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Abstract

Purpose: Breast cancer is a heterogeneous disease and not
all patients respond equally to adjuvant radiotherapy. Predic-
tive biomarkers are needed to select patients who will benefit
from the treatment and spare others the toxicity and burden of
radiation.

Experimental Design:We first trained and tested an intrin-
sic radiosensitivity gene signature to predict local recurrence
after radiotherapy in three cohorts of 948 patients. Next, we
developed an antigen processing and presentation-based
immune signature by maximizing the treatment interaction
effect in 129 patients. To test their predictive value, we
matched patients treated with or without radiotherapy in an
independent validation cohort for clinicopathologic factors
including age, ER status,HER2 status, stage, hormone-therapy,
chemotherapy, and surgery. Disease-specific survival (DSS)
was the primary endpoint.

Results: Our validation cohort consisted of 1,439
patients. After matching and stratification by the radio-

sensitivity signature, patients who received radiotherapy
had better DSS than patients who did not in the radiation-
sensitive group [hazard ratio (HR), 0.68; P ¼ 0.059; n ¼
322], whereas a reverse trend was observed in the radia-
tion-resistant group (HR, 1.53; P ¼ 0.059; n ¼ 202).
Similarly, patients treated with radiotherapy had signifi-
cantly better DSS in the immune-effective group
(HR, 0.46; P ¼ 0.0076; n ¼ 180), with no difference in
DSS in the immune-defective group (HR, 1.27; P ¼ 0.16;
n ¼ 348). Both signatures were predictive of radiotherapy
benefit (Pinteraction ¼ 0.007 and 0.005). Integration
of radiosensitivity and immune signatures further
stratified patients into three groups with differential out-
comes for those treated with or without radiotherapy
(Pinteraction ¼ 0.003).

Conclusions: The proposed signatures have the potential to
select patients who are most likely to benefit from radiother-
apy. Clin Cancer Res; 24(19); 4754–62. �2018 AACR.

Introduction
Radiotherapy is an integral component in the treatment of

breast cancer. Two large meta-analyses have shown that adju-
vant radiotherapy reduces local recurrence and improves
survival after breast-conserving surgery (1) and mastectomy
(2). However, breast cancer is increasingly recognized as a
heterogeneous disease and not all patients derive survival
benefit from radiotherapy, nor is the absolute benefit
equal across risk groups (3). With local recurrence rates in
breast cancer declining due to improvements in screening,
pathologic examination, and modern systemic therapy, it is
essential to identify patients who may not benefit from
radiotherapy and who may avoid the morbidity and burden
of adjuvant radiotherapy (4).

Gene-expression signatures are useful tools that may allow
clinicians to tailor therapies according to the molecular
characteristics of individual tumors (5). For instance, the
21-gene Oncotype DX signature is used to estimate risk of
distant recurrence (ref. 6; i.e., prognostic) and identify
patients who would benefit from adjuvant chemotherapy
(refs. 7, 8; i.e., predictive) in early-stage breast cancer. No
such gene signature has been prospectively validated in ran-
domized controlled trials to inform adjuvant radiotherapy
(9). Most existing signatures are prognostic of local recurrence
but few have been shown to be predictive of radiotherapy
benefit (10–16).

We aimed to develop gene signatures by integrating two
distinct biological processes for predicting benefit of radio-
therapy in breast cancer. Accumulating evidence supports that
therapeutic effects of radiation are influenced and modulated
by the tumor microenvironment, including the immune sys-
tem (17), which recognizes cancer cells via the presentation of
tumor-associated antigens on the major histocompatibility
complex (MHC) molecules (18). Therefore, we hypothesized
that, in addition to tumor intrinsic radiosensitivity, differences
in antigen processing and presentation (APP) may lead to
differential immune-mediated antitumor response activated
by radiation and thus could correlate with clinical response
to radiotherapy. We validated the gene signatures in an inde-
pendent retrospective cohort with long-term clinical follow-
up, where patients are balanced for clinical and treatment
characteristics using a matched strategy.
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Materials and Methods
Study design and patients

