
Citation: Barron, Y. Integrating

Replenishment Policy and

Maintenance Services in a Stochastic

Inventory System with Bilateral

Movements. Mathematics 2023, 11,

864. https://doi.org/10.3390/

math11040864

Academic Editor: Yong He

Received: 27 December 2022

Revised: 21 January 2023

Accepted: 28 January 2023

Published: 8 February 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Integrating Replenishment Policy and Maintenance Services in
a Stochastic Inventory System with Bilateral Movements
Yonit Barron

Industrial Engineering and Management, Ariel University, Ariel 40700, Israel; ybarron@ariel.ac.il

Abstract: We study an inventory control problem with two storage facilities: a primary warehouse
(PW) of limited capacity M, and a subsidiary one (SW) of sufficiently large capacity. Two types
of customers are considered: individual customers arriving at (positive and negative) linear rates
governed by a Markov chain, and retailers arriving according to a Markov arrival process and
bringing a (positive and negative) random number of items. The PW is managed according to a
triple-parameter band policy (M, S, s), 0 ≤ s < S ≤ M, under a lost sales assumption. Under this
policy, as soon as the stock level at the PW falls below s, a refilling to S is performed by a distributor
after a random lead-time. However, if the stock exceeds level S when the distributor arrives, no
refilling is carried out, and only maintenance services are performed. Items that exceed level M are
transferred to the SW at a negligible amount of time for those used in related products. Our cost
structure includes a fixed order cost, a variable cost for each item supplied by the distributor, a cost
for the additional maintenance, a salvage payment for each transferred item from the PW to the SW,
and a loss cost for each unsatisfied item due to demands. We seek to determine the optimal thresholds
that minimize the expected overall cost under the discounted criterion. Applying first-passage time
results, we present a simple set of equations that provide managers with a useful and an efficient tool
to derive the optimal thresholds. Sensitivity analysis and fruitful conclusions along with future scope
of research directions are provided.
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1. Introduction

An inventory model is characterized by an inconsistency and volatility in the flow
of items in and out of the supply network. Inventory management has been studied
for decades, and volatile market conditions have increased the complexity of modeling
and analyzing supply chains. Components such as demands, returns, delivery times,
and collaborative initiatives among partners have become more variable. This increasing
uncertainty has a direct impact on the inventory level. Although most inventory models
assume that the manager owns a storage facility of unlimited capacity, it has been observed
that, in real life, this assumption may be unrealistic. When inventory capacity is limited,
the on-hand inventory may exceed the warehouse’s capacity and need to be transferred
to an external warehouse of insufficient capacity. Managing integrated storage facilities
effectively and efficiently is an increasingly important task for companies in order to gain
competitive advantages [1].

In the present paper, we introduce an integrated inventory management problem
with two types of storage facilities: a primary warehouse (PW) of limited capacity M,
and a subsidiary warehouse (SW) of sufficiently large capacity. The main storage facility,
the PW, is used for ongoing demands and returns. We consider two types of customers
arriving to the PW, individual customers and retailers; both arrivals are characterized by
a continuous-time Markov chain (CTMC). Each individual customer demands or returns
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a unit, and the inter-arrival times between successive arrivals are negligible. Thus, these
arrivals can be naturally approximated by continuous linear rates, where negative rates
represent demands, and positive rates represent returns. In addition, we consider a stream
of retailers, each bringing a positive or negative number of items. Here, the stock level
jumps down (for a demand) or up (for a return) at the arrival instances, and the batch
sizes are independent and identically distributed (i.i.d.) random variables (r.v.s), having
phase-type (PH) distributions (see [2] for more details on the phase-distributions).

We assume that the management of the PW is assisted by the services of an outsourcing
partner (for our needs, called thedistributor), and directly affects the inventory level of the
SW. Specifically:

(a) Management of PW. (i) The PW is managed according to a triple-parameter band policy
(M, S, s) (0 ≤ s < S ≤ M), i.e., when the on-hand stock drops to some level s, an
order is placed to purchase more stock from the manufacturer in order to raise the
current level up to level S. As in practice, the order arrives by the distributor after
some random time (called the lead time); nevertheless, it is assumed that, during
that lead time, new orders are not allowed. Upon arrival, the PW is refilled up to
level S; in addition, maintenance activities are provided by the distributor. It may
happen that, when the distributor arrives, the stock exceeds S due to returns; in such
a case, no refilling is performed at the PW (however, the distributor is still employed
in these maintenance activities; see Point (c) below). Furthermore, (ii) any demand
or part of the demand that is not satisfied is lost. (iii) The PW has a limited storage
capacity of M items; each time the on-hand stock exceeds level M, the excess amount
is transferred to the SW in a negligible amount of time.

(b) Storage at the SW. The SW has unlimited capacity. We assume that each unit of material
that is transferred from the PW is processed as one unit of material to be used in the
SW; the transferred material is accumulated and used to satisfied related products.
Thus, the SW is not accessible to customers.

(c) Inventory management. Each time the distributor arrives, he provides some basic
maintenance services, including cleaning, organizing, and emptying the SW, as
needed, and the SW stores with zero items. We assume that these maintenance
services are an integral part of the distributor’s duties; therefore, no additional
payment is due for this work. However, if the PW is not refilled, the distributor is
rewarded (a kind of monetary compensation) for his services.

A schematic diagram of the relationship between the existing entities is presented in
Figure 1.

Figure 1. The relationship between the manufacturer, distributor, customers, and warehouses.

Our model is motivated by various practical settings. The first example is taken from
the collaboration between firms and farms—specifically, the vegetable marketing firm
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Chasalat Alei Katif (https://www.aleikatif.org) (27 December 2022), which specializes in
growing insect-free, fresh cabbage without using pesticides. The firm markets products
from several farms, each with several greenhouses for growing organic cabbage. The ripe
cabbage is stored in the PW, which serves both individual customers and retailers. When
the stock in the PW falls below a certain level, the farms supply the firm with additional
stock, which is time-consuming. However, according to a special agreement, if the supplied
cabbages cannot be stored in the PW (due to capacity constraints), they are sliced, and
accumulated until they are sold privately by the farms.

The second example is taken from the collaboration between medical centers and
university scientists [3]. Here, specialists are responsible for the operation and management
of the blood bank. When a lack of blood donations is observed, the associated medical
faculty is enlisted to help carry out a rapid and immediate blood donation campaign on
campus. Since the capacity of the storage facility is limited, the surplus blood donations
are transferred to the university faculty for academic use, after which it cannot be used
by patients.

In this paper, we assume the following costs and rewards: (i) a fixed cost for each
order; (ii) a cost for each item supplied by the distributor (this cost includes the payment
to the distributor for his maintenance services). (iii) If the PW is not refilled due to a high
inventory level, the distributor is rewarded for their maintenance services; (iv) a salvage
payment for each item transferred from the PW to the SW; and (iv) a loss cost is charged
for each unsatisfied item at the PW.

We seek to determine the optimal levels of s and S that minimize the overall discounted
cost of managing the warehouses. We further assume a fixed cost to operate the PW and,
thus, each item has a negligible storage cost. This assumption has many applications in
reality, e.g., in blood inventory management and in organic food storage, where the cost of
storing an item is negligible compared to the cost of cooling the storage facility. Moreover,
we assume that the distributor arrives after an exponentially distributed lead time. This
assumption is practical when the lead time depends on different logistics factors—for
example, for a distributor that serves several independent companies that line up as an
M/M/1 queue. The time it takes to prepare and deliver the items can be interpreted as a
sojourn time that is exponentially distributed. Due to variable delivery times, the company
may ask the distributor for a flexible contract that allows for delays or cancellations of
outstanding orders.

The policy addressed here expands the band (S, s)-type policy. As far as we know,
most of the existing studies under the (S, s) control policy consider continuous movements
and allows at most unilateral jumps; there are no studies on inventory management that
consider a Markov-modulated process with bilateral continuous and jump movements.
However, when considering the significant increase in returns and the uncertainty in
lead times, allowing double-side changes is more appropriate for modeling inventory
management. Fluctuations in inventory levels, where the inventory level not only decreases
due to demands but also increases due to returns, make the analysis much more challenging.
From a managerial perspective, this difficulty becomes the main driving force behind for
an integrated inventory management.

The main contributions of the paper are fourfold: (1) We differ from existing works in
the inventory management literature by considering continuous and batch-type bilateral
changes, which are both governed by the underlying Markov chain. We further assume
phase-distributed batch amounts, given that any nonnegative continuous distribution can
be approximated by a phase distribution. By that, we capture the uncertainty of customers’
consumption habits impacted by a fluctuating environment. As a result, our framework
can be adapted to a wide range of applications. (2) We extend classic inventory models to
include a limited storage capacity and, thus, introduce a simple and practical (M, S, s)-type
band policy. As in practice, we further assume that the fixed cost is paid at the time that
the order is placed, and that the variable cost is paid at the time the PW is refilled. This
difference in timing is significantly important and may lead to cost saving. (3) We also con-

https://www.aleikatif.org


Mathematics 2023, 11, 864 4 of 35

tribute to the inventory management literature by implementing the new business concept
integrating partnerships for managing the warehouses. (4) Most existing papers employ
analytic approaches, such as a dynamic programming approach [4,5] difference-differential
equations approach [6] or scale function [7,8]; by contrast, we use a more probabilistic and
intuitive approach. We combine the first-step conditioning technique for the expectation,
renewal theory and the strong Markov property (which says that, for a Markovian process
X(t), conditioning on state at a given stopping time T, the probabilistic behavior of the
process depends only on its value at time T and discards its past behavior; see [2]). By
doing so, we build a relatively simple set of equations that provide managers with a useful
and efficient tool to derive optimal thresholds. To the best of our knowledge, this is the
first time that first-passage time results have been carried out in bilateral movements in
the inventory management literature. We further note that many studies deal with the
long-run average criterion, without taking timing into consideration [5,9]. Our results show
that timing significantly impacts the system performance and is a crucial factor; therefore,
it should be taken into account.

From our conclusions, we numerically glean some important insights. Firstly, the
total cost seems to be convex in S and s (for a fixed M; see Figure 4. Although we cannot
prove this result, it enables us to numerically obtain the optimal thresholds S∗ and s∗

using a linear search over the range 0 ≤ s < S < M. Secondly, we show the impact of
the limited capacity of the PW on the optimal thresholds, especially when the transfer
cost is high (see Figure 4a, Table 2, and the discussions thereafter). Thirdly, as demands
become more frequent, it becomes worthwhile to order more frequently and for smaller
quantities. In such a case, the impact on S∗ is negligible and, surprisingly, the weight of the
cost’s components is relatively fixed (here, the transfer cost is negligible). By contrast, more
returns prompt the manager to reduce the frequency of orders and enlarge their quantities.
Here, the weight of the cost of the distributor’s services increases relative to the weight of
the loss cost (see Figures 5–8). Fourthly, investigating the impact of the timing, we observe
that, when the discount factor is high, postponing the call for the distributor becomes
economically profitable (see Figure 9). The outline of the paper is as follows: In Section 2,
we review the related literature. Section 3 presents the mathematical structure of the stock
levels at the PW and SW; the cost components are also detailed. The core preliminaries are
given in Section 4. Section 5 derives the expected discounted cost components; a summary
of the costs’ derivation is given in Appendix A.2. Numerical examples, observations, and
insights are provided in Section 6. Finally, Section 7 concludes. Technical parts of the proofs
are relegated to Appendices B.1–B.3.

2. Literature Review

It is well established in the literature that customer flows can exhibit high variability
and unpredictably [10,11], state dependency [12], and batch patterns [13,14]. Thus, mod-
eling the behavior of customers has become a key challenge in inventory management.
These modeling challenges are aggravated by the rapid spread of the home shopping
phenomenon, which force retailers to incorporate the occurrence of returns on a daily
basis [4]. Real-word examples of such variability include the introduction of new prod-
ucts, where the flow rates are obviously non-stationary and evolve throughout the stages
of the product’s life cycle [15,16], fluctuating environments, where economic conditions,
extreme weather, technological advancements, competition, and dynamic events can per-
turb customer flows [17–19], home shopping and internet retailing, where a high return
rate, particularly for electronic and computer devices, significantly changes customers’
behavior [20,21]. Any of these sources of variability on its own impacts the on-hand stock
level and, thus, complicates the analysis of the inventory model. Therefore, a considerable
portion of the related literature usually uses Markov processes due to their versatility in
matching key statistical properties of the customers’ consumption needs [10,13,22,23].

