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ABSTRACT

This work introduces Human-Agent Transfer (HAT), an algorithm

that combines transfer learning, learning from demonstration and

reinforcement learning to achieve rapid learning and high perfor-

mance in complex domains. Using experiments in a simulated

robot soccer domain, we show that human demonstrations trans-

ferred into a baseline policy for an agent and refined using rein-

forcement learning significantly improve both learning time and

policy performance. Our evaluation compares three algorithmic ap-

proaches to incorporating demonstration rule summaries into trans-

fer learning, and studies the impact of demonstration quality and

quantity, as well as the effect of combining demonstrations from

multiple teachers. Our results show that all three transfer meth-

ods lead to statistically significant improvement in performance

over learning without demonstration. The best performance was

achieved by combining the best demonstrations from two teachers.
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General Terms

Algorithms, Performance

Keywords
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1. INTRODUCTION
Agent technologies for virtual agents and physical robots are

rapidly expanding in industrial and research fields, enabling greater

automation, increased levels of efficiency, and new applications.

However, existing systems are designed to provide niche solutions

to very specific problems and each system may require significant

effort to develop. The ability to acquire new behaviors through

learning is fundamentally important for the development of general-

purpose agent platforms that can be used for a variety of tasks.

Existing approaches to agent learning generally fall into two cat-

egories: independent learning through exploration and learning from

labeled training data. Agents often learn independently from ex-

ploration via Reinforcement learning (RL) [25]. While such tech-
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niques have had great success in offline learning and software ap-

plications, the large amount of data and high exploration times they

require make them intractable for most real-world domains.

On the other end of the spectrum are learning from demonstra-

tion (LfD) algorithms [1]. These approaches leverage the vast ex-

perience and task knowledge of a person to enable fast learning,

which is critical in real-world applications. However, human teach-

ers provide particularly noisy and suboptimal data due to differ-

ences in embodiment (e.g., degrees of freedom, action speed) and

limitations of human ability. As a result, final policy performance

achieved by these methods is limited by the quality of the dataset

and the performance of the teacher.

This paper proposes a novel approach: use RL transfer learning

methods [28] to combine LfD and RL and achieve both fast learn-

ing and high performance in complex domains. In transfer learning,

knowledge from a source task is used in a target task to speed up

learning. Equivalently, knowledge from a source agent is used to

speed up learning in a target agent. For instance, knowledge has

been successfully transferred between agents that balance differ-

ent length poles [19], that solve a series of mazes [5, 34], or that

play different soccer tasks [29, 31, 32]. The key insight of transfer

learning is that previous knowledge can be effectively reused, even

if the source task and target task are not identical. This results in

substantially improved learning times because the agent no longer

relies on an uninformed (arbitrary) prior.

In this work, we show that we can effectively transfer knowledge

from a human to an agent, even when they have different percep-

tions of state. Our method, Human-Agent Transfer (HAT): 1) allows

a human teacher to perform a series of demonstrations in a task, 2)

uses an existing transfer learning algorithm, Rule Transfer [27], to

learn rule-based summaries of the demonstration, and 3) integrates

the rule summaries into RL, biasing learning while also allowing

improvement over the transferred policy.

We perform empirical evaluation of HAT in a simulated robot

soccer domain. We compare three algorithms for incorporating rule

summaries into reinforcement learning, and compare learning per-

formance for multiple demonstration source, quantity, and quality

conditions. Our findings show statistically significant improvement

in performance for all variants of HAT over learning with no prior.

Additionally, we find that exposure even to suboptimal demonstra-

tion training data results in significant improvements over random

exploration, and combining demonstrations from multiple teachers

leads to the best performance.

2. BACKGROUND
This section provides background on the three key techniques

discussed in this paper: reinforcement learning, learning from demon-

strations, and transfer learning.
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2.1 Reinforcement Learning
Reinforcement learning is a common approach to agent learn-

ing from experience. We define reinforcement learning using the

standard notation of Markov decision processes (MDPs) [16]. At

every time step the agent observes its state s ∈ S as a vector of k

state variables such that s = 〈x1, x2, . . . , xk〉. The agent selects

an action from the set of available actions A at every time step. An

MDP’s reward function R : S×A 7→ R and (stochastic) transition

function T : S×A 7→ S fully describe the system’s dynamics. The

agent will attempt to maximize the long-term reward determined by

the (initially unknown) reward and transition functions.

