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1 Introduction

Psychologists have shown that the ability of humans to perform basic-level catego-

rization (e.g. cars vs. dogs; kitchen vs. highway) develops well before their ability to

perform subordinate-level categorization, or fine-grained visual categorization (e.g.

distinguishing dog breeds such as Golden retrievers vs. Labradors) [18]. It is inter-

esting to observe that computer vision research has followed a similar trajectory.

Basic-level object and scene recognition has seen great progress [15, 21, 26, 31]

while fine-grained categorization has received little attention. Unlike basic-level

recognition, even humans might have difficulty with some of the fine-grained cate-

gorization [32]. Thus, an automated visual system for this task could be valuable in

many applications.

Action recognition in still images can be regarded as a fine-grained classifi-

cation problem [17] as the action classes only differ by human pose or type of

human-object interactions. Unlike traditional object or scene recognition problems

where different classes can be distinguished by different parts or coarse spatial lay-

out [16, 21, 15], more detailed visual distinctions need to be explored for fine-

grained image classification. The bounding boxes in Figure 1 demarcate the dis-

tinguishing characteristics between closely related bird species, or different musical

instruments or human poses that differentiate the different playing activities. Mod-

els and algorithms designed for basic-level object or image categorization tasks are
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Fig. 1 Human action recognition (top row) is a fine-grained image classification problem, where

the human body dominates the image. It is similar to the subordinate object classification problem

(bottom row). The red and yellow bounding boxes indicate discriminative image patches for both

tasks (manually drawn for illustration). The goal of our algorithm is to discover such discriminative

image patches automatically.

often unprepared to capture such subtle differences among the fine-grained visual

classes. In this chapter, we approach this problem from the perspective of find-

ing a large number of image patches with arbitrary shapes, sizes, or locations, as

well as associations between pairs of patches that carry discriminative image statis-

tics [9, 33] (Section 3). However, this approach poses a fundamental challenge:

without any feature selection, even a modestly sized image will yield millions or

billions of image patches. Furthermore, these patches are highly correlated because

many of them overlap significantly. To address these issues, we propose the use of

randomization that considers a random subset of features at a time.

Specifically, we propose a random forest with discriminative decision trees algo-

rithm to discover image patches and pairs of patches that are highly discriminative

for fine-grained categorization tasks. Unlike conventional decision trees [8, 4, 2], our

algorithm uses strong classifiers at each node and combines information at different

depths of the tree to effectively mine a very dense sampling space. Our method sig-

nificantly improves the strength of the decision trees in the random forest while still

maintaining low correlation between the trees. This allows our method to achieve

low generalization error according to the theory of random forest [4].

Besides action recognition in still images [33, 11, 12], we evaluate our method on

subordinate categorization of closely related animal species [32]. We show that our

method achieves state-of-the-art results. Furthermore, our method identifies seman-

tically meaningful image regions1 that closely match human intuition. Additionally,

1 We use the terms ‘patches’ and ‘regions’ interchangeably throughout this chapter.
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our method tends to automatically generate a coarse-to-fine structure of discrimina-

tive image patches, which parallels the human visual system [5].

The remaining part of this chapter is organized as follows: Section 2 discusses

related work. Section 3 describes our dense feature space and Section 4 describes

our algorithm for mining this space. Experimental results are discussed in Section 5,

and Section 6 summarizes this chapter.

2 Related work

Image classification has been studied for many years. Most of the existing work

focuses on basic-level categorization such as objects [14, 2, 15] or scenes [26, 13,

21]. In this chapter we focus on two tasks of fine-grained image classification: (1)

identifying human-object interaction activities in still images [35, 36, 39, 34], and

subordinate-level categorization of animal species [17, 3, 20, 38], which requires an

approach that captures the fine and detailed information in images.

In this chapter, we explore a dense feature representation to distinguish fine-

grained image classes. “Grouplet” features [33] have shown the advantage of dense

features in classifying human activities. Instead of using the generative local features

as in Grouplet, here we consider a richer feature space in a discriminative setting

where both local and global visual information are fused together. Inspired by [9,

33], our approach also considers pairwise interactions between image regions.