In this study, the inventory level changes are the sum of continuous linear rates forming
a likewise fluid process, and instantaneous big inflows and outflows governed by a Poisson



Mathematics 2023, 11, 864 5 of 35

process. For example, a company that sells its product through two channels, usual daily sell
contracts and one-time opportunities [24], or a manufacturer who produces a component
needed for few products, as well as a replacement [25]. Consequently, an excellent example
of a return in batches policy is out-of-fashion products, and parts delivered to maintenance
service engineers, particularly in isolated areas [4].

We assume that the batch sizes come from the family of phase distributions. The
advantage of a PH distribution is that its Markovian nature allows for an exact analysis and
performance evaluation; thus, they are often used [12,13,26,27]. When general distributions
are appropriate, phase distributions can be taken into account in a natural way, as any
nonnegative continuous distribution of the probability can be approximated with a phase-
type distribution [2].

We note that incorporating continuous rates and instantaneous jumps is well studied
also in economics and cash management (e.g., loads and withdrawals), in healthcare
management (e.g., daily patients and unexpected disasters), in reliability models (e.g., parts
delivered to maintenance service engineers in geographically spread out areas), and in
chemical production systems and gas stations. More examples are available in [28–30].

In the literature, the (S, s) control policy is one of the most widely used [24]. The opti-
mality of (S, s)-type policies has been investigated for various inventory models, including
those with discrete and continuous time reviews, different time horizons, discounted or
average cost criteria, and backlogging or lost-sales. Under continuous time, the underlying
stochastic stock level governing the state variables is typically linked to either varying
rates [4,31], fluid processes [32], Wiener processes [9,33–36], renewal processes [5,12,37,38],
superposition of deterministic rates combined with a renewal process [25], and a one-sided
Lèvy process [7,39,40]. Using batch-size patterns, Bensoussan et al. [41] consider two mod-
els: one model is a mixture of a diffusion process and a compound Poisson process with
exponentially distributed jump sizes, and the second model, as in Presman and Sethi [25],
is a mixture of constant demand governed by a compound Poisson process. Their work
was generalized by Benkherouf and Bensoussan [6] to a general compound Poisson process.
Yamazaki [8] tackled the inventory problem when the demand follows a Lèvy process
with jumps having infinite activity/variation. Chakravarthy and Rao [42] assume that the
customers arrive according to a Markovian arrival process (MAP) with demand of varying
sizes. Along with this line, Barron [13,18] studies a mixture of a fluid process and a MAP
demand process. For a comprehensive survey, see [24].

All papers cited above consider a one-dimensional inventory process. For the multi-
dimensional process, several models used in the literature focus on the derivation of the
Laplace transform of the first-passage time in a Markov-modulated process with bilateral
random jumps, mostly for studying various financial problems (e.g., [26,39,43–45]).

Furthermore, the increasing environment uncertainty has been mitigated over the
last few decades, the phenomenon of a gradual transition to collaborative and integrative
approaches to achieving optimal supply chain performance. In this paper, we assume that
the distributor also assists with the maintenance and upkeep of the storage. Particularly,
it has become customary for managers to motivate high-quality relationships with their
distributor. Research on marketing shows that most distributors also provide a range of
services such as technical support, warranty, and other complex services [46–48].

To outline our position, an overview of the most relevant literature studies concerning
the continuous-review base stock policy is given in Table A1 in Appendix A.1. To the best
of our knowledge, the combination of random demands and returns (bilateral continuous
and jump type) in supply chain collaboration under the (S, s) policy with cancellation has
not been explored in literature of inventory management; hence, the model developed here
significantly contributes to the literature.

3. The Stock Level Processes at PW and SW

In this section, we use similar notations to those of Breuer [27] (see also [18,26]).
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Consider two storage facilities, the PW and the SW, and two types of customers, namely,
individual customers and retailers. The demands (returns) of the individual customers form
a likewise fluid process with linear rates, governed by a continuous-time Markov chain
(CTMC) that is used as a background environment as follows. Let J̃ = { J̃(t) : t ≥ 0} be a
CTMC with state space Ẽ, initial probability vector η =

[
η1, η2, . . . , η|Ẽ|

]
, and infinitesimal

generator Q̃ = (q̃ij)i,j∈Ẽ. Let π be the stationary probability vector; π is the unique solution

of the equation πQ̃ = 0 such that πe = 1. When the state equals i ∈ Ẽ, products are
returned at rate ri, and demand is observed at rate di by the individual customers. The
growth rate is denoted by ci = ri − di, which can be positive or negative. Thus, the state
space Ẽ is composed of two subsets Ẽ = Ep ∪ En, where Ep includes the increasing states,
Ep = {i : ci > 0}, and En includes the decreasing states, En = {i : ci < 0}. Accordingly, we
use the terms ascending (descending) environment when i ∈ Ep (En).

Next, we describe the retailers’ arrivals. The retailers arrive at random times and form
a Poisson process of instantaneous big inflows (returns) or outflows (demands). Specifically,
we assume that, when an ascending environment is observed, i.e., when there are more
returns than demands, the manager offers retailers the opportunity to demand products,
in order to balance the stock level. On the other hand, when a descending environment is
observed, i.e., when there are more demands than returns, the manager offers retailers the
ability to return products.

For the mathematical description, we define the process Î = { Î(t) : t ≥ 0} as a special
case of a Lèvy process Î (i) with a drift ci (to describe the customers) and a Lèvy measure v̂i
(to describe the retailers) during intervals when the phase equals i ∈ Ẽ. We assume that v̂i
takes the form

v̂i(dx) = λ
(+)
i 1{i∈En}α

(i+) exp(T(i+)x)η(i+)dx + λ
(−)
i 1{i∈Ep}α

(i−) exp(−T(i−)x)η(i−)dx, x > 0 (1)

for all i ∈ Ẽ. Here, λ
(±)
i ≥ 0 is the retailers’ arrival rates, and the retailers’ batch amounts

U(i±) are PH distributed r.v.s with initial probability vectors α(i±) and transition rate
matrices T(i±); i.e., the arrival process is a compound Poisson process with jump sizes
U(i+) ∼ PH

(
α(i+),T(i+)

)
of order m+

i when i ∈ En, and U(i−) ∼ PH
(

α(i−),T(i−)
)

of

order m−i when i ∈ Ep. Let η(i±) = −T(i±)e be the exit vectors. Now, the process Î
is a MAP-modulated process with upward jumps and downward jumps. Let λ(+) be a
(1× |En|) vector whose i component is λ

(+)
i , i ∈ En. Similarly, let λ(−) be a

(
1×

∣∣Ep
∣∣)

vector whose i component is λ
(−)
i , i ∈ Ep. Finally, define the

(
1×∑

|En |
i=1 m+

i

)
vector

α(+) =
(

α(1+), . . . , α(|En |+)
)

, and the
(

1×∑
|Ep|
i=1 m−i

)
vector α(−) =

(
α(1−), . . . , α(|Ep|−)

)
.

The PW is controlled by a triple-parameter band policy (M, S, s), 0 ≤ s < S ≤ M,
under a lost sales policy. Let Ĩo = { Ĩo(t) : t ≥ 0} be the on-hand stock level at the PW. We
assume that, as soon as Ĩo drops to or below level s, a delivery is ordered and arrives by
the distributor after an exponential lead time; during that lead time, new orders are not
allowed. When the distributor arrives, if the on-hand stock increases to or above level S, no
items are refilled; otherwise, the stock is refilled up to level S. Thus, the amount refilled at

arrival time is random and is equal to max(S− Ĩo(t), 0) ≡
[
S− Ĩo(t)

]+
items. We further

assume that the PW has a capacity of M > S units. Every time the inventory exceeds level
M, the excess items are transferred from PW to SW in a negligible amount of time and for
some fee. Hence, Ĩo lies in the range [0, M].

Next, we describe the management of the SW. The SW has unlimited capacity. Each
time the distributor arrives, he provides some basic maintenance activities and empties the
SW; no additional payment is given to him for this work. However, if the PW is not refilled,
the distributor is rewarded for his service. Let ĨR = { ĨR(t) : t ≥ 0} be the on-hand stock
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level at the SW; Note that, in contrast to Ĩo, the process ĨR is not bounded from above. For
simplicity, we further assume that Ĩo(0) = S and ĨR(0) = 0.

Let Ln, n ≥ 1 be a sequence of i.i.d. exp(µ)-distributed r.v.s representing the lead times
independent of (Ĩo, J̃ ). Let Z1 = inf{t : t > 0, Ĩo(t) ≤ s} be the first time that the stock
level drops to or below level s, and thus a delivery is ordered. Let K1 = Z1 +L1 be the first
arrival time of the distributor. We define, recursively, the following stopping times:

Zn = inf
{

t : t >
n−1
∑

i=1
Ki, Ĩo(t) ≤ s

}
, n = 2, 3, . . .

Kn = Zn + Ln, n = 2, 3, . . .
(2)

The r.v. Zn, n = 1, 2, . . . , represents the n-thorderingtime; the r.v Kn, n = 1, 2, . . . represents
the n-th arrival time of the distributor. Recall that Ĩo(Zn) = s occurs only due to a continuous
hitting linear rate, i.e., by a customer’s demand, while Ĩo(Zn) < s occurs due to a downward

jump, i.e., by a retailer’s demand. At arrival times,
[
S− Ĩo(Kn)

]+
items are refilled, such

that, if Ĩo(Kn) < S, then Ĩo is refilled with S− Ĩo(Kn) items and starts from level S; otherwise,
no refilling is carried out. In addition, at times Kn, n = 1, 2, . . . , the SW is emptied. Thus,
we have Ĩo(Kn) ≥ S, ĨR(Kn) = 0, n = 1, 2, . . .. Finally, we define i as

i = min{Kn > i−1 : Ĩo(Kn−) < S), n = 1, 2, . . .}, i = 1, 2, . . . , with 0 = 0, (3)

to represent the i-th (actual) refilling time of the PW (and emptying time of the SW). Clearly,
we obtain Ĩo(i) = S and ĨR(i) = 0 for i = 1, 2, . . .. It is easy to verify that the processes
Ĩo(t) and ĨR(t), t ≥ 0 are semi-regenerative processes with regenerative points i, i = 1, 2, . . .
Let Ci = i − i−1, i = 1, 2, . . . be the time between two consecutive (actual) refillings. A
typical sample path of Ĩo(t) and ĨR(t) is depicted in Figure 2.

Figure 2. A typical sample path of Ĩo(t) and ĨR(t) .

The stock levels of PW and SW, Ĩo(t) and ĨR(t), are depicted in the bottom and
top parts of Figure 2, respectively. We start with the first cycle. At time Z1, we have
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Ĩo(Z1) < s, and thus a delivery is ordered. After lead time L1, when the distributor arrives,
Ĩo(K1 = Z1 + L1) < S, and thus the refilling is carried out, the stock is raised up to level
S, and the cycle ends. At that time, the SW is emptied by the distributor. Here, 1 = K1.
By contrast, during the second cycle, a delivery is ordered twice. At the first time, Z2, the
distributor arrives after lead time L2 when Ĩo(K2 = Z2 + L2) > S, and thus no items are
supplied and only maintenance service is performed, leading to ĨR(K2) = 0. The second
order is placed at time Z3, when Ĩo(Z3) < s. Here, we see that Ĩo(K3 = Z3 + L3) < S,
and thus the PW is refilled, the SW is emptied, and the cycle ends. Here, 2 = K3 and we
obtain Ĩo(2) = S and ĨR(2) = 0. Figure 2 also shows that level M is exceeded three times:
once during cycle 1 with ζ1 items (due to a return by a retailer), and twice during cycle
2 with ζ2 (due to return by a retailer) and with ζ3 items (due to a return by a customer);
these overstocking events are represented by the blue segments. The excess items are
accumulated in the SW and emptied at times K1 and K2 (we note that maintenance services
are also provided at time K3 = Z3 + L3; however, since Ĩo(t) < M and ĨR(t) = 0 for
t ∈ (K2, K3], no change in ĨR is depicted in the figure). In addition, we see one shortage
event, with amounts of ϕ1 (due to a demand by a retailer), represented by the red segment.