This study was approved by institutional review board (IRB)
and conducted in accordance with ethical guidelines, including
theDeclarationofHelsinki andBelmontReport. Patient informed
consent was waived given the use of existing, de-identified public
datasets. We developed two gene expression–based signatures,
that is, a radiosensitivity signature (RSS) andan immune signature
(IMS), and independently validated their predictive value in an
external cohort using public gene expression profiles of fresh-
frozen tumors (Fig. 1). To train and validate RSS, we searched for
publicly available breast cancer gene-expression datasetswhere all

patients received radiotherapy, and selected three largest datasets.
Specifically, we trained the RSS using a cohort of 343 patientswith
invasive breast cancer treated with breast-conserving surgery
(BCS) and radiotherapy, who had at least 10 years follow-up
(19). Microarray gene expression data were available from Gene
ExpressionOmnibus (accession number GSE30682). Local recur-
rence-free survival (LRFS) was the clinical endpoint for training
purposes. The prognostic value of the RSS was assessed in two
independent cohorts of 319 patients (refs. 5, 20; NKI dataset) and
286patients (ref. 21; accessionnumberGSE2034).All thepatients
in the NKI cohort received radiotherapy with a median follow-up
time of 7.1 years (range, 0.05–18.4). For the GSE2034 cohort, the
majority of the patients (87%, n ¼ 248) received radiotherapy,
and since patient-level radiation treatment information was not
available, validationwas performed in the entire cohort. For these
two validation cohorts, relapse-free survival (RFS) was used as the
endpoint because information about LRFS was not available.

To develop a predictive immune gene signature, we searched
for breast cancer gene expression datasets in which individual
patient-level information about radiotherapy treatment and clin-
ical outcomes was available. The three largest cohorts were the
Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) cohort, The Cancer Genome Atlas (TCGA)
breast cancer cohort, and the invasive breast cancer cohort
(E-TABM-159) of Chin and colleagues (22). TCGA cohort was
not used due to relatively short follow-up times. We trained an
immune signature using the Chin cohort (E-TABM-158) in which
66 patients received adjuvant radiotherapy and 63 did not. The
median follow-up timewas 6.0 years (range: 0.13–14.2). Disease-
specific survival (DSS) was the clinical endpoint for training the
immune signature.

The two signatures (RSS and IMS) were evaluated for their
ability to predict the benefit of radiotherapy in the METABRIC

Figure 1.

Schema of study design and patient selection. RSS and IMS were independently developed. Their predictive value was assessed using patients in METABRIC
who were matched within each biomarker group. The prognostic value of RSS was assessed in two additional independent cohorts. RSS: radiosensitivity
signature; IMS: immune signature; LRFS: local recurrence-free survival; RFS: relapse-free survival; DSS: disease-specific survival.

Translational Relevance

Radiotherapy is amainstay in the treatment of breast cancer
and has been shown to reduce local recurrence and improve
survival. However, breast cancer is increasingly recognized as a
heterogeneous disease and not all patients derive survival
benefit from radiotherapy. In this work, we developed gene-
expression signatures based on twodistinct biologic processes,
that is, intrinsic radiosensitivity and antitumor immunity.
Both signatures were significantly associated with differential
outcomes of breast cancer depending on whether patients had
received radiotherapy or not, demonstrating their potential
predictive value. Integration of the two signatures further
improved patient stratification.We envision that the proposed
signatures, if validated in prospective randomized trials, may
beused to select patientswithbreast cancerwhoaremost likely
to benefit from adjuvant radiotherapy.

Predictive Biomarker for Breast Radiotherapy

www.aacrjournals.org Clin Cancer Res; 24(19) October 1, 2018 4755

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/24/19/4754/2047644/4754.pdf by guest on 27 August 2022



cohort, which contains gene-expression profiles and outcomes
for 1,981 patients with a median follow-up time of 9.7 years
(range, 0.0–29.6; ref. 23). To minimize selection bias and
confounding effects, we used a matched strategy to balance
patients in each biomarker-defined group. First, the validation
cohort was dichotomized by a predefined cutoff value accord-
ing to respective gene signatures. Then within each subgroup,
we performed exact 1:1 matching of patients who received
radiotherapy versus those who did not according to seven
clinical and treatment characteristics. The matching variables
were age (< or �50 years), ER status, HER2 status, stage,
hormone therapy, chemotherapy, and surgery type (lumpecto-
my or mastectomy; Data Supplementary). Predictive value
was assessed using the appropriate matched patient cohorts.
DSS was the clinical endpoint.

Development of RSS and IMS
To train the RSS, we first compiled a list of radiation-related

genes by searching for gene sets whose name contains
"RADIATION" or "IR" in MSigDB (24). This initial gene list was
further refined by excluding genes that are also present in the
immune-related gene sets in ImmPort (25). Next, we performed
univariate Cox regression analysis and identified genes signifi-
cantly associated with LRFS (P < 0.05). These genes were used to
train a multivariate Coxmodel with L1 regularization by the least
absolute shrinkage and selection operator (LASSO; ref. 26) to
obtain the RSS signature (Data Supplementary).