We use a random forest framework to identify discriminative image regions. Ran-

dom forests have been used successfully in many vision tasks such as object de-

tection [2], segmentation [27] and codebook learning [24]. Inspired from [28], we

combine discriminative training and randomization to obtain an effective classifier

with good generalizability. Our method differs from [28] in that for each tree node,

we train an SVM classifier from one of the randomly sampled image regions, in-

stead of using AdaBoost to combine weak features from a fixed set of regions. This

allows us to explore an extremely large feature set efficiently.

A classical image classification framework [31] is Feature Extraction → Coding

→ Pooling → Concatenating. Feature extraction [23] and better coding and pooling

methods [31] have been extensively studied for object recognition. In this work,

we use discriminative feature mining and randomization to propose a new feature

concatenating approach, and demonstrate its effectiveness on fine-grained image

categorization tasks.

3 Dense sampling space

Our algorithm aims to identify fine image statistics that are useful for fine-grained

categorization. For example, in order to classify whether a human is playing a guitar

or holding a guitar without playing it, we want to use the image patches below the
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(a) (b)

Fig. 2 Illustration of the proposed dense sampling space. (a) We densely sample rectangular im-

age patches with varying widths and heights. The regions are closely located and have significant

overlaps. The red × denote the centers of the patches, and the arrows indicate the increment of

the patch width or height. (b) Illustration of some image patches that may be discriminative for

“playing-guitar”. All those patches can be sampled from our dense sampling space.

human face that are closely related to the human-guitar interaction (Figure 2(b)). An

algorithm that can reliably locate such regions is expected to achieve high classifica-

tion accuracy. We achieve this goal by searching over rectangular image patches of

arbitrary width, height, and image location. We refer to this extensive set of image

regions as the dense sampling space, as shown in Figure 2(a). This figure has been

simplified for visual clarity, and the actual density of regions considered in our algo-

rithm is significantly higher. We note that the regions considered by spatial pyramid

matching [21] is a very small subset lying along the diagonal of the height-width

plane that we consider. Further, to capture more discriminative distinctions, we also

consider interactions between pairs of arbitrary patches. The pairwise interactions

are modeled by applying concatenation, absolute of difference, or intersection be-

tween the feature representations of two image patches.

However, the dense sampling space is very huge. Sampling image patches of size

50×50 in a 400×400 image every four pixels leads to thousands of patches. This

increases many-folds when considering regions with arbitrary widths and heights.

Further considering pairwise interactions of image patches will effectively lead to

trillions of features for each image. In addition, there is much noise and redundancy

in this feature set. On the one hand, many image patches are not discriminative

for distinguishing different image classes. On the other hand, the image patches

are highly overlapped in the dense sampling space, which introduces significant

redundancy among these features. Therefore, it is challenging to explore this high-

dimensional, noisy, and redundant feature space. In this work, we address this issue

using randomization.
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foreach tree t do

- Sample a random set of training examples D ;

- SplitNode(D);

if needs to split then

i. Randomly sample the candidate (pairs of) image regions (Section 4.2);

ii. Select the best region to split D into two sets D1 and D2 (Section 4.3);

iii. Go to SplitNode(D1) and SplitNode(D2).
else

Return Pt(c) for the current leaf node.

end

end

Algorithm 1: Overview of the process of growing decision trees in the random

forest framework.

4 Discriminative random forest

In order to explore the dense sampling feature space for fine-grained visual cate-

gorization, we combine two concepts: (1) Discriminative training to extract the in-

formation in the image patches effectively; (2) Randomization to explore the dense

feature space efficiently. Specifically, we adopt a random forest [4] framework where

each tree node is a discriminative classifier that is trained on one or a pair of image

patches. In our setting, the discriminative training and randomization can benefit

from each other. We summarize the advantages of our method below:

• The random forest framework allows us to consider a subset of the image regions

at a time, which allows us to explore the dense sampling space efficiently in a

principled way.

• Random forest selects a best image patch in each node, and therefore it can re-

move the noise-prone image patches and reduce redundancy in the feature set.