A learner chooses which action to take in a state via a policy,

π : S 7→ A. Policy π is modified by the learner over time to

improve performance, which is defined as the expected total re-

ward. Instead of learning π directly, many RL algorithms instead

approximate the action-value function, Q : S × A 7→ R, which

maps state-action pairs to the expected real-valued return. In this

paper, agents learn using Sarsa [17, 20], a well known but relatively

simple temporal difference RL algorithm, which learns to estimate

Q(s, a). While some RL algorithms are more sample efficient than

Sarsa, this paper will focus on Sarsa for the sake of clarity.

Although RL approaches have enjoyed multiple past successes

(e.g., TDGammon [30], inverted Helicopter control [12], and agent

locomotion [18]), they frequently take substantial amounts of data

to learn a reasonable control policy. In many domains, collect-

ing such data may be slow, expensive, or infeasible, motivating the

need for ways of making RL algorithms more sample-efficient.

2.2 Learning from Demonstration
Learning from demonstration research explores techniques for

learning a policy from examples, or demonstrations, provided by a

human teacher. LfD can be seen as a subset of Supervised Learn-

ing, in that the agent is presented with labeled training data and

learns an approximation to the function which produced the data.

Similar to reinforcement learning, learning from demonstration

can be defined in terms of the agent’s observed state s ∈ S and ex-

ecutable actions a ∈ A. Demonstrations are recorded as temporal

sequences of t state-action pairs {(s0, a0), ..., (st, at)}, and these

sequences typically only cover a small subset of all possible states

in a domain. The agent’s goal is to generalize from the demonstra-

tions and learn a policy π : S 7→ A covering all states that imitates

the demonstrated behavior.

Many different algorithms for using demonstration data to learn

π have been proposed. Approaches vary by how demonstrations

are performed (e.g., teleoperation, teacher following, kinesthetic

teaching, external observation), the type of policy learning method

used (e.g., regression, classification, planning), and assumptions

about degree of demonstration noise and teacher interactivity [1].

Across these differences, LfD techniques possess a number of key

strengths. Most significantly, demonstration leverages the vast task

knowledge of the human teacher to significantly speed up learning

either by eliminating exploration entirely [6, 13], or by focusing

learning on the most relevant areas of the state space [22]. Demon-

stration also provides an intuitive programming interface for hu-

mans, opening possibilities for policy development to non-agents-

experts.

However, LfD algorithms are inherently limited by the quality

of the information provided by the human teacher. Algorithms typ-

ically assume the dataset to contain high quality demonstrations

performed by an expert. In reality, teacher demonstrations may be

ambiguous, unsuccessful, or suboptimal in certain areas of the state

space. A naïvely learned policy will likely perform poorly in such

areas [2]. To enable the agent to improve beyond the performance

of the teacher, learning from demonstration must be combined with

learning from experience.

Most similar to our approach is the work of Smart and Kaelbling,

which shows that human demonstration can be used to bootstrap

reinforcement learning in domains with sparse rewards by initializ-

ing the action-value function using the observed states, actions and

rewards [22]. In contrast to this approach, our work uses demon-

stration data to learn generalized rules, which are then used to bias

the reinforcement learning process.

2.3 Transfer Learning
The insight behind transfer learning (TL) is that generalization

may occur not only within tasks, but also across tasks, allowing an

agent to begin learning with an informative prior instead of relying

on random exploration.

Transfer learning methods for reinforcement learning can trans-

fer a variety of information between agents. However, many trans-

fer methods restrict what type of learning algorithm is used by

both agents (for instance, some methods require temporal differ-

ence learning [29] or a particular function approximator [32] to be

used in both agents). However, when transferring from a human, it

is impossible to copy a human’s “value function” — both because

the human would likely be incapable of providing a complete and

consistent value function, and because the human would quickly

grow wary of evaluating a large number of state-action pairs.

This paper uses Rule Transfer [27], a particularly appropriate

transfer method that is agnostic to the knowledge representation

of the source learner. The ability to transfer knowledge between

agents that have different state representations and/or actions is a

critical ability when considering transfer of knowledge between a

human and an agent. The following steps summarize Rule Transfer:

1a: Learn a policy (π : S 7→ A) in the source task. Any type of

reinforcement learning algorithm may be used.

1b: Generate samples from the learned policy After training

has finished, or during the final training episodes, the agent

records some number of interactions with the environment in

the form of (S,A) pairs while following the learned policy.