Our aim is to find the optimal parameters in order to optimize the expected discounted
total cost. To that end, we let Ex(e−βC) be the

(∣∣∣Ẽ∣∣∣× ∣∣∣Ẽ∣∣∣) conditional Laplace transform
matrix (LST) of the cycle length whose (i, j)-th component is:(

Ex(e−βC)
)

i,j
= E(e−βC1{ J̃(C)=j} | Ĩo(0) = x, J̃(0) = i), i, j ∈ Ẽ.

Applying renewal theory, we can express all the cost functionals by using the first cycle.
(a) Order cost OC(β). At ordering time, a fixed cost Υ

+
is paid. This cost is non-

refundable (even when no refilling is performed due to returns). Note that there may be
multiple orders per cycle, each costing Υ

+
. Thus, we obtain

OC(β) = Υ
+

∑
n

ES(e−βZn) = Υ
+

η
(
I−ES(e−βC)

)−1
OCS(β), (4)

where OCS(β) is the (
∣∣∣Ẽ∣∣∣× 1) vector, representing the total expected discounted ordering

times per cycle, given Ĩo(0) = S, J̃(t) ∈ Ẽ.
(b) Distributor’s service cost. At times n, n = 1, 2, . . ., the PW is refilled with S− Ĩo(n−)

items and the cycle ends; this amount is random depending on the stock level upon arrival.
Let γ be the cost of each refilled item (and is charged when the distributor arrives). When
no refilling is performed, the distributor is rewarded with Υ

−
for his maintenance services.

Summarizing, we obtain

DC(β) = γ ∑
n

ES

(
e−βn(S− Ĩo(n))

)
+ Υ

−
∑
n

ES

(
e−βKn 1{ Ĩo(Kn)>S}

)
= γ·S ∑

n
ES

(
e−βCn

)
+ ∑

n
ES(e−βKn)

(
Υ
−

1{ Ĩo(Kn)>S} − γ Ĩo(Kn)1{ Ĩo(Kn)<S}

)
= η

[
I−ES(e−βC)

]−1
DCS(β), (5)

where DCS(β) is the expected discounted cost per cycle incurred by the distributor. Note
that, while Υ

−
may be charged several times per cycle (due to maintenance services), γ is

charged only once, at the end of the cycle, when the PW is refilled.
(c) Transfer cost SC(β). When the on-hand stock in the PW exceeds level M, the excess

amount is transferred to the SW. Let ν be the cost of transferring each item. Here, level M
is exceeded either continuously by an individual customer at a linear rate c J̃(t), J̃(t) ∈ Ep,
or by an upward jump due to a demand by a retailer. In the latter case, denote by Ξn the
n-th time that level M is exceeded by an upward jump, and let ζn be the amount exceeding
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level M and transferred to SW at time Ξn. The overall discounted transfer cost is given by
(see also Remark 1, Point 1):

SC(β) = v

 ∞

∑
n=1

E(e−βΞn ζn) +

∞∫
0

E(e−βtc J̃(t)1{ Ĩo(t)=M, J̃(t)∈Ep})dt


= ηv

(
I−E(e−βC)

)−1
SCS(β), (6)

where the (
∣∣∣Ẽ∣∣∣× 1) vector SCS(β) is the expected discounted amount exceeding level M

per cycle. Note that the first (second) term of (6) refers to a jump (continuous linear rate).
(d) Loss cost LC(β). Any demand or part of a demand that is not satisfied is lost.

Similarly, we distinguish between customers and retailers. Level 0 is hit either continuously
by an individual customer at a linear rate −c J̃(t), J̃(t) ∈ En, or by a retailer by a downward
jump. Let Φn be the n-th time that level 0 is hit by a downward jump, and let ϕn be the
number of unsatisfied demands at time Φn. Let φ be the cost of each unsatisfied demand.
The expected discounted loss cost is given by (see also Remark 1, Points 1 and 2):

LC(β) = φ

 ∞

∑
n=1

E(e−βΦn ϕn)−
∞∫

0

E(e−βtc J̃(t)1{ ĨO(t)=0, J̃(t)∈En})dt


= ηφ

(
I−ES(e−βC)

)−1
LCS(β), (7)

where the (
∣∣∣Ẽ∣∣∣× 1) vector LCS(β) is the expected discounted unsatisfied demands per cycle.

Remark 1.

1. Regarding the individual customers. We emphasize that, when the on-hand stock level M
is exceeding in an ascending state i ∈ Ep, demands are continuously satisfied by some of
the returns (and the remaining returns are transferred to the SW at rate ci = ri − di > 0).
Similarly, when the on-hand stock level 0 is hit in a descending state i ∈ En, some of the
demands are continuously satisfied by returns (and the remaining unsatisfied demands are lost
at rate −ci > 0).

2. As in practice, here we assume that new arrivals (both customers and retailers) are willing to
accept that only some of their demands are satisfied as long as they receive some compensation
for the unsatisfied demands. Nowadays, such a policy is highly valued and and even considered
by the customer as a high level of service.

The expected total cost of integrated inventory management is therefore

TC(β) = OC(β) + DC(β) + SC(β) + LC(β).

In what follows, we denote by (A)ij the elements of a matrix A, by Ai ,j the submatrix
of Awith row indices in Ei and column indices in Ej; in particular, the matrix 0i,j represents
the (|Ei| ×

∣∣Ej
∣∣) zero matrix. Vectors are denoted by bold letters (e.g., E, P), and matrices

by blackboard letters (e.g., E,P). The (|E| × |E|) conditional matrix expectation, given an
initial state (x, i ∈ E), is denoted by Ex(.) = E(. | I(0) = x) (and, similarly, the (|E| × 1)
conditional vector expectation Ex(.)). Specifically, we use the notations Ex(.) and Ex(.)T to
denote the submatrices of Ex(.), of order (

∣∣Ep
∣∣× |E|) and (|En| × |E|), respectively, associ-

ated with the ascending and the descending states of Ex(.), i.e., Ex(.) =
(
Ex(.),Ex(.)

)T
.

Following convention, we let 1{A} be the indicator of an event A, e = (1, . . . , 1)T be the
unit column vector, and (A B) be the matrix obtained by stringing the matrix B after the
matrix A, all of the appropriate size.
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4. Preliminaries
4.1. Markov-Modulated Fluid Flow Process for MAP

Following Breuer [27], let J̃ = { J̃(t), t ≥ 0} be a CTMC with state space Ẽ and
infinitesimal generator Q̃ = (q̃ij)i,j∈Ẽ. Let Î = { Î(t), t ≥ 0} be a real-valued process

evolving like a Lévy process Î (i) with a drift ci (negative or positive) and a Lévy measure v̂i
(given by (1)) when i ∈ Ẽ; here, we assume a compound Poisson jump. The jump sizes U(i±)

are PH-distributed r.v.s PH
(

α(i±),T(i±)
)

of order m∓i and depend on the phases i ∈ Ẽ prior

to the jumps. The two-dimensional process (Î , J̃ ) is called a MAP. The main advantage of
PH-distributed jumps is the possibility of lengthening the jumps into a succession of linear
periods of exponential duration (having slopes 1 and −1 for the positive and negative
jumps, respectively) and retrieving the original process via a simple time change. The
transformation is conducted as follows. First, we partition the phase space Ẽ (without the
jumps) into subspaces Ep (for positive drifts, i.e., ci > 0) and En (for negative drifts, i.e.,
ci < 0), Ẽ = Ep ∪ En. Then, we introduce two new phase spaces:

E± := {(i, k,±) : i ∈ Ẽ, 1 ≤ k ≤ m±i }, (8)

to model the (positive and negative) jumps. Next, we define the enlarged state space
E ≡ Ẽ ∪ E− ∪ E+. The revised phase process J with state space E is determined by the
generator matrix Q = (qij)i,j∈E

qij =


q̃ii − λi, j = i ∈ Ẽ,
q̃ij, j 6= i, h ∈ Ẽ,

λiα
(i±)
k , j = (i, k,±),

(9)

for i ∈ Ẽ as well as
q(i,k,±),(i,l,±) = T(i±)

kl and q(i,k,±),i = η
(i±)
k (10)

for i ∈ Ẽ and 1 ≤ k, l ≤ m±i . By that, J tracks the states (phases) of the PH-type jumps in
addition to the states in J̃ . The revised process constructed by such a technique is denoted
by {I ,J } and becomes a Markov-modulated fluid flow process (MMFF) without jumps.
Accordingly, the infinitesimal generator Q can be written in block form with respect to the
subspaces E1 = Ep ∪ E+ (ascending states) and E2 = En ∪ E− (descending states):

Q =

(
Q11 Q12
Q21 Q22

)
.

Specifically, we modify the MAP {Ĩo, J̃ }, with Ĩo being the stock level at the PW, to
the revised MMFF process {Io,J }. Figure 3 illustrates the first cycle of Ĩo, presented in
Figure 2, and its corresponding sample path Io; the jumps that are lengthened to linear
segments are marked by the dotted black segments. Note that downward jumps below
level 0 and upward jumps above level M are preserved in their original form and are not
lengthened to linear segments (as we will show, these quantities require a special treatment).
Next, we present the main tools used for the analysis of the MMFF process {Io,J }.
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Figure 3. The MMFF process Io for Ĩo.

4.2. First-Passage Times

In our analysis, the Laplace transform matrices of the first passage times play an
essential component. Our first step is to obtain the LST matrix A(β) of the return time for
the MAP {Ĩo, J̃ } process. Using A(β) as a key matrix, we then obtain the conditional LST
matrices of the first passage times for the MMFF process.

4.2.1. Return Times for MAPs

Let { Ĩ(t), J̃(t), t ≥ 0} be a MAP process with phase-type jumps. Define τ̃(x) = inf{t ≥
0, Ĩ(t) > x} for x ≥ 0 to be the LST of the first passage time above x. Assume that Ĩ(0) = 0
and let

Eij(e−τ̃(x)) = E(e−τ̃(x), J(τ(x)) = j | Ĩ(0) = 0, J̃(0) = i), i, j ∈ E. (11)

Breuer [27] shows that the matrix E(e−τ̃(x)) can be written in a block form according to E1
and E2 as

E(e−τ̃(x)) =

(
eU(β)x 0
A(β)eU(β)x 0

)
, (12)

for some matrices U(β) and A(β) of dimensions |E1| × |E1| and |E2| × |E1|, respectively
(note that, since a first passage to a level above cannot occur at a descending state, we
have the zero matrices). Furthermore, the matrices U(β) and A(β) can be determined by
successive approximation to the limits of the sequence ((An, Un) : n ≥ 0) with specific
initial values (see Section 2.2 of Breuer [27] for the detailed algorithm). Setting x = 0
in (11) and (12), i.e., the return time to level 0 from below given Ĩ(0) = 0, yields that
E11(e−τ̃(0)) = I and E21(e−τ̃(0)) = A(β).

An important variant of the MAP process Ĩ , called the image-reversed process, is
particularly useful in the analysis of our process. We define theimage-reversed MAP process
Ĩ r by reversing the roles of the up and down states; let J̃ r(t) be the modulated state process
for Ĩ r. Then, Ar(β) is the matrix of order (|E1| × |E2|), whose (i, j)-th component is the LST
of τ̃r(0), i.e., the time until a downward jump to level 0 for the process Ĩ r at state j ∈ E2,
given that Ĩr(0) = 0 and J̃ r(0) = i ∈ E1. As we show, these two LSTs, A(β) and Ar(β), are
the key matrices used in our analysis; we further emphasize that these matrices are the
return time for the original MAP process, meaning that the time spent in jump states E±
does not account.