• By using discriminative classifiers to train the tree nodes, our random forest has

much stronger decision trees. Further, because of the large number of possible

image regions, it is likely that different decision trees will use different image

regions, which reduces the correlation between decision trees. Therefore, our

method is likely to achieve low generalization error (Section 4.4) compared with

the traditional random forest [4] which uses weak classifiers in the tree nodes.

An overview of the random forest framework we use is shown in Algorithm 1. In

the following sections, we first describe this framework (Section 4.1). Then we elab-

orate on our feature sampling (Section 4.2) and split learning (Section 4.3) strategies

in detail, and describe the generalization theory [4] of random forest which guaran-

tees the effectiveness of our algorithm (Section 4.4).
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(a) Conventional random decision tree.
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(b) The proposed discriminative decision tree.

Fig. 3 Comparison of conventional random decision trees with our discriminative decision trees.

Solid blue arrows show binary splits of the data. Dotted lines from the shaded image regions in-

dicate the region used at each node. Conventional decision trees use information from the entire

image at each node, which encodes no spatial or structural information, while our decision trees

sample single or multiple image regions from the dense sampling space (Figure 2(a)). The his-

tograms below the leaf nodes illustrate the posterior probability distribution Pt,l(c) (Section 4.1).

In (b), dotted red arrows between nodes show our nested tree structure that allows information to

flow in a top-down manner. Our approach uses strong classifiers in each node (Section 4.3), while

the conventional method uses weak classifiers.

4.1 The random forest framework

Random forest is a multi-class classifier consisting of an ensemble of decision trees

where each tree is constructed via some randomization. As illustrated in Figure 3(a),

the leaf nodes of each tree encode a distribution over the image classes. All internal

nodes contain a binary test that splits the data and sends the splits to its children

nodes. The splitting is stopped when a leaf node is encountered. An image is classi-

fied by descending each tree and combining the leaf distributions from all the trees.

This method allows the flexibility to explore a large feature space effectively be-

cause it only considers a subset of features in every tree node.

Each tree returns the posterior probability of an example belonging to the given

classes. The posterior probability of a particular class at each leaf node is learned as



Title Suppressed Due to Excessive Length 7

the proportion of the training images belonging to that class at the given leaf node.

The posterior probability of class c at leaf l of tree t is denoted as Pt,l(c). Thus, a test

image can be classified by averaging the posterior probability from the leaf node of

each tree:

c∗ = argmax
c

1

T

T

∑
t=1

Pt,lt (c), (1)

where c∗ is the predicted class label, T is the total number of trees, and lt is the leaf

node that the image falls into.

In the following sections, we describe the process of obtaining Pt,l(c) using our

algorithm. Readers can refer to previous works [4, 2, 27] for more details of the

conventional decision tree learning procedure.

4.2 Sampling the dense feature space

As shown in Figure 3(b), each internal node in our decision tree corresponds to a

single or a pair of rectangular image regions that are sampled from the dense sam-

pling space (Section 3), where the regions can have many possible widths, heights,

and image locations. In order to sample a candidate image region, we first normalize

all images to unit width and height, and then randomly sample (x1,y1) and (x2,y2)
from a uniform distribution U([0,1]). These coordinates specify two diagonally op-

posite vertices of a rectangular region. Such regions could correspond to small areas

of the image (e.g. the purple bounding boxes in Figure 3(b)) or even the complete

image. This allows our method to capture both global and local information in the

image.

In our approach, each sampled image region is represented by a histogram of

visual descriptors. For a pair of regions, the feature representation is formed by ap-

plying histogram operations (e.g. concatenation, intersection, etc.) to the histograms

obtained from both regions. Furthermore, the features are augmented with the deci-

sion value wTf (described in Section 4.3) of this image from its parent node (indi-

cated by the dashed red lines in Figure 3(b)). Therefore, our feature representation

combines the information of all upstream tree nodes that the corresponding image

has descended from. We refer to this idea as “nesting”. Using feature sampling and

nesting, we obtain a candidate set of features, f ∈ R
n, corresponding to a candidate

image region of the current node.