2: Learn a decision list (Ds : S 7→ A) that summarizes the

source policy. After the data is collected, a propositional

rule learner is used to summarize the collected data to ap-

proximate the learned policy by mapping states to actions.1

This decision list is used as a type of inter-lingua, allowing

the following step to be independent of the type of policy

learned (step 1a).

3: Use Dt to bootstrap learning of an improved policy in the

target task. For instance, previous work [27] provided three

ways of leveraging this knowledge; two of these methods are

discussed later in Sections 3.1 and 3.2.

2.4 Additional Related Work
This section briefly summarizes three additional lines of related

work.

Within psychology, behavioral shaping [21] is a training proce-

dure that uses reinforcement to condition the desired behavior in

a human or animal. During training, the reward signal is initially

1Additionally, if the agents in the source and target task use dif-
ferent state representations or have different available actions, the
decision list can be translated via inter-task mappings [27, 29] (as
step 2b). For the current paper, this translation is not necessary, as
the source and target agents operate in the same task.
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used to reinforce any tendency towards the correct behavior, but is

gradually changed to reward successively more difficult elements

of the task. Shaping methods with human-controlled rewards have

been successfully demonstrated in a variety of software agent ap-

plications [3, 7]. An alternate form of shaping is to change the task

over time, or construct a task sequence for an agent to train on [26,

36]. In contrast to shaping, LfD allows a human to demonstrate

complete behaviors, which may contain much more information

than a sequence of rewards or suggested tasks.

Most similar to our approach is the recent work by Knox and

Stone [9] which combines shaping with reinforcement learning.

Their TAMER [8] system learns to predict and maximize a reward

that is interactively provided by a human. The learned human re-

ward is combined in various ways with Sarsa(λ), providing signif-

icant improvements. The primary difference between HAT and this

method is that we focus on leveraging human demonstration, rather

than estimating and integrating a human reinforcement signal.

The idea of transfer between a human and an agent is somewhat

similar to implicit imitation [15], in that one agent teaches another

how to act in a task, but HAT does not require the agents to have the

same (or very similar) representations.

Allowing for such shifts in representation gives additional flex-

ibility to an agent designer; past experience may be transferred

rather than discarded if a new representation is desired. Represen-

tation transfer is similar in spirit to HAT in that both the teacher and

the learner function in the same task, but very different techniques

are used since the human’s “value function” cannot be directly ex-

amined.

High-level advice and suggestions have also been used to bias

agent learning. Such advice can provide a powerful learning tool

that speeds up learning by biasing the behavior of an agent and

reducing the policy search space. However, existing methods typi-

cally require either a significant user sophistication (e.g., the human

must use a specific programming language to provide advice [11])

or significant effort is needed to design a human interface (e.g.,

the learning agent must have natural language processing abilities

[10]). Allowing a teacher to demonstrate behaviors is preferable in

domains where demonstrating a policy is a more natural interaction

than providing such high-level advice.

3. METHODOLOGY
In this section we present HAT, our approach to combining LfD

and RL. HAT consists of three steps, motivated by those used in

Rule Transfer:

Demonstration The agent performs the task under the teleoper-

ated control by a human teacher, or by executing an existing

suboptimal controller. During execution, the agent records

all state-action transitions. Multiple task executions may be

performed.

Policy Summarization HAT uses the state-action transition data

recorded during the Demonstration phase to derive rules sum-

marizing the policy. These rules are used to bootstrap au-

tonomous learning.

Independent Learning The agent learns independently in the task

via reinforcement learning, using the policy summary to bias

its learning. In this step, the agent must balance exploiting

the transferred rules with attempting to learn a policy that

outperforms the transferred rules.

In contrast to transfer learning, HAT assumes that either 1) the

demonstrations are executed on the same agent, in the same task,

as will be learned in the Independent Learning phase, or that 2) any

differences between the agent or task in the demonstration phase

are small enough that they can be ignored in the independent learn-

ing phase. Instead of transferring between different tasks, HAT fo-

cuses on transferring between different agents with different inter-

nal representations. For instance, it is not possible to directly use

a human’s “value function” inside an agent because 1) the human’s

knowledge is not directly accessible and 2) the human has a differ-

ent state abstraction than the agent.

We next present three different ways that HAT can use a decision

list to improve independent learning.