To train the IMS, we started with the antigen presentation and
processing (APP) gene set curated by the Immunology Database
and Analysis Portal (ImmPort: http://www.immport.org). First,
univariate Cox regression analyses were used to identify individ-
ual genes that had significant interaction with radiotherapy for
predicting DSS. Then a multivariate ridge-regularized Cox model
was trained to obtain the IMS signature (Data Supplementary).
Because clinical variables such as age, stage, ER/HER2 status,
chemotherapy, and hormonal therapy did not significantly inter-
actwith radiotherapy, theywerenot adjusted forwhendeveloping
the IMS.

Determination of cutoff values for RSS and IMS
We used the maximally selected rank statistics (27) to deter-

mine the optimal cutoffs for the RSS or IMS gene signatures to
dichotomize patients in the corresponding training cohorts. In
particular, for RSS, we computed the standardized log-rank
statistics between the two sub-groups dichotomized at different
cut points and selected the one that maximized the log-rank
statistic. On the other hand, the cutoff value for IMS was
selected by dividing patients into two groups in a way that
takes into account the interaction effect between the dichoto-
mized gene signature and radiotherapy (as IMS was developed
as a predictive signature). Specifically, for any given candidate
cutoff point, one group consisted of patients treated with
radiation and whose IMS was higher than the candidate cut
point, along with patients not treated with radiation and whose
IMS was lower than the candidate cut point; the other group
consisted of the remaining patients. We then computed the
standardized log-rank statistics between the two groups at
different candidate cut points for IMS and selected the one
that maximized the log-rank statistic. Both signatures and their
respective cutoff values were fixed before they were applied to
the independent validation cohorts.

Statistical analysis
The log-rank test was used to assess the survival differences

between risk groups stratified by gene signatures at the optimal
cutoffs or by the treatment status. The P value for the interaction
term between dichotomized gene signatures and treatment indi-
cator in a multivariate Cox regression analysis was used to assess
the predictive significance of gene signatures for radiotherapy
benefit. All tests were two sided. A P value of <0.05was considered
statistically significant. All statistical analyses were performed
using the R software version 3.4.0.

Results
Radiosensitivity signature and its prognostic value

We found 33 radiation-related gene sets from the curated GSEA
gene sets. A total of 925 unique genes were available in the
microarray platforms used in this study. Among them, 138 genes
were significantly correlated with LRFS (P < 0.05) on univariate
analysis in the training cohort. A 34-gene RSS were obtained on
the basis of a LASSO-regularized Cox regression model (Supple-
mentary Table S1). The optimal cutoff value was found to be 1.0
for the RSS in the training cohort (Supplementary Fig. S1).
Accordingly, patients with RSS < 1.0 were assigned to the radia-
tion-sensitive group that was associated with better outcomes
after radiotherapy, whereas patients with RSS > 1.0 were assigned
to the radiation-resistant group that was associated with worse
outcomes after radiotherapy.

In the training cohort, RSS was able to stratify patients for LRFS
(P < 0.001, Supplementary Fig. S2) and was strongly associated
with LRFS in both univariate and multivariate analyses (Supple-
mentary Table S2). When tested independently for its prognostic
value, RSS was also able to stratify patients for RFS in the two
validation cohorts. Inparticular, patients in the radiation-resistant
group had significantly worse RFS compared with those in the
radiation-sensitive group in the NKI validation cohort [Fig. 2A,
P ¼ 0.0028; HR, 1.76; 95% confidence interval (CI), 1.21–2.57]
and GSE2034 validation cohort (Fig. 2B, P ¼ 0.011; HR, 1.64;
95% CI, 1.12–2.40).

Immune signature and its prognostic value
A total of 119 APP-related genes were available in microarray

platforms used in this study. Four genes showed significant
interaction with radiotherapy (P < 0.05) on univariate analysis
in the training cohort. Using ridge-regularized Cox regression,
we constructed an immune signature: IMS ¼ 4.7�ADRM1 þ
3.6�MICB þ 4.8�PSMD13 – 3.7�RFXANK. The optimal cutoff
value for the IMS was found to be �3.8 in the training cohort
(Supplementary Fig. S3). Accordingly, patients with IMS < �3.8
were assigned to the immune-effective group that was associated
with improved survival with radiotherapy, whereas patients with
IMS >�3.8were assigned to the immune-defective group thatwas
associatedwith worse survival with radiotherapy (Supplementary
Fig. S4). IMS showed a strong interactionwith radiotherapy in the
training cohort in both univariate and multivariate analyses
(Supplementary Table S3).