Implementation details. Our method is flexible to use many different visual

descriptors. In this work, we densely extract SIFT [23] descriptors on each image

with a spacing of four pixels. The scales of the grids to extract descriptors are 8, 12,

16, 24, and 30. Using k-means clustering, we construct a vocabulary of codewords2.

Then, we use Locality-constrained Linear Coding [31] to assign the descriptors to

2 A dictionary size of 1024, 256, 256 is used for PASCAL action [11, 12], PPMI [33], and Caltech-

UCSD Birds [32] datasets respectively.
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codewords. A bag-of-words histogram representation is used if the area of the patch

is smaller than 0.2, while a 2-level or 3-level spatial pyramid is used if the area is

between 0.2 and 0.8 or larger than 0.8 respectively. Note that all parameter here are

empirically chose. Using other similar parameters will lead to very similar results.

During sampling (step i of Algorithm 1), we consider four settings of image

patches: a single image patch and three types of pairwise interactions (concatena-

tion, intersection, and absolute of difference of the two histograms). We sample

25 and 50 image regions (or pairs of regions) in the root node and the first level

nodes respectively, and sample 100 regions (or pairs of regions) in all other nodes.

Sampling a smaller number of image patches in the root can reduce the correlation

between the resulting trees.

4.3 Learning the splits

In this section, we describe the process of learning the binary splits of the data using

SVM (step ii in Algorithm 1). This is achieved in two steps: (1) Randomly assigning

all examples from each class to a binary label; (2) Using SVM to learn a binary split

of the data.

Assume that we have C classes of images at a given node. We uniformly sample

C binary variables, b, and assign all examples of a particular class ci a class label of

bi. As each node performs a binary split of the data, this allows us to learn a simple

binary SVM at each node. This improves the scalability of our method to a large

number of classes and results in well-balanced trees. Using the feature representa-

tion f of an image region (or pairs of regions) as described in Section 4.2, we find a

binary split of the data:

{

wTf ≤ 0,go to left child

otherwise,go to right child

where w is the set of weights learned from a linear SVM.

We evaluate each binary split that corresponds to an image region or pairs of

regions with the information gain criteria [2], which is computed from the com-

plete training images that fall at the current tree node. The splits that maximize the

information gain are selected and the splitting process (step iii in Algorithm 1) is

repeated with the new splits of the data. The tree splitting stops if a pre-specified

maximum tree depth has been reached, or the information gain of the current node

is larger than a threshold, or the number of samples in the current node is small.
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4.4 Generalization error of random forests

In [4], it has been shown that an upper bound for the generalization error of a random

forest is given by

ρ(1− s2)/s2, (2)

where s is the strength of the decision trees in the forest, and ρ is the correlation

between the trees. Therefore, the generalization error of a random forest can be

reduced by making the decision trees stronger or reducing the correlation between

the trees.

In our approach, we learn discriminative SVM classifiers for the tree nodes.

Therefore, compared to the traditional random forests where the tree nodes are weak

classifiers of randomly generated feature weights [2], our decision trees are much

stronger. Furthermore, since we are considering an extremely dense feature space,

each decision tree only considers a relatively small subset of image patches. This

means there is little correlation between the trees. Therefore, our random forest

with discriminative decision trees algorithm can achieve very good performance on

fine-grained image classification, where exploring fine image statistics discrimina-

tively is important. In Section 5.5, we show the strength and correlation of different

settings of random forests with respect to the number of decision trees, which jus-

tifies the above arguments. Please refer to [4] for details about how to compute the

strength and correlation values for a random forest.

5 Experiments

In this section, we first evaluate our algorithm on two fine-grained image datasets:

actions of people-playing-musical-instrument (PPMI) [33] (Section 5.1) and a sub-

ordinate object categorization dataset of 200 bird species [32] (Section 5.2). Ex-

perimental results show that our algorithm outperforms state-of-the-art methods on

these datasets. Further, we use the proposed method to participate the action classi-

fication competition of the PASCAL VOC challenge, and obtain the winning award

in both 2011 [11] and 2012 [12]. Detailed results and analysis are shown in Sec-

tion 5.3 and Section 5.4. Finally, we evaluate the strength and correlation of the

decision trees in our method, and compare the result with the other settings of ran-

dom forests to show why our method can lead to better classification performance

(Section 5.5).
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Method BoW Grouplet [33] SPM [21] LLC [31] Ours

mAP (%) 22.7 36.7 39.1 41.8 47.0

Table 1 Mean Average Precision (% mAP) on the 24-class classification problem of the PPMI

dataset. The best result is highlighted with bold fonts.

