
Integrating Risk Management into an Undergraduate Software Engineering
Course

James S. Collofello
Department of Computer Science and Engineering

Tempe, Arizona 85287-5406
collofello@asu.edu

Andrew K. Pinkerton
Excite, Inc.

drew@webcrawler.com

Abstract - Risk management is one of the key practices of
the Software Engineering Institute Capability Maturity
Model. The effective management of risk is crucial to the
success of software projects. Much has recently been written
concerning risk management in an industrial environment.
One of the most useful documents is a risk management
questionnaire developed by the Software Engineering
Institute. The questionnaire consists of 194 questions that a
software development team can use to identify risks in their
project. Unfortunately very little has been written about the
risks faced by undergraduate software development teams and
how they might manage them. This paper describes the
introduction of risk management in an undergraduate software
engineering course. The course requires students to work in
teams of 5-6 persons to develop a software application in a
one-semester time frame following a systematic development
process. An academic version of the Software Engineering
Institute risk management questionnaire suitable for
undergraduate teams is described. This questionnaire
addresses the real risks that an undergraduate software
development team is likely to face and is based on years of
our experience and that of others teaching these types of
classes. The questionnaire and related risk forms and
materials are described in detail as well as our experience in
using these materials with 2 classes.

Background

Much has been published in the literature concerning risk
management [1-5]. Risk can be defined as exposure to
adverse events, which can cause harm or loss. Risk
management attempts to minimize the probability of adverse
events occurring as well as their consequences.
The first step of the risk management process is
identification of potential risks. Insight, experience and
checklists provide the primary source of risk items. One of
the best sources for potential risk items is the Software
Engineering Institute risk management questionnaire. The
questionnaire consists of 194 questions that a software
development team can use to identify risks in their project.

The questions are broad in scope and address product
engineering issues, development environment concerns and
program constraints [5]. Once the risks are identified, they
must be prioritized based on the probability of occurrence as
well as the potential consequences. High-risk items must
then be managed by developing plans to minimize the
probability of risk occurrence as well as the consequences
should the risk occur.
Risk management activities should occur at strategic
planning points in the project as well as when new risks are
encountered. An effective risk management culture involves
the entire team and is not just limited to management.

Integration of Risk Management into a
Software Engineering Course

The undergraduate software engineering course at Arizona
State University is a one-semester project course in which
students work in teams of 5-6 members to develop a software
application for a customer. The course project typically
spans the entire semester starting with the teams defining the
projects' requirements and ending with acceptance testing for
the customer. The development of the course project follows
a defined and documented methodology created by the
instructor. The teams are organized as self-directed work
teams and are responsible for planning and tracking their
activities.
Risk management content is introduced in this class via 2
days of lecture followed by having each team perform a risk
management exercise. The risk management content is
introduced about 5 weeks into the semester project at the
point where the teams have completed their requirement's
documentation and are ready to plan the remainder of the
project. The lecture content motivates the need for risk
management and presents at a high level the content of the
SEI Risk Management Process [4,5].
The risk management exercise consists of each team
identifying risks relevant to their project and completing a
risk management plan for the highest risk items. To
facilitate this task an academic version of the SEI Risk

Management Questionnaire was developed. The academic
version deleted those items that were not relevant to student
teams, modified others to relate to the academic environment
and added new items unique to student projects. The
academic version consists of 36 questions. A condensed
version of the questionnaire is contained in Appendix A and a
complete version can be found in our web site [6].
Each team member must individually complete the
questionnaire in order to identify possible risks. Each team
is then required to meet in order to prioritize the risks based
on probability of occurrence and consequences. Depending
upon the team size, 5 or 6 of the highest risks (one per team
member) are selected for further study. The risks are then
divided among the team members and each team member is
required to further analyze the assigned risk and develop and
document a plan for managing the risk. Guidance for this
task is provided with both lecture and reading material [6].
The results of the analysis and planning are documented in
the form included in Appendix B. The team must review all
of the risk management plans and commit to executing
them.
Throughout the remainder of the project, teams are
encouraged to periodically review the risk questionnaire to
identify new risks and to follow through on their risk
management plans.

Results

The results of integrating risk management into our
undergraduate software engineering course have been very
positive and have led to benefits both for the students and the
instructor. The risk management exercise has helped teams
identify risk items, prioritize them and take action to
minimize the risks and their consequences. Some of the
common high-risk items reported by the teams include:

1. lack of experience with development environment
2. insufficient time to perform unit testing
3. algorithms and designs difficult to implement
4. key module not complete or on schedule
5. insufficient integration time
6. design changing while coding being done

Feedback from students on successful projects suggests that
the risk management exercise helped their team while
unsuccessful project teams often reported in their post-
mortem reports that the risk items identified were never
managed.

Analysis of the risks identified by the students has also
proven beneficial to the instructor. Identified risks such as:
insufficient integration time or lack of experience with
development environment can suggest the need for schedule
revisions, exercises or additional lecture content. The value

of a disciplined methodology on the project is also easier to
convey to the students in the context of the risk items it
addresses.