Although IMS was intrinsically developed as a predictive bio-
marker, we also evaluated its prognostic value on the two prog-
nostic validation cohorts. On the NKI cohort, IMS was able to
stratify patients into twogroupswithdistinct RFS,where immune-
defective patients had significantly worse RFS than the immune-
effective patients (Supplementary Fig. S5A, P¼ 0.0031; HR, 1.89;
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95% CI, 1.23–2.91). However, IMS did not stratify the GSE2034
cohort, where both groups had similar RFS (Supplementary
Fig. S5B, P ¼ 0.86; HR, 0.97; 95% CI, 0.65–1.43).

Predictive value of RSS and IMS
We used the RSS and IMS gene signatures to divide patients in

theMETABRIC validation cohort into different subgroups.Within
each subgroup, we performed exact 1:1 matching between
patients treated with and without radiotherapy based on seven
clinical and treatment characteristics (Table 1). This matching
process obviously reduced the number of patients available in
each subgroup. The number of patients excluded and the
specific reasons for exclusionwere summarized in Supplementary
Table S4.

In theMETABRIC validation cohort, radiotherapy did not show
a survival benefit in terms of DSS either in the entire cohort
(P¼ 0.60; HR, 1.05; 95%CI, 0.87–1.27, Supplementary Fig. S6A)
or among patients matched for clinical variables (P ¼ 0.98; HR,
1.00; 95% CI, 0.76–1.33, Supplementary Fig. S6B). However,
in the radiation-sensitive group, patients who received radio-
therapy tended to have better DSS than those who did not
(Fig. 3A, P ¼ 0.059; HR, 0.68; 95% CI, 0.45–1.02). By contrast,
a reverse trend was observed in the radiation-resistant group
(Fig. 3B, P ¼ 0.059; HR, 1.52; 95% CI, 0.98–2.38). There was a
significant interaction between RSS and radiotherapy (P¼ 0.007)
according to Cox regression analysis, suggesting that RSS could
have predictive value.

Similarly, in the immune-effective group, patients treated with
radiotherapy had significantly better DSS compared with those
without radiation therapy (Fig. 3C, P¼ 0.0076; HR, 0.46; 95%CI,
0.26–0.83). However, there was no significant difference in DSS
between the treatment arms in the immune-defective group
(Fig. 3D, P¼ 0.16; HR, 1.27; 95% CI, 0.91–1.79). The interaction
between IMS and radiotherapy was significant (P ¼ 0.005).

To investigate whether integrating both signatures would allow
better stratification, we divided patients into three groups. In one
concordant group defined by both radiation-sensitive and
immune-effective, patients treated with radiation had significant-
ly betterDSS than thosewithout radiation (Fig. 4A,P¼0.022;HR,
0.43; 95% CI, 0.21–0.90). Conversely, in another concordant

group defined by radiation-resistant and immune-defective,
patients treated with radiotherapy had significantly worse DSS
than those without (Fig. 4B, P ¼ 0.045; HR, 1.69; 95% CI, 1.01–
2.83). In the discordant group of radiation-sensitive, immune-
defective or radiation-resistant, immune-effective patients, there
was no significant difference in DSS between the treatment arms
(Fig. 4C, P¼ 0.36; HR, 0.81; 95% CI, 0.52–1.27). The interaction
between the group labels and radiotherapy was significant
(P ¼ 0.003).

We performed the same analysis in subgroups of patients as
defined by the surgery type. Similar results were obtained for
patients who received either mastectomy or BCS, although results
for the BCS cohorts were not significant due to a smaller number
of patients (Supplementary Figs. S7–S10).

Considering the large number of patients excluded due to
exact matching of clinical variables, we also performed multi-
variate Cox regression analysis of RSS and IMS in the entire
METABRIC cohort. The results showed that both RSS and
IMS gene signatures had statistically significant interactions
with radiotherapy when dichotomized at pre-specified cutoffs
(Supplementary Tables S5–S7).