5.1 People-Playing-Musical-Instruments (PPMI)

The people-playing-musical-instrument (PPMI) data set is introduced in [33]. This

data set puts emphasis on understanding subtle interactions between humans and

objects. Here we use a full version of the dataset which contains twelve musical

instruments; for each instrument there are images of people playing the instrument

and holding the instrument but not playing it. We evaluate the performance of our

method with 100 decision trees on the 24-class classification problem. We compare

our method with many previous results3, including bag of words, grouplet [33], spa-

tial pyramid matching (SPM) [21], locality-constrained linear coding (LLC) [31].

The grouplet method uses one SIFT scale, while all the other methods use multiple

SIFT scales described in Section 4.2. Table 1 shows that we significantly outperform

the a various of previous approaches.

Table 2 shows the result of our method on the 12 binary classification tasks where

each task involves distinguishing the activities of playing and not playing for the

same instrument. Despite a high baseline of 89.2% mAP, our method outperforms

by 2.9% to achieve a result of 92.1% overall. We also perform better than the grou-

plet approach [33] by 7%, mainly because the random forest approach is more ex-

pressive. While each grouplet is encoded by a single visual codeword, each node

of the decision trees here corresponds to an SVM classifier. Furthermore, we out-

perform the baseline methods on nine of the twelve binary classification tasks. In

Figure 4, we visualize the heat map of the features learned for this task. We observe

that they show semantically meaningful locations of where we would expect the

discriminative regions of people playing different instruments to occur. For exam-

ple, for flute, the region around the face provides important information while for

guitar, the region to the left of the torso provides more discriminative information.

It is interesting to note that despite the randomization and the algorithm having no

prior information, it is able to locate the region of interest reliably.

Furthermore, we also demonstrate that the method learns a coarse-to-fine region

of interest for identification. This is similar to the human visual system which is

believed to analyze raw input in order from low to high spatial frequencies or from

large global shapes to smaller local ones [5]. Figure 5 shows the heat map of the

area selected by our classifier as we consider different depths of the decision tree.

We observe that our random forest follows a similar coarse-to-fine structure. The

average area of the patches selected reduces as the tree depth increases. This shows

that the classifier first starts with more global features or high frequency features to

3 The baseline results are available from the dataset website:

http://ai.stanford.edu/˜bangpeng/ppmi

http://ai.stanford.edu/~bangpeng/ppmi
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Instrument BoW Grouplet [33] SPM [21] LLC [31] Ours

Bassoon 73.6 78.5 84.6 85.0 86.2

Erhu 82.2 87.6 88.0 89.5 89.8

Flute 86.3 95.7 95.3 97.3 98.6

French horn 79.0 84.0 93.2 93.6 97.3

Guitar 85.1 87.7 93.7 92.4 93.0

Saxophone 84.4 87.7 89.5 88.2 92.4

Violin 80.6 93.0 93.4 96.3 95.7

Trumpet 69.3 76.3 82.5 86.7 90.0

Cello 77.3 84.6 85.7 82.3 86.7

Clarinet 70.5 82.3 82.7 84.8 90.4

Harp 75.0 87.1 92.1 93.9 92.8

Recorder 73.0 76.5 78.0 79.1 92.8

Average 78.0 85.1 88.2 89.2 92.1

Table 2 Comparison of mean Average Precision (% mAP) of the results obtained by different

methods on the PPMI binary classification tasks of people playing and holding different musi-

cal instruments. Each column shows the results obtained from one method. The best results are

highlighted with bold fonts.