Next, to extend our LSTs and include upper and lower borders, we employ results
from MMFF processes.
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4.2.2. First Passage Times for MMFF Processes

Let v
uτ(x, y) (for x ≥ 0, y ≥ 0) be the first passage time of I from level x to level y, with

avoiding a visit to the levels in [0, u]∪ [v, ∞) enroute (in the case of an unlimited visit, u and
v are omitted). The notation v

u f̂ (x, y, ) denotes the LST matrix of the joint distribution of the
first passage time v

uτ(x, y) and the state of the phase process at that time, v
u f̂ r(x, y, ) denotes

the LST of the hitting time for I r. Ramaswami [49] shows that, once A(β) and Ar(β) are
computed, the derivation of other LST matrices is straightforward; thus, all quantities of
interest in this paper are characterized explicitly in terms of A(β) and Ar(β); the explicit
expressions of the LST matrices and their probabilistic interpretations are summarized
in [49]. To account for the jump-like nature of the additional movements, we substitute
β = 0 in all entries of the form (i, h), (h, i), or (h, h′) for i ∈ Ẽ and h, h′ ∈ E+ ∪ E− . This
means that the time is not discounted for all states associated with the jumps (i.e., at states
E+ and E−). Henceforth, we assume that all LST matrices for hitting times (A(β), Ar(β),
v
u f̂ (x, y, ) and v

u f̂ r(x, y, )) are modified for the original process {Ĩo, J̃ }.

4.3. MMFF at an Exponential Time

Corollary 1. Let {I ,J } be an MMFF with state space E and Q, and let L be an exponential r.v.
with rate µ > 0 independently of {I ,J }.
(1) The LST matrix at time L with the (ij)-th component(

E(e−βL)
)

ij
= E

(
e−L, J(L) = j | J(0) = i

)
, i ∈ E

is given by
E(e−βL) = µ((β + µ)I−Q)−1. (13)

In our analysis, the matrix form of (13) is required in order to track the initial and final states
of the background CTMC. Here, we use the fact that, for a CTMC J , the matrix Q satisfies(
eQx)

ij = P(J(x) = j | J(0) = i) (see [2]). (Recall that the original state space is Ẽ; thus,

only rows in Ẽ are considered while other rows in (13) are set to zero.)
(2) Applying the complete probability equation, it is easy to verify that, for a nonnegative generally

distributed r.v. X,

(i) E(e−βX1{X<L}) = E(e−(β+µ)X). (14)

(ii) E(eαI(L)−βL1{L<X}) = µE
(

X∫
t=0

eαI(t)−(β+µ)tdt

)
.

Here, Equations (13) and (14) are used with respect to the lead time L.

4.4. The Multidimensional Martingale

Let {X (t), t ≥ 0} be a right-continuous Markov-modulated Lévy process with a
modulating process {J (t), t ≥ 0} that is an irreducible right-continuous Markov chain
with a finite state space E. Let {Y(t), t ≥ 0} be an adapted continuous process with a finite
expected variation on finite intervals and let Z(t) = X (t) + Y(t). Asmussen and Kella [50]
have shown that the matrix with elements Ei

[
eαX (t); J(t) = j

]
has the form of etK(α) for

some matrix K(α). Theorem 2.1 of Asmussen and Kella [50] yields that, under certain mild
conditions on {Z(t), t ≥ 0}, the multidimensional process

M(α, t) =
∫ t

u=0
eαZ(u)1J(u)duK(α) + eαZ(0)1J(0) − eαZ(t)1J(t) + α

∫ t

u=0
eαZ(u)1J(u)dY(u) (15)

is a (row) vector-valued zero mean martingale. Here, the indicator 1J(t) is an |E|-row vector
mean {1J(t)=i, i ∈ E}. In our model, the process Io(t) has piecewise linear sample paths (at
rate ci for i ∈ Ẽ, rate 1 for i ∈ E+, and rate −1 for i ∈ E−). Some of the cost functionals used
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are obtained by applying the optional stopping theorem (OST) to the multidimensional
martingale process (15).

5. Derivation of the Expected Discounted Cost Functionals

We need to derive ES(e−βC), OCS(β), DCS(β), SCS(β), and LCS(β). The derivation of
DCS(β) is more challenging and will be carried out at the end. To this end, we first derive
two unique LSTs associated with hitting the boundaries, i.e., hitting level M from below,
and dropping to level 0 from above.

Corollary 2.

(i) Assume that level M is hit from below at ascending state J(t) ∈ E1. It is easy to verify that
the (|E1| × |E2|) matrix (βI−Q11)

−1Q12 is the expected discounting time until exiting
level M at a descending state (either continuously at a state in En or by a downward jump
at a state in E−). As we set β = 0 in all entries in E+ ∈ E1 due to the jumps, the matrix
(βI−Q11)

−1Q12 has the block form

(βI−Q11)
−1Q12 =

(
(βI− Q̃11)

−1Q̃12 (βI− Q̃11)λ
(−)α(−)

I⊗e 0

)
with respect to the subspaces (Ep E+)× (En E−). The matrix I⊗e arises due to the zero time
spent in E+, and thereafter Io(t) immediately returns to its original state in En (recall that an
upward jump is allowed only when J(t) ∈ En).

(ii) Similarly, assume that level 0 is hit from above at a descending state J(t) ∈ E2. It is easy to
verify that the (|E2| × |E1|) matrix (βI−Q22)

−1Q21 is the expected discounting time until
exiting level 0 at ascending state En (either continuously at a state in Ep or by an upward
jump at a state in E+) Here, too, by setting β = 0 in all entries in E− ∈ E2, the matrix
(βI−Q22)

−1Q21 has the block form

(βI−Q22)
−1Q21 =

(
(βI− Q̃22)

−1Q̃21 (βI− Q̃22)λ
(+)α(+)

I⊗e 0

)
with respect to the subspaces (En E−)× (Ep E+).

5.1. Cycle Length and Order Cost

The cycle length is composed of two sequential periods: the time elapsed until level
s is hit when a refilling is ordered, and the remaining cycle time. The next proposition
summarizes the derivation of ES(e−βC) (recall that the superscript o indicates the stock-
level evolution during lead time).

Proposition 1. The LST (|E| × 1) vector ES(e−βC) =
(
ES(e−βC) ES(e−βC)

)T satisfies the
following set of equations:

(remaining cycle length with no upcoming refill)

(i) ES(e−βC) = M−SAr(β)ES(e
−βC) + S f̂11(S, M, β) EM(e−βC),

(ii) ES(e
−βC) = S f̂22(S, s, β) Eo

s(e
−βC) + S−sA(β) ES(e−βC),

(iii) EM(e−βC) = (βI−Q11)
−1Q12 EM(e−βC),

(iv) EM(e−βC) = M f̂22(M, S, β) ES(e
−βC) + M−SA(β) EM(e−βC), (16)
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(remaining cycle length during lead time)

(v) Eo
s(e
−βC) = 0 f̂21(s, S, β + µ) Eo

S(e
−βC) +S f̂22(s, 0, β + µ)Eo

0(e
−βC)

+
µ

β + µ

[
e−

(
0 f̂21(s, S, β + µ)e +S f̂22(s, 0, β + µ)e

)]
,

(vi) Eo
S(e
−βC) = M−SAr(β + µ)Eo

S(e
−βC) +S f̂11(S, M, β + µ)Eo

M(e−βC)

+
(

M−SAr(β)− M−SAr(β + µ)
)

ES(e
−βC)

+
(

S f̂11(S, M, β)− S f̂11(S, M, β + µ)
)

EM(e−βC),

(vii) Eo
S(e
−βC) = S f̂22(S, s, β + µ) Eo

s(e
−βC) + S−sA(β + µ) Eo

S(e
−βC)

+
µ

β + µ

[
e−

(
S−sA(β + µ)e +S f̂22(S, s, β + µ)e

)]
,

(viii) Eo
0(e
−βC) = ((β +�)I−Q22)

−1Q21 Eo
0(e
−βC)

+
µ

β + µ

[
e− ((β + µ)I−Q22)

−1Q21e
]
,

(ix) Eo
0(e
−βC) = 0 f̂11(0, S, β + µ) Eo

S(e
−βC) + SAr(β + µ) Eo

0(e
−βC)

+
µ

β + µ

[
e−

(
0 f̂11(0, S, β + µ)e +

(
SAr(β + µ)e

))]
,

(x) Eo
M(e−βC) = ((β + µ)I−Q11)

−1Q12 Eo
M(e−βC)

+
(
(βI−Q11)

−1Q12 − ((β + µ)I−Q11)
−1Q12

)
EM(e−βC),

(xi) Eo
M(e−βC) = M−SA(β + µ) Eo

M(e−βC) + M f̂22(M, S, β + µ)Eo
S(e
−βC)

+
(

M−SA(β)− M−SA(β + µ)
)

EM(e−βC)

+
(

M f̂22(M, S, β)− M f̂22(M, S, β + µ)
)

ES(e
−βC). (17)

Proof. The proof of Proposition 1 (and all subsequent proofs) is based on the first-step
conditioning method and is obtained in Appendix B.1.

Corollary 3. The total number of expected discounted ordering times per cycle OCS(β) =(
OCS(β) OCS(β)

)T satisfy the set of Equations (16) and (17) with only three differences:

(a) The vector OC replaces the vector E(e−βC) (all of the appropriate sizes and with the same
superscripts and subscripts).

(b) The first term of Case (ii) becomes S f̂22(S, s, β)(e+OCo
s) (instead of S f̂22(S, s, β) Eo

s(e−βC)).
(c) The last terms in Cases (v), (vii), (viii), and (ix) are deleted.

We emphasize that calling the distributor during lead time is not allowed. Thus,
the order cost is charged only when dropping to s with no upcoming order explains
Corollary 3(b). Accordingly, when L < TS, the distributor refills the PW at no additional
order cost, and the cycle ends, which explains Corollary 3(c).

5.2. Transfer Cost

The derivation of SCS(β) includes two steps. First, Claim 1 below derives the expected
discounted number of transferred items from hitting level M until exiting it for the first
time. From that time, Proposition 2 derives the remaining number of transferred items until
the end of the cycle. To see this, let ζ = {ζl , l ∈ E1} be the (|E1| × 1) vector whose l-th
component represents the expected discounted number of transferred items from hitting
level M at state l ∈ E1 until exiting M at a descending state.
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Claim 1. The vector ζ = (ζl , l ∈ E1) satisfies the following system of linear equations:

ζl =

 −e(i+)
r (T(i+))−1e l = (i, r,+) ∈ E+,

cl
β−qll

+ ∑
k 6=l

qlk
β−qll

ζk l, k ∈ Ep. (18)

Proof. Clearly, level M can be exceeded only at an ascending state in E1. We distinguish
between two situations. (i) Exceeding level M by an upward jump at state l = (i, r,+),
i ∈ En, 1 ≤ r ≤ m+

i , i.e., by a batch amount U(i+) at phase r (here, the timing is omitted

due to the jump pattern). Thus, the exceeded amount is U(i+)
r ∼ PH(e(i+)

r ,T(i+)) of order
m+

i , where e(i+)
r is a (1×m+

i ) vector equal to 1 at the r-th entry and to 0 otherwise. From
that point, level M is left at a descending state i. (ii) Hitting level M continuously at a
linear rate cl , l ∈ Ep. First, the items are transferred to the SW at rate cl at a random time

δl ∼ exp(−qll) and, thus, the expected discounted amount is E

(
δl∫

t=0
cle−βtdt

)
. Then, with

probability qlk
−qll

, k 6= l ∈ Ep, the state changes to k, and the stock level IR continues to

accrue at rate ck; otherwise (i.e., with probability 1− ∑k 6=l∈Ep
qlk
−qll

), level M is left at a
descending state. Summarizing, we can express the vector ζ as

ζl =


E(U(i+)

r ) l = (i, r,+) ∈ E+,

E

(
δl∫

t=0
cle−βtdt

)
+ El(e−βδl ) ∑

k 6=l

qlk
−qll

ζk l, k ∈ Ep.
(19)

Substituting E(U(i+)
r ) = −e(i+)

r (T(i+))−1e, E

(
δl∫

t=0
cle−βtdt

)
= cl

β

(
1 + qll

β−qll

)
= cl

β−qll
, and

El(e−βδl ) = −qll
β−qll

into (19) completes the proof.