Future Work

Research is continuing in this area to develop an expert
system for academic software engineering teams to use in
risk management. The expert system will have an interface
analogous to the academic version of the risk questionnaire.
The system will both help teams to identify risks as well as
suggest ways for reducing the probability of risk occurrence
and minimizing the impact should the risk occur.

References

[1] Boehm, B., “Software Risk Management”, IEEE
Computer Society Press, 1989.

[2] Charette, R., Software Engineering Risk Analysis and
Management, 1989.

[3] Grey, S., Practical Risk Assessment for Project
Management, 1995.

[4] Higuera, R. and Haimes, Y., “Software Risk
Management”, CMU/SEI-96-TR-012, 1996.

[5] Carr, M., (et. al.), “Taxonomy-Based Risk
Identification”, CMU/SEI-93-TR-6, 1993.

[6] Pinkerton, A., Software Risk Management Web Page,
http://www.eas.asu.edu/~riskmgmt/

Appendix A

Question List for Software Risk
Identification in the Classroom

Many of these questions were taken (at least in part) from the
Software Engineering Institute's Taxonomy-Based Risk
Identification Questionnaire. Each of these questions is from
the Product Engineering section of the Taxonomy-Based
Risk Identification Questionnaire. Other questions have been
added or modified to account for the uniqueness of the
classroom environment. The questions are further subdivided
by a major category (e.g., Requirements) and a sub category
(e.g., Stability).

Requirements

Stability/Completeness [assessed by evaluating the amount
of information in the requirements]
[1] Are the requirements changing or yet to be determined?
[2] Does the instructor have unwritten requirements or
expectations?

Clarity [assessed by evaluating your comprehension of the
requirements]
 [3] Are you able to understand the requirements as written?

Feasibility [assessed by evaluating the possible difficulties
that might arise later in the project]
 [4] Are there any requirements that are technically difficult
to implement?

Tracking [assessed by evaluating the ability to keep
requirements visible during the project]
 [5] Do you have a plan to track the requirements throughout
the design, coding and testing phases?

Design

Functionality [assessed by evaluating the feature set of and
capabilities of the product]
 [6] Are there any specified algorithms that may not (or only
partially) satisfy the requirements?

Difficulty [assessed by evaluating the effort involved in
producing the design]
 [7] Does any of the design depend on unrealistic or
optimistic assumptions?
 [8] Are there any requirements or functions that are difficult
to design?

Interfaces [assessed by evaluating the connections between
components, or to the outside world]
 [9] Are the internal and external interfaces well defined?

Performance and Quality [assessed by evaluating the
functionality and quality of the product]
 [10] Are there any problems with the expected performance,
or quality, of the design?

Testability [assessed by evaluating the effort required to
sufficiently test the product]
 [11] Is the software going to be easy to test?

Hardware Constraints [assessed by evaluating the hardware of
the target or development platform]
 [12] Does the development or target hardware limit your
ability to meet any requirements?

Software Reuse [assessed by evaluating the extent to which
software is reused in the product]
 [13] Does re-used or re-engineered software exist?

Code and Unit Test

Feasibility [assessed by evaluating the relative ease necessary
to perform code and test]
 [14] Are any parts of the product implementation not
completely defined by the design specification?
 [15] Are the selected algorithms and designs easy to
implement?

Testing
 [16] Is there sufficient time to perform all the unit testing
that you specified?
 [17] Will compromises be made regarding unit testing if
there are schedule problems?

Coding/Implementation
 [18] Are the design specifications in sufficient detail to write
the code?
 [19] Is the design changing while coding is being done?
 [20] Is the language suitable for producing the software of
this program?
 [21] Does your team have enough experience with the
development language, platform or tools?
 [22] Is there a risk that a key component or module will not
be complete or on schedule?
 [23] Are you comfortable with your teams estimate on
coding time and effort?
 [24] Do you have a plan for configuration management of
the code?

Integration and Test

Environment [assessed by evaluating the hardware and
software support facilities and test cases]

 [25] Will there be sufficient hardware to do adequate
integration and testing?
 [26] Is there any problem with developing realistic scenarios
and test data to demonstrate any requirements?

Product [assessed by evaluating the integration and testing of
groups of components]
 [27] Have acceptance criteria been agreed to for all
requirements?
 [28] Has sufficient product integration been specified, and
has adequate time been allocated for it?

System [assessed by evaluating the integration between the
product and target hardware]
 [29] Have sufficient system integration and system
integration time been specified?

Maintainability [assessed by evaluating the effort required to
locate and fix errors]
 [30] Is the product design and documentation adequate for
another class to maintain the code?

Specifications
 [31] Are the test specifications adequate to fully test the
system?

Communication, Team Compatibility and
Motivation

Communication [assessed by evaluating the ability of the
team to exchange information]
 [32] Is there a lack of good communication amongst your
team?
 [33] Is there a lack of good communication with your
instructor about the project?

Compatibility of Team [assessed by evaluating the ability of
the team to work productively]
 [34] Is your team familiar to you; have you worked together
on a team project before?
 [35] Are tasks delegated fairly amongst your team?

Motivation of Team [assessed by evaluating the goals of the
team]
 [36] Is your team motivated to create a good product?

Appendix B

Sample Risk Management Form