(a) flute (b) guitar (c) violin

Fig. 4 (a) Heat map of the dominant regions of interest selected by our method for playing flute on

images of playing flute (top row) and holding a flute without playing it (bottom row). (b,c) shows

similar images for guitar and violin, respectively. The heat maps are obtained by aggregating image

regions of all the tree nodes in the random forest weighted by the probability of the corresponding

class. Red indicates high frequency and blue indicates low frequency.

discriminate between multiple classes, and finally zeros in on the specific discrimi-

native regions for some particular classes.
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Depth: 1 Depth: 2 Depth: 3 Depth: 4 Depth: 5

Area: 0.225 Area: 0.277 Area: 0.237 Area: 0.178 Area: 0.167

Fig. 5 Heat map for “playing trumpet” class with the weighted average area of selected image

regions for each tree depth. Please refer to Figure 4 for how the heat maps are obtained.

Method MKL [3] LLC [31] Ours

Accuracy 19.0% 18.0% 19.2%

Table 3 Comparison of the mean classification accuracy of our method and the baseline results on

the Caltech-UCSD Birds 200 dataset. The best performance is indicated with bold fonts.

(a) (b) (c)

Fig. 6 Each row represents visualizations for a single class of birds (from top to bottom): boat

tailed grackle, brewer sparrow, and golden winged warbler. For each class, we visualize: (a) Heat

map for the given bird as described in Figure 4; (b,c) Two example images of the corresponding

bird and the distribution of image patches selected for the specific image.

5.2 Caltech-UCSD Birds 200 (CUB-200)

The Caltech-UCSD Birds (CUB-200) dataset contains 6,033 annotated images of

200 different bird species [32]. This dataset has been designed for subordinate im-

age categorization. It is a very challenging dataset as the different species are very

closely related and have similar shape/color. There are around 30 images per class

with 15 for training and the remaining for testing. The test-train splits are fixed

(provided on their website).
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The images are cropped to the provided bounding box annotations. These re-

gions are resized such that the smaller image dimension is 150 pixels. As color

provides important discriminative information, we extract C-SIFT descriptors [29]

in the same way described in Section 4.2. We use 300 decision trees in our random

forest. Table 3 compares the performance of our algorithm against the LLC baseline

and the state-of-the-art result (multiple kernel learning (MKL) [3]) on this dataset.

Our method outperforms LLC and achieves comparable performance with the MKL

approach. We note that [3] uses multiple features e.g. geometric blur, gray/color

SIFT, full image color histograms etc. It is expected that including these features

can further improve the performance of our method. Furthermore, we show in Fig-

ure 6 that our method is able to capture the intra-class pose variations by focusing

on different image regions for different images.

5.3 PASCAL VOC 2011 Action Classification

The recent PASCAL VOC challenges incorporated the task of recognizing actions in

still images. The images describe ten common human activities: “Jumping”, “Phon-

ing”, “Playing a musical instrument”, “Reading”, “Riding a bicycle or motorcy-

cle”, “Riding a horse”, “Running”, “Taking a photograph”, “Using a computer”,

and “Walking”. Each person that we need to classify is indicated by a bounding

box and is annotated with one of the nine actions they are performing. There are

also humans performing actions that do not belong to any of the ten aforementioned

categories. These actions are all labeled as “Other”.

We participated the competition using the method proposed in this chapter, and

won the winning award in both 2011 [11]4 and 2012 [12]5. We introduce the details

of our results in the 2011 challenge [11] in the rest of this subsection. Section 5.4

will cover our results in the 2012 challenge [12].

There are around 2,500 training/validation images and a similar number of testing

images in the 2011 dataset. As in [7], we obtain a foreground image for each person

by extending the bounding box of the person to contain 1.5× the original size of

the bounding box, and resizing it such that the larger dimension is 300 pixels. We

also resize the original image accordingly. Therefore for each person, we have a

“person image” as well as a “background image”. We only sample regions from

the foreground and concatenate the features with a 2-level spatial pyramid of the

background. We use 100 decision trees in our random forest.

Classification results measured by mean Average Precision (mAP) are shown in

Table 4. Our method achieves the best result on six out of the ten actions. Note that

we achieved this accuracy based on only grayscale SIFT descriptors, without using

any other features or contextual information like object detectors.