Proposition 2. The expected discounted number of transferred items to the SW during a cycle
SCS(β) =

(
SCS(β) SCS(β)

)T satisfies the following set of equations:
(transferred items with no upcoming order)

(i) SCS(β) = S f̂11(S, M, β)SCM(β) + M−SAr(β) SCS(β),

(ii) SCM(β) = M−SA(β)SCM(β) + M f̂22(M, S, β) SCS(β),

(iii) SCM(β) = ζ + (βI−Q11)
−1Q12 SCM(β), (20)

(iv) SCS(β) = S f̂22(S, s, β) SCo
s(β) + S−sA(β) SCS(β).
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(transferred items during lead time)

(v) SCo
s(β) = sA(β + µ) SCo

s(β) + s f̂22(s, 0, β + µ) SCo
0(β),

(vi) SCo
s(β) = s f̂11(s, S, β + µ)SCo

S(β) +S−s Ar(β + µ) SCo
s(β),

(vii) SCo
0(β) = ((β + µ)I−Q22)

−1Q21SCo
0(β),

(viii) SCo
0(β) = sAr(β + µ) SCo

0(β) + 0 f̂11(0, s, β + µ)SCo
s(β),

(ix) SCo
S(β) = S f̂22(S, s, β + µ)SCo

s(β) + S−sA(β + µ) SCo
S(β),

(x) SCo
S(β) = S f̂11(S, M, β + µ)SCo

M(β) + M−SAr(β + µ) SCo
S(β)

+
(

S f̂11(S, M, β)−S f̂11(S, M, β + µ)
)

SCM(β)

+
(

M−SAr(β)− M−SAr(β + µ)
)

SCS(β),

(xi) SCo
M(β) = M−SA(β + µ)SCo

M(β) + M f̂22(M, S, β + µ) SCo
S(β)

+
(

M−SA(β)− M−SA(β + µ)
)

SCM(β)

+
(

M f̂22(M, S, β)− M f̂22(M, S, β + µ)
)

SCS(β),

(xii) SCo
M(β) = ζ+

[
(β + µ)I−Q11)

−1Q12

]
SCo

M(β)

+
[
(βI−Q11)

−1Q12 − ((β + µ)I−Q11)
−1Q12

]
SCM(β). (21)

Proof. The Proof is given in Appendix B.2.

5.3. Loss Cost

Let Θ = (Θl , l ∈ E2) be the (|E2| × 1) vector whose l-th component represents the
expected discounted number of unsatisfied items when hitting level 0 at state l ∈ E2 until
exiting 0 for the first time.

Claim 2. The vector Θ = (Θl , l ∈ E2) satisfies the following system of linear equations:

Θl =

 −e(i−)r (T(i−))−1e l = (i, r,−) ∈ E−
−cl

β+µ−qll
+ ∑

k 6=l

qlk
β+µ−qll

Θk l, k ∈ En. (22)

Proof. Similar to Claim 1 with one exception, here, demand may be lost only during
lead time. Thus, if level 0 is hit at a state l ∈ En, lost demand is accumulated at rate
−cl , as long as the distributor has not arrived or until leaving state l, i.e., the random
time min(δl , L) with exp(�− qll) distribution. A similar technique that used for Claim 1
completes the proof.

Proposition 3. The expected discounted number of unsatisfied items during a cycle LCS(β) =(
LCS(β) LCS(β)

)T satisfies the set of Equations (20) and (21) with the exception of three modifi-
cations:

(a) The vector LC replaces the vector SC (all of the appropriate sizes and with the same superscripts
and subscripts).

(b) The first term of Cases (iii) and (xii), ζ, is deleted.
(c) The expected discounted loss Θ is added to Case (vii).

5.4. Distributor’s Service Cost

Recall that Kn, n = 1, 2 . . . is the n-th arrival time of the distributor. Clearly, when
I0(Kn) < S, the stock is refilled at a cost γ for each refilled item. In addition, maintenance
activities are conducted at no additional charge, and the cycle ends; in that case, C = Kn.
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Otherwise, only maintenance activities are conducted at cost Υ
−

. Let NC be the number of
times that the distributor arrives during a cycle. Thus,

NC = min{n : I0(Kn) < S}.

The distributor’s service cost is therefore given by

DCS(β) = γES

(
e−βC(S− Io(KNC

)
)
+ Υ

−
NC−1

∑
n=1

ES(e−βKn)

= γ
(

S ES

(
e−βC

)
− ES(e−βC Io(C))

)
+ Υ

−
NC−1

∑
n=1

ES(e−βKn). (23)

The first term is the charge for to refilling the PW; the last term is the charge for main-
taining the SW when no refilling is made. Note that the term ES

(
e−βC) is given by

Equations (16) and (17). Let

∆x(β) = Υ
−

NC−1

∑
n=1

Ex(e−βKn)− γEx(e−βC Io(C)),

and let T−0 be the time to exit level 0 (recall that T0 is the time to enter level 0). The next
proposition derives ∆S(β) and the sequence of vectors to be used.

Proposition 4. The cost functional ∆S(β) =
(
∆S(β) ∆S(β)

)
satisfies the following set of equations:

(cost with no upcoming order)

(i) ∆S(β) =M−S Ar(β) ∆S(β) + S f̂11(S, M, β)∆M(β),

(ii) ∆S(β) = M f̂22(S, s, β) ∆o
s(β) +S−s A(β)∆S(β),

(iii) ∆M(β) = (βI−Q11)
−1Q12 ∆M(β),

(iv) ∆M(β) = M−SA(β)∆M(β) + M f̂22(M, S, β) ∆S(β).
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(cost during lead time)

(v) ∆o
s(β) = 0 f̂21(s, S, β + µ)∆

o
S(β) + S f̂22(s, 0, β + µ)∆o

0(β)

− γEs(e
−βL Io(L)1{L<min(TS ,T0)}),

(vi) ∆
o
S(β) = M−SAr(β + µ)∆o

S(β) +S f̂11(S, M, β + µ)∆
o
M(β)

+
(

S f̂11(S, M, β)−S f̂11(S, M, β + µ)
)(

Υ
−

e+ ∆M(β)
)

+
(

M−SAr(β)− M−SAr(β + µ)
)(

Υ
−

e+ ∆S(β)
)

,

(vii) ∆
o
M(β) =

[
(β + µ)I−Q11)

−1Q12

]
∆o

M(β)

+
[
(βI−Q11)

−1Q12 − ((β + µ)I−Q11)
−1Q12

](
Υ
−

e+ ∆M(β)
)

,

(viii) ∆o
M(β) = M−SA(β + µ)∆

o
M(β) + M f̂22(M, S, β + µ) ∆o

S(β)

+
(

M−SA(β)− M−SA(β + µ)
)(

Υ
−

e+ ∆M(β)
)

+
[

M f̂22(M, S, β)− M f̂22(M, S, β + µ)
](

Υ
−

e+ ∆S(β)
)

,

(ix) ∆o
S(β) = SA(β + µ)∆

o
S(β) + S f̂22(S, 0, β + µ)∆o

0(β)

− γES(e
−βL Io(L)1{L<min(TS ,T0)}),

(x) ∆o
0(β) = ((β + µ)I−Q22)

−1Q21∆
o
0(β)),

(xi) ∆
o
0(β) = 0 f̂11(0, S, β + µ)∆

o
S(β) + SAr(β + µ)∆o

0(β)

− γE0(e−βL Io(L)1{L<min(TS ,T0)}). (24)

(We emphasize that Io(L) is the on-hand stock level at the PW just before the distributor arrives.)

Proof. We introduce only the key steps of the proof. Cases (i)–(iv) are straightforward.
Cases (v), (ix), and (xi) are based on the decomposition according to min(TS, T0,L).
Similarly, Cases (vi)–(viii) use similar techniques regarding the cost Υ

−
. Regarding

Case (x), note that Io(L)1{L<T−0 )} = 0 and, thus, only the event {L > T−0 ) (with LST

((β + µ)I−Q22)
−1Q21) should be considered. In order to complete the derivation, we

need to obtain the last terms of Cases (v), (ix), and (xi). We concentrate on Case (v); the
derivations of Cases (ix) and (xi) are similar, and are given in Corollary 4(a) and 4(b),
respectively.

The (|E2| × 1) vector Es(e−βL Io(L)1{L<min(TS ,T0)}).
We shift the original time so that Io(0) = s, J(0) ∈ E2. Recall that ς = min(TS, T0); we

start by introducing the vector Es(eαIo(L)−βL1{L<ς}). It is easy to see that

Es(e
−βL Io(L)1{L<ς} =

d
dα

(
Es(e

αIo(L)−βL1{L<ς})e
)∣∣∣

α=0
. (25)

Applying (14)(ii) yields

Es(e
αIo(L)−βL1{L<ς}) = µEs

(
ς∫

0
eαIo(t)−(β+µ)t1J(t)dt

)
. (26)

The basic tool to compute Es

(
ς∫

0
eαIo(t)−(β+µ)t1J(t)dt

)
is the OST to the Asmussen–Kella

multidimensional martingale defined in Section 4.4. Consider the process (X (t))t≥0:

X (t) = X (0) +
t∫

u=0
cJ(u)du t ≥ 0, (27)
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with X (0) = s, J(0) ∈ E2. It is not difficult to see that, by conditioning on Io(0) = s,
J(0) ∈ E2, the process up to time ς, i.e., (X (t))0≤t<ς, has the same distribution as (Io(t))0≤t<ς. Let
C be the rate matrixC = diag(C1,C2) withC1 = diag(ci : i ∈ E1) andC2 = diag(ci : i ∈ E2).
It can be concluded from Chapter XI, p.311 of Asmussen [2] that E(eαX (t)1{J(t)}) = etK(α),
where K(α) = Q+ αC.

Claim 3. The (|E2| × |E|) matrix Es

(
ς∫

0
eαIo(t)−(β+µ)t1J(t)dt

)
is given by

Es

(
ς∫

0
eαIo(t)−(β+µ)t1J(t)dt

)
=[

eαS
(

0 f̂21(s, S, β + µ) 0
)
+
(

0 S f̂22(s, 0, β + µ)
)
− eαs(0 I)

]
(K(α)− (β + µ)I)−1. (28)

Proof. The proof is given in Appendix B.3.

Corollary 4.

(a) The (|E2| × 1) vector ES(e−βL I(L)1{L<ς}) (Case (ix)) is given by

ES(e
−βL Io(L)1{L<ς} =

d
dα

[
µES

(
ς∫

0
eαIo(t)−(β+µ)t1J(t)dt

)
e

]∣∣∣∣∣
α=0

,

ES

(
ς∫

0
eαI(t)−(β+µ)t1J(t)dt

)
=
[
eαS
(

SA(β + µ) 0
)
+
(

0 S f̂22(S, 0, β + µ)
)
− eαS(0 I)

]
× (K(α)− (β + µ)I)−1. (29)

(Applying (28) with S replacing s; note that 0 f̂21(S, S, β + µ) = SA(β + µ).)
(b) The (|E1| × 1) vector E0(e−βL I(L)1{L<ς}) (Case (xi)) is given by

E0(e−βL Io(L)1{L<ς} =
d

dα

[
µE0

(
ς∫

0
eαIo(t)−(β+µ)t1J(t)dt

)
e

]∣∣∣∣∣
α=0

,

E0

(
ς∫

0
eαI(t)−(β+µ)t1J(t)dt

)
=
[
eαS
(

0 f̂11(0, S, β + µ) 0
)
+
(

0 SAr(β + µ)
)
− (I 0)

]
× (K(α)− (β + µ)I)−1. (30)

(Here, we apply (28) with (0, E1) replacing (s, E2).)

A summary of the costs’ derivation is given in Appendix A.2.