3.1 Value Bonus
The intuition behind the Value Bonus method [27] is similar to

that of shaping in that the summarized policy is used to add a re-

ward bonus to certain human-favored actions. When the agent

reaches a state and calculates Q(s, a), the Q-value of the action

suggested by the summarized policy is given a constant bonus (B).

For the first C episodes, the learner is forced to execute the ac-

tion suggested by the rule set. This is effectively changing the ini-

tialization of the Q-value function, or, equivalently [33], providing

a shaping reward to the state-action pairs that are selected by the

rules.

We useB = 10 andC = 100 to be consistent with past work [27];

the Q-value for the action chosen by the summarized policy will be

given a bonus of +10 and agents must execute the action chosen by

the summarized policy for the first 100 episodes.

3.2 Extra Action
The Extra Action method [27] augments the agent so that it can

select a pseudo-action. When the agent selected this pseudo-action,

it executed the action suggested by the decision list. The agent may

either execute the action suggested by the transferred rules, or it

can execute one of the “base” MDP actions. Through exploration,

the RL agent can decide when it should 1) follow the transferred

rules by executing the pseudo-action or 2) execute a base MDP

action (e.g., the transferred rules are sub-optimal). Were the agent

to always execute the pseudo-action, the agent would never learn

but would simply mimic the demonstrated policy.

As with the Value Bonus algorithm, the agent initially executes

the action suggested by the decision list, allowing it to estimate the

value of the decision list policy. We again set this period to be 100

episodes (C = 100).

3.3 Probabilistic Policy Reuse
The third method used is Probabilistic Policy Reuse, based on

the π-reuse Exploration Strategy [4, 5]. In Probabilistic Policy

Reuse, the agent will reuse a policy with probability ψ, explore

with probability ǫ, and exploit the current value function with prob-

ability 1 − ψ − ǫ. By decaying ψ over time, the agent can initially

leverage the decision list, but then learn to improve on it if possi-

ble. Note that Probabilistic Policy Reuse is similar to the recent

TAMER+RL method #7 [9], where the agent tries to execute the ac-

tion suggested by the learned human shaping reward, rather than

follow a transferred policy.
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Figure 1: This diagram shows the distances and angles used to

construct the 13 state variables used for learning with 3 keepers

and 2 takers. Relevant objects are the 3 keepers (K) and the

two takers (T), both ordered by distance from the ball, and the

center of the field.

4. EXPERIMENTAL VALIDATION
This section first discusses Keepaway [24], a simulated robot

soccer domain and then explains the experimental methodology

used to evaluate HAT.

4.1 Keepaway
Keepaway is a domain with a continuous state space and signifi-

cant amounts of noise in the agent’s actions and sensors. One team,

the keepers, attempts to maintain possession of the ball within a

20m × 20m region while another team, the takers, attempts to steal

the ball or force it out of bounds. The simulator places the play-

ers at their initial positions at the start of each episode and ends an

episode when the ball leaves the play region or is taken away from

the keepers.

The keeper with the ball has the option to either pass the ball to

one of its two teammates or to hold the ball. In 3 vs. 2 Keepaway

(3 keepers and 2 takers), the state is defined by 13 hand-selected

state variables (see Figure 1) as defined in [24]. The reward to the

learning algorithm is the number of time steps the ball remains in

play after an action is taken. The keepers learn in a constrained

policy space: they have the freedom to decide which action to take

only when in possession of the ball. Keepers not in possession

of the ball are required to execute the Receive macro-action in

which the player who can reach the ball the fastest goes to the ball

and the remaining players follow a handcoded strategy to try to get

open for a pass.

For policy learning, the Keepaway problem is mapped onto the

discrete-time, episodic RL framework. As a way of incorporat-

ing domain knowledge, the learners choose not from the simula-

tor’s primitive actions but from a set of higher-level macro-actions

implemented as part of the player [24]. These macro-actions can

last more than one time step and the keepers have opportunities to

make decisions only when an on-going macro-action terminates.

Keepers can choose to Hold (maintain possession), Pass1 (pass

to the closest teammate), and Pass2 (pass to the further team-

mate). Agents then make decisions at discrete time steps (when

macro-actions are initiated and terminated).

Figure 2: This figure shows a screenshot of the visualizer used

for the human to demonstrate a policy in 3 vs. 2 Keepaway.

The human controls the keeper with the ball (shown as a hollow

white circle) by telling the agent when, and to whom, to pass.