4 A summary of the results in 2011 PASCAL challenge is in

http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2011/workshop/index.html.
5 A summary of the results in 2012 PASCAL challenge is in

http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/workshop/index.html.

http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2011/workshop/index.html
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/workshop/index.html
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Action
CAENLEAR CAENLEAR NUDT NUDT

Ours
DSAL HOBJ DSAL CONTEXT SEMANTIC

Jumping 62.1% 71.6% 65.9% 66.3% 66.0%

Phoning 39.7% 50.7% 41.5% 41.3% 41.0%

Playing instrument 60.5% 77.5% 57.4% 53.9% 60.0%

Reading 33.6% 37.8% 34.7% 35.2% 41.5%

Riding bike 80.8% 86.5% 88.8% 88.8% 90.0%

Riding horse 83.6% 89.5% 90.2% 90.0% 92.1%

Running 80.3% 83.8% 87.9% 87.6% 86.6%

Taking photo 23.2% 25.1% 25.7% 25.5% 28.8%

Using computer 53.4% 58.9% 54.5% 53.7% 62.0%

Walking 50.2% 59.2% 59.5% 58.2% 65.9%

Table 4 Comparison of the mean Average Precision of our method and the other approaches in

the action classification competition of PASCAL VOC 2011. Each column shows the result from

one method. The best results are highlighted with bold fonts. We omitted the results of MIS-

SOURI SSLMF and WVU SVM-PHOW, which did not outperform on any class, due to space

limitations.

Figure 7 shows the frequency of an image patch being selected by our method.

For each activity, the figure is obtained by considering the features selected in the

tree nodes weighted by the proportion of samples of this activity in this node. From

the results, we can clearly see the difference of distributions for different activi-

ties. For example, the image patches corresponding to human-object interactions

are usually highlighted, such as the patches of bikes and books. We can also see that

the image patches corresponding to background are not frequently selected. This

demonstrates our algorithm’s ability to deal with background clutter.

5.4 PASCAL VOC 2012 Action Classification

The action classification competition of the 2012 PASCAL VOC challenge [12]

contains more than 5,000 training/validation images and a similar number of test-

ing images, which is an increase of around 90% in size over VOC 2011. We use

our proposed method with two improvements: (1) combining multiple features, and

(2) greedy tree selection. We describe these in greater detail below. The results are

shown in Table 5. In 2012 we had only one competitor (DPM RF SVM), and our

method outperformed this approach on eight of the ten action classes. Further, com-

paring “Ours 2012” with “Ours 2011”, we observe that combining multiple features

and using a tree selection approach6 improves the performance by 6% mAP.

Combining multiple features: Besides the SIFT image descriptor [23] used in

the 2011 challenge, we also consider four other descriptors: HOG2x2 [6], color

naming [30], local binary pattern [25], and object bank [22]. These features are

6 These approaches were specifically developed for the 2012 PASCAL VOC challenge and have

not been tested on other datasets but we expect similar performance improvements on them.
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Fig. 7 Heat maps that show distributions of frequency that an image patch is selected in our

method. Please refer to Figure 4 for an explanation on how the heat maps are obtained.

extracted in a similar manner to [19]. For HOG2x2 and color naming features, we

use a dictionary size of 1024 and 256 respectively. For object bank features, we

train the deformable parts-based model (DPM) [15] on the 20 object categories in

PASCAL VOC. We build decision trees for each feature independently. Then, we

train a linear SVM on the class histograms obtained using the different features to

obtain the final output.

Greedy tree selection: Figure 8 illustrates our algorithm. We use training images

to train N decision trees independently, and then select the best subset of decision

trees based on the validation performance in a greedy manner. We build the forest

from decision trees in a sequential manner: first, we evaluate the performance of

all individual decision trees on held-out validation data. Then, we select the tree

that maximizes the validation performance. This results in a forest with 1 decision

tree. We then evaluate the validation performance when we add one more tree from

the remaining set of N −1 trees and pick the tree that maximizes performance. We

repeat this process for N trees, and select the best subset as the first S ≤ N trees

that maximize the validation performance (S = 3 in Figure 8). A greedy method (or
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Fig. 8 Illustration of the process of greedy tree selection described in Section 5.4. Left: Initially,

we start with all the independently trained trees. Middle: Then, we measure their performance on

the validation data, one at a time. We select the tree with the highest validation performance in the

first step (blue), and then choose from the remaining trees in the second step and so on. Overall,

the improvement obtained by tree selection is indicated in the figure. Right: Selected trees that

maximize validation performance.