6. Numerical Examples

In this section, we illustrate the impact of the thresholds, the parameters, and the
uncertainty of demands and returns on the system’s performance. Clearly, our aim is to
find the optimal (s∗, S∗, M∗) for different values of the parameters. The sets of equations in
Propositions 1–4 show that it is difficult to provide an explicit expression for the discounted
expected cost functions and, thus, it is difficult to obtain explicit terms for the optimal
controllers. Hence, a numerical investigation is applied. Our base case assumes a CTMC
with n = 2 states: Ẽp = {1}, Ẽn = {2}, Ẽ = Ẽp ∪ Ẽn = {1, 2}, i.e., one state with positive
net rate and one state with negative net rate. The infinitesimal generator and the stationary
probability vector are given by

Q̃ =

(
−0.03 0.03
0.05 −0.05

)
, π = (0.625, 0.325), (31)



Mathematics 2023, 11, 864 20 of 35

where, for simplicity, we let the initial probability vector η = π. In states 1 and 2, demand
occurs at rate d1 = 1 and d2 = 2, respectively, and return occurs at rate r1 = 1.5 and
r2 = 0.5, respectively. The net growth is thus c1 = 0.5 and c2 = −1.5. Furthermore, in state
1, a downward jump may occur at rate λ1 with a demand size U(1−) ∼ PH(α(1−),T(1−)) of
order m−1 = 2; in state 2, an upward jump may occur at rate λ2 with a return size U(2+) ∼
PH(α(2+),T(2+)) of order m+

2 = 1. We denote by ξ+ (ξ−) the average growth rate of states
in E1 (E2); thus, E(ξ+) = π1c1 + π2λ2E(U(2+)), and E(ξ−) = π2|c2| + π1λ1E(U(1−)).
Finally, let ξ = ξ+ − ξ− be the net average rate (which can be positive or negative). We
start with

λ1 = 0.2, α(1−) = (0.3, 0.7), T(1−) =

(
−0.25 0
0 −0.5

)
,

λ2 = 0.161, α(2+) = (1), T(2+) = (−0.2).
(32)

(i.e., U(2+) is an exponentially r.v.). Here, E(ξ+) = E(ξ−) = 0.614 and E(ξ) = 0 (i.e., the
system is considered to be balanced). Assume a discounted factor β = 0.075, an exponential
lead time L ∼ exp(µ = 0.1), and cost values

Υ+ = 50, Υ− = 50, γ = 10, φ = 50, ν = 0.5.

We start by studying the impact of the parameters S and s; then, we focus on the
optimal policy and cost.

Example 1. The impact of the parameters S and s on the system’s performance. It is practically a
commonplace that warehouses have limited and known capacity; thus, and without loss of generality,
we assumed that M = 35 and study the changes of S and s. Table 1 summarizes the effect of
changing S and s on the expected discounted cycle length and cost components; each line presents
the effect of increasing only one parameter while keeping the other fixed. We use “↑" and “↓” to
express increasing and decreasing functions of the parameter and “∪” to express a convex shape.
The star “F” stands for a special behavior to be discussed further on.

Table 1. The impact of the parameters on the system’s performance.

Increasing the Parameter

Expected Discounted

Cycle Length Order Cost Transfer Cost Loss Cost Distributor’s Service Cost
EC OC SC LC DC

S ↑ ∪ ↓ ↑ ↓ ∪

s ↑ ↑ ↑ F ↓ ↑

• The impact of S. As expected, increasing S decreases the number of orders and
shortages, and increases the number of transferred items; thus, OC and LC decrease
and SC increases. However, the changes in EC and DC are more challenging and
are explained as follows. At first, increasing S increases the cycle length (i.e., EC
decreases), minimizes value for money (due to β), and thus decreases DC. However,
a highly increasing S increases the number of refillings, shortens the cycle length,
intensifies the impact of β, and thus increases DC.

• The impact of s. Clearly, increasing s shortens the cycle length-resulting in early
ordering times, and intensifies the impact of β; thus, the changes in EC, OC, LC, and
DC are as expected. By contrast, the change in SC is not straightforward. Figure 4a
curves SC as a function of s, for S = {20, 25, 30, 34} (recall that s < S and M = 35). We
see that SC increases and then decreases, and these changes become more dramatic
with S. At first, increasing s increases the stock, level M is hit more frequently and,
thus, SC increases. However, as s approaches S, the ordering time and the cycle length
are significantly shortened and thus SC decreases.
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To summarize, while the impact of S and s on OC and LC is as expected, their impact
on SC and DC is not straightforward and difficult to predict. To illustrate the overall impact,
Figure 4b displays the expected discounted total cost per time unit TC(M = 35, S, s) as a
function of S and s. We see that TC(M = 35, S, s) is jointly convex in S and s; we note that
this appears in all our examples (other values of M, S, and s,, which are not reported here,
also exhibit a similar behavior). Thus, we assume that the cost is convex in S, s for a fixed
M. Assuming convexity enables us to numerically obtain the optimal thresholds S∗ and s∗

quicker by using a line search.
It should be noted that convexity of the total cost for base-stock policy is a common

supposition, and it has been proven by several researchers for both periodic and continu-
ous review contexts, however, for simpler models and under restricted assumption [51].
Although we cannot give a formal proof of this, we give the following intuitive explanation.
Table 1 shows that the cost components are influenced in a different fashion with S and s.
For example, increasing S reduces the number of orders and decreases OC; it also reduces
the penalty cost, LC. However, at the same time, increasing S increases SC and the cycle
length, and minimizes the impact of β. This trade-off between potential savings is due to
fewer orders and timing on the one side, and more transferred items from the other side
yields convexity.

(a) (b)

Figure 4. (a) SC(s) for S ∈ {20, 25, 30, 34}, M = 35. (b) TC(M = 35, S, s) as a function of S and s.

Example 2. Sensitivity analysis of the optimal thresholds and cost. Here, we investigate the impact
of the different parameters on the optimal thresholds and cost; we start with a balanced system.
Following Example 1, we let E(ξ) = 0 (the specific values are given in (31) and (32)), β = 0.075,
µ = 0.1, Υ+ = 50, and M = 35. We vary γ in {5, 10}, Υ− ∈ {50, 150, }, φ ∈ {5, 25, 50, 100),
and ν ∈ {0.5, 5, 15, 25, 100}. Table 2 summarizes the optimal (S∗, s∗) and the corresponding total
cost TC∗ = TC(M = 35, S∗, s∗).

Table 2 shows that increasing the lost cost φ increases S∗ and s∗ (to avoid shortage);
increasing γ decreases s∗, probably to delaying the order time and, consequently, the
refilling time. Additionally, S∗ is increasing in Υ− when ν and φ are low in order to reduce
the number of cancellations. We further see that, usually, increasing ν increases s∗ and thus
shortens the until ordering. However, Table 2 shows few exceptions particularly when Υ−

is high (Υ− = 150); here, the distributor’s service cost cost is very high and, thus, both S∗

and s∗ are kept low to reduce the number of cancellations. Additional numerical results
(that are not reported here) further show that increasing Υ+ increases S∗ and decreases
s∗; thereby, S∗ − s∗ increases and the number of orders decreases. Table 3 summarizes
the changes in S∗ and s∗ when the costs are increasing; here, too, the star “F” stands for
non-monotonic behavior.
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Table 2. S∗, s∗, TC∗(M = 35, S∗, s∗) for Υ−∈ {50, 150}, γ ∈ {5, 10}, φ ∈ {5, 25, 50, 100}, and

ν ∈ {0.5, 5, 15, 25, 100}.

S*, s*
TC* φ \ ν 0.5 5 15 25 100

¡− = 50
γ = 5

5 20, 2
27.133

24, 2
29.457

19, 2
38.748

17, 2
44.792

11, 2
69.150

25 30, 2
30.153

26, 2
40.540

21, 4
53.402

19, 4
61.845

13, 4
96.876

50 30, 7
37.363

26, 8
48.063

23, 8
62.386

21, 8
72.243

15, 8
114.098

100 30, 11
44.696

27, 11
55.907

23, 8
62.386

22, 11
83.298

17, 11
133.019

¡− = 50
γ = 10

5 20, 2
38.039

24, 2
39.811

19, 2
49.818

17, 2
56.186

11, 2
81.156

25 30, 2
40.785

26, 2
50.760

22, 2
64.027

20, 2
72.961

13, 2
108.709

50 30, 4
51.595

27, 5
62.358

23, 6
77.256

21, 6
87.626

15, 7
130.449

100 30, 9
62.397

27, 9
73.001

24, 10
89.145

22, 10
100.755

17, 10
151.083

¡− = 150
γ = 5

5 29, 2
21.328

24, 2
29.542

19, 2
39.043

17, 2
45.280

11, 2
71.492

25 31, 2
30.170

26, 2
40.592

21, 4
53.706

19, 4
62.347

14, 2
98.084

50 30, 7
37.430

26, 8
48.315

23, 8
62.921

21, 8
73.131

16, 7
117.311

100 30, 10
44.878

27, 11
56.341

24, 11
72.911

22, 11
84.850

17, 10
137.497

¡− = 150
γ = 10

5 28, 2
1.728

24, 2
39.896

20, 2
50.062

17, 2
56.918

11, 2
83.498

25 30, 2
40.812

26, 2
50.811

22, 2
64.167

20, 2
73.190

13, 5
115.468

50 30, 4
51.640

27, 5
62.446

23, 6
77.569

21, 6
88.403

15, 6
133.090

100 30, 8
62.871

27, 9
73.255

24, 10
89.856

22, 10
101.937

17, 9
155.096

Table 3. The impact of increasing costs on S∗ and s∗.

The Cost ↑

The Effect on Service Cost Υ− Unit Cost γ Loss Cost φ Transfer Cost ν Ordering Cost Υ+

S∗ ↑ F ↑ ↓ ↑
s∗ F ↓ ↑ F ↓

Our next goal is to study the effect of inflows and outflows (average demand and re-
turn) on the optimal thresholds S∗ and s∗. To do so, we vary E(ξ) in {−0.45, −0.41, −0.308,
−0.24, −0.12, 0, 0.22, 0.43, 0.625} by changing c1 and T(2+) and fixing c2 = −1.5, λ1 = 0.2
and λ2 = 0.161 (the specific pairs

(
c1, E(U(2+))

)
corresponding to these values are

(0.025, 2.5), (0.03, 3), (0.5, 1), (0.2, 3), (0.5, 3), (0.5, 5), (0.85, 5), (1, 7), and (1.5, 5), respec-
tively). Recall that, when E(ξ) < 0, demands arrive more frequently on average, and when
E(ξ) > 0, returns arrive more frequently (note that the results for E(ξ) = 0 are given in
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Table 2). We set Υ+ = 50, Υ− = 150, and ν = 5, and focus on two scenarios: (1) γ = 10 and
φ = 5, and (2) γ = 5 and φ = 50. Scenario 1 highlights the high cost of refilling; Scenario 2
highlights the high penalty cost of a shortage. Regarding Scenario 1, Figure 5 plots the pairs
(S∗, s∗) (black and blue points, respectively) corresponding to E(ξ), and Figure 6 shows the
percentage of the cost components %OC, %LC, %SC, and %DC of TC∗. The blue-black scale
depicts for cases where E(ξ) ≥ 0, and the red-orange scale depicts cases where E(ξ) < 0;
when E(ξ) ≤ 0, the transfer cost percentage %SC becomes negligible and thus is omitted.
Similarly, Figures 7 and 8 plot (S∗, s∗) and the cost percentages associated with Scenario 2,
respectively. (Here, although %SC is low, it is reported).

Figures 5–8 show that:
The levels s∗ and S∗. When the loss cost is low (i.e., Scenario 1), the level s∗ is kept low;

when the loss cost is high (i.e., Scenario 2), level s∗ is significantly higher and is decreasing
in E(ξ). Consequently, it interesting to see that, despite the high loss cost, when E(ξ) > 0,
s∗ is set low, probably due to the more frequent returns that reduce the number of shortages
(see Figure 7). When E(ξ) > 0, Figures 5 and 7 show similar values of S∗; we further see
that S∗ is increasing in E(ξ). By contrast, when E(ξ) < 0, we see significantly higher values
of S∗ under Scenario 2. Here, when demands become more frequent, the impact of the high
penalty cost dominates in increasing S∗. Nevertheless, the difference (S∗–s∗) is increasing
in E(ξ) under both scenarios, meaning that as demands become more frequent, the optimal
policy is to call the distributor more frequently and for smaller quantities.