When no input is received, the keeper with the ball executes the

Hold action, attempting to maintain possession of the ball.

To learn Keepaway with Sarsa, each keeper is controlled by a

separate agent. Many kinds of function approximation have been

successfully used to approximate an action-value function in Keep-

away, but a Gaussian Radial Basis Function Approximation (RBF)

has been one of the most successful [23]. All weights in the RBF

function approximator are initially set to zero; every initial state-

action value is zero and the action-value function is uniform. Ex-

periments in this paper use the public versions 11.1.0 of the RoboCup

Soccer Server [14], and 0.6 of UT-Austin’s Keepaway players [23].

4.2 Experimental Setup
In the Demonstration phase of HAT, Keepaway players in the

simulator are controlled by the teacher using the keyboard. This

allows a human to watch the visualization and instruct the keeper

with the ball to execute the Hold, Pass1, or Pass2 actions. Dur-

ing demonstration, we record all (s, a) pairs selected by the teacher.

It is worth noting that the human has a very different representation

of the state than the learning agent. Rather than observing a 13

dimensional state vector like the RL agent, the human uses a visu-

alizer (Figure 2). It is therefore critical that whatever method used

to glean information about the human’s policy does not require the

agent and the human to have identical representations of state.

To be consistent with past work [23], our Sarsa learners use

α = 0.05, ǫ = 0.10, and RBF function approximation. After

conducting initial experiments with five values of ψ, we found that

ψ = 0.999 was at least as good as other possible settings. In the

Policy Summarization Phase, we use a simple propositional rule

learner to generate a decision list summarizing the policy (that is,

it learns to generalize which action is selected in every state). For

these experiments, we use JRip, as implemented in Weka [35].

Finally, when measuring speedup in RL tasks, there are many

possible metrics. In this paper, we measure the success of HAT

along three related dimensions. The initial performance of an agent

in a target task may be improved by transfer. Such a jumpstart

(relative to the initial performance of an agent learning without the

benefit of any prior information), suggests that transferred informa-

tion is immediately useful to the agent. In Keepaway, the jumpstart
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is measured as the average episode reward (corresponding to the

average episode length in seconds), averaged over 1,000 episodes

without learning. The jumpstart is a particularly important metric

when learning is slow and/or expensive.

The final reward acquired by the algorithm at the end of the

learning process (at 30 simulator hours in this paper) indicates the

best performance achieved by the learner. This value is computed

by taking the average of the final 1,000 episodes to account for the

high degree of noise in the Keepaway domain.

The total reward accumulated by an agent (i.e., the area under

the learning curve) may also be improved. This metric measures

the ability of the agent to continue to learn after transfer, but is

heavily dependent on the length of the experiment. In Keepaway,

the total reward is the sum of the average episode durations at every

integral hour of training:
X

t:0→n

(average episode reward at training hour t)

where the experiment lasts n hours and each average reward is

computed by using a sliding window over the past 1,000 episodes.2

5. EMPIRICAL EVALUATION
This section presents results showing that HAT can effectively

use human demonstration to bootstrap RL in Keepaway agents.

To begin, we recorded a demonstration from a teacher (Subject

A) which lasted for 20 episodes (less than 3 minutes). Next, we

used JRip to summarize the policy with a decision list. The fol-

lowing rules were learned, where statek represents the kth state

variable, as defined in the keepaway task [23]:

if (state11 ≥ 74.84 and state3 ≤ 5.99 and

state11 ≤ 76.26) → Action = 1

elseif (state11 ≥ 53.97 and state4 ≤ 5.91 and

state0 ≥ 8.45 and state8 ≤ 7.06) → Action = 1

elseif (state3 ≤ 4.84 and state0 ≥ 7.33 and

state12 ≥ 43.66 and state8 ≤ 5.57) → Action = 2

else → Action = 0

While not the focus of this work, we found it interesting that the

policy was able to be summarized with only four rules, obtaining

over 87% accuracy on when using stratified cross-validation.

Finally, agents are trained in 3 vs. 2 Keepaway without using

transfer rules (No Prior), using the Value Bonus, using the Ex-

tra Action, or using the Probabilistic Policy Reuse method. All

learning algorithms were executed for 30 simulator hours (proces-

sor running time of roughly 2.5 hours) to ensure convergence.