Action DPM RF SVM Ours 2011 Ours 2012

Jumping 73.8% 71.1% 75.7%

Phoning 45.0% 41.2% 44.8%

Playing instrument 62.8% 61.9% 66.6%

Reading 41.4% 39.3% 44.4%

Riding bike 93.0% 92.4% 93.2%

Riding horse 93.4% 92.5% 94.2%

Running 87.8% 86.1% 87.6%

Taking photo 35.0% 31.3% 38.4%

Using computer 64.7% 60.4% 70.6%

Walking 73.5% 68.9% 75.6%

Table 5 Comparison of the mean Average Precision of our method and the other approaches in

the action classification competition of PASCAL VOC 2012. “Ours 2011” indicates our approach

used for the 2011 challenge. The best results are highlighted with bold fonts.

another approximation) is required as there are too many possible subsets of trees

(2N) to enumerate exhaustively. The idea of tree selection has also been explored in

prior works [1].

5.5 Strength and correlation of decision trees

We compare our method against two control settings of random forests on the PAS-

CAL action dataset. Here we use the PASCAL VOC 2010 dataset [10] where there

are fewer images than that on 2011 to make our experiments easier to conduct.
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(b) Strength of the decision trees.
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(c) Correlation between the decision trees

Fig. 9 Comparison of different random forest settings. (a) We compare the classification perfor-

mance (mAP) obtained by our method dense feature, strong classifier with two control settings.

Please refer to Section 5.5 for details of these settings. (b,c) We also compare the strength of the

decision trees learned by these approaches and correlation between these trees (Section 4.4), which

are highly related to the generalization error of random forests.

• Dense feature, weak classifier: For each image region or pairs of regions sampled

from our dense sampling space, replace the SVM classifier in our method with a

weak classifier as in the conventional decision tree learning approach [8, 4], i.e.

randomly generating 100 sets of feature weights and select the best one.

• SPM feature, strong classifier: Use SVM classifiers to split the tree nodes as

in our method, but the image regions are limited to that from a 4-level spatial

pyramid.

Note that all other settings of the above two approaches remain unchanged as

compared to our method (as described in Section 4). Figure 9 shows that on this

dataset, a set of strong classifiers with relatively high correlation can lead to better

performance than a set of weak classifiers with low correlation. We can see that

the performance of random forests can be significantly improved by using strong

classifiers in the nodes of decision trees. Compared to the random forests that only

sample spatial pyramid regions, using the dense sampling space obtains stronger
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trees without significantly increasing the correlation between different trees, thereby

improving the classification performance. Furthermore, the performance of the ran-

dom forests using discriminative node classifiers converges with a small number of

decision trees, indicating that our method is more efficient than the conventional

random forest approach. In our experiment, the two settings and our method need a

similar amount of time to train a single decision tree.

Additionally, we show the effectiveness of random binary assignment of class

labels (Section 4.3) when we train classifiers for each tree node. Here we ignore this

step and train a one-vs-all multi-class SVM for each sampled image region or pairs

of regions. In this case C sets of weights are obtained when there are C classes of

images at the current node. The best set of weights is selected using information gain

as before. This setting leads to deeper and significantly unbalanced trees, and the

performance decreases to 58.1% with 100 trees. Furthermore, it is highly inefficient

as it does not scale well with increasing number of classes.

6 Summary

In this chapter, we propose a random forest with discriminative decision trees al-

gorithm to explore a dense sampling space for fine-grained image categorization.

Experimental results on subordinate classification and activity classification show

that our method achieves state-of-the-art performance and discovers much semanti-

cally meaningful information. One direction for future work is to extend the method

to allow for more flexible regions where their location can vary from image to im-

age. Furthermore, it would be interesting to apply other classifiers with analytical

solutions such as Linear Discriminant Analysis to speed up the training procedure7.
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