. Web services orchestration and choreography.

Computer, 36(10):46–52, 2003.

[15] pi4 Technologies Foundation. pi4soa, 2007. URL:

sourceforge.net/projects/pi4soa/ (Last ac-

cessed: May 9, 2007).

[16] F. Rosenberg, C. Platzer, and S. Dustdar. Bootstrapping Per-

formance and Dependability Attributes of Web Services. In

Proceedings of the IEEE International Conference on Web

Services (ICWS’06), Chicago, IL, USA. IEEE Computer So-

ciety, 2006.

[17] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and

J. Schiller. A Concept for QoS Integration in Web Services.

In Proceedings of the 1st Web Services Quality Workshop

(WQW’03), Rome, Italy, 2003.

[18] M. Völter and T. Stahl. Model-Driven Software Develop-

ment : Technology, Engineering, Management. John Wiley

& Sons, June 2006.

[19] W3C. XSL Transformations (XSLT) - Version 1.0, Nov.

1999. http://www.w3.org/TR/xslt (Last accessed:

May 07, 2007).

[20] W3C. Web Services Policy Attachment, 2004. URL:

http://www-128.ibm.com/developerworks/

webservices/library/specification/

ws-polatt/ (Last accessed: May 9, 2007).

[21] W3C. Web Services Policy Framework, 2004. URL:

http://www-128.ibm.com/developerworks/

library/specification/ws-polfram/ (Last

accessed: May 9, 2007).

[22] W3C. Web Services Choreography Description Language

(WS-CDL), Nov. 2005. URL: http://www.w3.org/

TR/ws-cdl-10/ (Last accesssed: May 03, 2007).

[23] J. M. Zaha, A. Barros, M. Dumas, and A. ter Hofstede. Let’s

Dance: A Language for Service Behavior Modeling. In Pro-

ceedings of the 14th International Conference on Coopera-

tive Information Systems (CoopIS’06), Montpellier, France.

Springer, Oct. 2006.