Comparison with previously published gene signatures
We tested two existing gene signatures, the radiation sensi-

tivity index (RSI; ref. 28) and 21-gene Oncotype DX recurrence
score (29) for predicting benefit of radiation therapy in the
METABRIC cohort. Neither RSI nor Oncotype DX showed a
significant interaction with radiotherapy as continuous vari-
ables in multivariate Cox regression analyses (Supplementary
Tables S8 and S9, Pinteraction ¼ 0.26, 0.56, respectively). In
comparison, RSS showed strong interaction with radiotherapy
(Pinteraction ¼ 0.004, Supplementary Table S5); whereas IMS was
borderline significant when assessed as continuous variables
(Pinteraction ¼ 0.07, Supplementary Table S6).

We also evaluatedRSI andOncotypeDXasbinary variables. For
the RSI, we set the cutoff value to be the 25%quantile as suggested
by the authors (30). For theOncotypeDX,weused 30 as the cutoff
above which patients are assumed to have high risk of recurrence
(12, 16). Neither RSI nor Oncotype DX showed significant results
for predicting radiotherapy benefit in the METABRIC cohort

Figure 2.

Relapse-free survival stratified by
RSS in the prognostic validation
cohorts: (A) NKI; (B) GSE2034.

Predictive Biomarker for Breast Radiotherapy
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(Supplementary Figs. S11 and S12, Pinteraction ¼ 0.63, 0.52,
respectively). In multivariate analysis, both RSS and IMS gene
signatures had statistically significant interactions with radiother-
apy independent of clinical variables and RSI and Oncotype DX
scores (Supplementary Table S10).

Discussion
In this study, we developed two gene-expression signatures

reflecting distinct biological processes (intrinsic tumor radiosen-
sitivity and immune response) to predict benefit of radiotherapy
in breast cancer. We showed in an independent validation cohort
that patients with radiation-sensitive or immune-effective tumors
derived significant survival benefit from radiotherapy, whereas
those with radiation-resistant or immune-defective tumors did
not benefit from radiotherapy. Furthermore, we found that inte-
gration of radiosensitivity and immune signatures allowed even
better stratification of patients in terms of predicting benefit from
radiotherapy.

Given the heterogeneity of breast cancer, an individualized
approach is needed to guide the optimal use of adjuvant radio-
therapy.On the basis of standard clinical andpathological factors,
elderly women with small, hormone receptor–positive invasive
cancers treated with breast-conserving surgery and endocrine
therapy have been the only group identified to date in which
omission of radiotherapy can be considered appropriate (31). In
the post-mastectomy setting, there have been similar efforts to use
combinations of prognostic factors such as tumor size and num-
ber of involved nodes to help optimize patient selection for
radiation treatment (32, 33). The value of radiotherapy is cur-
rently being explored in patients at intermediate risk of recurrence
following mastectomy (34).

There has been growing interest in integrating tumor biology
information in addition to clinical and pathological factors to
improve decision-making and individualization of radiation
treatment (35–37). While prognostic biomarkers can identify
patients with poor outcomes irrespective of treatment, predictive
biomarkers inform the likelihood of response to and potential
benefit from a specific therapy, and thus have more direct clinical
relevance (38). Intrinsic subtyping by immunohistochemistry has
been reported to be prognostic for breast cancer recurrence
(39, 40), but has not been shown to predict benefit from radio-
therapy (41, 42). In addition, several gene signatures have been
proposed to estimate risk of locoregional recurrence after BCS or
mastectomy (10–16), but few have been successfully validated in
independent cohorts (19). Amore fundamental issue is that these
gene signatures are prognostic by design because they were
developed in patients who all received radiotherapy without
using an appropriate control group, that is, patients who did not
receive radiotherapy.

Although tumor intrinsic radiosensitivity is widely accepted for
its direct impact on radiation response, various factors in the
tumor microenvironment also influence andmodulate therapeu-
tic effects (17). Radiation can prime the immune system by
inducing immunogenic cell death which releases neoantigens
(43–46), potentially eliciting systemic antitumor immune
response (i.e., abscopal effect; ref. 47). A critical step during this
process is the ability of the immune system to recognize cancer
cells by tumor-associated antigens presented on their MHC
molecules (18). Accordingly, cancer cells with normal APP func-
tion aremore likely to be recognized and killed by cytotoxic T cellsTa
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than those with dysregulated APP function. In the setting of
radiotherapy, such differences in APP function may influence
response and outcomes through the contribution of radiation-
induced immune priming (43). Indeed, our immune signature
which was derived solely from APP-related genes could distin-
guish between patients who benefitted from radiotherapy and
those who did not. Interestingly, mutations in the gene encoding
b-2-microglobulin, which is necessary for the folding and trans-
port of MHC class I molecules to the cell surface for antigen
presentation, have recently been shown to promote resistance to
anti-programmed cell death 1 (PD1) immunotherapy (48). To be
clear, other factors such as immune checkpoints (49) or immu-
nosuppressive cytokines (50) may also play an important role in
mediating tumor and host response to radiation, and should be
explored in future studies (51).