Figure 3 compares the performance of the four methods, aver-

aged over 10 independent trials. Using 20 episodes of transferred

data from Subject A with HAT can improve the jumpstart, the fi-

nal reward, and the cumulative reward. The horizontal line in the

figure shows the average duration of the teacher’s demonstration

episodes; all four of the RL-based learning methods improve upon

and outperform the human teacher. The performance of the differ-

ent algorithms is measured quantitatively in Table 1, where signifi-

cance is tested with a Student’s t-test.

2Recall that the reward in Keepaway is +1 per time step, where a
time step is a 10th of a simulator second. Thus, the reward for the
first hour of training is always 60 × 60 × 10 = 36000 — a met-
ric for the total reward over time must account for the reward per
episode and simply summing the total amount of reward accrued is
not appropriate.
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Figure 3: This graph summarizes performance of Sarsa learn-

ing in Keepaway using four different algorithms. One demon-

stration of 20 episodes was used for all three HAT learners. Er-

ror bars show the standard error in the performance.

Method Jumpstart Final Total Reward

No Prior N/A 14.3 380

Value Bonus 0.57 15.1 401

Extra Action -0.29 16.0 407

Probabilistic Policy Reuse -0.30 15.2 411

Table 1: This table shows the jumpstart, final reward and total

reward metrics for Figure 3. Values in bold have statistically

significant differences in comparison to the No Prior method

(p < 0.05).

While the final reward performance of the all four methods is

very similar (only Extra Action has a statistically significant3 im-

provement over No Prior), the total reward accumulated by all three

algorithms is significantly higher than with No Prior learning. This

result is an indication that although the same final performance is

achieved in the long term because the learning algorithm is able to

learn the task in all cases, high performance is achieved faster by

using a small number of demonstrations. This difference can be

best observed by selecting an arbitrary threshold of episode dura-

tion and comparing the number of simulation hours each algorithm

takes to achieve this performance. In the case of a threshold of 14

seconds, we see that No Prior learning takes 13.5 hours, compared

to 10.1, 8.57 and 7.9 hours for Value Bonus, Extra Action and Prob-

abilistic Policy Reuse respectively. These results show that trans-

ferring information via HAT from the human results in significant

improvements over learning without prior knowledge.

Section 5.1 will explore how performance changes with differ-

ent types or amounts of demonstration, while Section 5.2 discusses

how teacher ability affects learning performance. In all further ex-

periments we use the Probabilistic Policy Reuse method as it was

not dominated by either of the other two methods. Additionally, in

some trials with other methods we found that the learner could start

with a high jumpstart but fail to improve as much as other trials. We

posit this is due to becoming stuck in a local minimum. However,

because ψ explicitly decays the effect from the rules, this phenom-

ena was never observed when using Probabilistic Policy Reuse.

3Throughout this paper, t-tests are used to calculate significance,
defined as p < 0.05.
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5.1 Comparison of Different Teachers
Above, we used a single demonstration data set to evaluate and

compare three algorithms for incorporating learned rules into rein-

forcement learning. In this section, we examine how demonstra-

tions from different people impact learning performance of a sin-

gle algorithm, Probabilistic Policy Reuse. Specifically, we compare

three different teachers:

1. Subject A: This teacher has many years of research experi-

ence with the Keepaway task. (The same as Figure 3.)

2. Subject B: This teacher is new to Keepaway, but practiced for

approximately 100 games before recording demonstrations.

3. Subject C: This teacher is an expert in LfD, but is new to

Keepaway. The teacher practiced 10 games before recording

demonstrations.

Each teacher recorded 20 demonstration episodes while trying

to play Keepaway to the best of their ability. Figure 4 summarizes

the results and compares performance of using these three demon-

stration sets against learning the Keepaway task without a prior.

All reported results are averaged over 10 learning trials. Table 2

presents summary of the results, highlighting statistically signifi-

cant changes in bold.

Method Jumpstart Final Total Reward

No Prior N/A 14.3 380

Subject A -0.30 15.2 411

Subject B 3.35 15.7 423

Subject C 0.15 16.2 424

Table 2: This table shows the jumpstart, final reward and total

reward metrics for Figure 4, where all HAT methods use Prob-

abilistic Policy Reuse with 20 episodes of demonstrated play.

Values in bold have statistically significant differences in com-

parison to the No Prior method.