The cost components. Our results show that, as expected, when demands become more
frequent (E(ξ) < 0) and S∗ is low, the cost percentage of SC is negligible; this holds even
when S∗ is set higher due to a high penalty cost (Figure 8 showing that SC becomes a
more significant but still meager component of the cost, less than 2%). Surprisingly, when
E(ξ) < 0, the cost percentages remain generally similar in E(ξ) under both scenarios.
This can be explained by the relatively small changes in S∗. By contrast, when returns
arrive more frequently, E(ξ) > 0, we see significant changes in the cost percentages as
a function of E(ξ). Figures 6 and 8 highlight the interplay between %DC and %LC. The
percentage of the distributor’s service cost %DC is significantly higher under Scenario 1
(which is directly impacted by γ); by contrast, under Scenario 2, the loss cost %LC forms
the main component of the cost. Under both scenarios, when more returns arrive, SC
(OC) becomes the more (less) dominant component of the cost. Moreover, comparing
Figures 6 and 8 implies that, when E(ξ) ≥ 0, we have %SC{Scenario 1} ≈ %SC{Scenario 2}
and %OC{Scenario 1} ≈ %OC{Scenario 2}. For example, we have %SC{Scenario 1} = {0.17, 0.30,
0.64, 0.73}, and %SC{Scenario 2} = {0.18, 0.33, 0.65, 0.71} corresponding to E(ξ) = {0, 0.22,
0.43, 0.625}. When E(ξ) < 0, we have %DC{Scenario 1} ≈ %DC{Scenario 2}; here, we obtain
%DC{Scenario 1} = {0.37, 0.40, 0.41, 0.42}, and %DC{Scenario 2} = {0.40, 0.40, 0.40, 0.38}
corresponding to E(ξ) = {−0.45, −0.41, −0.30, −0.12}. These observations emphasize the
company’s policy of balancing the cost components despite the different cost values. In
general, when more returns arrive, and thus more items are transferred, the optimal policy
aims to keep %SC relatively constant, whereas, when more demands arrive, and thus more
orders are placed, the focus is to keep %DC relatively constant.
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Figure 5. (S∗, s∗) corresponding to E(ξ), Scenario 1.

Figure 6. The %cost components, Scenario 1.
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Figure 7. (s∗, S∗) corresponding to E(ξ), Scenario 2.

Figure 8. The %cost components, Scenario 2.

Example 3. The impact of β. We next concentrate on the impact of the discounted factor β on
the optimal thresholds and cost. To do so, we let Υ− = 50, ν = 25, φ = 25, γ = 5, µ = 0.1,
Υ+ ∈ {15, 25, 50, 100}, and vary β in {0.025, 0.05, 0.075, 0.1}. Table 4 presents the optimal
policy and cost; it includes five subtables that differ in their E(ξ). The top subtable corresponds to
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E(ξ) = 0, the two left-hand subtables correspond to the negative E(ξ) = {−0.308, −0.41}, and
the two right-hand subtables correspond to the positive E(ξ) = {0.22, 0.43}. Each subtable presents
the levels (S∗, s∗) and the cost TC(S∗, s∗, M = 35) for different values of β; the entry E(ξ) = 0,
β = 0.075, Υ+ = 50 is also given in Table 2. Figure 9a curves S∗ and s∗ as a function of β, for
E(ξ) = {0, −0.308, −0.41} (the black, blue, and gray curves, respectively); similarly, Figure 9b
curves S∗ and s∗ for E(ξ) = {0, 0.22, 0.43} (the black, blue, and gray curves, respectively). (Here,
we take Υ+ = 50.) Note that both figures contain the case E(ξ) = 0, indicated by the black curves.

Table 4. (S∗, s∗), TC(M = 35, S∗, s∗) as a function of β, E(ξ), and Υ+.

S*, s*
TC*

β

E (ξ) = 0 0.025 0.05 0.075 0.1

¡+

15 13, 8
241.121

16, 9
92.529

17, 8
48.974

19, 5
29.221

25 12,7
263.498

16, 8
102.091

18, 6
53.278

20, 4
31.282

50 12, 5
313.620

17, 7
122.909

19, 4
61.845

20, 2
34.708

100 13, 5
405.342

18, 2
155.221

21, 2
73.906

21, 1
40.932

E (ξ) =−0.308 0.025 0.05 0.075 0.1 E (ξ) = 0.22 0.025 0.05 0.075 0.1

¡+

15 14, 11
189.954

18, 16
98.580

20, 16
56.465

21, 14
35.679

¡+

15 15, 2
1193

13, 2
233.797

14, 5
83.106

15, 4
40.079

25 13, 10
217.648

18, 15
117.955

21, 18
70.431

21, 13
42.855 25 21, 2

1145
14, 2

240.001
14, 2

86.883
16, 1

41.923

50 12, 9
284.880

18, 15
165.584

20,14
97.471

22, 11
59.143 50 21, 2

1188
15, 2

254.774
15, 1

94.634
17, 1

46.180

100 12, 9
418.205

16,13
259.948

19, 12
153.258

23, 8
87.600 100 21, 2

1274
17, 2

281.976
17, 1

108.364
18, 1

53.676

E (ξ) =−0.41 0.025 0.05 0.075 0.1 E (ξ) = 0.43 0.025 0.05 0.075 0.1

¡+

15 16, 15
190.886

18, 16
104.637

20, 16
60.542

20, 14
38.376

¡+

15 34, 2
959.741

25, 2
417.673

15, 1
172.134

13, 1
76.027

25 16, 15
223.120

18, 16
125.17

19, 15
73.465

21, 14
46.47 25 34, 2

963.969
25, 2

419.423
15, 1

174.239
13, 1

77.896

50 14, 13
302.48

17, 15
176.372

19, 14
105.381

21, 11
64.951 50 34, 2

974.540
25, 1

423.796
16, 1

179.223
14, 1

82.263

100 12, 11
454.858

16, 14
277.973

19, 13
167.416

23, 9
97.662 100 34, 2

995.681
26, 1

432.543
17, 1

197.933
15, 1

89.658
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(a) E(ξ) = {0, −0.308, −0.41}. (b) E(ξ) = {0, 0.22, 0.43}.
Figure 9. The levels S∗ and s∗ as a function of β and E(ξ).

From Table 4 and Figure 9, we derive the following conclusions:

• As expected, the cost TC∗ is decreasing in β and is increasing in Υ+. We further see
that, while increasing Υ+ decreases s∗ (in accordance with Table 3), the changes of
S∗ in Υ+ are not monotone and are impacted also by β and E(ξ) (in fact, S∗ varies
slightly in Υ+).

• When E(ξ) ≤ 0, the level S∗ is increasing in β, while s∗ seems to be concave. Hence,
increasing β increases the difference S∗-s∗ (noted that a balanced system with E(ξ) = 0
is also included here; see Table 3). When the value of β is high, then, despite the fact
that demands become more frequent, it is economically profitable for the company to
postpone ordering and thereby increase the quantity of refilling.

• By contrast, when E(ξ) > 0, we see that S∗ is convex in β, and s∗ is decreasing.
Here, the difference S∗–s∗ is convex in β. In general, as more returns arrive, and
for low values of β, the company’s main motivation is to reduce the transfer cost by
decreasing S∗, s∗ and reducing S∗–s∗. However, as β increases, we see a slight increase
in S∗ (see Figure 9b, particularly the dotted blue curve when β ≥ 0.08). The main
implication is to postpone the distributor in order to achieve a full utilization of the
discount factor.

Summarizing, we see that the discount factor, and the interplay between returns and
demands, have a crucial impact on determining the optimal policy and obtaining a decisive
economic advantage.

7. Conclusions

This paper studies an inventory control problem with two types of storage facilities that
differ in purpose and capacity. We consider continuous and batch-type bilateral changes in
the inventory level, where both types of changes are governed by the underlying Markov
chain. Applying first passage time results, we build a relatively easy set of equations to
derive the cost components under the discounted criterion and lost sales assumption. In
doing so, we provide managers with a useful and efficient tool to derive, numerically, the
optimal parameters. We show that the limited capacity yields lower thresholds, and as
demands become more frequent, it is worthwhile to order more frequently and in smaller
quantities. We further show that the timing has a significant impact on the optimal policy;
for high values of β, it is worth considering postponing the distributor even at the risk of
causing more shortage events.

For future research, it will be interesting to consider the case where each refilling order
proceeds sequentially for a few stages, each of which has an independent exponential
distributed time. Thus, the total time it would take to handle the order could be expressed
by the phase-type distribution rather than by an exponential one. In particular, nowadays,
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when collaborative inventories and outsourcing services are widespread, it is practical to
assume that each order has to go through several procedures, e.g., due to miscellaneous
certificates, multiple managers, or different hierarchical ranks. Our approach in this study
appears to be simple and easy to implement; thus, we believe that it can be applied as a
powerful tool to address other inventory policies. For example, upon adding the option
of backordering up to some fixed level, thereafter the unsatisfied demand will be lost.
Another well-known policy is the (Q, r) policy, where a fixed order of size Q is placed
whenever the on-hand stock level drops to or below level r. Finally, a combination of the
above-mentioned policies can also be considered. Each of the discussed policy is worth
studying and hence is left for future investigation.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Selected Studies on Continuous Review Base Stock Inventory Policy

Table A1 presents the most relevant studies on continuous review base stock inventory
policy and random demands and returns.
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Table A1. Selected studies on continuous review base stock inventory policy.

Continuous-Review Base-Stock
Inventory Models Model Features Optimization Approach

Authors Arrival Pattern of Demand/Return Movement Patterns (Conti.,
Jumps) Lead Time Base-Stock

Policy Additional Features

Benkherouf, Bensoussan (2009) [6] Com. Poiss. + diffusion/no returns One-sided jumps zero (qi, ui)- band policy • Disc. criteria n A quasi-variational
inequalities approach

Yamazaki (2016, 2017) [8,29] Spectrally positive Lévy processes One-sided jumps zero (S, s) • Disc. criteria
n fluctuation theory of Lévy

processes
n The scale function

Perera, Janakiraman, Niu (2018) [5] Renewal proc./no returns One-sided unit jumps zero/
constant

(S, s)
(B)

• Long run analysis
n Renewal theory
n Deterministic dynamic

programming

Barron (2018) [18] Fluid flow /MAP One-sided jumps zero (Q, 0)
(LS)

• Disc. criteria
• Obsolescence +

emergency

n Martingales
n Numerical investigation

Azcue, Muler (2019) [43] Comp. Poiss./Comp. Poiss. Two sided jumps zero Multi-band structure • Disc. criteria n Solution of HJB equation

Pérez, Yamazaki, Bensoussan (2020) [7] Spectrally positive Lévy processes One-sided jumps zero Periodical replenishments • Disc. criteria n The scale function
n Guess and verify procedure

Barron, Dreyfuss (2021) [4] Comp. Poiss./Comp. Poiss. Two-sided jumps. No conti.
movements exp (S, s)

(LS)
• Steady-state analysis n Markov chain

n Numerical investigation

Chakravarthy, Rao (2021) [42] MAP/no returns One-sided jumps zero Random replenishments
(LS, B)

• Steady-state analysis n Matrix-analytic methods

Barron (2022) [13] Fluid flow or jumps for
demands/no returns One-sided movements exp (S, s) + emergencies

• Disc. Criteria
• Immediate emergency

n LSTs
n Numerical investigation

This study MAP/MAP Bilateral linear rates.
Two-sided-PH-Jumps exp (M, S, s)

(LS)

• Disc. Criteria
• Joint management

policy, two storages

n Renewal set of equations
n LSTs
n Multidimensional

Martingales
n Numerical investigation
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It can be observed that, although numerous studies deal with the (S, s)-type inventory
models with uncertainties, no study discusses cancellations, double-sided barriers, bilateral
movements and integrated control policy. As we pointed out in Section 2, several models
used in the literature focus on the derivation of the LSTs of the first-passage time in a
Markov-modulated process with bilateral random jumps. However, they do not apply any
replenishment policy or cost components; thus, they are not included in Table A1.

Appendix A.2. A Summary of the Cost’ Derivation

Here, we summarize the algorithm for the derivation of the cost components. The
algorithm is composed of three main parts. The first part includes the derivation of
the matrices A(β) and AR(β). In the second part, we derive the cost components. The
third part is devoted to the optimal policy. The algorithm is demonstrated by apply-
ing the values of Scenario 1 and E(ξ) = 0, i.e., Q̃=

(
−0.03
0.05

0.03
−0.05

)
, η = (0.625, 0.325),

c1 = 0.5, T(1−)=
(
−0.25

0
0
−0.5

)
, c2 = −1.5, T(2+) = −1/5, λ1 = 0.2, λ2 = 0.161, β = 0.075,

µ = 0.1, M = 35, and the costs Υ+ = 50, Υ− = 150, ν = 5, γ = 10 and φ = 5.