The proposed RSS and IMS gene signatures were related to but
not identical to established clinicopathologic variables. In our
analyses, there was a higher proportion of ER-positive patients
within the radiation-sensitive and immune-effective groups com-

pared with others in the matched METABRIC validation cohort
(Table 1). This result is consistent with the Early Breast Cancer
Trialists' Collaborative Group (EBCTCG) meta-analysis (1),
which showed that among all groups defined by traditional
clinicopathologic factors, ER-positive tumors had the greatest
response to radiotherapy (RT). However, not all ER-positive
tumors would be expected to benefit from RT. Accordingly,
approximately 1 out of 3, and 3 out of 5 ER-positive tumors were
classified as radiation-resistant and immune-defective by gene
expression, respectively. Our proposed signatures might help
select ER-positive patients who are most likely to benefit from
RT. On the other hand, the potentially higher-risk HER2-positive
tumors were significantly enriched in the radiation-resistant and
immune-defective groups in thematchedMETABRIC cohort. This
result is consistent with a recent study (42) showing that HER2-
positive tumors are most radioresistant among all subtypes and
thus may not benefit from RT.

The main limitation of our study is the use of retrospective
cohorts with nonrandomized treatment with radiotherapy.

Figure 3.

DSS stratified by RSS in the
METABRIC cohort: (A) matched
radiation-sensitive cohort; (B)
matched radiation-resistant cohort;
Pinteraction ¼ 0.007. DSS stratified by
IMS: (C) matched immune-effective
cohort; (D) matched immune-
defective cohort; Pinteraction ¼ 0.005.
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Predictive biomarkers should ideally be tested in prospective
randomized controlled trials. To mitigate the potential selec-
tion bias in retrospective cohorts, we used a matched strategy
to balance relevant clinical and treatment characteristics
between comparison groups. A recent study used a similar
strategy to develop a radiation-related gene signature for
predicting radiotherapy benefit in prostate cancer (52). One
key difference is that although Zhao and colleagues (52)
matched patients in the entire cohort, we matched patients
within each biomarker-defined group (e.g., radiation-
sensitive), which ensures balanced cohorts and allows for
more rigorous validation.

As previously curated public datasets were used in our study,
specific information about locoregional recurrence was not avail-
able in some of the validation cohorts, and consequently different
endpoints (relapse-free survival or disease-specific survival) were
used in some of the validation cohorts. This precludes a direct
comparison between different cohorts and could hamper inter-
pretation of the results. On the other hand, although locoregional

recurrence is themost direct endpoint formeasuring the benefit of
RT, survival-related endpoints used in our validation are also
clinically relevant because improving survival is the ultimate goal
of adjuvant treatment, includingRT. Another limitation due to the
use of public data is that information on radiation fields was not
available so the impact of breast versus nodal irradiation could
not be assessed.

In terms of surgery, a majority (�80%) of patients in the
METABRIC validation cohort received mastectomy, and fewer
(�20%) patients received BCS. Although statistical significance
was not reached for the BCS group due to low numbers, we found
similar trend in this surgical subgroup as our main results. Future
validation is warranted to confirm the predictive value of our gene
signatures in the context of BCS.However, as these gene signatures
are reflective of the biology of breast cancer, it is likely that they
may be equally predictive in both the post-mastectomy and post-
lumpectomy settings.

In conclusion, we developed radiosensitivity and immune gene
signatures for predicting benefit of radiotherapy in breast cancer

Figure 4.

DSS stratified by integrating RSS
and IMS in the METABRIC cohort.
A, Matched radiation-sensitive,
immune-effective cohort; (B)
matched radiation–resistant,
immune-defective cohort; (C)
matched radiation-resistant,
immune-effective or radiation-
sensitive, immune-defective cohort.
Pinteraction ¼ 0.003.
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and validated them in a matched retrospective cohort. Should
these results be confirmed in future prospective randomized trials,
the gene signatures may be used to select patients for whom de-
escalation for treatment maybe an option, or to identify patients
who may not respond well to standard radiotherapy and may
therefore benefit from the addition of radiosensitizers or immu-
notherapy to enhance the radiation response.
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