All three HAT experiments outperformed learning without a bias

from demonstration, with statistically significant improvements in

total reward. However, as in any game, different Keepaway players

have different strategies. While some prefer to keep the ball in one

location as long as possible, others pass frequently between keep-

ers. As a result, demonstrations from three different teachers led to

different learning curves. Demonstration data from Subjects A and

C resulted in a low jumpstart, while Subject B’s demonstration gave

the learner a significant jumpstart early in the learning process. The

final reward also increased for all three HAT trials, with statistically

significant results in the case of Subjects B and C. These results

indicate that HAT is robust to demonstrations from different people

with varying degrees of task expertise.

An important factor to consider with any algorithm that learns

from human input, is whether combining demonstrations from two

or more different teachers helps the agent to learn faster, or whether

exposure to possibly conflicting demonstrations from different teach-

ers slows the learning process. In the following evaluation we com-

pared five demonstration types:

1. Subject A (20): Set of the original 20 demonstrations by Sub-

ject A: average duration of 10.4 seconds/episode

2. Subject A (10): Set of 10 randomly selected demonstrations

by Subject A: average duration 7.5 seconds/episode

3. Subject C (20): Set of the original 20 demonstrations by Sub-

ject C : average duration of 11.3 seconds/episode
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Figure 4: This graph summarizes performance of no prior

learning and Probabilistic Policy Reuse learning using demon-

strations from three different teachers. Each teacher per-

formed demonstrations for 20 episodes. Error bars show the

standard error in performance across 10 trials.

4. Subjects A + C Best (20): The 10 best (longest) demonstra-

tion episodes each from Subjects A and C: average duration

of 17.2 and 18.0 seconds/episode, respectively

5. Subjects A + C Worst (20): The 10 worst (shortest) demon-

stration episodes each from Subjects A and C: average dura-

tion of 4.6 seconds/episode for both

This analysis provides insight about the impact of combining

demonstrations from multiple teachers (conditions 1 and 3 vs. 4

and 5) and the impact of demonstration quantity (condition 1 vs. 2)

and quality (condition 4 vs. 5). Figure 5 presents a comparison of

the five learning conditions, and Table 3 summarizes the results.

Method Jumpstart Final Total Reward

Subject A (20) -0.30 15.2 411

Subject A (10) -2.23 15.8 407

Subject C (20) 0.15 16.2 424

Subjects A + C Best 2.15 15.7 431

Subjects A + C Worst 0.37 16.1 419

Table 3: This table shows the jumpstart, final reward and total

reward metrics for Figure 5, where all HAT methods use Prob-

abilistic Policy Reuse with 20 demonstrated episodes. Values in

bold have statistically significant differences in comparison to

the No Prior method (not shown).

With respect to learning from multiple teachers, results show

that combining data from different subjects leads to performance

as good as or better than learning from a single teacher. Condi-

tion Subjects A + C Best performs better than either Subject A or

Subject C alone, and significantly outperforms all other methods

in the group, in large part due to the early lead it has due to its

high jumpstart. Condition Subjects A + C Worst shows no statis-

tically significant change in performance between it and learning

from Subject A or Subject C alone.4 This result is significant be-

cause it indicates that while quality is important, as shown by the

4Note that because we have few subjects, our claims of significance
are limited to results from demonstrations with the three subjects
tested. Future work will generalize our findings by considering
many more subjects.
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Figure 5: This graph summarizes performance of Probabilistic

Policy Reuse learning using five different demonstration sets.

Error bars show the standard error in performance across 10

trials.

difference between Subjects A + C Best and Worst, any demonstra-

tion is beneficial. The fact that the worst demonstrations still lead

to performance well above No Prior learning is an indication that

exposure to any training data is better than random exploration.

In fact, quantity of demonstration may matter more than qual-

ity, as shown by the comparison of conditions 1 and 2. Reducing

the number of demonstrations by half resulted in a significant de-

crease in jumpstart. Although performance eventually recovered

to achieve a final reward comparable to that of the other methods,

achieving that result took longer and there is a statistically signifi-

cant difference between the total reward of the two conditions.

Most significantly, we highlight that all demonstration-based meth-

ods, regardless of data source, quantity or quality, resulted in statis-

tically significant performance improvements over No Prior learn-

ing. This critical result indicates that HAT learning can benefit from

variable degrees of demonstration quality. The algorithm does not

require the teacher to be a task expert and easily surpasses the per-

formance of the teacher. In the following section, we further ex-

plore the effects of suboptimal demonstrations.