Appendix A.2.1. Step 1 (Build the Modified Process)

• Define the enlarged state space E ≡ Ẽ∪ E− ∪ E+ where E± := {(i, j, k,±) : i, j ∈ Ẽ, 1 ≤
k ≤ m±ij . Here, we obtain: Ẽ = {1, 2}, E+ = {(2, 1,+)}, E− = {(1, 1,−), (1, 2,−)}.
Thus, the enlarged state space E includes five states.

• Built the generator matrixQ of the modified MMFF process; use Equations (9) and (10).
Here, we obtain:

Q =


−0.23 0 0.03 0.06 0.14

0 −1/3 1/3 0 0
0.05 0.1 −0.15 0 0
0.25 0 0 −0.25 0
0.5 0 0 0 −0.5

.

• Applying the algorithm of Section 2.2 of Breuer [27] for ((A(β), U(β)) : n ≥ 0)
to obtain A(β). Built the process X R by reversing the roles of the up and down
movements; similarly, use the algorithm to obtain AR(β). For our values, we obtain:

A(β) =

 0.05582 0.5831
0.3808 0.1048
0.5516 0.07592

, AR(β) =

(
0.08207 0.1981 0.4621
0.6229 0.03089 0.07207

)
.

• Calculating the special LSTs given in Corollary 2(i) and (ii),

(βI −Q11)
−1Q12=

0.175 0.563
1 0
1 0

, (βI −Q22)
−1Q21 =

(
0.098 0.197 0.459

1 0 0

)
.

Appendix A.2.2. Step 2 (Derive the Cost Components

For S and 0 ≤ s ≤ S− 1, do the following:

• Apply the algorithm of [49] to derive the LSTs v
u f̂ r(x, y, ) and b

a f̂ r(x, y, ) to be used.
• Derive the expected discounted cycle-length matrix ES(e−C); use Proposition 1.
• Apply Corollary 3 to obtain the expected discounted ordering times vector OCS(β).
• Use Proposition 2 and Claim 2 to derive the vectors SCS(β) and LCS(β), respectively.
• Derive the vectors Es(e−βL Io(L)1{L<min(TS ,T0)}), ES(e−βL I(L)1{L<ς}) and

E0(e−βL I(L)1{L<ς}); use Claim 3 and Corollary 4. Then, apply Proposition 4 to
obtain ∆S(β). Finally, substitute into Equation (23) to obtain the vector DCS(β).
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• Use Equations (4)–(7) to calculate the expected discounted costs OC(β), SC(β), LC(β),
DC(β) and the total cost TC(S, s) = OC(β) + SC(β) + LC(β) + DC(β).

Appendix A.2.3. Step 3 (the Optimal Policy)

Choose the optimal value TC∗ = min
S,s
{TC(S, s)}. For the values mentioned above, we

obtain optimal thresholds S∗ = 24, s∗ = 2, TC∗ = 39.896 (see Table 2), and costs

OC(β) = 9.295, SC(β) = 6.855, LC(β) = 2.910, DC = 20.836.

Appendix B. Proofs

Appendix B.1. Proof of Proposition 1

There is a significant difference between cases (i)–(iv), where a refilling has not been
ordered yet, and the more challenging cases (v)–(xi) that occur during lead time (Recall
that Tx denotes the time to hit level x.)

Cases (i)–(iv). We start with case (i); here, we assume an initial state (S, E1), i.e.,
Io(0) = S at an ascending state. Applying decomposition according to TS and TM, we
obtain

ES(e−βC) = ES(e−βC1{TS<TM}) + ES(e−βC1{TS>TM}). (A1)

The first term of (A1) is the LST to return to level S while avoiding level M (M−SAr(β));
from that point, the expected discounted cycle length is ES(e−βC). The second term of (A1)
is the LST to hit level M while avoiding S (S f̂11(S, M, β)), and thereafter the expected cycle
length is EM(e−βC). The proofs of cases (ii)–(iv) are similar and thus are omitted. Note
that, by Corollary 2(i), the term (βI−Q11)

−1Q12 in case (iii) is the LST to exit level M at a
descending state.

Cases (v)–(xi). Here, we need to track the stock level during lead time. We focus on
the proofs of Cases (v) and (vi); other proofs use similar techniques and thus are omitted.
Case (v) considers the situation of hitting level s and ordering a refill. We distinguish
between three events that affect the continuity of the process: either the distributor arrives,
or level S is hit, or level 0 is hit. Thus,

Eo
s(e
−βC) = Eo

s(e
−βC1{TS<min(L,T0)}) + Eo

s(e
−βC1{T0<min(TS ,L)}) + Eo

s(e
−βC1{L<min(TS ,T0)}). (A2)

Applying the first passage times for MMFF, we obtain

Eo
s(e
−βC1{TS<min(L,T0)}) = 0 f̂21(s, S, β + µ)Eo

S(e
−βC),

Eo
s(e
−βC1{T0<min(TS ,L)}) =

S f̂22(s, 0, β + µ)Eo
0(e
−βC). (A3)

In the case of L < min(TS, T0), the distributor arrives when 0 < Io(L) < S, the refilling is
made, the cycle ends and, thus, the remaining cycle length is L. Formally,

Eo
s(e
−βC1{L<min(TS ,T0)}) = Eo

s(e
−βL1{L<min(TS ,T0)}) = Eo

s(e
−βL)− Eo

s(e
−βL1{L >min(TS ,T0)}). (A4)

The first term of (A4) is given by Eo
s(e−βL) = �

β+�e. For the second term, we use the mem-
oryless property of the exponential distribution. Define the stopping time ς = min(TS, T0).
When L > ς, we can plug in L = L̃+ ς, where L̃ is an independent exponential r.v. with
rate �. Altogether, we obtain

Eo
s(e
−βL1{L >ς}) = Eo

s(e
−β(L̃+ς)1{L >ς}) = Eo

s(e
−βς1{L >ς})E(e−βL̃)

=
(

0 f̂21(s, S, β + µ)e +S f̂22(s, 0, β + µ)e
) µ

β + µ
. (A5)

The second line of (A5) arises via the decomposition according to ς = TS and ς = T0.
Specifically, when ς = TS, we obtain TS < L, TS < T0 with LST 0 f̂21(s, S, β + µ). When
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ς = T0, we obtain T0 < L, T0 < TS with LST S f̂22(s, 0, β + µ). Substituting (A3)–(A5) into
(A2) proves Case (v).
Next, we prove Case (vi). Here, Io hits level S from below during lead time (in contrast to
Case (i), where no refilling is ordered). A similar decomposition yields

Eo
S(e
−βC) = Eo

S(e
−βC1{TS<min(L,TM)}) + Eo

S(e
−βC1{TM<min(L,TS)}) + Eo

S(e
−βC1{L<min(TS ,TM)}). (A6)

It is easy to verify that

Eo
S(e
−βC1{TS<min(L,TM)}) =

M−SAr(β + µ) Eo
S(e
−βC),

Eo
S(e
−βC1{TM<min(L,TS)}) = S f̂11(S, M, β + µ) Eo

M(e−βC). (A7)

The last term of (A6) describes the event where the distributor arrives when Io > S and,
thus, no refilling is carried out, and the cycle continues. Hence,

Eo
S(e
−βC1{L<min(TS ,TM)}) = Eo

S(e
−βTS 1{L<TS<TM})ES(e

−βC) + Eo
S(e
−βTM 1{L<TM<TS})EM(e−βC).

Applying the first passage times to MMFF yields

Eo
S(e
−βTS 1{L<TS<TM}) = Eo

S(e
−βTS 1{TS<TM})− Eo

S(e
−βTS 1{TS<TM ,L >TS})

=
(

M−SAr(β)− M−SAr(β + µ)
)

ES(e
−βC). (A8)

Similarly,

Eo
S(e
−βTM 1{L<TM ,TM<TS}) = Eo

S(e
−βTM 1{TM<TS})− Eo

S(e
−βTM 1{TM<TS ,L >TM})

=
(

S f̂11(S, M, β)− S f̂11(S, M, β +�)
)

. (A9)

Substituting (A7)–(A9) into (A6) completes the derivation of Case (vi). We further note that,
by Corollary 2(ii), the term ((β + µ)I−Q22)

−1Q21 in Case (viii) is the LST to exit level 0 at
an ascending state. In addition, only in Cases (v), (vii), (viii), and (ix) does the cycle end
when the distributor arrives (represented by the last term in each case).

Appendix B.2. Proof of Proposition 2

We present only the key steps of the proofs of Cases (i)–(iv). It is easy to verify that
Cases (i) and (ii) follow from the decomposition according to min(TM, TS); the only differ-
ence is due to the initial state (S, E1) (in Case (i)) and (M, E2) (in Case (ii)). Similarly, Case
(iv) is derived with regard to S and s. Applying Claim 1 and Corollary 2(i) immediately
yields Case (iii).

Next, we will address the impact of the lead time. Cases (v)–(ix) are straightforward
since they include the event Io(L) < S, and thereafter the PW is refilled and the cycle ends.
Cases (x)–(xii) are more complicated; here, the event Io(L) > S may happen. We focus
on case (x) and distinguish between four events. (a) Hitting level M during lead time and
continue with SCo

M(β). (b) The distributor arrives when S < Io < M (with no refilling);
thereafter, level M is hit. Using the decomposition yields

SCo
S(β)1{L<TM<TS} = SCo

S(β)1{TM<TS} − SCo
S(β)1{TM<TS ,L >TM},

where SCo
S(β)1{TM<TS} = S f̂11(S, M, β) and SCo

S(β)1{TM<TS ,L >TM} = S f̂11(S, M, β + µ). (c)
Hitting level S during lead time and continues with SCo

S(β). Finally, (d) the distributor
arrives when S < Io < M (with there is no refilling); thereafter, level S is hit; a similar
technique to (b) is used for M−SAr(β)− M−SAr(β + µ). The proofs of Cases (xi)–(xii) are
similar and thus are omitted.
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Appendix B.3. Proof of Claim 3

Let Y(t) = −(β + µ)t/α and Z(t) = X (t) +Y(t). Applying Theorem 2.1 of Asmussen
and Kella [50] yields that the process

M(α, t) =
(

M1(α, t), M2(α, t), . . . , M|E2|(α, t)
)ᵀ

=
t∫

0
eαZ(u)1J(u)duK(α) + eαZ(0)1J(0) − eαZ(t)1J(t) + α

t∫
0

eαZ(u)1J(u)dY(u)

=
t∫

0
eαX (u)−(β+µ)u1J(u)du(K(α)− (β + µ)I) + eαX (0)1J(0) − eαX (t)−(β+µ)t1J(t) (A10)

is an |E2|-row vector-valued zero mean martingale. The OST yieldsE(M(α, ς)) = E(M(α, 0)) = 0,
i.e.,

Es

(
ς∫

0
eαIo(t)−(β+µ)t1J(t)dt

)
=
[
Es(e

αX (ς)−(β+µ)ς1J(ς))−Es(e
αX (0)1J(0))

]
(K(α)− (β + µ)I)−1. (A11)

Since X (0) = s and J(0) = i ∈ E2, we have that
[
Es

(
eαX (0)1J(0)

)]
i,i
= eαs, i ∈ E2; using an

(|E2| × |E|) matrix form yields

Es

(
eαX (0)1J(0)

)
= eαs(0 I). (A12)

To derive the (|E2| × |E|) matrix Es(eαX (ς)−(β+µ)ς1J(ς)), we use the following decomposi-
tion (note that X (TS) = S and X (T0) = 0):

Es(e
αX (ς)−(β+µ)ς1J(ς)) = Es(e

αX (TS)−(β+µ)TS 1{ς=TS ,J(ς)}) +Es(e
αX (T0)−(β+µ)T01{ς=T0,J(ς)})

= eαSEs(e
−(β+µ)TS 1{ς=TS ,J(ς)}) +Es(e

−(β+µ)T01{ς=T0,J(ς)})

= eαS
(

0 f̂21(s, S, β + µ) 0
)
+
(

0 S f̂22(s, 0, β + µ)
)

. (A13)

Plugging (A13) and (A12) into (A11) yields (28).
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