5.2 Impact of Teacher Ability on Learning
In the above experiments, all three teachers demonstrated the

task to their best ability. In this evaluation, we alter the simula-

tion environment to make the teacher’s demonstrations inherently

suboptimal. Specifically, we compare three types of demonstration:

1. Subject B: Same as above: average duration 10.5 sec./episode

2. Subject B Fast: Simulator speed during training was increased

to approximately 5 times faster than real time: average dura-

tion 4.3 seconds/episode

3. Subject B Limited Actions: The teacher was limited to exe-

cuting only two actions, Hold and Pass1, disallowing passes

to the further keeper: average duration 5.2 seconds/episode

The two test conditions are designed to handicap the teacher and re-

duce the quality of demonstrations, either by affecting reaction time

(Subject B Fast) or by providing the learning agent with demonstra-

tions of only a subset of the state/action space (Subject B Limited

Actions). The handicapping effects were successful, reducing the

average duration of the teacher’s demonstration episodes by more

than half.

Figure 6 presents a comparison of the three learning conditions
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Figure 6: This graph summarizes performance of Probabilistic

Policy Reuse learning using three sets of demonstrations from

Subject B recorded under different simulator conditions: nor-

mal, fast and with limited actions. Each demonstration set con-

sists of 20 episodes. Error bars show the standard error in per-

formance across 10 trials.

and Table 4 summarizes the results. Importantly, we see again that

poor teacher performance does not negatively impact the final per-

formance of the agent. The data further supports our earlier find-

ings that in the long-term, Probabilistic Policy Reuse can learn the

task regardless of the initialization method, and there is no statis-

tically significant difference in final reward values between condi-

tions 1 and 2, and conditions 1 and 3. Statistically significant dif-

ferences are observed, however, in the rate of learning, both with

respect to jumpstart and total reward, indicating that suboptimal

demonstrations slow the learning process. However, even with the

added handicaps, learning from human data shows statistically sig-

nificant improvements over No Prior learning.

Method Jumpstart Final Total Reward

Subject B 3.35 15.7 423

Limited Actions -1.26 16.0 404

Fast Demonstration -2.37 16.0 401

Table 4: This table shows the jumpstart, final reward and to-

tal reward metrics for Figure 6, where all HAT methods use

Probabilistic Policy Reuse. All demonstrations are 20 episodes,

recorded by Subject B. Values in bold have statistically signif-

icant differences in comparison to the No Prior method (not

shown).

6. FUTURE WORK AND CONCLUSION
This paper has introduced HAT, a novel method to combine learn-

ing from demonstration with reinforcement learning by leveraging

an existing transfer learning algorithm. Using empirical evaluation

in the Keepaway domain we showed that given training data from

just a few minutes of human demonstration, HAT can increase the

learning rate of the task by several simulation hours. We evaluated

three different variants which used different methods to bias learn-

ing with the human’s demonstration. All three methods performed

statistically significantly better than learning without demonstra-

tion. Probabilistic Policy Reuse consistently performed at least as

well as the other methods, likely because it explicitly balances ex-
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ploiting the human’s demonstration, exploring, and exploiting the

learned policy. Additional evaluation using demonstrations from

different teachers, combined demonstrations from multiple teach-

ers, and suboptimal demonstrations all showed that HAT is robust

to variations in data quality and quantity. The best learning perfor-

mance was achieved by combining the best demonstrations from

two teachers.

One of the key strengths of this approach is its robustness. It

is able to take data of good or poor quality and use it well with-

out negative effects. This is very important when learning from

humans because it can naturally handle the noisy, suboptimal data

that usually occurs with human demonstration. Its ability to deal

with poor teachers opens up opportunities for non-expert users.

In order to better understand HAT and possible variants, the fol-

lowing questions should be explored in future work:

• Is it possible to identify the characteristics that make one set

of demonstrations lead to better learning performance than

another? Can we identify what influences jumpstart (e.g.,

Subject B’s high jumpstart in Figure 4).

• Rather than performing 1-shot transfer, could HAT be ex-

tended so that the learning agent and teacher could iterate be-

tween learning autonomously and providing additional demon-

strations?

• In this work, the human teacher and the learning agent had

different representations of state, and in one case had differ-

ent action sets. Will HAT still be useful if the teacher and

agent are performing different tasks? How similar does the

demonstrated task need to be to the autonomous learning task

for HAT to be effective?
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